Datasets:

Modalities:
Image
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
c768752
0 Parent(s):

Update files from the datasets library (from 1.5.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.5.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators: []
5
+ languages: []
6
+ licenses:
7
+ - mit
8
+ multilinguality: []
9
+ size_categories:
10
+ - 10K<n<100K
11
+ source_datasets:
12
+ - original
13
+ task_categories:
14
+ - other
15
+ task_ids:
16
+ - other-other-image-classification
17
+ ---
18
+
19
+ # Dataset Card for FashionMNIST
20
+
21
+ ## Table of Contents
22
+
23
+ - [Dataset Description](#dataset-description)
24
+ - [Dataset Summary](#dataset-summary)
25
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
26
+ - [Languages](#languages)
27
+ - [Dataset Structure](#dataset-structure)
28
+ - [Data Instances](#data-instances)
29
+ - [Data Fields](#data-instances)
30
+ - [Data Splits](#data-instances)
31
+ - [Dataset Creation](#dataset-creation)
32
+ - [Curation Rationale](#curation-rationale)
33
+ - [Source Data](#source-data)
34
+ - [Annotations](#annotations)
35
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
36
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
37
+ - [Social Impact of Dataset](#social-impact-of-dataset)
38
+ - [Discussion of Biases](#discussion-of-biases)
39
+ - [Other Known Limitations](#other-known-limitations)
40
+ - [Additional Information](#additional-information)
41
+ - [Dataset Curators](#dataset-curators)
42
+ - [Licensing Information](#licensing-information)
43
+ - [Citation Information](#citation-information)
44
+ - [Contributions](#contributions)
45
+
46
+ ## Dataset Description
47
+
48
+ - **Homepage:** [GitHub](https://github.com/zalandoresearch/fashion-mnist)
49
+ - **Repository:** [GitHub](https://github.com/zalandoresearch/fashion-mnist)
50
+ - **Paper:** [arXiv](https://arxiv.org/pdf/1708.07747.pdf)
51
+ - **Leaderboard:**
52
+ - **Point of Contact:**
53
+
54
+ ### Dataset Summary
55
+
56
+ Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.
57
+
58
+ ### Supported Tasks and Leaderboards
59
+
60
+ [More Information Needed]
61
+
62
+ ### Languages
63
+
64
+ [More Information Needed]
65
+
66
+ ## Dataset Structure
67
+
68
+ ### Data Instances
69
+
70
+ A data point comprises an image and its label.
71
+
72
+ ### Data Fields
73
+
74
+ - `image`: a 2d array of integers representing the 28x28 image.
75
+ - `label`: an integer between 0 and 9 representing the classes with the following mapping:
76
+ | Label | Description |
77
+ | --- | --- |
78
+ | 0 | T-shirt/top |
79
+ | 1 | Trouser |
80
+ | 2 | Pullover |
81
+ | 3 | Dress |
82
+ | 4 | Coat |
83
+ | 5 | Sandal |
84
+ | 6 | Shirt |
85
+ | 7 | Sneaker |
86
+ | 8 | Bag |
87
+ | 9 | Ankle boot |
88
+
89
+ ### Data Splits
90
+
91
+ The data is split into training and test set. The training set contains 60,000 images and the test set 10,000 images.
92
+
93
+ ## Dataset Creation
94
+
95
+ ### Curation Rationale
96
+
97
+ **From the arXiv paper:**
98
+ The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."
99
+
100
+ Here are some good reasons:
101
+
102
+ - MNIST is too easy. Convolutional nets can achieve 99.7% on MNIST. Classic machine learning algorithms can also achieve 97% easily. Check out our side-by-side benchmark for Fashion-MNIST vs. MNIST, and read "Most pairs of MNIST digits can be distinguished pretty well by just one pixel."
103
+ - MNIST is overused. In this April 2017 Twitter thread, Google Brain research scientist and deep learning expert Ian Goodfellow calls for people to move away from MNIST.
104
+ - MNIST can not represent modern CV tasks, as noted in this April 2017 Twitter thread, deep learning expert/Keras author François Chollet.
105
+
106
+ ### Source Data
107
+
108
+ #### Initial Data Collection and Normalization
109
+
110
+ **From the arXiv paper:**
111
+ Fashion-MNIST is based on the assortment on Zalando’s website. Every fashion product on Zalando has a set of pictures shot by professional photographers, demonstrating different aspects of the product, i.e. front and back looks, details, looks with model and in an outfit. The original picture has a light-gray background (hexadecimal color: #fdfdfd) and stored in 762 × 1000 JPEG format. For efficiently serving different frontend components, the original picture is resampled with multiple resolutions, e.g. large, medium, small, thumbnail and tiny.
112
+
113
+ We use the front look thumbnail images of 70,000 unique products to build Fashion-MNIST. Those products come from different gender groups: men, women, kids and neutral. In particular, whitecolor products are not included in the dataset as they have low contrast to the background. The thumbnails (51 × 73) are then fed into the following conversion pipeline:
114
+
115
+ 1. Converting the input to a PNG image.
116
+ 2. Trimming any edges that are close to the color of the corner pixels. The ��closeness” is defined by the distance within 5% of the maximum possible intensity in RGB space.
117
+ 3. Resizing the longest edge of the image to 28 by subsampling the pixels, i.e. some rows and columns are skipped over.
118
+ 4. Sharpening pixels using a Gaussian operator of the radius and standard deviation of 1.0, with increasing effect near outlines.
119
+ 5. Extending the shortest edge to 28 and put the image to the center of the canvas.
120
+ 6. Negating the intensities of the image.
121
+ 7. Converting the image to 8-bit grayscale pixels.
122
+
123
+ #### Who are the source image producers?
124
+
125
+ **From the arXiv paper:**
126
+ Every fashion product on Zalando has a set of pictures shot by professional photographers, demonstrating different aspects of the product, i.e. front and back looks, details, looks with model and in an outfit.
127
+
128
+ ### Annotations
129
+
130
+ #### Annotation process
131
+
132
+ **From the arXiv paper:**
133
+ For the class labels, they use the silhouette code of the product. The silhouette code is manually labeled by the in-house fashion experts and reviewed by a separate team at Zalando. Each product Zalando is the Europe’s largest online fashion platform. Each product contains only one silhouette code.
134
+
135
+ #### Who are the annotators?
136
+
137
+ **From the arXiv paper:**
138
+ The silhouette code is manually labeled by the in-house fashion experts and reviewed by a separate team at Zalando.
139
+
140
+ ### Personal and Sensitive Information
141
+
142
+ [More Information Needed]
143
+
144
+ ## Considerations for Using the Data
145
+
146
+ ### Social Impact of Dataset
147
+
148
+ [More Information Needed]
149
+
150
+ ### Discussion of Biases
151
+
152
+ [More Information Needed]
153
+
154
+ ### Other Known Limitations
155
+
156
+ [More Information Needed]
157
+
158
+ ## Additional Information
159
+
160
+ ### Dataset Curators
161
+
162
+ Han Xiao and Kashif Rasul and Roland Vollgraf
163
+
164
+ ### Licensing Information
165
+
166
+ MIT Licence
167
+
168
+ ### Citation Information
169
+
170
+ ```
171
+ @article{DBLP:journals/corr/abs-1708-07747,
172
+ author = {Han Xiao and
173
+ Kashif Rasul and
174
+ Roland Vollgraf},
175
+ title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
176
+ Algorithms},
177
+ journal = {CoRR},
178
+ volume = {abs/1708.07747},
179
+ year = {2017},
180
+ url = {http://arxiv.org/abs/1708.07747},
181
+ archivePrefix = {arXiv},
182
+ eprint = {1708.07747},
183
+ timestamp = {Mon, 13 Aug 2018 16:47:27 +0200},
184
+ biburl = {https://dblp.org/rec/bib/journals/corr/abs-1708-07747},
185
+ bibsource = {dblp computer science bibliography, https://dblp.org}
186
+ }
