davanstrien HF staff commited on
Commit
d7ddeab
1 Parent(s): 57e6e6d

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - dataset_size:n<1K
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: microsoft/mpnet-base
13
+ metrics:
14
+ - cosine_accuracy
15
+ - dot_accuracy
16
+ - manhattan_accuracy
17
+ - euclidean_accuracy
18
+ - max_accuracy
19
+ widget:
20
+ - source_sentence: Write a Python function that counts the number of even numbers
21
+ in a given list of integers or floats
22
+ sentences:
23
+ - Write a Python function that returns the number of even numbers in a list.
24
+ - Create a Python function that adds up all the numbers in a given list. The function
25
+ should support lists containing only positive integers.
26
+ - Write a Python function that converts a JSON string into a Python dictionary using
27
+ the json module and returns it.
28
+ - source_sentence: Develop a Python function to validate whether a given string represents
29
+ a valid IPv4 address or not.
30
+ sentences:
31
+ - Create a Python function to validate a string `s` as an IPv4 address. The function
32
+ should return `True` if `s` is a valid IPv4 address, and `False` otherwise.
33
+ - Write a Python function to find the key with the highest value in a dictionary.
34
+ The function should return the value of the key if it exists
35
+ - Write a Python function that, given a dictionary `d` and an integer `k`, returns
36
+ the sum of the values of the first `k` keys in `d`.
37
+ - source_sentence: Write a Python function to create a list of numbers with exactly
38
+ one even number and n-1 odd numbers
39
+ sentences:
40
+ - Write a Python function that returns the number of even numbers in a list.
41
+ - Write a Python function that recursively traverses a given folder structure and
42
+ returns the absolute path of all files that end with ".txt".
43
+ - Write a Python decorator function that overrides the docstring of the decorated
44
+ function, and stores the old docstring and other metadata in a `_doc_metadata`
45
+ attribute of the function.
46
+ - source_sentence: 'Implement a Python function that prints the first character of
47
+ a string using its indexing feature. '
48
+ sentences:
49
+ - Write a Python function that takes a string as a parameter and returns the first
50
+ character of the string.
51
+ - Write a Python function that checks if the bit at position `bit` is set in the
52
+ given `integer`. This function should return a boolean value.
53
+ - 'Write a Python function `floor_division(x: int, y: int) -> int` that divides
54
+ two integers `x` and `y` and returns the largest whole number less than or equal
55
+ to the result.'
56
+ - source_sentence: Write a Python function that takes a MIDI note number and returns
57
+ the corresponding piano key number.
58
+ sentences:
59
+ - Create a Python function that translates MIDI note numbers into piano key numbers,
60
+ facilitating music generation.
61
+ - Write a Python function that accepts a dictionary and returns a set of distinct
62
+ values. If a key maps to an empty list, return an empty set.
63
+ - Write a Python function `join_strings_with_comma(lst)` that takes a list of strings
64
+ and returns a single string with all the strings from the list, separated by commas.
65
+ pipeline_tag: sentence-similarity
66
+ co2_eq_emissions:
67
+ emissions: 2.213004168952992
68
+ energy_consumed: 0.006336878829164133
69
+ source: codecarbon
70
+ training_type: fine-tuning
71
+ on_cloud: false
72
+ cpu_model: Intel(R) Xeon(R) CPU @ 2.20GHz
73
+ ram_total_size: 62.804237365722656
74
+ hours_used: 0.049
75
+ hardware_used: 1 x NVIDIA L4
76
