|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CiteSum dataset""" |
|
|
|
import os |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_HOMEPAGE = "https://github.com/morningmoni/CiteSum" |
|
|
|
_DESCRIPTION = """\ |
|
CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation. |
|
|
|
CiteSum contains TLDR summaries for scientific papers from their citation texts without human annotation, |
|
making it around 30 times larger than the previous human-curated dataset SciTLDR. |
|
""" |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@misc{https://doi.org/10.48550/arxiv.2205.06207, |
|
doi = {10.48550/ARXIV.2205.06207}, |
|
url = {https://arxiv.org/abs/2205.06207}, |
|
author = {Mao, Yuning and Zhong, Ming and Han, Jiawei}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
|
|
""" |
|
|
|
_DOWNLOAD_URL = ( |
|
"https://drive.google.com/uc?export=download&id=1ndHCREXGSPnDUNllladh9qCtayqbXAfJ" |
|
) |
|
|
|
|
|
class CiteSumConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CiteSum.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for CiteSum. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
|
|
|
|
class CiteSum(datasets.GeneratorBasedBuilder): |
|
"""CiteSum summarization dataset.""" |
|
|
|
BUILDER_CONFIGS = [CiteSumConfig(name="citesum", description="Plain text")] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"src": datasets.Value("string"), |
|
"tgt": datasets.Value("string"), |
|
"paper_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"discipline": { |
|
"venue": datasets.Value("string"), |
|
"journal": datasets.Value("string"), |
|
"mag_field_of_study": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
}, |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_path = dl_manager.download_and_extract(_DOWNLOAD_URL) |
|
|
|
file_mapping = { |
|
datasets.Split.TRAIN: "train.json", |
|
datasets.Split.VALIDATION: "val.json", |
|
datasets.Split.TEST: "test.json", |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dl_path, file_mapping[split]), |
|
}, |
|
) |
|
for split in [ |
|
datasets.Split.TRAIN, |
|
datasets.Split.VALIDATION, |
|
datasets.Split.TEST, |
|
] |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
|
|
with open(filepath, "r") as fp: |
|
for idx, line in enumerate(fp.readlines()): |
|
yield idx, json.loads(line) |
|
|