hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dee0ea830b4e14533eb75ccbf58b75a95766df8d
| 3,369
|
py
|
Python
|
python/soma_workflow/constants.py
|
denisri/soma-workflow
|
bc6f2f50d34437e86e850cb0d05ff26b041d560d
|
[
"CECILL-B"
] | null | null | null |
python/soma_workflow/constants.py
|
denisri/soma-workflow
|
bc6f2f50d34437e86e850cb0d05ff26b041d560d
|
[
"CECILL-B"
] | 44
|
2018-10-30T16:57:10.000Z
|
2022-03-15T10:54:57.000Z
|
python/soma_workflow/constants.py
|
populse/soma-workflow
|
e6d3e3c33ad41107ee3c959adc4832e6edd047f4
|
[
"CECILL-B"
] | null | null | null |
# -*- coding: utf-8 -*-
'''
author: Soizic Laguitton
organization: I2BM, Neurospin, Gif-sur-Yvette, France
organization: CATI, France
organization: IFR 49
License: `CeCILL version 2 <http://www.cecill.info/licences/Licence_CeCILL_V2-en.html>`_
'''
#
# Soma-workflow constants #
#
'''
Job status:
'''
NOT_SUBMITTED = "not_submitted"
UNDETERMINED = "undetermined"
QUEUED_ACTIVE = "queued_active"
SYSTEM_ON_HOLD = "system_on_hold"
USER_ON_HOLD = "user_on_hold"
USER_SYSTEM_ON_HOLD = "user_system_on_hold"
RUNNING = "running"
SYSTEM_SUSPENDED = "system_suspended"
USER_SUSPENDED = "user_suspended"
USER_SYSTEM_SUSPENDED = "user_system_suspended"
DONE = "done"
FAILED = "failed"
DELETE_PENDING = "delete_pending"
KILL_PENDING = "kill_pending"
SUBMISSION_PENDING = "submission_pending"
WARNING = "warning"
JOB_STATUS = [NOT_SUBMITTED,
UNDETERMINED,
QUEUED_ACTIVE,
SYSTEM_ON_HOLD,
USER_ON_HOLD,
USER_SYSTEM_ON_HOLD,
RUNNING,
SYSTEM_SUSPENDED,
USER_SUSPENDED,
USER_SYSTEM_SUSPENDED,
DONE,
FAILED,
DELETE_PENDING,
KILL_PENDING,
SUBMISSION_PENDING,
WARNING]
'''
Exit job status:
'''
EXIT_UNDETERMINED = "exit_status_undetermined"
EXIT_ABORTED = "aborted"
EXIT_NOTRUN = "aborted_before_running"
FINISHED_REGULARLY = "finished_regularly"
FINISHED_TERM_SIG = "finished_signal"
FINISHED_UNCLEAR_CONDITIONS = "finished_unclear_condition"
USER_KILLED = "killed_by_user"
JOB_EXIT_STATUS = [EXIT_UNDETERMINED,
EXIT_ABORTED,
FINISHED_REGULARLY,
FINISHED_TERM_SIG,
FINISHED_UNCLEAR_CONDITIONS,
USER_KILLED,
EXIT_NOTRUN]
'''
File transfer status:
'''
FILES_DO_NOT_EXIST = "do not exist"
FILES_ON_CLIENT = "on client side"
FILES_ON_CR = "on computing resource side"
FILES_ON_CLIENT_AND_CR = "on both sides"
TRANSFERING_FROM_CLIENT_TO_CR = "transfering client->cr"
TRANSFERING_FROM_CR_TO_CLIENT = "transfering cr->client"
FILES_UNDER_EDITION = "under edition"
FILE_TRANSFER_STATUS = [FILES_DO_NOT_EXIST,
FILES_ON_CLIENT,
FILES_ON_CR,
FILES_ON_CLIENT_AND_CR,
TRANSFERING_FROM_CLIENT_TO_CR,
TRANSFERING_FROM_CR_TO_CLIENT,
FILES_UNDER_EDITION]
'''
Transfer type
'''
TR_FILE_C_TO_CR = "file transfer form client to cr"
TR_DIR_C_TO_CR = "dir transfer from client to cr"
TR_MFF_C_TO_CR = "multi file format from client to cr"
TR_FILE_CR_TO_C = "file transfer form cr to client"
TR_DIR_CR_TO_C = "dir transfer from cr to client"
TR_MFF_CR_TO_C = "multi file format from cr to client"
TRANSFER_TYPES = [TR_FILE_C_TO_CR,
TR_DIR_C_TO_CR,
TR_MFF_C_TO_CR,
TR_FILE_CR_TO_C,
TR_DIR_CR_TO_C,
TR_MFF_CR_TO_C]
'''
Workflow status:
'''
WORKFLOW_NOT_STARTED = "worklflow_not_started"
WORKFLOW_IN_PROGRESS = "workflow_in_progress"
WORKFLOW_DONE = "workflow_done"
WORKFLOW_STATUS = [WORKFLOW_NOT_STARTED,
WORKFLOW_IN_PROGRESS,
WORKFLOW_DONE,
DELETE_PENDING,
WARNING]
| 28.310924
| 88
| 0.655091
|
dee4241a76fbf19cf565aab66e0521ce2380cc65
| 250
|
py
|
Python
|
test/tests/global_and_local.py
|
kevinxucs/pyston
|
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
|
[
"Apache-2.0"
] | 1
|
2015-11-06T03:39:51.000Z
|
2015-11-06T03:39:51.000Z
|
test/tests/global_and_local.py
|
kevinxucs/pyston
|
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
|
[
"Apache-2.0"
] | null | null | null |
test/tests/global_and_local.py
|
kevinxucs/pyston
|
bdb87c1706ac74a0d15d9bc2bae53798678a5f14
|
[
"Apache-2.0"
] | null | null | null |
# expected: fail
# - this particular check isn't implemented yet
# I would have expected this to be valid, but cPython and pypy err out saying "name 'x' is local and global"
print "first"
x = 1
print "calling"
f(2)
print x
| 16.666667
| 108
| 0.696
|
dee46fc1a2825aedf140afa6a83cd03a303bce36
| 1,980
|
py
|
Python
|
lab4_2/helpers/scanner.py
|
cinnamonbreakfast/flcd
|
f9168c1965976e9ae9477ee6b163a026f61acb1b
|
[
"MIT"
] | null | null | null |
lab4_2/helpers/scanner.py
|
cinnamonbreakfast/flcd
|
f9168c1965976e9ae9477ee6b163a026f61acb1b
|
[
"MIT"
] | null | null | null |
lab4_2/helpers/scanner.py
|
cinnamonbreakfast/flcd
|
f9168c1965976e9ae9477ee6b163a026f61acb1b
|
[
"MIT"
] | null | null | null |
res_words = []
seps = []
ops = []
| 22.5
| 74
| 0.491414
|
dee4deb771683414d1b0181d259bc1acc86fbf9f
| 1,101
|
py
|
Python
|
fastspider/item/item.py
|
coco369/fastspider
|
464ba47176c005ed97005a79c5c4eee0bf0740b6
|
[
"MIT"
] | 6
|
2021-08-09T01:35:44.000Z
|
2022-02-15T08:14:29.000Z
|
fastspider/item/item.py
|
coco369/fastspider
|
464ba47176c005ed97005a79c5c4eee0bf0740b6
|
[
"MIT"
] | null | null | null |
fastspider/item/item.py
|
coco369/fastspider
|
464ba47176c005ed97005a79c5c4eee0bf0740b6
|
[
"MIT"
] | 4
|
2021-08-13T06:41:13.000Z
|
2021-12-07T15:53:56.000Z
|
# encoding=utf-8
"""
Auth: coco369
Email: 779598160@qq.com
CreateTime: 2021/07/30
Desc: fastspider, Item
"""
| 20.018182
| 84
| 0.728429
|
dee8b0a49fcef498a3468a8ea4df153befa037f5
| 26,370
|
py
|
Python
|
src/third_party/wiredtiger/test/suite/run.py
|
benety/mongo
|
203430ac9559f82ca01e3cbb3b0e09149fec0835
|
[
"Apache-2.0"
] | null | null | null |
src/third_party/wiredtiger/test/suite/run.py
|
benety/mongo
|
203430ac9559f82ca01e3cbb3b0e09149fec0835
|
[
"Apache-2.0"
] | null | null | null |
src/third_party/wiredtiger/test/suite/run.py
|
benety/mongo
|
203430ac9559f82ca01e3cbb3b0e09149fec0835
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python
#
# Public Domain 2014-present MongoDB, Inc.
# Public Domain 2008-2014 WiredTiger, Inc.
#
# This is free and unencumbered software released into the public domain.
#
# Anyone is free to copy, modify, publish, use, compile, sell, or
# distribute this software, either in source code form or as a compiled
# binary, for any purpose, commercial or non-commercial, and by any
# means.
#
# In jurisdictions that recognize copyright laws, the author or authors
# of this software dedicate any and all copyright interest in the
# software to the public domain. We make this dedication for the benefit
# of the public at large and to the detriment of our heirs and
# successors. We intend this dedication to be an overt act of
# relinquishment in perpetuity of all present and future rights to this
# software under copyright law.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
#
# [TEST_TAGS]
# ignored_file
# [END_TAGS]
#
# run.py
# Command line test runner
#
from __future__ import print_function
import glob, json, os, random, re, sys
if sys.version_info[0] <= 2:
print('WiredTiger requires Python version 3.0 or above')
sys.exit(1)
# Set paths
suitedir = sys.path[0]
wt_disttop = os.path.dirname(os.path.dirname(suitedir))
wt_3rdpartydir = os.path.join(wt_disttop, 'test', '3rdparty')