+ model-index:
77
+ - name: MPNet base trained on AllNLI triplets
78
+ results:
79
+ - task:
80
+ type: triplet
81
+ name: Triplet
82
+ dataset:
83
+ name: code similarity dev
84
+ type: code-similarity-dev
85
+ metrics:
86
+ - type: cosine_accuracy
87
+ value: 0.934010152284264
88
+ name: Cosine Accuracy
89
+ - type: dot_accuracy
90
+ value: 0.07106598984771574
91
+ name: Dot Accuracy
92
+ - type: manhattan_accuracy
93
+ value: 0.934010152284264
94
+ name: Manhattan Accuracy
95
+ - type: euclidean_accuracy
96
+ value: 0.9390862944162437
97
+ name: Euclidean Accuracy
98
+ - type: max_accuracy
99
+ value: 0.9390862944162437
100
+ name: Max Accuracy
101
+ - task:
102
+ type: triplet
103
+ name: Triplet
104
+ dataset:
105
+ name: Unknown
106
+ type: unknown
107
+ metrics:
108
+ - type: cosine_accuracy
109
+ value: 0.934010152284264
110
+ name: Cosine Accuracy
111
+ - type: dot_accuracy
112
+ value: 0.07106598984771574
113
+ name: Dot Accuracy
114
+ - type: manhattan_accuracy
115
+ value: 0.934010152284264
116
+ name: Manhattan Accuracy
117
+ - type: euclidean_accuracy
118
+ value: 0.9390862944162437
119
+ name: Euclidean Accuracy
120
+ - type: max_accuracy
121
+ value: 0.9390862944162437
122
+ name: Max Accuracy
123
+ ---
124
+
125
+ # MPNet base trained on AllNLI triplets
126
+
127
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
128
+
129
+ ## Model Details
130
+
131
+ ### Model Description
132
+ - **Model Type:** Sentence Transformer
133
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
134
+ - **Maximum Sequence Length:** 512 tokens
135
+ - **Output Dimensionality:** 768 tokens
136
+ - **Similarity Function:** Cosine Similarity
137
+ <!-- - **Training Dataset:** Unknown -->
138
+ - **Language:** en
139
+ - **License:** apache-2.0
140
+
141
+ ### Model Sources
142
+
143
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
144
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
145
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
146
+
147
+ ### Full Model Architecture
148
+
149
+ ```
150
+ SentenceTransformer(
151
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
152
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
153
+ )
154
+ ```
155
+
156
+ ## Usage
157
+
158
+ ### Direct Usage (Sentence Transformers)
159
+
160
+ First install the Sentence Transformers library:
161
+
162
+ ```bash
163
+ pip install -U sentence-transformers
164
+ ```
165
+
166
+ Then you can load this model and run inference.
167
+ ```python
168
+ from sentence_transformers import SentenceTransformer
169
+
170
+ # Download from the 🤗 Hub
171
+ model = SentenceTransformer("davanstrien/code-prompt-similarity-model")
172
+ # Run inference
173
+ sentences = [
174
+ 'Write a Python function that takes a MIDI note number and returns the corresponding piano key number.',
175
+ 'Create a Python function that translates MIDI note numbers into piano key numbers, facilitating music generation.',
176
+ 'Write a Python function that accepts a dictionary and returns a set of distinct values. If a key maps to an empty list, return an empty set.',
177
+ ]
178
+ embeddings = model.encode(sentences)
179
+ print(embeddings.shape)
180
+ # [3, 768]
181
+
182
+ # Get the similarity scores for the embeddings
183
+ similarities = model.similarity(embeddings, embeddings)
184
+ print(similarities.shape)
185
+ # [3, 3]
186
+ ```
187
+
188
+ <!--
189
+ ### Direct Usage (Transformers)
190
+
191
+ <details><summary>Click to see the direct usage in Transformers</summary>
192
+
193
+ </details>
194
+ -->
195
+
196
+ <!--
197
+ ### Downstream Usage (Sentence Transformers)
198
+
199
+ You can finetune this model on your own dataset.
