Datasets:
Tasks:
Image Segmentation
Sub-tasks:
instance-segmentation
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
scene-parsing
License:
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MIT Scene Parsing Benchmark.""" | |
import os | |
import pandas as pd | |
import datasets | |
_CITATION = """\ | |
@inproceedings{zhou2017scene, | |
title={Scene Parsing through ADE20K Dataset}, | |
author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio}, | |
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, | |
year={2017} | |
} | |
@article{zhou2016semantic, | |
title={Semantic understanding of scenes through the ade20k dataset}, | |
author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio}, | |
journal={arXiv preprint arXiv:1608.05442}, | |
year={2016} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Scene parsing is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bed. | |
MIT Scene Parsing Benchmark (SceneParse150) provides a standard training and evaluation platform for the algorithms of scene parsing. | |
The data for this benchmark comes from ADE20K Dataset which contains more than 20K scene-centric images exhaustively annotated with objects and object parts. | |
Specifically, the benchmark is divided into 20K images for training, 2K images for validation, and another batch of held-out images for testing. | |
There are totally 150 semantic categories included for evaluation, which include stuffs like sky, road, grass, and discrete objects like person, car, bed. | |
Note that there are non-uniform distribution of objects occuring in the images, mimicking a more natural object occurrence in daily scene. | |
""" | |
_HOMEPAGE = "http://sceneparsing.csail.mit.edu/" | |
_LICENSE = "BSD 3-Clause License" | |
_URLS = { | |
"scene_parsing": { | |
"train/val": "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip", | |
"test": "http://data.csail.mit.edu/places/ADEchallenge/release_test.zip", | |
}, | |
"instance_segmentation": { | |
"images": "http://sceneparsing.csail.mit.edu/data/ChallengeData2017/images.tar", | |
"annotations": "http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar", | |
"test": "http://sceneparsing.csail.mit.edu/data/ChallengeData2017/release_test.tar", | |
}, | |
} | |
_SCENE_CATEGORIES = """\ | |
airport_terminal art_gallery badlands ball_pit bathroom beach bedroom booth_indoor botanical_garden bridge bullring | |
bus_interior butte canyon casino_outdoor castle church_outdoor closet coast conference_room construction_site corral | |
corridor crosswalk day_care_center sand elevator_interior escalator_indoor forest_road gangplank gas_station | |
golf_course gymnasium_indoor harbor hayfield heath hoodoo house hunting_lodge_outdoor ice_shelf joss_house kiosk_indoor | |
kitchen landfill library_indoor lido_deck_outdoor living_room locker_room market_outdoor mountain_snowy office orchard | |
arbor bookshelf mews nook preserve traffic_island palace palace_hall pantry patio phone_booth establishment | |
poolroom_home quonset_hut_outdoor rice_paddy sandbox shopfront skyscraper stone_circle subway_interior platform | |
supermarket swimming_pool_outdoor television_studio indoor_procenium train_railway coral_reef viaduct wave wind_farm | |
bottle_storage abbey access_road air_base airfield airlock airplane_cabin airport entrance airport_ticket_counter | |
alcove alley amphitheater amusement_arcade amusement_park anechoic_chamber apartment_building_outdoor apse_indoor | |
apse_outdoor aquarium aquatic_theater aqueduct arcade arch archaelogical_excavation archive basketball football hockey | |
performance rodeo soccer armory army_base arrival_gate_indoor arrival_gate_outdoor art_school art_studio artists_loft | |
assembly_line athletic_field_indoor athletic_field_outdoor atrium_home atrium_public attic auditorium auto_factory | |
auto_mechanics_indoor auto_mechanics_outdoor auto_racing_paddock auto_showroom backstage backstairs | |