187
+ ```
188
+
189
+ ### Contributions
190
+
191
+ Thanks to [@gchhablani](https://github.com/gchablani) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"fashion_mnist": {"description": "Fashion-MNIST is a dataset of Zalando's article images\u2014consisting of a training set of \n60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, \nassociated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in \nreplacement for the original MNIST dataset for benchmarking machine learning algorithms. \nIt shares the same image size and structure of training and testing splits.\n", "citation": "@article{DBLP:journals/corr/abs-1708-07747,\n author = {Han Xiao and\n Kashif Rasul and\n Roland Vollgraf},\n title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning\n Algorithms},\n journal = {CoRR},\n volume = {abs/1708.07747},\n year = {2017},\n url = {http://arxiv.org/abs/1708.07747},\n archivePrefix = {arXiv},\n eprint = {1708.07747},\n timestamp = {Mon, 13 Aug 2018 16:47:27 +0200},\n biburl = {https://dblp.org/rec/bib/journals/corr/abs-1708-07747},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n", "homepage": "https://github.com/zalandoresearch/fashion-mnist", "license": "", "features": {"image": {"shape": [28, 28], "dtype": "uint8", "id": null, "_type": "Array2D"}, "label": {"num_classes": 10, "names": ["T - shirt / top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "image", "output": "label"}, "builder_name": "fashion_mnist", "config_name": "fashion_mnist", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 54480048, "num_examples": 60000, "dataset_name": "fashion_mnist"}, "test": {"name": "test", "num_bytes": 9080008, "num_examples": 10000, "dataset_name": "fashion_mnist"}}, "download_checksums": {"https://github.com/zalandoresearch/fashion-mnist/raw/master/data/fashion/train-images-idx3-ubyte.gz": {"num_bytes": 26421880, "checksum": "3aede38d61863908ad78613f6a32ed271626dd12800ba2636569512369268a84"}, "https://github.com/zalandoresearch/fashion-mnist/raw/master/data/fashion/train-labels-idx1-ubyte.gz": {"num_bytes": 29515, "checksum": "a04f17134ac03560a47e3764e11b92fc97de4d1bfaf8ba1a3aa29af54cc90845"}, "https://github.com/zalandoresearch/fashion-mnist/raw/master/data/fashion/t10k-images-idx3-ubyte.gz": {"num_bytes": 4422102, "checksum": "346e55b948d973a97e58d2351dde16a484bd415d4595297633bb08f03db6a073"}, "https://github.com/zalandoresearch/fashion-mnist/raw/master/data/fashion/t10k-labels-idx1-ubyte.gz": {"num_bytes": 5148, "checksum": "67da17c76eaffca5446c3361aaab5c3cd6d1c2608764d35dfb1850b086bf8dd5"}}, "download_size": 30878645, "post_processing_size": null, "dataset_size": 63560056, "size_in_bytes": 94438701}}
dummy/fashion_mnist/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee22300f50880a2c21b923909c9f67b31a370b3f9be4670ab38a0f56956a7b99
3
+ size 5409
fashion_mnist.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """FashionMNIST Data Set"""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import struct
22
+
23
+ import numpy as np
24
+
25
+ import datasets
26
+
27
+
28
+ _CITATION = """\
29
+ @article{DBLP:journals/corr/abs-1708-07747,
30
+ author = {Han Xiao and
31
+ Kashif Rasul and
32
+ Roland Vollgraf},
33
+ title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
34
+ Algorithms},
35
+ journal = {CoRR},
36
+ volume = {abs/1708.07747},
37
+ year = {2017},
38
+ url = {http://arxiv.org/abs/1708.07747},
39
+ archivePrefix = {arXiv},
40
+ eprint = {1708.07747},
41
+ timestamp = {Mon, 13 Aug 2018 16:47:27 +0200},
42
+ biburl = {https://dblp.org/rec/bib/journals/corr/abs-1708-07747},
43
+ bibsource = {dblp computer science bibliography, https://dblp.org}
44
+ }
45
+ """
46
+
47
+ _DESCRIPTION = """\
48
+ Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of
49
+ 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image,
50
+ associated with a label from 10 classes. We intend Fashion-MNIST to serve as a direct drop-in
51
+ replacement for the original MNIST dataset for benchmarking machine learning algorithms.