200
+
201
+ <details><summary>Click to expand</summary>
202
+
203
+ </details>
204
+ -->
205
+
206
+ <!--
207
+ ### Out-of-Scope Use
208
+
209
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
210
+ -->
211
+
212
+ ## Evaluation
213
+
214
+ ### Metrics
215
+
216
+ #### Triplet
217
+ * Dataset: `code-similarity-dev`
218
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
219
+
220
+ | Metric | Value |
221
+ |:-------------------|:-----------|
222
+ | cosine_accuracy | 0.934 |
223
+ | dot_accuracy | 0.0711 |
224
+ | manhattan_accuracy | 0.934 |
225
+ | euclidean_accuracy | 0.9391 |
226
+ | **max_accuracy** | **0.9391** |
227
+
228
+ #### Triplet
229
+
230
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
231
+
232
+ | Metric | Value |
233
+ |:-------------------|:-----------|
234
+ | cosine_accuracy | 0.934 |
235
+ | dot_accuracy | 0.0711 |
236
+ | manhattan_accuracy | 0.934 |
237
+ | euclidean_accuracy | 0.9391 |
238
+ | **max_accuracy** | **0.9391** |
239
+
240
+ <!--
241
+ ## Bias, Risks and Limitations
242
+
243
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
244
+ -->
245
+
246
+ <!--
247
+ ### Recommendations
248
+
249
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
250
+ -->
251
+
252
+ ## Training Details
253
+
254
+ ### Training Hyperparameters
255
+ #### Non-Default Hyperparameters
256
+
257
+ - `eval_strategy`: steps
258
+ - `per_device_train_batch_size`: 16
259
+ - `per_device_eval_batch_size`: 16
260
+ - `num_train_epochs`: 10
261
+ - `warmup_ratio`: 0.1
262
+ - `bf16`: True
263
+ - `batch_sampler`: no_duplicates
264
+
265
+ #### All Hyperparameters
266
+ <details><summary>Click to expand</summary>
267
+
268
+ - `overwrite_output_dir`: False
269
+ - `do_predict`: False
270
+ - `eval_strategy`: steps
271
+ - `prediction_loss_only`: True
272
+ - `per_device_train_batch_size`: 16
273
+ - `per_device_eval_batch_size`: 16
274
+ - `per_gpu_train_batch_size`: None
275
+ - `per_gpu_eval_batch_size`: None
276
+ - `gradient_accumulation_steps`: 1
277
+ - `eval_accumulation_steps`: None
278
+ - `learning_rate`: 5e-05
279
+ - `weight_decay`: 0.0
280
+ - `adam_beta1`: 0.9
281
+ - `adam_beta2`: 0.999
282
+ - `adam_epsilon`: 1e-08
283
+ - `max_grad_norm`: 1.0
284
+ - `num_train_epochs`: 10
285
+ - `max_steps`: -1
286
+ - `lr_scheduler_type`: linear
287
+ - `lr_scheduler_kwargs`: {}
288
+ - `warmup_ratio`: 0.1
289
+ - `warmup_steps`: 0
290
+ - `log_level`: passive
291
+ - `log_level_replica`: warning
292
+ - `log_on_each_node`: True
293
+ - `logging_nan_inf_filter`: True
294
+ - `save_safetensors`: True
295
+ - `save_on_each_node`: False
296
+ - `save_only_model`: False
297
+ - `restore_callback_states_from_checkpoint`: False
298
+ - `no_cuda`: False
299
+ - `use_cpu`: False
300
+ - `use_mps_device`: False
301
+ - `seed`: 42
302
+ - `data_seed`: None
303
+ - `jit_mode_eval`: False
304
+ - `use_ipex`: False
305
+ - `bf16`: True
306
+ - `fp16`: False
307
+ - `fp16_opt_level`: O1
308
+ - `half_precision_backend`: auto
309
+ - `bf16_full_eval`: False
310
+ - `fp16_full_eval`: False
311
+ - `tf32`: None
312
+ - `local_rank`: 0
313
+ - `ddp_backend`: None
314
+ - `tpu_num_cores`: None
315
+ - `tpu_metrics_debug`: False
316
+ - `debug`: []
317
+ - `dataloader_drop_last`: False
318
+ - `dataloader_num_workers`: 0
319
+ - `dataloader_prefetch_factor`: None
320
+ - `past_index`: -1
321
+ - `disable_tqdm`: False
322
+ - `remove_unused_columns`: True
323
+ - `label_names`: None
324
+ - `load_best_model_at_end`: False
325
+ - `ignore_data_skip`: False
326
+ - `fsdp`: []
327
+ - `fsdp_min_num_params`: 0
328
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
329
+ - `fsdp_transformer_layer_cls_to_wrap`: None
330
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
331
+ - `deepspeed`: None
332
+ - `label_smoothing_factor`: 0.0
333
+ - `optim`: adamw_torch
334
+ - `optim_args`: None
335
+ - `adafactor`: False
336
+ - `group_by_length`: False
337
+ - `length_column_name`: length