badminton_court_indoor badminton_court_outdoor baggage_claim shop exterior balcony_interior ballroom bamboo_forest | |
bank_indoor bank_outdoor bank_vault banquet_hall baptistry_indoor baptistry_outdoor bar barbershop barn barndoor | |
barnyard barrack baseball_field basement basilica basketball_court_indoor basketball_court_outdoor bathhouse | |
batters_box batting_cage_indoor batting_cage_outdoor battlement bayou bazaar_indoor bazaar_outdoor beach_house | |
beauty_salon bedchamber beer_garden beer_hall belfry bell_foundry berth berth_deck betting_shop bicycle_racks bindery | |
biology_laboratory bistro_indoor bistro_outdoor bleachers_indoor bleachers_outdoor boardwalk boat_deck boathouse bog | |
bomb_shelter_indoor bookbindery bookstore bow_window_indoor bow_window_outdoor bowling_alley box_seat boxing_ring | |
breakroom brewery_indoor brewery_outdoor brickyard_indoor brickyard_outdoor building_complex building_facade bullpen | |
burial_chamber bus_depot_indoor bus_depot_outdoor bus_shelter bus_station_indoor bus_station_outdoor butchers_shop | |
cabana cabin_indoor cabin_outdoor cafeteria call_center campsite campus natural urban candy_store canteen | |
car_dealership backseat frontseat caravansary cardroom cargo_container_interior airplane boat freestanding | |
carport_indoor carport_outdoor carrousel casino_indoor catacomb cathedral_indoor cathedral_outdoor catwalk | |
cavern_indoor cavern_outdoor cemetery chalet chaparral chapel checkout_counter cheese_factory chemical_plant | |
chemistry_lab chicken_coop_indoor chicken_coop_outdoor chicken_farm_indoor chicken_farm_outdoor childs_room | |
choir_loft_interior church_indoor circus_tent_indoor circus_tent_outdoor city classroom clean_room cliff booth room | |
clock_tower_indoor cloister_indoor cloister_outdoor clothing_store coast_road cockpit coffee_shop computer_room | |
conference_center conference_hall confessional control_room control_tower_indoor control_tower_outdoor | |
convenience_store_indoor convenience_store_outdoor corn_field cottage cottage_garden courthouse courtroom courtyard | |
covered_bridge_interior crawl_space creek crevasse library cybercafe dacha dairy_indoor dairy_outdoor dam dance_school | |
darkroom delicatessen dentists_office department_store departure_lounge vegetation desert_road diner_indoor | |
diner_outdoor dinette_home vehicle dining_car dining_hall dining_room dirt_track discotheque distillery ditch dock | |
dolmen donjon doorway_indoor doorway_outdoor dorm_room downtown drainage_ditch dress_shop dressing_room drill_rig | |
driveway driving_range_indoor driving_range_outdoor drugstore dry_dock dugout earth_fissure editing_room | |
electrical_substation elevated_catwalk door freight_elevator elevator_lobby elevator_shaft embankment embassy | |
engine_room entrance_hall escalator_outdoor escarpment estuary excavation exhibition_hall fabric_store factory_indoor | |
factory_outdoor fairway farm fastfood_restaurant fence cargo_deck ferryboat_indoor passenger_deck cultivated wild | |
field_road fire_escape fire_station firing_range_indoor firing_range_outdoor fish_farm fishmarket fishpond | |
fitting_room_interior fjord flea_market_indoor flea_market_outdoor floating_dry_dock flood florist_shop_indoor | |
florist_shop_outdoor fly_bridge food_court football_field broadleaf needleleaf forest_fire forest_path formal_garden | |
fort fortress foundry_indoor foundry_outdoor fountain freeway funeral_chapel funeral_home furnace_room galley game_room | |
garage_indoor garage_outdoor garbage_dump gasworks gate gatehouse gazebo_interior general_store_indoor | |
general_store_outdoor geodesic_dome_indoor geodesic_dome_outdoor ghost_town gift_shop glacier glade gorge granary | |
great_hall greengrocery greenhouse_indoor greenhouse_outdoor grotto guardhouse gulch gun_deck_indoor gun_deck_outdoor | |
gun_store hacienda hallway handball_court hangar_indoor hangar_outdoor hardware_store hat_shop hatchery hayloft hearth | |
