davidrd123 commited on
Commit
3859f20
1 Parent(s): b472d50

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +241 -0
README.md ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "black-forest-labs/FLUX.1-dev"
4
+ tags:
5
+ - flux
6
+ - flux-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - safe-for-work
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'In the style of Frank C. Pape fairy tale illustrations, A warrior princess in flowing silver armor rides a white horse through falling snow, her long cape billowing behind her. She holds a glowing crystal staff while three ravens circle overhead near a stone archway.'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ - text: 'In the style of Frank C. Pape fairy tale illustrations, A bearded wizard in a star-patterned robe stands atop a rocky cliff, raising his hands toward storm clouds while ships with golden sails battle waves below. Sea creatures with gleaming scales leap from the turbulent waters.'
27
+ parameters:
28
+ negative_prompt: 'blurry, cropped, ugly'
29
+ output:
30
+ url: ./assets/image_2_0.png
31
+ - text: 'In the style of Frank C. Pape fairy tale illustrations, A woman in an emerald dress with intricate gold embroidery sits beneath a flowering tree, offering a silver goblet to a deer. In the background, a castle with twisted spires rises against a sunset sky.'
32
+ parameters:
33
+ negative_prompt: 'blurry, cropped, ugly'
34
+ output:
35
+ url: ./assets/image_3_0.png
36
+ - text: 'In the style of Frank C. Pape fairy tale illustrations, A giant golden hamster wearing burnished steel armor and a crimson velvet cape sits upon an ornate throne carved from ancient oak and golden wheat. Mice in blue and silver livery bow before him, presenting jeweled acorns on silk cushions while court musicians play tiny silver trumpets.'
37
+ parameters:
38
+ negative_prompt: 'blurry, cropped, ugly'
39
+ output:
40
+ url: ./assets/image_4_0.png
41
+ - text: 'In the style of Frank C. Pape fairy tale illustrations, A mysterious merchant in an emerald robe and golden mask holds up a glowing Coca-Cola bottle beneath a canopy of twisted oak branches. Forest creatures in medieval dress gather around its ruby light, while silver-winged fairies dance through moonbeams that filter through the leaves.'
42
+ parameters:
43
+ negative_prompt: 'blurry, cropped, ugly'
44
+ output:
45
+ url: ./assets/image_5_0.png
46
+ - text: 'In the style of Frank C. Pape fairy tale illustrations, A Range Rover with brass-and-silver clockwork wheels and gleaming armor plates crosses an ancient stone bridge. Four mechanical horses with steam-breathing nostrils and copper manes pull it through swirling silver mist, while a wizard in a pinstripe suit raises a crystal staff from the driver''s seat.'
47
+ parameters:
48
+ negative_prompt: 'blurry, cropped, ugly'
49
+ output:
50
+ url: ./assets/image_6_0.png
51
+ - text: 'In the style of Frank C. Pape fairy tale illustrations, A sorcerer in purple silk robes trimmed with gold stands atop a winding stone staircase, conducting floating books with a feather quill that trails sparks. Beneath gothic arches, apprentices in pointed hats ride enchanted carpets between towering bookshelves of ancient tomes.'
52
+ parameters:
53
+ negative_prompt: 'blurry, cropped, ugly'
54
+ output:
55
+ url: ./assets/image_7_0.png
56
+ - text: 'In the style of Frank C. Pape fairy tale illustrations, A grand feast hall with tapestry-hung walls where animal nobles in velvet and silk dine at a table of polished oak. At its center, a towering crystal fountain flows with sparkling Coca-Cola, while rabbit jesters in bells and motley juggle glowing bottles beneath chandeliers.'
57
+ parameters:
58
+ negative_prompt: 'blurry, cropped, ugly'
59
+ output:
60
+ url: ./assets/image_8_0.png
61
+ ---
62
+
63
+ # FrankPape-RussianStoryBook-Flux-LoKr-4e-4
64
+
65
+ This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
66
+
67
+
68
+ No validation prompt was used during training.
69
+
70
+ None
71
+
72
+
73
+
74
+ ## Validation settings
75
+ - CFG: `3.0`
76
+ - CFG Rescale: `0.0`
77
+ - Steps: `20`
78
+ - Sampler: `FlowMatchEulerDiscreteScheduler`
79
+ - Seed: `42`
80
+ - Resolution: `1024x1024`
81
+ - Skip-layer guidance:
82
+
83
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
84
+
85
+ You can find some example images in the following gallery:
86
+
87
+
88
+ <Gallery />
89
+
90
+ The text encoder **was not** trained.
91
+ You may reuse the base model text encoder for inference.