52
+ It shares the same image size and structure of training and testing splits.
53
+ """
54
+
55
+ _HOMEPAGE = "https://github.com/zalandoresearch/fashion-mnist"
56
+ _LICENSE = "https://raw.githubusercontent.com/zalandoresearch/fashion-mnist/master/LICENSE"
57
+
58
+ _URL = "https://github.com/zalandoresearch/fashion-mnist/raw/master/data/fashion/"
59
+ _URLS = {
60
+ "train_images": "train-images-idx3-ubyte.gz",
61
+ "train_labels": "train-labels-idx1-ubyte.gz",
62
+ "test_images": "t10k-images-idx3-ubyte.gz",
63
+ "test_labels": "t10k-labels-idx1-ubyte.gz",
64
+ }
65
+
66
+
67
+ class FashionMnist(datasets.GeneratorBasedBuilder):
68
+ """FashionMNIST Data Set"""
69
+
70
+ BUILDER_CONFIGS = [
71
+ datasets.BuilderConfig(
72
+ name="fashion_mnist",
73
+ version=datasets.Version("1.0.0"),
74
+ description=_DESCRIPTION,
75
+ )
76
+ ]
77
+
78
+ def _info(self):
79
+ return datasets.DatasetInfo(
80
+ description=_DESCRIPTION,
81
+ features=datasets.Features(
82
+ {
83
+ "image": datasets.Array2D(shape=(28, 28), dtype="uint8"),
84
+ "label": datasets.features.ClassLabel(
85
+ names=[
86
+ "T - shirt / top",
87
+ "Trouser",
88
+ "Pullover",
89
+ "Dress",
90
+ "Coat",
91
+ "Sandal",
92
+ "Shirt",
93
+ "Sneaker",
94
+ "Bag",
95
+ "Ankle boot",
96
+ ]
97
+ ),
98
+ }
99
+ ),
100
+ supervised_keys=("image", "label"),
101
+ homepage="https://github.com/zalandoresearch/fashion-mnist",
102
+ citation=_CITATION,
103
+ )
104
+
105
+ def _split_generators(self, dl_manager):
106
+ urls_to_download = {key: _URL + fname for key, fname in _URLS.items()}
107
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
108
+
109
+ return [
110
+ datasets.SplitGenerator(
111
+ name=datasets.Split.TRAIN,
112
+ gen_kwargs={
113
+ "filepath": [downloaded_files["train_images"], downloaded_files["train_labels"]],
114
+ "split": "train",
115
+ },
116
+ ),
117
+ datasets.SplitGenerator(
118
+ name=datasets.Split.TEST,
119
+ gen_kwargs={
120
+ "filepath": [downloaded_files["test_images"], downloaded_files["test_labels"]],
121
+ "split": "test",
122
+ },
123
+ ),
124
+ ]
125
+
126
+ def _generate_examples(self, filepath, split):
127
+ """This function returns the examples in the raw form."""
128
+ # Images
129
+ with open(filepath[0], "rb") as f:
130
+ # First 16 bytes contain some metadata
131
+ _ = f.read(4)
132
+ size = struct.unpack(">I", f.read(4))[0]
133
+ _ = f.read(8)
134
+ images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28)
135
+
136
+ # Labels
137
+ with open(filepath[1], "rb") as f:
138
+ # First 8 bytes contain some metadata
139
+ _ = f.read(8)
140
+ labels = np.frombuffer(f.read(), dtype=np.uint8)
141
+
142
+ for idx in range(size):
143
+ yield idx, {"image": images[idx], "label": int(labels[idx])}