# Check for a local build that contains the wt utility. First check if the
# supplied an explicit build directory ('WT_BUILDDIR'), then the current
# working directory, and finally in the disttop directory.
# This isn't ideal - if a user has multiple builds in a tree we
# could pick the wrong one. We also need to account for the fact that there
# may be an executable 'wt' file the build directory.
env_builddir = os.getenv('WT_BUILDDIR')
curdir = os.getcwd()
if env_builddir and os.path.isfile(os.path.join(env_builddir, 'wt')):
wt_builddir = env_builddir
elif os.path.isfile(os.path.join(curdir, 'wt')):
wt_builddir = curdir
elif os.path.isfile(os.path.join(curdir, 'wt.exe')):
wt_builddir = curdir
elif os.path.isfile(os.path.join(wt_disttop, 'wt')):
wt_builddir = wt_disttop
elif os.path.isfile(os.path.join(wt_disttop, 'wt.exe')):
wt_builddir = wt_disttop
else:
print('Unable to find useable WiredTiger build')
sys.exit(1)
# Cannot import wiredtiger and supporting utils until we set up paths
# We want our local tree in front of any installed versions of WiredTiger.
# Don't change sys.path[0], it's the dir containing the invoked python script.
sys.path.insert(1, os.path.join(wt_builddir, 'lang', 'python'))
# Append to a colon separated path in the environment
# If we built with libtool, explicitly put its install directory in our library
# search path. This only affects library loading for subprocesses, like 'wt'.
libsdir = os.path.join(wt_builddir, '.libs')
if os.path.isdir(libsdir):
append_env_path('LD_LIBRARY_PATH', libsdir)
if sys.platform == "darwin":
append_env_path('DYLD_LIBRARY_PATH', libsdir)
# Add all 3rd party directories: some have code in subdirectories
for d in os.listdir(wt_3rdpartydir):
for subdir in ('lib', 'python', ''):
if os.path.exists(os.path.join(wt_3rdpartydir, d, subdir)):
sys.path.insert(1, os.path.join(wt_3rdpartydir, d, subdir))
break
# unittest will be imported later, near to when it is needed.
unittest = None
# Find an executable of the given name in the execution path.
# Follow a symbolic link, returning the target
# Find all instances of a filename under a directory
# Show an environment variable if verbose enough.
# capture the category (AKA 'subsuite') part of a test name,
# e.g. test_util03 -> util
reCatname = re.compile(r"test_([^0-9]+)[0-9]*")
# Look for a list of the form 0-9,11,15-17.
def configRecord(cmap, tup):
"""
Records this tuple in the config. It is marked as None
(appearing as null in json), so it can be easily adjusted
in the output file.
"""
tuplen = len(tup)
pos = 0
for name in tup:
last = (pos == tuplen - 1)
pos += 1
if not name in cmap:
if last:
cmap[name] = {"run":None}
else:
cmap[name] = {"run":None, "sub":{}}
if not last:
cmap = cmap[name]["sub"]
def configGet(cmap, tup):
"""
Answers the question, should we do this test, given this config file?
Following the values of the tuple through the map,
returning the first non-null value. If all values are null,
return True (handles tests that may have been added after the
config was generated).
"""
for name in tup:
if not name in cmap:
return True
run = cmap[name]["run"] if "run" in cmap[name] else None
if run != None:
return run
cmap = cmap[name]["sub"] if "sub" in cmap[name] else {}
return True
if __name__ == '__main__':
# Turn numbers and ranges into test module names
preserve = timestamp = debug = dryRun = gdbSub = lldbSub = longtest = zstdtest = ignoreStdout = False
removeAtStart = True
asan = False
parallel = 0
random_sample = 0
batchtotal = batchnum = 0
seed = seedw = seedz = 0
configfile = None
configwrite = False
dirarg = None
scenario = ''
verbose = 1
args = sys.argv[1:]
testargs = []
hook_names = []
while len(args) > 0:
arg = args.pop(0)
from unittest import defaultTestLoader as loader
# Command line options
if arg[0] == '-':
option = arg[1:]
if option == '-asan':
asan = True
continue
if option == '-batch' or option == 'b':
if batchtotal != 0 or len(args) == 0:
usage()
sys.exit(2)
# Batch expects an argument that has int slash int.
# For example "-b 4/12"
try:
left, right = args.pop(0).split('/')
batchnum = int(left)
batchtotal = int(right)
except:
print('batch argument should be nnn/nnn')
usage()
sys.exit(2)
if batchtotal <= 0 or batchnum < 0 or batchnum >= batchtotal:
usage()
sys.exit(2)
continue
if option == '-dir' or option == 'D':
if dirarg != None or len(args) == 0:
usage()
sys.exit(2)
dirarg = args.pop(0)
continue
if option == '-debug' or option == 'd':
debug = True
continue
if option == '-dry-run' or option == 'n':
dryRun = True
continue
if option == '-gdb' or option == 'g':
gdbSub = True
continue
if option == '-lldb':
lldbSub = True
continue
if option == '-help' or option == 'h':
usage()
sys.exit(0)
if option == '-hook':
if len(args) == 0:
usage()
sys.exit(2)
hook_names.append(args.pop(0))
continue
if option == '-long' or option == 'l':
longtest = True
continue
if option == '-zstd' or option == 'z':
zstdtest = True
continue
if option == '-noremove':
removeAtStart = False
continue
if option == '-random-sample' or option == 'r':
if len(args) == 0:
usage()
sys.exit(2)
random_sample = int(args.pop(0))
if random_sample < 2 or random_sample > 1000:
usage()
sys.exit(2)
continue
if option == '-parallel' or option == 'j':
if parallel != 0 or len(args) == 0:
usage()
sys.exit(2)
parallel = int(args.pop(0))
continue
if option == '-preserve' or option == 'p':
preserve = True
continue
if option == '-scenario' or option == 's':
if scenario != '' or len(args) == 0:
usage()
sys.exit(2)
scenario = args.pop(0)
continue
if option == '-timestamp' or option == 't':
timestamp = True
continue
if option == '-verbose' or option == 'v':
if len(args) == 0:
usage()
sys.exit(2)
verbose = int(args.pop(0))
if verbose > 3:
verbose = 3
if verbose < 0:
verbose = 0
continue
if option == '--ignore-stdout' or option == 'i':
ignoreStdout = True
continue
if option == '-config' or option == 'c':
if configfile != None or len(args) == 0:
usage()
sys.exit(2)
configfile = args.pop(0)
continue
if option == '-configcreate' or option == 'C':
if configfile != None or len(args) == 0:
usage()
sys.exit(2)
configfile = args.pop(0)
configwrite = True
continue
if option == '-randomseed' or option == 'R':
seedw = random.randint(1, 0xffffffff)
seedz = random.randint(1, 0xffffffff)
continue
if option == '-seed' or option == 'S':
if seed != 0 or len(args) == 0:
usage()
sys.exit(2)
seed = args.pop(0)
[seedw, seedz] = seed.split('.')
if seedw == 0 or seedz == 0:
usage()
sys.exit(2)
continue
print('unknown arg: ' + arg)
usage()
sys.exit(2)
testargs.append(arg)
if asan:
# To run ASAN, we need to ensure these environment variables are set:
# ASAN_SYMBOLIZER_PATH full path to the llvm-symbolizer program
# LD_LIBRARY_PATH includes path with wiredtiger shared object
# LD_PRELOAD includes the ASAN runtime library
#
# Note that LD_LIBRARY_PATH has already been set above. The trouble with
# simply setting these variables in the Python environment is that it's
# too late. LD_LIBRARY_PATH is commonly cached by the shared library
# loader at program startup, and that's already been done before Python
# begins execution. Likewise, any preloading indicated by LD_PRELOAD
# has already been done.
#
# Our solution is to set the variables as appropriate, and then restart
# Python with the same argument list. The shared library loader will
# have everything it needs on the second go round.
#
# Note: If the ASAN stops the program with the error:
# Shadow memory range interleaves with an existing memory mapping.
# ASan cannot proceed correctly.
#
# try rebuilding with the clang options:
# "-mllvm -asan-force-dynamic-shadow=1"
# and make sure that clang is used for all compiles.
#
# We'd like to show this as a message, but there's no good way to
# detect this error from here short of capturing/parsing all output
# from the test run.
ASAN_ENV = "__WT_TEST_SUITE_ASAN" # if set, we've been here before
ASAN_SYMBOLIZER_PROG = "llvm-symbolizer"
ASAN_SYMBOLIZER_ENV = "ASAN_SYMBOLIZER_PATH"
LD_PRELOAD_ENV = "LD_PRELOAD"
SO_FILE_NAME = "libclang_rt.asan-x86_64.so"
if not os.environ.get(ASAN_ENV):
if verbose >= 2:
print('Enabling ASAN environment and rerunning python')
os.environ[ASAN_ENV] = "1"
show_env(verbose, "LD_LIBRARY_PATH")
if not os.environ.get(ASAN_SYMBOLIZER_ENV):
os.environ[ASAN_SYMBOLIZER_ENV] = which(ASAN_SYMBOLIZER_PROG)
if not os.environ.get(ASAN_SYMBOLIZER_ENV):
error(ASAN_SYMBOLIZER_ENV,
'symbolizer program not found in PATH')
show_env(verbose, ASAN_SYMBOLIZER_ENV)
if not os.environ.get(LD_PRELOAD_ENV):
symbolizer = follow_symlinks(os.environ[ASAN_SYMBOLIZER_ENV])
bindir = os.path.dirname(symbolizer)
sofiles = []
if os.path.basename(bindir) == 'bin':
libdir = os.path.join(os.path.dirname(bindir), 'lib')
sofiles = find(libdir, SO_FILE_NAME)
if len(sofiles) != 1:
if len(sofiles) == 0:
fmt = 'ASAN shared library file not found.\n' + \
'Set {} to the file location and rerun.'
error(3, SO_FILE_NAME, fmt.format(LD_PRELOAD_ENV))
else:
fmt = 'multiple ASAN shared library files found\n' + \
'under {}, expected just one.\n' + \
'Set {} to the correct file location and rerun.'
error(3, SO_FILE_NAME, fmt.format(libdir, LD_PRELOAD_ENV))
os.environ[LD_PRELOAD_ENV] = sofiles[0]
show_env(verbose, LD_PRELOAD_ENV)
# Restart python!
python = sys.executable
os.execl(python, python, *sys.argv)
elif verbose >= 2:
print('Python restarted for ASAN')
# We don't import wttest until after ASAN environment variables are set.
import wttest
# Use the same version of unittest found by wttest.py
unittest = wttest.unittest
tests = unittest.TestSuite()
from testscenarios.scenarios import generate_scenarios
import wthooks
hookmgr = wthooks.WiredTigerHookManager(hook_names)
# All global variables should be set before any test classes are loaded.
# That way, verbose printing can be done at the class definition level.
wttest.WiredTigerTestCase.globalSetup(preserve, removeAtStart, timestamp, gdbSub, lldbSub,
verbose, wt_builddir, dirarg, longtest, zstdtest,
ignoreStdout, seedw, seedz, hookmgr)
# Without any tests listed as arguments, do discovery
if len(testargs) == 0:
if scenario != '':
sys.stderr.write(
'run.py: specifying a scenario requires a test name\n')
usage()
sys.exit(2)
from discover import defaultTestLoader as loader
suites = loader.discover(suitedir)
# If you have an empty Python file, it comes back as an empty entry in suites
# and then the sort explodes. Drop empty entries first. Note: this converts
# suites to a list, but the sort does that anyway. Also note: there seems to be
# no way to count other than iteration; there's a count method but it also
# returns zero for test files that contain a test class with no test functions,
# and it's not clear that dropping those here is correct.
suites = [s for s in suites if not isempty(s)]
suites = sorted(suites, key=lambda c: str(list(c)[0]))
if configfile != None:
suites = configApply(suites, configfile, configwrite)
tests.addTests(restrictScenario(generate_scenarios(suites), ''))
else:
for arg in testargs:
testsFromArg(tests, loader, arg, scenario)
tests = hookmgr.filter_tests(tests)
# Shuffle the tests and create a new suite containing every Nth test from
# the original suite
if random_sample > 0:
random_sample_tests = []
for test in tests:
random_sample_tests.append(test)
random.shuffle(random_sample_tests)
tests = unittest.TestSuite(random_sample_tests[::random_sample])
if debug:
import pdb
pdb.set_trace()
if batchtotal != 0:
# For test batching, we want to split up all the tests evenly, and
# spread out the tests, so each batch contains tests of all kinds. We'd
# like to prioritize the lowest scenario numbers first, so if there's a
# failure, we won't have to do all X thousand of some test's scenarios
# before we see a failure in the next test. To that end, we define a
# sort function that sorts by scenario first, and test name second.
hugetests = set()
all_tests = sorted(tests, key = get_sort_keys)
if not longtest:
for name in hugetests:
print("WARNING: huge test " + name + " has > 1000 scenarios.\n" +
"That is only appropriate when using the --long option.\n" +
"The number of scenarios for the test should be pruned")
# At this point we have an ordered list of all the tests.
# Break it into just our batch.
tests = unittest.TestSuite(all_tests[batchnum::batchtotal])
if dryRun:
for line in tests:
print(line)
else:
result = wttest.runsuite(tests, parallel)
sys.exit(0 if result.wasSuccessful() else 1)
sys.exit(0)
| 40.631741
| 105
| 0.573834
|
dee9227b4b6629ca39d002a84205390a69b06f7b
| 29,997
|
py
|
Python
|
Code/Minner/SumDialog.py
|
lizhangjie316/Minner
|
f6aebd51cef981d726b53db8d62d1b1703fe2649
|
[
"MIT"
] | 1
|
2020-11-05T07:11:33.000Z
|
2020-11-05T07:11:33.000Z
|
Code/Minner0827/ui/SumDialog.py
|
lizhangjie316/Minner
|
f6aebd51cef981d726b53db8d62d1b1703fe2649
|
[
"MIT"
] | null | null | null |
Code/Minner0827/ui/SumDialog.py
|
lizhangjie316/Minner
|
f6aebd51cef981d726b53db8d62d1b1703fe2649
|
[
"MIT"
] | 1
|
2020-11-05T07:19:44.000Z
|
2020-11-05T07:19:44.000Z
|
# -*- coding: utf-8 -*-
# Form implementation generated from reading ui file 'SumDialog.ui'
#
# Created by: PyQt5 UI code generator 5.15.0
#
# WARNING: Any manual changes made to this file will be lost when pyuic5 is
# run again. Do not edit this file unless you know what you are doing.
from PyQt5 import QtCore, QtGui, QtWidgets
from SumAllTable import DataGridAll
| 43.791241
| 116
| 0.657432
|
deeb28c75145a6bebc3771235fab7a32732db4c0
| 684
|
py
|
Python
|
models/t_complex_gateway.py
|
THM-MA/XSDATA-waypoint
|
dd94442f9d6677c525bf3ebb03c15fec52fa1079
|
[
"MIT"
] | null | null | null |
models/t_complex_gateway.py
|
THM-MA/XSDATA-waypoint
|
dd94442f9d6677c525bf3ebb03c15fec52fa1079
|
[
"MIT"
] | null | null | null |
models/t_complex_gateway.py
|
THM-MA/XSDATA-waypoint
|
dd94442f9d6677c525bf3ebb03c15fec52fa1079
|
[
"MIT"
] | null | null | null |
from dataclasses import dataclass, field
from typing import Optional
from .t_expression import TExpression
from .t_gateway import TGateway
__NAMESPACE__ = "http://www.omg.org/spec/BPMN/20100524/MODEL"
| 24.428571
| 71
| 0.622807
|
deebcfc8092fc857d0a9f335ddd1bffc49d0f520
| 2,371
|
py
|
Python
|
fixture/orm.py
|
NovikovMA/python_training_mantis
|
c8de0ec193e2ec644d8053f8e1b7fc1ee8fb1525
|
[
"Apache-2.0"
] | null | null | null |
fixture/orm.py
|
NovikovMA/python_training_mantis
|
c8de0ec193e2ec644d8053f8e1b7fc1ee8fb1525
|
[
"Apache-2.0"
] | null | null | null |
fixture/orm.py
|
NovikovMA/python_training_mantis
|
c8de0ec193e2ec644d8053f8e1b7fc1ee8fb1525
|
[
"Apache-2.0"
] | null | null | null |
# -*- coding: utf-8 -*-
__author__ = 'M.Novikov'
from model.project import Project # Mantis
from pony.orm import * #
from pymysql.converters import decoders #
| 59.275
| 186
| 0.567693
|
deecfb2ff8809fa583a186388e95973a391ea0c6
| 3,577
|
py
|
Python
|
volDB/migrations/0001_initial.py
|
leg2015/CSCapstone19Volunteers
|
ae0fcf1e8ce4fafe8578edd0a3943574703046fa
|
[
"MIT"
] | 4
|
2020-01-13T23:30:34.000Z
|
2021-03-17T21:23:57.000Z
|
volDB/migrations/0001_initial.py
|
leg2015/CSCapstone19Volunteers
|
ae0fcf1e8ce4fafe8578edd0a3943574703046fa
|
[
"MIT"
] | 5
|
2020-02-12T03:25:17.000Z
|
2021-06-10T22:29:16.000Z
|
volDB/migrations/0001_initial.py
|
leg2015/CSCapstone19Volunteers
|
ae0fcf1e8ce4fafe8578edd0a3943574703046fa
|
[
"MIT"
] | null | null | null |
# Generated by Django 2.1.7 on 2019-02-23 18:47
from django.db import migrations, models
import django.db.models.deletion
| 41.593023
| 137
| 0.574224
|
deedff750596df4bfdfcd2656752ec59911b5e80
| 2,713
|
py
|
Python
|
crawler/page_fetcher.py
|
AssisRaphael/PageColector
|
6753376996f12ee1cced96b89a3e34d6fdf66529
|
[
"MIT"
] | null | null | null |
crawler/page_fetcher.py
|
AssisRaphael/PageColector
|
6753376996f12ee1cced96b89a3e34d6fdf66529
|
[
"MIT"
] | null | null | null |
crawler/page_fetcher.py
|
AssisRaphael/PageColector
|
6753376996f12ee1cced96b89a3e34d6fdf66529
|
[
"MIT"
] | null | null | null |
from bs4 import BeautifulSoup
from threading import Thread
import requests
from urllib.parse import urlparse,urljoin
from urllib import parse
| 33.085366
| 109
| 0.570586
|
def0c98ea1f503e25e5a4f61d70a095d8ff1d77d
| 141
|
py
|
Python
|
app/celery_worker.py
|
cjarv/celery_dev
|
1c0489ccf456249d5bd8d21da40ebe4572842af6
|
[
"MIT"
] | null | null | null |
app/celery_worker.py
|
cjarv/celery_dev
|
1c0489ccf456249d5bd8d21da40ebe4572842af6
|
[
"MIT"
] | null | null | null |
app/celery_worker.py
|
cjarv/celery_dev
|
1c0489ccf456249d5bd8d21da40ebe4572842af6
|
[
"MIT"
] | null | null | null |
from factories.celery import create_celery
from factories.application import create_application
celery = create_celery(create_application())
| 35.25
| 52
| 0.87234
|
def0d455f3332a2d6ded90d585855fcbfa88a92a
| 2,098
|
py
|
Python
|
simublocks/dialog/importCodeDialog.py
|
bentoavb/simublocks
|
9d4a5600b8aecd2d188e9191d78789a1bd725ab8
|
[
"MIT"
] | 2
|
2020-05-14T12:34:43.000Z
|
2020-06-11T23:48:09.000Z
|
simublocks/dialog/importCodeDialog.py
|
bentoavb/simublocks
|
9d4a5600b8aecd2d188e9191d78789a1bd725ab8
|
[
"MIT"
] | null | null | null |
simublocks/dialog/importCodeDialog.py
|
bentoavb/simublocks
|
9d4a5600b8aecd2d188e9191d78789a1bd725ab8
|
[
"MIT"
] | 1
|
2020-05-12T07:01:28.000Z
|
2020-05-12T07:01:28.000Z
|
# MIT License
#
# Copyright (c) 2020 Anderson Vitor Bento
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import tkinter as tk
from tkinter.scrolledtext import ScrolledText
from simublocks.dialog.dialogTools import dialogTools
| 38.851852
| 98
| 0.704957
|
def0f90a3cae5abac2b0927d079c001b98668c18
| 1,365
|
py
|
Python
|
python-socket-mult-thread/server.py
|
Programmer-Edilson/min-projects
|
62dfa55e8875b3d0d3e6cc9cb504c3f3f7da064e
|
[
"MIT"
] | 1
|
2021-02-28T17:33:59.000Z
|
2021-02-28T17:33:59.000Z
|
python-socket-mult-thread/server.py
|
Programmer-Edilson/min-projects
|
62dfa55e8875b3d0d3e6cc9cb504c3f3f7da064e
|
[
"MIT"
] | null | null | null |
python-socket-mult-thread/server.py
|
Programmer-Edilson/min-projects
|
62dfa55e8875b3d0d3e6cc9cb504c3f3f7da064e
|
[
"MIT"
] | null | null | null |
import socket
import os
from _thread import start_new_thread
ip = "localhost"
port = 1234
global number_of_connections
number_of_connections = 0
server = socket.socket()
server.bind((ip, port))
server.listen(5)
engine()
| 24.375
| 74
| 0.621245
|
def2f40bc3a8f54d1a406e95811076ed0688d708
| 658
|
py
|
Python
|
delete_unuse_callkit.py
|
eyolo2021/ios-ui-sdk-set
|
a8897320c356ddd6dbfe964ef68eb76701759f03
|
[
"MIT"
] | 14
|
2021-03-06T08:47:30.000Z
|
2022-02-11T09:42:24.000Z
|
delete_unuse_callkit.py
|
eyolo2021/ios-ui-sdk-set
|
a8897320c356ddd6dbfe964ef68eb76701759f03
|
[
"MIT"
] | 3
|
2021-03-19T11:12:42.000Z
|
2021-11-29T14:56:33.000Z
|
delete_unuse_callkit.py
|
Zuzi007/ios-ui-sdk-set
|
2e51added5d697b4d1ab1ba2887ad297b408e7b0
|
[
"MIT"
] | 12
|
2021-07-02T02:44:52.000Z
|
2022-03-01T05:15:22.000Z
|
#coding=utf-8
import os
delete_files=["RCCall.mm","RCCXCall.m"]
start_key = "RCCallKit_Delete_Start"
end_key = "RCCallKit_Delete_end"
for root,dirs,files in os.walk("./CallKit"):
for file in files:
if file in delete_files:
print("will delete %s" % file)
delete_used(os.path.join(root,file))
| 15.666667
| 44
| 0.674772
|
def6b9e9ff86d2545be01b4fc202577ea606b159
| 525
|
py
|
Python
|
global_setting.py
|
aixiwang/mqtt_datajs
|
91091d63f73e64916e6ca3fa5e9279dd361d3c86
|
[
"BSD-3-Clause"
] | null | null | null |
global_setting.py
|
aixiwang/mqtt_datajs
|
91091d63f73e64916e6ca3fa5e9279dd361d3c86
|
[
"BSD-3-Clause"
] | null | null | null |
global_setting.py
|
aixiwang/mqtt_datajs
|
91091d63f73e64916e6ca3fa5e9279dd361d3c86
|
[
"BSD-3-Clause"
] | null | null | null |
#!/usr/bin/python
#-*- coding: utf-8 -*-
#---------------------------------------
#
# Copyright(c) Aixi Wang 2014-2015
#---------------------------------------
# v1 -- initial version
#---------------------------------------
#-----------------------
# mail
#-----------------------
global mail_sender,mail_smtpserver,mail_username,mail_password
global mail_enable,mail_to
mail_to = 'xx@xxx.xxx'
mail_username = 'xxx@xxx.xxx'
mail_password = 'xxx'
mail_smtpserver = 'xxx.xxx.xxx'
mail_sender = 'xxx@xxx.xxx'
mail_enable = 1
| 23.863636
| 62
| 0.493333
|
def712afd23e0562bd689a7a3ab2431ec0fae53a
| 631
|
py
|
Python
|
Chatbot_Rest/urls.py
|
chenpocufa/Chatbot_CN
|
5e13c129c159143610f4dfc99478d401dd5777e6
|
[
"Apache-2.0"
] | 1
|
2019-08-02T06:09:34.000Z
|
2019-08-02T06:09:34.000Z
|
Chatbot_Rest/urls.py
|
yuxuan2015/Chatbot_CN
|
1adf1c01d3eced5f0644102bdec9be22705b6f3f
|
[
"Apache-2.0"
] | null | null | null |
Chatbot_Rest/urls.py
|
yuxuan2015/Chatbot_CN
|
1adf1c01d3eced5f0644102bdec9be22705b6f3f
|
[
"Apache-2.0"
] | null | null | null |
#-*- coding:utf-8 _*-
"""
@author:charlesXu
@file: urls.py
@desc: url
@time: 2019/05/10
"""
# ===============
#
# apis
#
# ===============
from django.urls import path
from intent_rest_controller import intent_controller
from entity_extraction_controller import entity_ext_controller
from bot_controller import get_chat_msg #
from time_convert_server import time_convert #
urlpatterns = [
path('entity', entity_ext_controller), #
path('intent', intent_controller), #
path('chat', get_chat_msg), # chatbot
path('time_convert', time_convert) #
]
| 21.033333
| 62
| 0.667195
|
def7709b7d7d970c7608ad7be378d822d2e33518
| 14,334
|
py
|
Python
|
tests/frameworks/test_wsgi.py
|
tirkarthi/python-sensor
|
9872d146ac00baff2673fde5ba97fdbe596869a4
|
[
"MIT"
] | 61
|
2017-09-27T02:50:17.000Z
|
2022-03-22T12:13:37.000Z
|
tests/frameworks/test_wsgi.py
|
tirkarthi/python-sensor
|
9872d146ac00baff2673fde5ba97fdbe596869a4
|
[
"MIT"
] | 82
|
2017-07-11T13:47:33.000Z
|
2022-03-22T10:10:38.000Z
|
tests/frameworks/test_wsgi.py
|
takeaway/python-sensor
|
52d6eaa2d6a8e625201bad36ac2448201c4bd63d
|
[
"MIT"
] | 27
|
2017-09-11T16:22:32.000Z
|
2022-03-11T17:21:49.000Z
|
# (c) Copyright IBM Corp. 2021
# (c) Copyright Instana Inc. 2020
from __future__ import absolute_import
import time
import urllib3
import unittest
import tests.apps.flask_app
from ..helpers import testenv
from instana.singletons import agent, tracer
| 36.943299
| 102
| 0.647133
|
def7ae196a0259e7e64d4dfd6522b1ee72138646
| 16,178
|
py
|
Python
|
api/yolo_minimal/utils.py
|
simonsmh/www
|
1741545e636540b9eb250840347f091082fe301a
|
[
"MIT"
] | 5
|
2015-12-19T11:18:54.000Z
|
2016-08-27T02:21:59.000Z
|
api/yolo_minimal/utils.py
|
simonsmh/www
|
1741545e636540b9eb250840347f091082fe301a
|
[
"MIT"
] | null | null | null |
api/yolo_minimal/utils.py
|
simonsmh/www
|
1741545e636540b9eb250840347f091082fe301a
|
[
"MIT"
] | 1
|
2020-10-30T13:25:33.000Z
|
2020-10-30T13:25:33.000Z
|
import math
import os
import random
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
area1 = box_area(box1.t())
area2 = box_area(box2.t())
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (
(
torch.min(box1[:, None, 2:], box2[:, 2:])
- torch.max(box1[:, None, :2], box2[:, :2])
)
.clamp(0)
.prod(2)
)
return inter / (
area1[:, None] + area2 - inter
) # iou = inter / (area1 + area2 - inter)
def non_max_suppression(
prediction,
conf_thres=0.1,
iou_thres=0.6,
multi_label=True,
classes=None,
agnostic=False,
):
"""
Performs Non-Maximum Suppression on inference results
Returns detections with shape:
nx6 (x1, y1, x2, y2, conf, cls)
"""
# Box constraints
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
method = "merge"
nc = prediction[0].shape[1] - 5 # number of classes
multi_label &= nc > 1 # multiple labels per box
output = [None] * len(prediction)
for xi, x in enumerate(prediction): # image index, image inference
# Apply conf constraint
x = x[x[:, 4] > conf_thres]
# Apply width-height constraint
x = x[((x[:, 2:4] > min_wh) & (x[:, 2:4] < max_wh)).all(1)]
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[..., 5:] *= x[..., 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = xywh2xyxy(x[:, :4])
# Detections matrix nx6 (xyxy, conf, cls)
if multi_label:
i, j = (x[:, 5:] > conf_thres).nonzero().t()
x = torch.cat((box[i], x[i, j + 5].unsqueeze(1), j.float().unsqueeze(1)), 1)
else: # best class only
conf, j = x[:, 5:].max(1)
x = torch.cat((box, conf.unsqueeze(1), j.float().unsqueeze(1)), 1)
# Filter by class
if classes:
x = x[(j.view(-1, 1) == torch.tensor(classes, device=j.device)).any(1)]
# Apply finite constraint
if not torch.isfinite(x).all():
x = x[torch.isfinite(x).all(1)]
# If none remain process next image
n = x.shape[0] # number of boxes
if not n:
continue
# Sort by confidence
# if method == 'fast_batch':
# x = x[x[:, 4].argsort(descending=True)]
# Batched NMS
c = x[:, 5] * 0 if agnostic else x[:, 5] # classes
boxes, scores = (
x[:, :4].clone() + c.view(-1, 1) * max_wh,
x[:, 4],
) # boxes (offset by class), scores
if method == "merge": # Merge NMS (boxes merged using weighted mean)
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
if n < 1e4: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
# weights = (box_iou(boxes, boxes).tril_() > iou_thres) * scores.view(-1, 1) # box weights
# weights /= weights.sum(0) # normalize
# x[:, :4] = torch.mm(weights.T, x[:, :4])
weights = (box_iou(boxes[i], boxes) > iou_thres) * scores[
None
] # box weights
x[i, :4] = torch.mm(
weights / weights.sum(1, keepdim=True), x[:, :4]
).float() # merged boxes
elif method == "vision":
i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
elif method == "fast": # FastNMS from https://github.com/dbolya/yolact
iou = box_iou(boxes, boxes).triu_(diagonal=1) # upper triangular iou matrix
i = iou.max(0)[0] < iou_thres
output[xi] = x[i]
return output
| 34.49467
| 117
| 0.52627
|
def8727d101b934efb5715bc01f3842eeeee3ee3
| 4,934
|
py
|
Python
|
ec2stack/__init__.py
|
sureshanaparti/cloudstack-ec2stack
|
8e07435d3d04357995f2a5d337adef62ecbfdd8d
|
[
"Apache-2.0"
] | 13
|
2015-05-06T13:38:13.000Z
|
2021-11-09T21:39:01.000Z
|
ec2stack/__init__.py
|
sureshanaparti/cloudstack-ec2stack
|
8e07435d3d04357995f2a5d337adef62ecbfdd8d
|
[
"Apache-2.0"
] | 3
|
2015-08-21T17:31:20.000Z
|
2021-07-07T08:39:11.000Z
|
ec2stack/__init__.py
|
sureshanaparti/cloudstack-ec2stack
|
8e07435d3d04357995f2a5d337adef62ecbfdd8d
|
[
"Apache-2.0"
] | 17
|
2015-07-24T06:00:59.000Z
|
2021-11-09T21:38:52.000Z
|
#!/usr/bin/env python
# encoding: utf-8
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
"""This module creates the flask application.
"""
import os
import sys
import argparse
from alembic import command
from alembic.config import Config as AlembicConfig
from flask import Flask
from ConfigParser import SafeConfigParser
from ec2stack.controllers import *
from ec2stack.core import DB
from ec2stack.models import User
def create_app(settings=None):
"""
Creates a flask application.
@param settings: Settings override object.
@return: The flask application.
"""
app = Flask(__name__)
if settings:
app.config.from_object(settings)
else:
args = _generate_args()
profile = args.pop('profile')
app.config['DEBUG'] = args.pop('debug')
config_file = _load_config_file()
database_uri = _load_database()
_config_from_config_profile(config_file, profile, app)
app.config['SQLALCHEMY_DATABASE_URI'] = database_uri
DB.init_app(app)
default_controller = __import__(
'ec2stack.controllers.' + 'default', None, None, 'DEFAULT'
)
default_controller = getattr(default_controller, 'DEFAULT')
app.register_blueprint(default_controller)
return app
def _generate_args():
"""
Generate command line arguments for ec2stack-configure.
@return: args.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
'-p',
'--profile',
required=False,
help='The profile to run ec2stack with, default is initial',
default='initial'
)
parser.add_argument(
'-d',
'--debug',
required=False,
help='Turn debug on for application',
default=False
)
args = parser.parse_args()
return vars(args)
def _load_config_file():
"""
Checks that the user's configuration file exists and returns its path.
@return: The path to the user's configuration file.
"""
config_file = os.path.join(
os.path.expanduser('~'),
'.ec2stack/ec2stack.conf'
)
if not os.path.exists(config_file):
sys.exit('No configuration found, please run ec2stack-configure')
return config_file
def _config_from_config_profile(config_file, profile, app):
"""
Configures ec2stack app based on configuration profile.
@param config_file: current config file configuration.
@param profile: the profile to set the attribute in.
"""
config = SafeConfigParser()
config.read(config_file)
if not config.has_section(profile):
sys.exit('No profile matching ' + profile +
' found in configuration, please run ec2stack-configure -p ' + profile)
for attribute in config.options(profile):
app.config[attribute.upper()] = config.get(profile, attribute)
instance_type_map = {}
instance_section = profile + "instancemap"
if config.has_section(instance_section):
for attribute in config.options(instance_section):
instance_type_map[attribute] = config.get(
instance_section, attribute)
app.config['INSTANCE_TYPE_MAP'] = instance_type_map
resource_type_map = {}
resource_section = profile + "resourcemap"
if config.has_section(resource_section):
for attribute in config.options(resource_section):
resource_type_map[attribute] = config.get(
resource_section, attribute)
app.config['RESOURCE_TYPE_MAP '] = resource_type_map
def _load_database():
"""
Checks that the user's database exists and returns its uri.
@return: The uri to the user's database.
"""
database_file = os.path.join(
os.path.expanduser('~'),
'.ec2stack/ec2stack.sqlite'
)
if not os.path.exists(database_file):
directory = os.path.join(os.path.dirname(__file__), '../migrations')
config = AlembicConfig(os.path.join(
directory,
'alembic.ini'
))
config.set_main_option('script_location', directory)
command.upgrade(config, 'head', sql=False, tag=None)
return 'sqlite:///' + database_file
| 28.356322
| 88
| 0.676125
|
def8fdb574ef8e8309feae4ee72edbfe9a0a3beb
| 926
|
py
|
Python
|
schematics_proto3/unset.py
|
mlga/schematics-proto3
|
588fe5bc212e203688166638a1c52dfeda931403
|
[
"MIT"
] | null | null | null |
schematics_proto3/unset.py
|
mlga/schematics-proto3
|
588fe5bc212e203688166638a1c52dfeda931403
|
[
"MIT"
] | 11
|
2020-04-09T13:33:54.000Z
|
2020-08-19T17:38:26.000Z
|
schematics_proto3/unset.py
|
mlga/schematics-proto3
|
588fe5bc212e203688166638a1c52dfeda931403
|
[
"MIT"
] | null | null | null |
# -*- coding:utf-8 -*-
"""
Test module docstring.
"""
import threading
from typing import Type
Unset = UnsetType() # pylint: disable=invalid-name
| 17.807692
| 56
| 0.580994
|
def92f706f99835e10af1d0e6310107f2432dbe5
| 193
|
py
|
Python
|
aws_lambda_powertools/event_handler/__init__.py
|
nayaverdier/aws-lambda-powertools-python
|
cd15ee97746356a84c6f196dbd2d26a34ea50411
|
[
"Apache-2.0",
"MIT-0"
] | 1,208
|
2020-05-20T19:06:29.000Z
|
2022-03-30T14:17:47.000Z
|
aws_lambda_powertools/event_handler/__init__.py
|
nayaverdier/aws-lambda-powertools-python
|
cd15ee97746356a84c6f196dbd2d26a34ea50411
|
[
"Apache-2.0",
"MIT-0"
] | 859
|
2020-05-22T09:59:54.000Z
|
2022-03-31T08:31:30.000Z
|
aws_lambda_powertools/event_handler/__init__.py
|
nayaverdier/aws-lambda-powertools-python
|
cd15ee97746356a84c6f196dbd2d26a34ea50411
|
[
"Apache-2.0",
"MIT-0"
] | 163
|
2020-05-18T21:08:25.000Z
|
2022-03-28T12:03:37.000Z
|
"""
Event handler decorators for common Lambda events
"""
from .api_gateway import ApiGatewayResolver
from .appsync import AppSyncResolver
__all__ = ["AppSyncResolver", "ApiGatewayResolver"]
| 21.444444
| 51
| 0.797927
|
def98cf0f4126cdcda2bee2e5c8d96a01bc4937b
| 1,351
|
py
|
Python
|
solutions/5/guillaume/LookAhead.py
|
larsbratholm/champs_kaggle
|
fda4f213d02fd5e0138a86c52b4140c9f94fec6e
|
[
"MIT"
] | 9
|
2020-08-14T23:11:16.000Z
|
2021-08-09T16:23:43.000Z
|
solutions/5/guillaume/LookAhead.py
|
larsbratholm/champs_kaggle
|
fda4f213d02fd5e0138a86c52b4140c9f94fec6e
|
[
"MIT"
] | 1
|
2020-11-19T09:29:14.000Z
|
2020-11-19T09:29:14.000Z
|
solutions/5/guillaume/LookAhead.py
|
larsbratholm/champs_kaggle
|
fda4f213d02fd5e0138a86c52b4140c9f94fec6e
|
[
"MIT"
] | 2
|
2020-09-09T02:53:57.000Z
|
2020-12-06T08:20:52.000Z
|
import itertools as it
from torch.optim import Optimizer
| 37.527778
| 75
| 0.559585
|
defcc91baa71d0c94f476ef6cc3d35765b3516a0
| 2,263
|
py
|
Python
|
addexp.py
|
Shajm44n/Expense
|
db3355d4d81d5dd57ceea81b1170724b8893e523
|
[
"MIT"
] | null | null | null |
addexp.py
|
Shajm44n/Expense
|
db3355d4d81d5dd57ceea81b1170724b8893e523
|
[
"MIT"
] | null | null | null |
addexp.py
|
Shajm44n/Expense
|
db3355d4d81d5dd57ceea81b1170724b8893e523
|
[
"MIT"
] | null | null | null |
from tkinter import *
# import expdate
import mysql.connector
db_connect=mysql.connector.connect(host="localhost",user="root",password="maan",database="expense")
db_cursor=db_connect.cursor()
| 32.797101
| 236
| 0.643836
|
defd13835bf657af58b23494bf16c9abcbbae2e8
| 1,217
|
py
|
Python
|
BlackJack/UserInterface/BlackJackUI.py
|
Kasyx709/BlackJack
|
a99cd9327e466ed51dadbf4b5407c2370f998b82
|
[
"MIT"
] | null | null | null |
BlackJack/UserInterface/BlackJackUI.py
|
Kasyx709/BlackJack
|
a99cd9327e466ed51dadbf4b5407c2370f998b82
|
[
"MIT"
] | null | null | null |
BlackJack/UserInterface/BlackJackUI.py
|
Kasyx709/BlackJack
|
a99cd9327e466ed51dadbf4b5407c2370f998b82
|
[
"MIT"
] | null | null | null |
from __future__ import division
from BlackJack.UserInterface import tk
from BlackJack.UserInterface import tkFont
from BlackJack.UserInterface import BlackJackWindows
from BlackJack.UserInterface import SelectGameType
from BlackJack.UserInterface import Helpers
| 40.566667
| 92
| 0.696795
|
defd4d718f41568b76388eb0230161d0d48bb24e
| 263
|
py
|
Python
|
winecasino/core/entities/__init__.py
|
harlov/winecasino
|
ae29b2c8f75bfd05ad141fd3b596f1db7c103690
|
[
"MIT"
] | null | null | null |
winecasino/core/entities/__init__.py
|
harlov/winecasino
|
ae29b2c8f75bfd05ad141fd3b596f1db7c103690
|
[
"MIT"
] | null | null | null |
winecasino/core/entities/__init__.py
|
harlov/winecasino
|
ae29b2c8f75bfd05ad141fd3b596f1db7c103690
|
[
"MIT"
] | null | null | null |
from .country import Country
from .game import Game
from .game import Bid
from .user import User
from .grape import Grape
from .wine import Wine
from .base import new_id
__all__ = [
"new_id",
"Country",
"Game",
"Grape",
"User",
"Wine",
]
| 15.470588
| 28
| 0.653992
|
defdbd583ad5f6b3a08353cba72476c7dbaff00c
| 295
|
py
|
Python
|
download-deveres/para-execicios-curso-em-video/exe019.py
|
Hugo-Oliveira-RDO11/meus-deveres
|
b5e41015e2cb95946262678e82197e5f47d56271
|
[
"MIT"
] | null | null | null |
download-deveres/para-execicios-curso-em-video/exe019.py
|
Hugo-Oliveira-RDO11/meus-deveres
|
b5e41015e2cb95946262678e82197e5f47d56271
|
[
"MIT"
] | null | null | null |
download-deveres/para-execicios-curso-em-video/exe019.py
|
Hugo-Oliveira-RDO11/meus-deveres
|
b5e41015e2cb95946262678e82197e5f47d56271
|
[
"MIT"
] | null | null | null |
import random
p = str(input('digite o nome do primeiro aluno :'))
s = str(input('o nome do segundo aluno :'))
t = str(input('o nome do terceiro aluno :'))
q = str(input('o nome do quato aluno :'))
lista = [p, s, t, q]
aluno = random.choice(lista)
print('o aluno sorteado foi {}'.format(aluno))
| 29.5
| 51
| 0.657627
|
defde4b16a7fe68a1c0b7ba26a303a5bb6a695bc
| 12,389
|
py
|
Python
|
cma-evolve.py
|
simondlevy/CMA-Gym
|
ce0056873d42eae2b6769fe22fcf872459694f30
|
[
"Apache-2.0"
] | null | null | null |
cma-evolve.py
|
simondlevy/CMA-Gym
|
ce0056873d42eae2b6769fe22fcf872459694f30
|
[
"Apache-2.0"
] | null | null | null |
cma-evolve.py
|
simondlevy/CMA-Gym
|
ce0056873d42eae2b6769fe22fcf872459694f30
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python3
import gym
import torch
import numpy as np
import multiprocessing as mp
import os
import pickle
import sys
import time
import logging
import cma
import argparse
from torchmodel import StandardFCNet
def fitness_shift(x):
x = np.asarray(x).flatten()
ranks = np.empty(len(x))
ranks[x.argsort()] = np.arange(len(x))
ranks /= (len(x) - 1)
ranks -= .5
return ranks
def train(config, logger):
task_queue = mp.SimpleQueue()
result_queue = mp.SimpleQueue()
stop = mp.Value('i', False)
stats = SharedStats(config.state_dim)
normalizers = [StaticNormalizer(config.state_dim) for _ in range(config.num_workers)]
for normalizer in normalizers:
normalizer.offline_stats.load(stats)
workers = [CMAWorker(id, normalizers[id], task_queue, result_queue, stop, config) for id in range(config.num_workers)]
for w in workers: w.start()
opt = cma.CMAOptions()
opt['tolfun'] = -config.target
opt['popsize'] = config.pop_size
opt['verb_disp'] = 0
opt['verb_log'] = 0
opt['maxiter'] = sys.maxsize
es = cma.CMAEvolutionStrategy(config.initial_weight, config.sigma, opt)
total_steps = 0
initial_time = time.time()
training_rewards = []
training_steps = []
training_timestamps = []
test_mean, test_std = test(config, config.initial_weight, stats)
logger.info('total steps %8d, %+4.0f(%+4.0f)' % (total_steps, test_mean, test_std))
training_rewards.append(test_mean)
training_steps.append(0)
training_timestamps.append(0)
while True:
solutions = es.ask()
for id, solution in enumerate(solutions):
task_queue.put((id, solution))
while not task_queue.empty():
continue
result = []
while len(result) < len(solutions):
if result_queue.empty():
continue
result.append(result_queue.get())
result = sorted(result, key=lambda x: x[0])
total_steps += np.sum([r[2] for r in result])
cost = [r[1] for r in result]
best_solution = solutions[np.argmin(cost)]
elapsed_time = time.time() - initial_time
test_mean, test_std = test(config, best_solution, stats)
best = -np.min(cost)
logger.info('total steps = %8d test = %+4.0f (%4.0f) best = %+4.0f (%+4.0f) elapased time = %4.0f sec' %
(total_steps, test_mean, test_std, best, config.target, elapsed_time))
training_rewards.append(test_mean)
training_steps.append(total_steps)
training_timestamps.append(elapsed_time)
#with open('data/%s-best_solution_%s.bin' % (TAG, config.task), 'wb') as f: # XXX gets stuck
# pickle.dump(solutions[np.argmin(result)], f)
if best > config.target:
logger.info('Best score of %f exceeds target %f' % (best, config.target))
break
if config.max_steps and total_steps > config.max_steps:
logger.info('Maximum number of steps exceeded')
stop.value = True
break
cost = fitness_shift(cost)
es.tell(solutions, cost)
# es.disp()
for normalizer in normalizers:
stats.merge(normalizer.online_stats)
normalizer.online_stats.zero()
for normalizer in normalizers:
normalizer.offline_stats.load(stats)
stop.value = True
for w in workers: w.join()
return [training_rewards, training_steps, training_timestamps]
def test(config, solution, stats):
normalizer = StaticNormalizer(config.state_dim)
normalizer.offline_stats.load_state_dict(stats.state_dict())
evaluator = Evaluator(config, normalizer)
evaluator.model.set_weight(solution)
rewards = []
for i in range(config.test_repetitions):
reward, _ = evaluator.single_run()
rewards.append(reward)
return np.mean(rewards), np.std(rewards) / config.repetitions
def multi_runs(task, logger, runs=1):
if not os.path.exists('log'):
os.makedirs('log')
fh = logging.FileHandler('log/%s-%s.txt' % (task.tag, task.task))
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
stats = []
for run in range(runs):
logger.info('Run %3d/%3d' % (run+1, runs))
stats.append(train(task, logger))
with open('data/%s-stats-%s.bin' % (task.tag, task.task), 'wb') as f:
pickle.dump(stats, f)
if __name__ == '__main__':
main()
| 33.574526
| 123
| 0.600291
|
defec38e9abb5a9b6de6de6949355eb8f83f8c74
| 342
|
py
|
Python
|
src/arcclimate/temperature.py
|
youworks/arcclimate
|
62a9eece267e42ccddfc5145e8ee50776470f7bf
|
[
"MIT"
] | null | null | null |
src/arcclimate/temperature.py
|
youworks/arcclimate
|
62a9eece267e42ccddfc5145e8ee50776470f7bf
|
[
"MIT"
] | null | null | null |
src/arcclimate/temperature.py
|
youworks/arcclimate
|
62a9eece267e42ccddfc5145e8ee50776470f7bf
|
[
"MIT"
] | 1
|
2022-03-08T01:04:47.000Z
|
2022-03-08T01:04:47.000Z
|
"""
"""
import numpy as np
def get_corrected_TMP(TMP: np.ndarray, ele_gap: float) -> np.ndarray:
"""
Args:
TMP (np.ndarray): []
ele_gap (np.ndarray): [m]
Returns:
np.ndarray: [C]
Notes:
0.0065/m
"""
return TMP + ele_gap * -0.0065
| 15.545455
| 69
| 0.564327
|
defeff29d76d14fa0aceaad7cd54a55164f7136c
| 2,386
|
py
|
Python
|
rastervision/data/label_store/default.py
|
carderne/raster-vision
|
915fbcd3263d8f2193e65c2cd0eb53e050a47a01
|
[
"Apache-2.0"
] | 4
|
2019-03-11T12:38:15.000Z
|
2021-04-06T14:57:52.000Z
|
rastervision/data/label_store/default.py
|
carderne/raster-vision
|
915fbcd3263d8f2193e65c2cd0eb53e050a47a01
|
[
"Apache-2.0"
] | null | null | null |
rastervision/data/label_store/default.py
|
carderne/raster-vision
|
915fbcd3263d8f2193e65c2cd0eb53e050a47a01
|
[
"Apache-2.0"
] | 1
|
2019-10-29T09:22:09.000Z
|
2019-10-29T09:22:09.000Z
|
from abc import (ABC, abstractmethod)
import os
import rastervision as rv
| 27.425287
| 86
| 0.65088
|
720247461650041909a7ce79fd85da841234a38b
| 6,425
|
py
|
Python
|
app.py
|
aniketjana03/TimeSheet
|
519b3bdad79dedb7210747906bf4b8e24e64691a
|
[
"Apache-2.0"
] | null | null | null |
app.py
|
aniketjana03/TimeSheet
|
519b3bdad79dedb7210747906bf4b8e24e64691a
|
[
"Apache-2.0"
] | null | null | null |
app.py
|
aniketjana03/TimeSheet
|
519b3bdad79dedb7210747906bf4b8e24e64691a
|
[
"Apache-2.0"
] | null | null | null |
import sys
import os
from flask import Flask, flash, redirect, render_template, request, url_for, session
from flaskext.mysql import MySQL
from flask_login import LoginManager
from flask_bcrypt import Bcrypt
from flask_session import Session
from database import Database
from makedb import MakeDB
from helpers import generate_weekID
import pymysql
from boto.s3.connection import S3Connection
# init flask app
app = Flask(__name__)
app.config['TESTING'] = False
# session secret key
app.secret_key = os.environ.get('SECRETKEYFLASK')
# Ensure templates are auto-reloaded
app.config["TEMPLATES_AUTO_RELOAD"] = True
app.config["SESSION_PERMANENT"] = False
app.config["SESSION_TYPE"] = "filesystem"
Session(app)
# Password Hashing
bcrypt = Bcrypt(app)
# init MySQL database
mysql = MySQL()
mysql.init_app(app)
#Make database if not EXISTS
MakeDB()
if __name__ == "__main__":
app.run()
| 32.125
| 144
| 0.598599
|
7202ced44b536e7785d48d42a3fe09355e98fc12
| 448
|
py
|
Python
|
guestbook/models.py
|
Bespolezniy/geek-world
|
8fbaf451b4e87e48e73eb289035ec0ea68ea0e68
|
[
"MIT"
] | null | null | null |
guestbook/models.py
|
Bespolezniy/geek-world
|
8fbaf451b4e87e48e73eb289035ec0ea68ea0e68
|
[
"MIT"
] | null | null | null |
guestbook/models.py
|
Bespolezniy/geek-world
|
8fbaf451b4e87e48e73eb289035ec0ea68ea0e68
|
[
"MIT"
] | null | null | null |
from django.db import models
# Create your models here.
| 37.333333
| 92
| 0.694196
|
72043f3633eddba64964dbbdb6f17d84cf1d6267
| 34,859
|
py
|
Python
|
PA1/PA1_Q2/P21CS007_VGG16.py
|
aryachiranjeev/Dependable-AI
|
750570572c1baaa2590a89c0982e2f71b15b48b9
|
[
"MIT"
] | null | null | null |
PA1/PA1_Q2/P21CS007_VGG16.py
|
aryachiranjeev/Dependable-AI
|
750570572c1baaa2590a89c0982e2f71b15b48b9
|
[
"MIT"
] | null | null | null |
PA1/PA1_Q2/P21CS007_VGG16.py
|
aryachiranjeev/Dependable-AI
|
750570572c1baaa2590a89c0982e2f71b15b48b9
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import numpy as np
import pandas as pd
import random
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Dense,Flatten,GlobalAveragePooling2D,Input,Lambda
from tensorflow.keras.models import Model,load_model
import tensorflow.keras.backend as K
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.vgg16 import preprocess_input
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
from sklearn.metrics import accuracy_score,confusion_matrix
from skimage.color import rgb2gray
import cv2
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
# In[110]:
# In[150]:
# In[112]:
# In[113]:
# In[151]:
test_brute_model_on_gray_scale_test_images(brute_model)
# In[115]:
#brute model
print("/nbrute model/n")
brute_model = brute_vgg16()
test_brute_model_on_gray_scale_test_images(brute_model)
class_accuracy_brute_model = class_wise_accuracy(brute_model)
bias_metrics(class_accuracy_brute_model,brute_model)
# In[40]:
# In[68]:
layer_names = ["block5_conv3","block4_conv2"]
for l in layer_names:
print("layer name:",l)
make_gradCAM("/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/correct_actual7pred7.jpg",brute_model,classified="correct",layer_name=l)
make_gradCAM("/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/correct_actual8pred8.jpg",brute_model,classified="correct",layer_name=l)
make_gradCAM("/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/incorrect_actual3pred0.jpg",brute_model,classified="incorrect",layer_name=l)
make_gradCAM("/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/incorrect_actual5pred4.jpg",brute_model,classified="incorrect",layer_name =l)
# In[161]:
layer_names = ["block5_conv3","block4_conv2"]
for l in layer_names:
print("layer name:",l)
img_path1 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/correct_actual7pred7.jpg"
img_path2 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/correct_actual8pred8.jpg"
img_path3 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/incorrect_actual3pred0.jpg"
img_path4 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q2/incorrect_actual5pred4.jpg"
img1 = cv2.imread(img_path1)
cam1 = grad_cam_pp(brute_model, img1,layer_name=l, label_name=labels,category_id=int(img_path1[-5]))
plot(img1,cam1)
img2 = cv2.imread(img_path2)
cam2 = grad_cam_pp(brute_model, img2,layer_name=l, label_name=labels,category_id=int(img_path2[-5]))
plot(img2,cam2)
img3 = cv2.imread(img_path3)
cam3 = grad_cam_pp(brute_model, img3,layer_name=l, label_name=labels,category_id=int(img_path3[-5]))
plot(img3,cam3)
img4 = cv2.imread(img_path4)
cam4 = grad_cam_pp(brute_model, img4,layer_name=l, label_name=labels,category_id=int(img_path4[-5]))
plot(img4,cam4)
# In[162]:
# In[38]:
# In[39]:
#preporocess model
print("\npreporocess model\n")
preprocessed_model = preprocessed_data_model()
x_test_preprocessed,y_test_preprocessed = preprocess_helper()
preprocessed_model1 = tf.keras.models.load_model("/home/euclid/Desktop/Chiranjeev/DAI/vgg16_cifar10_preprocessed_rot_new")
class_accuracy_preprocessed_model1 = class_wise_accuracy_preprocess(preprocessed_model1, x_test_preprocessed,y_test_preprocessed)
bias_metrics_preprocess(class_accuracy_preprocessed_model1,preprocessed_model1, x_test_preprocessed,y_test_preprocessed)
create_results_preprocess(preprocessed_model1, x_test_preprocessed,y_test_preprocessed)
# In[118]:
# In[119]:
#method model
print("/nmethod model/n")
kl_model = method_model()
class_accuracy_kl_model = class_wise_accuracy(kl_model)
bias_metrics(class_accuracy_kl_model,kl_model)
create_results(kl_model)
# In[120]:
print("\npreprocessed model\n")
class_accuracy_preprocessed = class_wise_accuracy(preprocessed_model)
print("each class accuracies preprocessed",class_accuracy_preprocessed)
bias_metrics(class_accuracy_preprocessed,preprocessed_model)
print("\nmethod model\n")
class_accuracy_method = class_wise_accuracy(kl_model)
print("each class accuracies mehtod",class_accuracy_method)
bias_metrics(class_accuracy_method,kl_model)
# In[187]:
# In[200]:
print("cross entropy loss")
filename1 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q1/categorical_cross_entropy/test_gender_across_race_age_y_test_pred2_optimizer2_45.csv"
dob_across_race1,dob_across_race2,dob_across_race3,dob_across_race4,dob_across_age_0_28,dob_across_age_29_56,dob_across_age_57_84,dob_across_age_85_116,dob_across_race_overall,dob_across_age_overall = check_bias_by_counting(filename1)
print("\nfocal loss")
filename2 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q1/focal_loss/test_gender_across_race_age_y_test_pred2_optimizer2_45_focal_loss.csv"
dob_across_race1,dob_across_race2,dob_across_race3,dob_across_race4,dob_across_age_0_28,dob_across_age_29_56,dob_across_age_57_84,dob_across_age_85_116,dob_across_race_overall,dob_across_age_overall = check_bias_by_counting(filename2)
print("\nLinearsvm")
filename3 = "/home/euclid/Desktop/Chiranjeev/DAI/Assignment_1_Q1/svm/test_gender_across_race_age_y_test_pred2_optimizer2_svm.csv"
dob_across_race1,dob_across_race2,dob_across_race3,dob_across_race4,dob_across_age_0_28,dob_across_age_29_56,dob_across_age_57_84,dob_across_age_85_116,dob_across_race_overall,dob_across_age_overall = check_bias_by_counting(filename3)
| 33.16746
| 235
| 0.685304
|
72045094280bf8b19ef8956f47fe38ea87d738b3
| 1,027
|
py
|
Python
|
notebooks/general.py
|
transientlunatic/grasshopper
|
1d3822427970d200341ff9d2823949fb4b27e001
|
[
"0BSD"
] | 3
|
2020-09-26T01:27:13.000Z
|
2020-09-30T05:47:42.000Z
|
notebooks/general.py
|
transientlunatic/gravpy
|
1d3822427970d200341ff9d2823949fb4b27e001
|
[
"0BSD"
] | null | null | null |
notebooks/general.py
|
transientlunatic/gravpy
|
1d3822427970d200341ff9d2823949fb4b27e001
|
[
"0BSD"
] | null | null | null |
import numpy as np
import astropy.units as u
def snr(signal, detector):
"""
Calculate the SNR of a signal in a given detector,
assuming that it has been detected with an optimal filter.
See e.g. arxiv.org/abs/1408.0740
Parameters
----------
signal : Source
A Source object which describes the source producing the
signal, e.g. a CBC.
detector : Detector
A Detector object describing the instrument making the observation
e.g. aLIGO.
Returns
-------
SNR : float
The signal-to-noise ratio of the signal in the detector.
