| 
							 | 
						import sys | 
					
					
						
						| 
							 | 
						from transformers import pipeline | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						candidate_labels_spam = ['Spam', 'not Spam'] | 
					
					
						
						| 
							 | 
						candidate_labels_urgent = ['Urgent', 'not Urgent'] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						model="MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33" | 
					
					
						
						| 
							 | 
						model="SpamUrgencyDetection" | 
					
					
						
						| 
							 | 
						clf = pipeline("zero-shot-classification", model=model) | 
					
					
						
						| 
							 | 
						def predict(text): | 
					
					
						
						| 
							 | 
						    p_spam = clf(text, candidate_labels_spam)["labels"][0] | 
					
					
						
						| 
							 | 
						    p_urgent = clf(text, candidate_labels_urgent)["labels"][0] | 
					
					
						
						| 
							 | 
						    return p_spam,p_urgent | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import pandas as pd | 
					
					
						
						| 
							 | 
						df = pd.read_csv("test.csv") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						texts=df["text"] | 
					
					
						
						| 
							 | 
						for i in    range( len(texts)): | 
					
					
						
						| 
							 | 
						     print(texts[i],predict(texts[i])) | 
					
					
						
						| 
							 | 
						
 |