hedge_maze hedgerow heliport herb_garden highway hill home_office home_theater hospital hospital_room hot_spring | |
hot_tub_indoor hot_tub_outdoor hotel_outdoor hotel_breakfast_area hotel_room hunting_lodge_indoor hut ice_cream_parlor | |
ice_floe ice_skating_rink_indoor ice_skating_rink_outdoor iceberg igloo imaret incinerator_indoor incinerator_outdoor | |
industrial_area industrial_park inn_indoor inn_outdoor irrigation_ditch islet jacuzzi_indoor jacuzzi_outdoor | |
jail_indoor jail_outdoor jail_cell japanese_garden jetty jewelry_shop junk_pile junkyard jury_box kasbah kennel_indoor | |
kennel_outdoor kindergarden_classroom kiosk_outdoor kitchenette lab_classroom labyrinth_indoor labyrinth_outdoor lagoon | |
artificial landing landing_deck laundromat lava_flow lavatory lawn lean-to lecture_room legislative_chamber levee | |
library_outdoor lido_deck_indoor lift_bridge lighthouse limousine_interior liquor_store_indoor liquor_store_outdoor | |
loading_dock lobby lock_chamber loft lookout_station_indoor lookout_station_outdoor lumberyard_indoor | |
lumberyard_outdoor machine_shop manhole mansion manufactured_home market_indoor marsh martial_arts_gym mastaba | |
maternity_ward mausoleum medina menhir mesa mess_hall mezzanine military_hospital military_hut military_tent mine | |
mineshaft mini_golf_course_indoor mini_golf_course_outdoor mission dry water mobile_home monastery_indoor | |
monastery_outdoor moon_bounce moor morgue mosque_indoor mosque_outdoor motel mountain mountain_path mountain_road | |
movie_theater_indoor movie_theater_outdoor mudflat museum_indoor museum_outdoor music_store music_studio misc | |
natural_history_museum naval_base newsroom newsstand_indoor newsstand_outdoor nightclub nuclear_power_plant_indoor | |
nuclear_power_plant_outdoor nunnery nursery nursing_home oasis oast_house observatory_indoor observatory_outdoor | |
observatory_post ocean office_building office_cubicles oil_refinery_indoor oil_refinery_outdoor oilrig operating_room | |
optician organ_loft_interior orlop_deck ossuary outcropping outhouse_indoor outhouse_outdoor overpass oyster_bar | |
oyster_farm acropolis aircraft_carrier_object amphitheater_indoor archipelago questionable assembly_hall assembly_plant | |
awning_deck back_porch backdrop backroom backstage_outdoor backstairs_indoor backwoods ballet balustrade barbeque | |
basin_outdoor bath_indoor bath_outdoor bathhouse_outdoor battlefield bay booth_outdoor bottomland breakfast_table | |
bric-a-brac brooklet bubble_chamber buffet bulkhead bunk_bed bypass byroad cabin_cruiser cargo_helicopter cellar | |
chair_lift cocktail_lounge corner country_house country_road customhouse dance_floor deck-house_boat_deck_house | |
deck-house_deck_house dining_area diving_board embrasure entranceway_indoor entranceway_outdoor entryway_outdoor | |
estaminet farm_building farmhouse feed_bunk field_house field_tent_indoor field_tent_outdoor fire_trench fireplace | |
flashflood flatlet floating_dock flood_plain flowerbed flume_indoor flying_buttress foothill forecourt foreshore | |
front_porch garden gas_well glen grape_arbor grove guardroom guesthouse gymnasium_outdoor head_shop hen_yard hillock | |
housing_estate housing_project howdah inlet insane_asylum outside juke_joint jungle kraal laboratorywet landing_strip | |
layby lean-to_tent loge loggia_outdoor lower_deck luggage_van mansard meadow meat_house megalith mens_store_outdoor | |
mental_institution_indoor mental_institution_outdoor military_headquarters millpond millrace natural_spring | |
nursing_home_outdoor observation_station open-hearth_furnace operating_table outbuilding palestra parkway patio_indoor | |
pavement pawnshop_outdoor pinetum piste_road pizzeria_outdoor powder_room pumping_station reception_room rest_stop | |
retaining_wall rift_valley road rock_garden rotisserie safari_park salon saloon sanatorium science_laboratory scrubland | |