338
+ - `ddp_find_unused_parameters`: None
339
+ - `ddp_bucket_cap_mb`: None
340
+ - `ddp_broadcast_buffers`: False
341
+ - `dataloader_pin_memory`: True
342
+ - `dataloader_persistent_workers`: False
343
+ - `skip_memory_metrics`: True
344
+ - `use_legacy_prediction_loop`: False
345
+ - `push_to_hub`: False
346
+ - `resume_from_checkpoint`: None
347
+ - `hub_model_id`: None
348
+ - `hub_strategy`: every_save
349
+ - `hub_private_repo`: False
350
+ - `hub_always_push`: False
351
+ - `gradient_checkpointing`: False
352
+ - `gradient_checkpointing_kwargs`: None
353
+ - `include_inputs_for_metrics`: False
354
+ - `eval_do_concat_batches`: True
355
+ - `fp16_backend`: auto
356
+ - `push_to_hub_model_id`: None
357
+ - `push_to_hub_organization`: None
358
+ - `mp_parameters`:
359
+ - `auto_find_batch_size`: False
360
+ - `full_determinism`: False
361
+ - `torchdynamo`: None
362
+ - `ray_scope`: last
363
+ - `ddp_timeout`: 1800
364
+ - `torch_compile`: False
365
+ - `torch_compile_backend`: None
366
+ - `torch_compile_mode`: None
367
+ - `dispatch_batches`: None
368
+ - `split_batches`: None
369
+ - `include_tokens_per_second`: False
370
+ - `include_num_input_tokens_seen`: False
371
+ - `neftune_noise_alpha`: None
372
+ - `optim_target_modules`: None
373
+ - `batch_eval_metrics`: False
374
+ - `batch_sampler`: no_duplicates
375
+ - `multi_dataset_batch_sampler`: proportional
376
+
377
+ </details>
378
+
379
+ ### Training Logs
380
+ | Epoch | Step | Training Loss | loss | code-similarity-dev_max_accuracy | max_accuracy |
381
+ |:-----:|:----:|:-------------:|:------:|:--------------------------------:|:------------:|
382
+ | 0 | 0 | - | - | 0.8680 | - |
383
+ | 2.0 | 100 | 0.6379 | 0.1845 | 0.9340 | - |
384
+ | 4.0 | 200 | 0.0399 | 0.1577 | 0.9543 | - |
385
+ | 6.0 | 300 | 0.0059 | 0.1577 | 0.9543 | - |
386
+ | 8.0 | 400 | 0.0018 | 0.1662 | 0.9492 | - |
387
+ | 10.0 | 500 | 0.0009 | 0.1643 | 0.9391 | 0.9391 |
388
+
389
+
390
+ ### Environmental Impact
391
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
392
+ - **Energy Consumed**: 0.006 kWh
393
+ - **Carbon Emitted**: 0.002 kg of CO2
394
+ - **Hours Used**: 0.049 hours
395
+
396
+ ### Training Hardware
397
+ - **On Cloud**: No
398
+ - **GPU Model**: 1 x NVIDIA L4
399
+ - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.20GHz
400
+ - **RAM Size**: 62.80 GB
401
+
402
+ ### Framework Versions
403
+ - Python: 3.10.12
404
+ - Sentence Transformers: 3.0.0
405
+ - Transformers: 4.41.1
406
+ - PyTorch: 2.3.0+cu121
407
+ - Accelerate: 0.30.1
408
+ - Datasets: 2.19.1
409
+ - Tokenizers: 0.19.1
410
+
411
+ ## Citation
412
+
413
+ ### BibTeX
414
+
415
+ #### Sentence Transformers
416
+ ```bibtex
417
+ @inproceedings{reimers-2019-sentence-bert,
418
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
419
+ author = "Reimers, Nils and Gurevych, Iryna",
420
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
421
+ month = "11",
422
+ year = "2019",
423
+ publisher = "Association for Computational Linguistics",
424
+ url = "https://arxiv.org/abs/1908.10084",
425
+ }
426
+ ```
427
+
428
+ #### MultipleNegativesRankingLoss
429
+ ```bibtex
430
+ @misc{henderson2017efficient,
431
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
432
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
433
+ year={2017},
434
+ eprint={1705.00652},
435
+ archivePrefix={arXiv},
436
+ primaryClass={cs.CL}
437
+ }
438
+ ```
439
+
440
+ <!--
441
+ ## Glossary
442
+
443
+ *Clearly define terms in order to be accessible across audiences.*
444
+ -->
445
+
446
+ <!--
447
+ ## Model Card Authors
448
+
449
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
450
+ -->
451
+
452
+ <!--
453
+ ## Model Card Contact
454
+
455
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
456
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6178ab98c5280f00c1d1bb782c4893cd2161c7781c99ade4b92f1816e093ab9
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff