davidrd123 commited on
Commit
b9e9f5f
1 Parent(s): c140dd2

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +268 -0
README.md ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "black-forest-labs/FLUX.1-dev"
4
+ tags:
5
+ - flux
6
+ - flux-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - safe-for-work
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'In the style of a Raphael oil painting, Three figures in red and white religious attire, with one seated at a table holding a magnifying glass, and two standing figures behind. The table is covered with a red cloth and holds an open book and a silver bell. Dark background and muted color palette.'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ - text: 'In the style of a Raphael oil painting, A knight on a white horse is spearing a dragon lying on the ground. The knight wears armor and a blue cape, while a woman in a red dress stands in the background beside a rock formation. The setting includes tall trees and a distant cityscape.'
27
+ parameters:
28
+ negative_prompt: 'blurry, cropped, ugly'
29
+ output:
30
+ url: ./assets/image_2_0.png
31
+ - text: 'In the style of a Raphael oil painting, A bearded man wearing a black robe and cap sits at a table holding papers in one hand. An apple rests on the table alongside a book with a ring visible on his finger. The background is plain and neutral.'
32
+ parameters:
33
+ negative_prompt: 'blurry, cropped, ugly'
34
+ output:
35
+ url: ./assets/image_3_0.png
36
+ - text: 'In the style of a Raphael oil painting, A seated figure in a blue robe and red dress holds a book, surrounded by two young, unclothed children in a natural setting with trees and mountains in the background. One child holds a bird while the other reaches out towards it. The setting includes a rock and a grassy landscape.'
37
+ parameters:
38
+ negative_prompt: 'blurry, cropped, ugly'
39
+ output:
40
+ url: ./assets/image_4_0.png
41
+ - text: 'In the style of a Raphael oil painting, A scholar-alchemist in flowing robes stands amid glass vessels and astronomical instruments, while light streams through a Gothic window. A mechanical armillary sphere sits prominently on a wooden table, while an assistant in the background tends to a burning crucible.'
42
+ parameters:
43
+ negative_prompt: 'blurry, cropped, ugly'
44
+ output:
45
+ url: ./assets/image_5_0.png
46
+ - text: 'In the style of a Raphael oil painting, Neptune rises from turbulent waters on the steps of Venice''s St. Mark''s Basilica, offering a golden ring to a figure representing the Maritime Republic. Merchants in Renaissance dress observe from gondolas, while angels hold scrolls of maritime law above.'
47
+ parameters:
48
+ negative_prompt: 'blurry, cropped, ugly'
49
+ output:
50
+ url: ./assets/image_6_0.png
51
+ - text: 'In the style of a Raphael oil painting, Aristotle and Plato walk through a Renaissance medicinal garden, discussing a dissected flower. Young apprentices sketch botanical specimens nearby, while in the background, monks tend to rows of healing herbs beneath a pergola covered in grape vines.'
52
+ parameters:
53
+ negative_prompt: 'blurry, cropped, ugly'
54
+ output:
55
+ url: ./assets/image_7_0.png
56
+ - text: 'In the style of a Raphael oil painting, Angels and scholars share a vast library with soaring Renaissance architecture, where celestial maps float in mid-air. Some angels point to globes showing undiscovered continents, while others transcribe from books bound in supernatural light. A telescope made of gold and ivory points through an open dome to the stars.'
57
+ parameters:
58
+ negative_prompt: 'blurry, cropped, ugly'
59
+ output:
60
+ url: ./assets/image_8_0.png
61
+ ---
62
+
63
+ # Flux-Raphael-LoRA
64
+
65
+ This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
66
+
67
+
68
+ No validation prompt was used during training.
69
+
70
+ None
71
+
72
+
73
+
74
+ ## Validation settings
75
+ - CFG: `3.0`
76
+ - CFG Rescale: `0.0`
77
+ - Steps: `20`
78
+ - Sampler: `FlowMatchEulerDiscreteScheduler`
79
+ - Seed: `42`
80
+ - Resolution: `1024x1280`
81
+ - Skip-layer guidance:
82
+
83
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
84
+
85
+ You can find some example images in the following gallery:
86
+
87
+
88
+ <Gallery />
89
+
90
+ The text encoder **was not** trained.
91
+ You may reuse the base model text encoder for inference.