scullery seaside semidesert shelter shelter_deck shelter_tent shore shrubbery sidewalk snack_bar snowbank stage_set | |
stall stateroom store streetcar_track student_center study_hall sugar_refinery sunroom supply_chamber t-bar_lift | |
tannery teahouse threshing_floor ticket_window_indoor tidal_basin tidal_river tiltyard tollgate tomb tract_housing | |
trellis truck_stop upper_balcony vestibule vinery walkway war_room washroom water_fountain water_gate waterscape | |
waterway wetland widows_walk_indoor windstorm packaging_plant pagoda paper_mill park parking_garage_indoor | |
parking_garage_outdoor parking_lot parlor particle_accelerator party_tent_indoor party_tent_outdoor pasture pavilion | |
pawnshop pedestrian_overpass_indoor penalty_box pet_shop pharmacy physics_laboratory piano_store picnic_area pier | |
pig_farm pilothouse_indoor pilothouse_outdoor pitchers_mound pizzeria planetarium_indoor planetarium_outdoor | |
plantation_house playground playroom plaza podium_indoor podium_outdoor police_station pond pontoon_bridge poop_deck | |
porch portico portrait_studio postern power_plant_outdoor print_shop priory promenade promenade_deck pub_indoor | |
pub_outdoor pulpit putting_green quadrangle quicksand quonset_hut_indoor racecourse raceway raft railroad_track | |
railway_yard rainforest ramp ranch ranch_house reading_room reception recreation_room rectory recycling_plant_indoor | |
refectory repair_shop residential_neighborhood resort rest_area restaurant restaurant_kitchen restaurant_patio | |
restroom_indoor restroom_outdoor revolving_door riding_arena river road_cut rock_arch roller_skating_rink_indoor | |
roller_skating_rink_outdoor rolling_mill roof roof_garden root_cellar rope_bridge roundabout roundhouse rubble ruin | |
runway sacristy salt_plain sand_trap sandbar sauna savanna sawmill schoolhouse schoolyard science_museum scriptorium | |
sea_cliff seawall security_check_point server_room sewer sewing_room shed shipping_room shipyard_outdoor shoe_shop | |
shopping_mall_indoor shopping_mall_outdoor shower shower_room shrine signal_box sinkhole ski_jump ski_lodge ski_resort | |
ski_slope sky skywalk_indoor skywalk_outdoor slum snowfield massage_room mineral_bath spillway sporting_goods_store | |
squash_court stable baseball stadium_outdoor stage_indoor stage_outdoor staircase starting_gate steam_plant_outdoor | |
steel_mill_indoor storage_room storm_cellar street strip_mall strip_mine student_residence submarine_interior sun_deck | |
sushi_bar swamp swimming_hole swimming_pool_indoor synagogue_indoor synagogue_outdoor taxistand taxiway tea_garden | |
tearoom teashop television_room east_asia mesoamerican south_asia western tennis_court_indoor tennis_court_outdoor | |
tent_outdoor terrace_farm indoor_round indoor_seats theater_outdoor thriftshop throne_room ticket_booth | |
tobacco_shop_indoor toll_plaza tollbooth topiary_garden tower town_house toyshop track_outdoor trading_floor | |
trailer_park train_interior train_station_outdoor station tree_farm tree_house trench trestle_bridge tundra rail_indoor | |
rail_outdoor road_indoor road_outdoor turkish_bath ocean_deep ocean_shallow utility_room valley van_interior | |
vegetable_garden velodrome_indoor velodrome_outdoor ventilation_shaft veranda vestry veterinarians_office videostore | |
village vineyard volcano volleyball_court_indoor volleyball_court_outdoor voting_booth waiting_room walk_in_freezer | |
warehouse_indoor warehouse_outdoor washhouse_indoor washhouse_outdoor watchtower water_mill water_park water_tower | |
water_treatment_plant_indoor water_treatment_plant_outdoor block cascade cataract fan plunge watering_hole weighbridge | |
wet_bar wharf wheat_field whispering_gallery widows_walk_interior windmill window_seat barrel_storage winery | |
witness_stand woodland workroom workshop wrestling_ring_indoor wrestling_ring_outdoor yard youth_hostel zen_garden | |
