yunusskeete commited on
Commit
0dc52a6
1 Parent(s): 12ebc0a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -3
README.md CHANGED
@@ -1,3 +1,54 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - automatic-speech-recognition
5
+ language:
6
+ - en
7
+ -pretty_name: LibriSpeech ASR
8
+ ---
9
+ # Distil Whisper: LibriSpeech ASR With Timestamps
10
+
11
+ This is a variant of the [LibriSpeech ASR](https://huggingface.co/datasets/librispeech_asr) dataset, augmented to return the pseudo-labelled Whisper
12
+ Transcriptions alongside the original dataset elements. The pseudo-labelled transcriptions were generated by
13
+ labelling the input audio data with the Whisper [large-v2](https://huggingface.co/openai/whisper-large-v2)
14
+ model with *greedy* sampling and timestamp prediction. For information on how the original dataset was curated, refer to the original
15
+ [dataset card](https://huggingface.co/datasets/librispeech_asr).
16
+
17
+ ## Standalone Usage
18
+
19
+ First, install the latest version of the 🤗 Datasets package:
20
+
21
+ ```bash
22
+ pip install --upgrade pip
23
+ pip install --upgrade datasets[audio]
24
+ ```
25
+
26
+ The dataset can be downloaded and pre-processed on disk using the [`load_dataset`](https://huggingface.co/docs/datasets/v2.14.5/en/package_reference/loading_methods#datasets.load_dataset)
27
+ function:
28
+
29
+ ```python
30
+ from datasets import load_dataset
31
+ dataset = load_dataset("distil-whisper/librispeech_asr", "all")
32
+ # take the first sample of the validation set
33
+ sample = dataset["validation.clean"][0]
34
+ ```
35
+
36
+ It can also be streamed directly from the Hub using Datasets' [streaming mode](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet).
37
+ Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire
38
+ dataset to disk:
39
+
40
+ ```python
41
+ from datasets import load_dataset
42
+ dataset = load_dataset("distil-whisper/librispeech_asr", "all", streaming=True)
43
+ # take the first sample of the validation set
44
+ sample = next(iter(dataset["validation.clean"]))
45
+ ```
46
+
47
+ ## Distil Whisper Usage
48
+
49
+ To use this dataset to reproduce a Distil Whisper training run, refer to the instructions on the
50
+ [Distil Whisper repository](https://github.com/huggingface/distil-whisper#training).
51
+
52
+ ## License
53
+
54
+ This dataset is licensed under cc-by-4.0.