Datasets:
Upload 12 files
Browse files- README.md +271 -0
- faceid-plus.jpg +3 -0
- faceid_plusv2.jpg +3 -0
- gitattributes (1).txt +38 -0
- ip-adapter-faceid-plus_sd15.bin +3 -0
- ip-adapter-faceid-plus_sd15_lora.safetensors +3 -0
- ip-adapter-faceid-plusv2_sd15.bin +3 -0
- ip-adapter-faceid-plusv2_sd15_lora.safetensors +3 -0
- ip-adapter-faceid.jpg +3 -0
- ip-adapter-faceid_sd15.bin +3 -0
- ip-adapter-faceid_sd15_lora.safetensors +3 -0
- sdxl_faceid.jpg +3 -0
README.md
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- text-to-image
|
4 |
+
- stable-diffusion
|
5 |
+
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: diffusers
|
9 |
+
---
|
10 |
+
|
11 |
+
# IP-Adapter-FaceID Model Card
|
12 |
+
|
13 |
+
|
14 |
+
<div align="center">
|
15 |
+
|
16 |
+
[**Project Page**](https://ip-adapter.github.io) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2308.06721) **|** [**Code**](https://github.com/tencent-ailab/IP-Adapter)
|
17 |
+
</div>
|
18 |
+
|
19 |
+
---
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
## Introduction
|
24 |
+
|
25 |
+
An experimental version of IP-Adapter-FaceID: we use face ID embedding from a face recognition model instead of CLIP image embedding, additionally, we use LoRA to improve ID consistency. IP-Adapter-FaceID can generate various style images conditioned on a face with only text prompts.
|
26 |
+
|
27 |
+
![results](./ip-adapter-faceid.jpg)
|
28 |
+
|
29 |
+
|
30 |
+
**Update 2023/12/27**:
|
31 |
+
|
32 |
+
IP-Adapter-FaceID-Plus: face ID embedding (for face ID) + CLIP image embedding (for face structure)
|
33 |
+
|
34 |
+
<div align="center">
|
35 |
+
|
36 |
+
![results](./faceid-plus.jpg)
|
37 |
+
</div>
|
38 |
+
|
39 |
+
**Update 2023/12/28**:
|
40 |
+
|
41 |
+
IP-Adapter-FaceID-PlusV2: face ID embedding (for face ID) + controllable CLIP image embedding (for face structure)
|
42 |
+
|
43 |
+
You can adjust the weight of the face structure to get different generation!
|
44 |
+
|
45 |
+
<div align="center">
|
46 |
+
|
47 |
+
![results](./faceid_plusv2.jpg)
|
48 |
+
</div>
|
49 |
+
|
50 |
+
**Update 2024/01/04**:
|
51 |
+
|
52 |
+
IP-Adapter-FaceID-SDXL: An experimental SDXL version of IP-Adapter-FaceID
|
53 |
+
|
54 |
+
<div align="center">
|
55 |
+
|
56 |
+
![results](./sdxl_faceid.jpg)
|
57 |
+
</div>
|
58 |
+
|
59 |
+
## Usage
|
60 |
+
|
61 |
+
### IP-Adapter-FaceID
|
62 |
+
|
63 |
+
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
|
64 |
+
|
65 |
+
```python
|
66 |
+
|
67 |
+
import cv2
|
68 |
+
from insightface.app import FaceAnalysis
|
69 |
+
import torch
|
70 |
+
|
71 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
72 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
73 |
+
|
74 |
+
image = cv2.imread("person.jpg")
|
75 |
+
faces = app.get(image)
|
76 |
+
|
77 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
78 |
+
```
|
79 |
+
|
80 |
+
Then, you can generate images conditioned on the face embeddings:
|
81 |
+
|
82 |
+
```python
|
83 |
+
|
84 |
+
import torch
|
85 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
86 |
+
from PIL import Image
|
87 |
+
|
88 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID
|
89 |
+
|
90 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
91 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
92 |
+
ip_ckpt = "ip-adapter-faceid_sd15.bin"
|
93 |
+
device = "cuda"
|
94 |
+
|
95 |
+
noise_scheduler = DDIMScheduler(
|
96 |
+
num_train_timesteps=1000,
|
97 |
+
beta_start=0.00085,
|
98 |
+
beta_end=0.012,
|
99 |
+
beta_schedule="scaled_linear",
|
100 |
+
clip_sample=False,
|
101 |
+
set_alpha_to_one=False,
|
102 |
+
steps_offset=1,
|
103 |
+
)
|