92
+
93
+
94
+ ## Training settings
95
+
96
+ - Training epochs: 0
97
+ - Training steps: 150
98
+ - Learning rate: 0.0004
99
+ - Learning rate schedule: polynomial
100
+ - Warmup steps: 200
101
+ - Max grad norm: 2.0
102
+ - Effective batch size: 3
103
+ - Micro-batch size: 3
104
+ - Gradient accumulation steps: 1
105
+ - Number of GPUs: 1
106
+ - Gradient checkpointing: True
107
+ - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
108
+ - Optimizer: adamw_bf16
109
+ - Trainable parameter precision: Pure BF16
110
+ - Caption dropout probability: 10.0%
111
+
112
+
113
+ ### LyCORIS Config:
114
+ ```json
115
+ {
116
+ "algo": "lokr",
117
+ "multiplier": 1.0,
118
+ "linear_dim": 10000,
119
+ "linear_alpha": 1,
120
+ "factor": 16,
121
+ "apply_preset": {
122
+ "target_module": [
123
+ "Attention",
124
+ "FeedForward"
125
+ ],
126
+ "module_algo_map": {
127
+ "Attention": {
128
+ "factor": 16
129
+ },
130
+ "FeedForward": {
131
+ "factor": 8
132
+ }
133
+ }
134
+ }
135
+ }
136
+ ```
137
+
138
+ ## Datasets
139
+
140
+ ### fws-512
141
+ - Repeats: 10
142
+ - Total number of images: 16
143
+ - Total number of aspect buckets: 1
144
+ - Resolution: 0.262144 megapixels
145
+ - Cropped: False
146
+ - Crop style: None
147
+ - Crop aspect: None
148
+ - Used for regularisation data: No
149
+ ### fws-1024
150
+ - Repeats: 6
151
+ - Total number of images: 16
152
+ - Total number of aspect buckets: 2
153
+ - Resolution: 1.048576 megapixels
154
+ - Cropped: False
155
+ - Crop style: None
156
+ - Crop aspect: None
157
+ - Used for regularisation data: No
158
+ ### fws-512-crop
159
+ - Repeats: 10
160
+ - Total number of images: 16
161
+ - Total number of aspect buckets: 1
162
+ - Resolution: 0.262144 megapixels
163
+ - Cropped: True
164
+ - Crop style: random
165
+ - Crop aspect: square
166
+ - Used for regularisation data: No
167
+ ### fws-1024-crop
168
+ - Repeats: 6
169
+ - Total number of images: 16
170
+ - Total number of aspect buckets: 1
171
+ - Resolution: 1.048576 megapixels
172
+ - Cropped: True
173
+ - Crop style: random
174
+ - Crop aspect: square
175
+ - Used for regularisation data: No
176
+
177
+
178
+ ## Inference
179
+
180
+
181
+ ```python
182
+ import torch
183
+ from diffusers import DiffusionPipeline
184
+ from lycoris import create_lycoris_from_weights
185
+
186
+
187
+ def download_adapter(repo_id: str):
188
+ import os
189
+ from huggingface_hub import hf_hub_download
190
+ adapter_filename = "pytorch_lora_weights.safetensors"
191
+ cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
192
+ cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
193
+ path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
194
+ path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
195
+ os.makedirs(path_to_adapter, exist_ok=True)
196
+ hf_hub_download(
197
+ repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
198
+ )
199
+
200
+ return path_to_adapter_file
201
+
202
+ model_id = 'black-forest-labs/FLUX.1-dev'
203
+ adapter_repo_id = 'davidrd123/FrankPape-RussianStoryBook-Flux-LoKr-4e-4'
204
+ adapter_filename = 'pytorch_lora_weights.safetensors'
205
+ adapter_file_path = download_adapter(repo_id=adapter_repo_id)
206
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
207
+ lora_scale = 1.0
208
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
209
+ wrapper.merge_to()
210
+
211
+ prompt = "An astronaut is riding a horse through the jungles of Thailand."
212
+
213
+
214
+ ## Optional: quantise the model to save on vram.
215
+ ## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
216
+ from optimum.quanto import quantize, freeze, qint8
217
+ quantize(pipeline.transformer, weights=qint8)
218
+ freeze(pipeline.transformer)
219
+
220
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
221
+ image = pipeline(
222
+ prompt=prompt,
223
+ num_inference_steps=20,
224
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
225
+ width=1024,
226
+ height=1024,
227
+ guidance_scale=3.0,
228
+ ).images[0]
229
+ image.save("output.png", format="PNG")
230
+ ```
231
+
232
+
233
+
234
+ ## Exponential Moving Average (EMA)
235
+
236
+ SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
237
+
238
+ The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
239
+
240
+ The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
241
+