92
+
93
+
94
+ ## Training settings
95
+
96
+ - Training epochs: 0
97
+ - Training steps: 200
98
+ - Learning rate: 0.0006
99
+ - Learning rate schedule: polynomial
100
+ - Warmup steps: 100
101
+ - Max grad norm: 2.0
102
+ - Effective batch size: 4
103
+ - Micro-batch size: 2
104
+ - Gradient accumulation steps: 2
105
+ - Number of GPUs: 1
106
+ - Gradient checkpointing: True
107
+ - Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible'])
108
+ - Optimizer: adamw_bf16
109
+ - Trainable parameter precision: Pure BF16
110
+ - Caption dropout probability: 10.0%
111
+
112
+ - SageAttention: Enabled inference
113
+ ### LyCORIS Config:
114
+ ```json
115
+ {
116
+ "algo": "lokr",
117
+ "multiplier": 1.0,
118
+ "linear_dim": 10000,
119
+ "linear_alpha": 1,
120
+ "factor": 16,
121
+ "apply_preset": {
122
+ "target_module": [
123
+ "Attention",
124
+ "FeedForward"
125
+ ],
126
+ "module_algo_map": {
127
+ "Attention": {
128
+ "factor": 16
129
+ },
130
+ "FeedForward": {
131
+ "factor": 8
132
+ }
133
+ }
134
+ }
135
+ }
136
+ ```
137
+
138
+ ## Datasets
139
+
140
+ ### raphael-512
141
+ - Repeats: 15
142
+ - Total number of images: 28
143
+ - Total number of aspect buckets: 6
144
+ - Resolution: 0.262144 megapixels
145
+ - Cropped: False
146
+ - Crop style: None
147
+ - Crop aspect: None
148
+ - Used for regularisation data: No
149
+ ### raphael-768
150
+ - Repeats: 12
151
+ - Total number of images: 28
152
+ - Total number of aspect buckets: 9
153
+ - Resolution: 0.589824 megapixels
154
+ - Cropped: False
155
+ - Crop style: None
156
+ - Crop aspect: None
157
+ - Used for regularisation data: No
158
+ ### raphael-1024
159
+ - Repeats: 8
160
+ - Total number of images: 28
161
+ - Total number of aspect buckets: 3
162
+ - Resolution: 1.048576 megapixels
163
+ - Cropped: False
164
+ - Crop style: None
165
+ - Crop aspect: None
166
+ - Used for regularisation data: No
167
+ ### raphael-crops-512
168
+ - Repeats: 6
169
+ - Total number of images: 28
170
+ - Total number of aspect buckets: 1
171
+ - Resolution: 0.262144 megapixels
172
+ - Cropped: True
173
+ - Crop style: random
174
+ - Crop aspect: square
175
+ - Used for regularisation data: No
176
+ ### raphael-crops-1024
177
+ - Repeats: 4
178
+ - Total number of images: 28
179
+ - Total number of aspect buckets: 1
180
+ - Resolution: 1.048576 megapixels
181
+ - Cropped: True
182
+ - Crop style: random
183
+ - Crop aspect: square
184
+ - Used for regularisation data: No
185
+ ### raphael-crops-512-from-1024
186
+ - Repeats: 6
187
+ - Total number of images: 28
188
+ - Total number of aspect buckets: 1
189
+ - Resolution: 0.262144 megapixels
190
+ - Cropped: True
191
+ - Crop style: random
192
+ - Crop aspect: square
193
+ - Used for regularisation data: No
194
+ ### raphael-crops-512-from-1536
195
+ - Repeats: 4
196
+ - Total number of images: 28
197
+ - Total number of aspect buckets: 1
198
+ - Resolution: 0.262144 megapixels
199
+ - Cropped: True
200
+ - Crop style: random
201
+ - Crop aspect: square
202
+ - Used for regularisation data: No
203
+
204
+
205
+ ## Inference
206
+
207
+
208
+ ```python
209
+ import torch
210
+ from diffusers import DiffusionPipeline
211
+ from lycoris import create_lycoris_from_weights
212
+
213
+
214
+ def download_adapter(repo_id: str):
215
+ import os
216
+ from huggingface_hub import hf_hub_download
217
+ adapter_filename = "pytorch_lora_weights.safetensors"
218
+ cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
219
+ cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
220
+ path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
221
+ path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
222
+ os.makedirs(path_to_adapter, exist_ok=True)
223
+ hf_hub_download(
224
+ repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
225
+ )
226
+
227
+ return path_to_adapter_file
228
+
229
+ model_id = 'black-forest-labs/FLUX.1-dev'
230
+ adapter_repo_id = 'davidrd123/Flux-Raphael-LoRA'
231
+ adapter_filename = 'pytorch_lora_weights.safetensors'
232
+ adapter_file_path = download_adapter(repo_id=adapter_repo_id)
233
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
234
+ lora_scale = 1.0
235
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
236
+ wrapper.merge_to()
237
+
238
+ prompt = "An astronaut is riding a horse through the jungles of Thailand."
239
+
240
+
241
+ ## Optional: quantise the model to save on vram.
242
+ ## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
243
+ from optimum.quanto import quantize, freeze, qint8
244
+ quantize(pipeline.transformer, weights=qint8)
245
+ freeze(pipeline.transformer)
246
+
247
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
248
+ image = pipeline(
249
+ prompt=prompt,
250
+ num_inference_steps=20,
251
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
252
+ width=1024,
253
+ height=1280,
254
+ guidance_scale=3.0,
255
+ ).images[0]
256
+ image.save("output.png", format="PNG")
257
+ ```
258
+
259
+
260
+
261
+ ## Exponential Moving Average (EMA)
262
+
263
+ SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
264
+
265
+ The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
266
+
267
+ The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
268
+