ziggurat zoo forklift hollow hutment pueblo vat perfume_shop steel_mill_outdoor orchestra_pit bridle_path lyceum | |
one-way_street parade_ground pump_room recycling_plant_outdoor chuck_wagon | |
""" | |
_SCENE_CATEGORIES = _SCENE_CATEGORIES.strip().split() | |
class SceneParse150(datasets.GeneratorBasedBuilder): | |
"""MIT Scene Parsing Benchmark dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="scene_parsing", version=VERSION, description="The scene parsing variant."), | |
datasets.BuilderConfig( | |
name="instance_segmentation", version=VERSION, description="The instance segmentation variant." | |
), | |
] | |
DEFAULT_CONFIG_NAME = "scene_parsing" | |
def _info(self): | |
if self.config.name == "scene_parsing": | |
features = datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"annotation": datasets.Image(), | |
"scene_category": datasets.ClassLabel(names=_SCENE_CATEGORIES), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"image": datasets.Image(), | |
"annotation": datasets.Image(), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
urls = _URLS[self.config.name] | |
if self.config.name == "scene_parsing": | |
data_dirs = dl_manager.download_and_extract(urls) | |
train_data = val_data = os.path.join(data_dirs["train/val"], "ADEChallengeData2016") | |
test_data = os.path.join(data_dirs["test"], "release_test") | |
else: | |
data_dirs = dl_manager.download(urls) | |
train_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive( | |
data_dirs["annotations"] | |
) | |
val_data = dl_manager.iter_archive(data_dirs["images"]), dl_manager.iter_archive(data_dirs["annotations"]) | |
test_data = dl_manager.iter_archive(data_dirs["test"]) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"data": train_data, | |
"split": "training", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"data": test_data, "split": "testing"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"data": val_data, | |
"split": "validation", | |
}, | |
), | |
] | |
def _generate_examples(self, data, split): | |
if self.config.name == "scene_parsing": | |
if split == "testing": | |
image_dir = os.path.join(data, split) | |
for idx, image_file in enumerate(os.listdir(image_dir)): | |
yield idx, { | |
"image": os.path.join(image_dir, image_file), | |
"annotation": None, | |
"scene_category": None, | |
} | |
else: | |
image_id2cat = pd.read_csv( | |
os.path.join(data, "sceneCategories.txt"), sep=" ", names=["image_id", "scene_category"] | |
) | |
image_id2cat = image_id2cat.set_index("image_id") | |
images_dir = os.path.join(data, "images", split) | |
annotations_dir = os.path.join(data, "annotations", split) | |
for idx, image_file in enumerate(os.listdir(images_dir)): | |
image_id = image_file.split(".")[0] | |
yield idx, { | |
"image": os.path.join(images_dir, image_file), | |
"annotation": os.path.join(annotations_dir, image_id + ".png"), | |
"scene_category": image_id2cat.loc[image_id, "scene_category"], | |
} | |
else: | |
if split == "testing": | |
for idx, (path, file) in enumerate(data): | |
if path.endswith(".jpg"): | |
yield idx, { | |
"image": {"path": path, "bytes": file.read()}, | |
"annotation": None, | |
} | |
else: | |
images, annotations = data | |
image_id2annot = {} | |
# loads the annotations for the split into RAM (less than 100 MB) to support streaming | |
for path_annot, file_annot in annotations: | |
if split in path_annot and path_annot.endswith(".png"): | |
image_id = os.path.basename(path_annot).split(".")[0] | |
image_id2annot[image_id] = (path_annot, file_annot.read()) | |
for idx, (path_img, file_img) in enumerate(images): | |
if split in path_img and path_img.endswith(".jpg"): | |
image_id = os.path.basename(path_img).split(".")[0] | |
path_annot, bytes_annot = image_id2annot[image_id] | |
yield idx, { | |
"image": {"path": path_img, "bytes": file_img.read()}, | |
"annotation": {"path": path_annot, "bytes": bytes_annot}, | |
} | |