104 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
105 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
106 |
+
base_model_path,
|
107 |
+
torch_dtype=torch.float16,
|
108 |
+
scheduler=noise_scheduler,
|
109 |
+
vae=vae,
|
110 |
+
feature_extractor=None,
|
111 |
+
safety_checker=None
|
112 |
+
)
|
113 |
+
|
114 |
+
# load ip-adapter
|
115 |
+
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
|
116 |
+
|
117 |
+
# generate image
|
118 |
+
prompt = "photo of a woman in red dress in a garden"
|
119 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
|
120 |
+
|
121 |
+
images = ip_model.generate(
|
122 |
+
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
|
123 |
+
)
|
124 |
+
|
125 |
+
```
|
126 |
+
|
127 |
+
### IP-Adapter-FaceID-SDXL
|
128 |
+
|
129 |
+
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding:
|
130 |
+
|
131 |
+
```python
|
132 |
+
|
133 |
+
import cv2
|
134 |
+
from insightface.app import FaceAnalysis
|
135 |
+
import torch
|
136 |
+
|
137 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
138 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
139 |
+
|
140 |
+
image = cv2.imread("person.jpg")
|
141 |
+
faces = app.get(image)
|
142 |
+
|
143 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
144 |
+
```
|
145 |
+
|
146 |
+
Then, you can generate images conditioned on the face embeddings:
|
147 |
+
|
148 |
+
```python
|
149 |
+
|
150 |
+
import torch
|
151 |
+
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
|
152 |
+
from PIL import Image
|
153 |
+
|
154 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDXL
|
155 |
+
|
156 |
+
base_model_path = "SG161222/RealVisXL_V3.0"
|
157 |
+
ip_ckpt = "ip-adapter-faceid_sdxl.bin"
|
158 |
+
device = "cuda"
|
159 |
+
|
160 |
+
noise_scheduler = DDIMScheduler(
|
161 |
+
num_train_timesteps=1000,
|
162 |
+
beta_start=0.00085,
|
163 |
+
beta_end=0.012,
|
164 |
+
beta_schedule="scaled_linear",
|
165 |
+
clip_sample=False,
|
166 |
+
set_alpha_to_one=False,
|
167 |
+
steps_offset=1,
|
168 |
+
)
|
169 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
170 |
+
base_model_path,
|
171 |
+
torch_dtype=torch.float16,
|
172 |
+
scheduler=noise_scheduler,
|
173 |
+
add_watermarker=False,
|
174 |
+
)
|
175 |
+
|
176 |
+
# load ip-adapter
|
177 |
+
ip_model = IPAdapterFaceIDXL(pipe, ip_ckpt, device)
|
178 |
+
|
179 |
+
# generate image
|
180 |
+
prompt = "A closeup shot of a beautiful Asian teenage girl in a white dress wearing small silver earrings in the garden, under the soft morning light"
|
181 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
|
182 |
+
|
183 |
+
images = ip_model.generate(
|
184 |
+
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=2,
|
185 |
+
width=1024, height=1024,
|
186 |
+
num_inference_steps=30, guidance_scale=7.5, seed=2023
|
187 |
+
)
|
188 |
+
|
189 |
+
```
|
190 |
+
|
191 |
+
### IP-Adapter-FaceID-Plus
|
192 |
+
|
193 |
+
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image:
|
194 |
+
|
195 |
+
```python
|
196 |
+
|
197 |
+
import cv2
|
198 |
+
from insightface.app import FaceAnalysis
|
199 |
+
from insightface.utils import face_align
|
200 |
+
import torch
|
201 |
+
|
202 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
203 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
204 |
+
|
205 |
+
image = cv2.imread("person.jpg")
|
206 |
+
faces = app.get(image)
|
207 |
+
|
208 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
209 |
+
face_image = face_align.norm_crop(image, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
210 |
+
```
|
211 |
+
|
212 |
+
Then, you can generate images conditioned on the face embeddings:
|
213 |
+
|
214 |
+
```python
|
215 |
+
|
216 |
+
import torch
|
217 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
218 |
+
from PIL import Image
|
219 |
+
|
220 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceIDPlus
|
221 |
+
|
222 |
+
v2 = False
|
223 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
224 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
225 |
+
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
226 |
+
ip_ckpt = "ip-adapter-faceid-plus_sd15.bin" if not v2 else "ip-adapter-faceid-plusv2_sd15.bin"
|
227 |
+
device = "cuda"
|
228 |
+
|
229 |
+
noise_scheduler = DDIMScheduler(
|
230 |
+
num_train_timesteps=1000,
|
231 |
+
beta_start=0.00085,
|
232 |
+
beta_end=0.012,
|
233 |
+
beta_schedule="scaled_linear",
|
234 |
+
clip_sample=False,
|
235 |
+
set_alpha_to_one=False,
|
236 |
+
steps_offset=1,
|
237 |
+
)
|
238 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
239 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
240 |
+
base_model_path,
|
241 |
+
torch_dtype=torch.float16,
|
242 |
+
scheduler=noise_scheduler,
|
243 |
+
vae=vae,
|
244 |
+
feature_extractor=None,
|
245 |
+
safety_checker=None
|
246 |
+
)
|
247 |
+
|
248 |
+
# load ip-adapter
|
249 |
+
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device)
|
250 |
+
|
251 |
+
# generate image
|
252 |
+
prompt = "photo of a woman in red dress in a garden"
|
253 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
|
254 |
+
|
255 |
+
images = ip_model.generate(
|
256 |
+
prompt=prompt, negative_prompt=negative_prompt, face_image=face_image, faceid_embeds=faceid_embeds, shortcut=v2, s_scale=1.0,
|
257 |
+
num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
|
258 |
+
)
|
259 |
+
|
260 |
+
```
|
261 |
+
|
262 |
+
|
263 |
+
## Limitations and Bias
|
264 |
+
- The model does not achieve perfect photorealism and ID consistency.
|
265 |
+
- The generalization of the model is limited due to limitations of the training data, base model and face recognition model.
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
## Non-commercial use
|
270 |
+
**This model is released exclusively for research purposes and is not intended for commercial use.**
|
271 |
+
|
faceid-plus.jpg
ADDED
Git LFS Details
|
faceid_plusv2.jpg
ADDED
Git LFS Details
|
gitattributes (1).txt
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
ip-adapter-faceid.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
faceid_plusv2.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
sdxl_faceid.jpg filter=lfs diff=lfs merge=lfs -text
|
ip-adapter-faceid-plus_sd15.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:252fb53e0d018489d9e7f9b9e2001a52ff700e491894011ada7cfb471e0fadf2
|
3 |
+
size 156558503
|
ip-adapter-faceid-plus_sd15_lora.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f00341d11e5e7b5aadf63cbdead09ef82eb28669156161cf1bfc2105d4ff1cd
|
3 |
+
size 51059544
|
ip-adapter-faceid-plusv2_sd15.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26d0d86a1d60d6cc811d3b8862178b461e1eeb651e6fe2b72ba17aa95411e313
|
3 |
+
size 156558509
|
ip-adapter-faceid-plusv2_sd15_lora.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8abff87a15a049f3e0186c2e82c1c8e77783baf2cfb63f34c412656052eb57b0
|
3 |
+
size 51059544
|
ip-adapter-faceid.jpg
ADDED
Git LFS Details
|
ip-adapter-faceid_sd15.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:201344e22e6f55849cf07ca7a6e53d8c3b001327c66cb9710d69fd5da48a8da7
|
3 |
+
size 96740574
|
ip-adapter-faceid_sd15_lora.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70699f0dbfadd47de1f81d263cf4c86bd4b7271d841304af9b340b3a7f38e86a
|
3 |
+
size 51059544
|
sdxl_faceid.jpg
ADDED
Git LFS Details
|