"""
if signal.ncycles():
ncycles = np.sqrt(2*signal.ncycles(detector.frequencies))
else:
ncycles = 1
noise = detector.psd(detector.frequencies)
ampli = signal.raw_strain(detector.frequencies) * ncycles
fraction = 4*(np.abs(ampli)**2 / noise)
fraction[np.isnan(fraction)]=0
return np.sqrt(np.trapz(fraction, x=detector.frequencies, dx=0.01*u.hertz))
| 30.205882
| 79
| 0.635833
|
72082ffdc0eb8ab81095d7d094328792a40cbcea
| 6,898
|
py
|
Python
|
dlfairness/original_code/FairALM/Experiments-CelebA/results/quantitative_results/plot_celeba.py
|
lin-tan/fairness-variance
|
7f6aee23160707ffe78f429e5d960022ea1c9fe4
|
[
"BSD-3-Clause"
] | null | null | null |
dlfairness/original_code/FairALM/Experiments-CelebA/results/quantitative_results/plot_celeba.py
|
lin-tan/fairness-variance
|
7f6aee23160707ffe78f429e5d960022ea1c9fe4
|
[
"BSD-3-Clause"
] | null | null | null |
dlfairness/original_code/FairALM/Experiments-CelebA/results/quantitative_results/plot_celeba.py
|
lin-tan/fairness-variance
|
7f6aee23160707ffe78f429e5d960022ea1c9fe4
|
[
"BSD-3-Clause"
] | null | null | null |
'''
Script to plot the accuracy and the fairness measures for different algorithms
from the log files
'''
import matplotlib
matplotlib.use('agg')
from matplotlib import pyplot as plt
import os
print(os.getcwd())
import numpy as np
plt.style.use('ggplot')
if __name__ == "__main__":
gen_all_plots()
| 36.691489
| 81
| 0.621919
|
72085eb6f35c638ad1743b5ae7bd6a8de18fc6f3
| 682
|
py
|
Python
|
conqueror/scraper/base_yandex.py
|
piotrmaslanka/yandex-conqueror
|
cd0b50a43e25551f91150e0bee4f9cd307e4adce
|
[
"MIT"
] | 12
|
2022-03-01T22:45:05.000Z
|
2022-03-16T05:46:24.000Z
|
conqueror/scraper/base_yandex.py
|
piotrmaslanka/yandex-conqueror
|
cd0b50a43e25551f91150e0bee4f9cd307e4adce
|
[
"MIT"
] | 1
|
2022-03-02T10:18:05.000Z
|
2022-03-02T11:03:52.000Z
|
conqueror/scraper/base_yandex.py
|
piotrmaslanka/yandex-conqueror
|
cd0b50a43e25551f91150e0bee4f9cd307e4adce
|
[
"MIT"
] | 1
|
2022-03-02T10:18:35.000Z
|
2022-03-02T10:18:35.000Z
|
import requests
from satella.coding.decorators import retry
| 28.416667
| 64
| 0.692082
|
72097fdf43f5937088d329748fec0dc61447255f
| 6,142
|
py
|
Python
|
engine/azbatchengine.py
|
asedighi/azure_realtime_batch
|
c2cf4c8edc2bbded8377842fcad6370fd35af44e
|
[
"MIT"
] | 3
|
2020-05-08T16:20:07.000Z
|
2021-10-06T11:16:10.000Z
|
engine/azbatchengine.py
|
asedighi/azure_realtime_batch
|
c2cf4c8edc2bbded8377842fcad6370fd35af44e
|
[
"MIT"
] | null | null | null |
engine/azbatchengine.py
|
asedighi/azure_realtime_batch
|
c2cf4c8edc2bbded8377842fcad6370fd35af44e
|
[
"MIT"
] | null | null | null |
# Copyright (c) Microsoft Corporation
#
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
# @author: asedighi
import asyncio
import sys
sys.path.append('.')
sys.path.append('..')
sys.path.append('/mnt/resource/batch/tasks/shared/')
sys.path.append('/mnt/resource/batch/tasks/shared/engine')
sys.path.append('/mnt/resource/batch/tasks/shared/batchwrapper')
sys.path.append('/mnt/resource/batch/tasks/shared/tasks')
from batchwrapper.config import getRandomizer
from batchwrapper.config import AzureCredentials
from batchwrapper.config import ReadConfig
from batchwrapper.config import TaskConfig
from batchwrapper.config import find_file_path
import argparse
import ntpath
from engine.taskengine import task_loop
from subprocess import *
from azure.storage.blob import BlobServiceClient
from azure.servicebus import ServiceBusClient
import os
if __name__ == '__main__':
print("Starting engine ...")
#all_input = sys.argv[1:];
#data_input = ' '.join(all_input[1:])
#foo = (all_input[0], data_input)
#print(foo)
#exit(1)
engine = AzureBatchEngine()
engine.do()
| 29.38756
| 137
| 0.667209
|
720a41d918f83d5bbf26dfd204b04b9dc1b4ac43
| 1,090
|
py
|
Python
|
j.py
|
chirag127/Language-Translator-Using-Tkinter-in-Python
|
c790a0672c770cf703559d99c74ad581643f4d2f
|
[
"MIT"
] | null | null | null |
j.py
|
chirag127/Language-Translator-Using-Tkinter-in-Python
|
c790a0672c770cf703559d99c74ad581643f4d2f
|
[
"MIT"
] | null | null | null |
j.py
|
chirag127/Language-Translator-Using-Tkinter-in-Python
|
c790a0672c770cf703559d99c74ad581643f4d2f
|
[
"MIT"
] | null | null | null |
import tkinter as tk
import sys
if __name__ == '__main__':
while True:
try:
print("qiaulfskhdnliukf")
root = tk.Tk()
t = tk.Text()
t.pack()
# create instance of file like object
pl = PrintLogger(t)
# replace sys.stdout with our object
sys.stdout = pl
# now we can print to stdout or file
print('hello world')
print('hello world')
root.mainloop()
except:
print("exception")
| 24.772727
| 82
| 0.542202
|
720b01f5be1444386ad583c605e2465546f819c4
| 2,695
|
py
|
Python
|
byteweiser.py
|
urbanware-org/byteweiser
|
fc90d17b51ead44af53401dc9c8ca5f0efc5e72e
|
[
"MIT"
] | 3
|
2017-11-27T00:35:04.000Z
|
2017-12-13T22:41:31.000Z
|
byteweiser.py
|
urbanware-org/byteweiser
|
fc90d17b51ead44af53401dc9c8ca5f0efc5e72e
|
[
"MIT"
] | 1
|
2017-03-08T19:04:49.000Z
|
2017-03-08T19:04:49.000Z
|
byteweiser.py
|
urbanware-org/byteweiser
|
fc90d17b51ead44af53401dc9c8ca5f0efc5e72e
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ============================================================================
# ByteWeiser - Byte comparison and replacement tool
# Main script
# Copyright (C) 2021 by Ralf Kilian
# Distributed under the MIT License (https://opensource.org/licenses/MIT)
#
# GitHub: https://github.com/urbanware-org/byteweiser
# GitLab: https://gitlab.com/urbanware-org/byteweiser
# ============================================================================
import os
import sys
if __name__ == "__main__":
main()
# EOF
| 34.551282
| 78
| 0.562152
|
720b83b3d481df1e875ae4b17eade77f3a7f0679
| 9,798
|
py
|
Python
|
scripts/st_dashboard.py
|
rsmith49/simple-budget-pld
|
1bee5a26f53aa4a5b0aab49ee4c158b5ecb7c743
|
[
"Apache-2.0"
] | 1
|
2022-01-01T14:44:40.000Z
|
2022-01-01T14:44:40.000Z
|
scripts/st_dashboard.py
|
rsmith49/simple-budget-pld
|
1bee5a26f53aa4a5b0aab49ee4c158b5ecb7c743
|
[
"Apache-2.0"
] | null | null | null |
scripts/st_dashboard.py
|
rsmith49/simple-budget-pld
|
1bee5a26f53aa4a5b0aab49ee4c158b5ecb7c743
|
[
"Apache-2.0"
] | null | null | null |
import altair as alt
import os
import pandas as pd
import streamlit as st
import sys
from datetime import datetime
from dateutil.relativedelta import relativedelta
from dotenv import load_dotenv
from plaid.api_client import ApiClient
from plaid.exceptions import ApiException
from pathlib import Path
from traceback import format_exc
from urllib.error import URLError
sys.path.append(os.getcwd())
load_dotenv()
from src.budget import Budget
from src.transactions import get_transactions_df
from src.user_modifications import transform_pipeline
from src.views import top_vendors
EXISTING_TRANSACTIONS_FILE = f"{Path.home()}/.ry-n-shres-budget-app/all_transactions.csv"
TRANSACTION_GRACE_BUFFER = relativedelta(days=10) # How far before latest transaction to pull from
def write_df(df: pd.DataFrame):
"""Helper function to st.write a DF with amount stylized to dollars"""
st.dataframe(
df.style.format({
col_name: "{:,.2f}"
for col_name in ["amount", "Total Spent"]
})
)
# TODO: Make non-budgeted columns show up on bar chart, just without ticks
# TODO: Make all-time a budget period option (figure out what to do about this - maybe it only shows up for one month?)
# TODO: Allow you to set custom start date for your budget period (i.e. make your monthly spending start on the 3rd)
# TODO: Fix the duplicate charge issue with pending charges
def single_inc_spending_summary(df: pd.DataFrame, date_inc_key: str, curr_date: str, is_current: bool = False) -> None:
"""Creates display for a single date increment
Parameters
----------
df
Transactions Dataframe
date_inc_key
The key for date increment (one of week, month, year)
curr_date
The selected date increment value
is_current
Whether the date represents the most recent date increment
"""
budget = Budget(df)
curr_df = df[df[date_inc_key] == curr_date]
total_spending_str = f"{curr_df['amount'].sum():,.2f}"
if budget.budget_plan:
show_budget = st.checkbox("Budget View", value=True)
total_budget = budget.total_limit(date_inc_key)
if budget.budget_plan and show_budget:
metric_col1, metric_col2 = st.columns(2)
with metric_col1:
st.metric(f"Total Spending", total_spending_str)
with metric_col2:
st.metric(f"Total Budget", f"{total_budget:,.2f}")
simple_summary = budget.simple_summary(date_inc_key, curr_date)
bar = alt.Chart(simple_summary).mark_bar().encode(
y="category",
x="spent",
tooltip=alt.Tooltip(field="spent", aggregate="sum", type="quantitative"),
).properties(
height=alt.Step(60)
)
ticks = alt.Chart(simple_summary).mark_tick(
color="red",
thickness=3,
size=60 * 0.9,
).encode(
y="category",
x="total_budget",
tooltip=alt.Tooltip(field="total_budget", aggregate="sum", type="quantitative")
)
if is_current:
ticks += alt.Chart(simple_summary).mark_tick(
color="white",
thickness=2,
size=60 * 0.9,
).encode(
y="category",
x="projected_budget",
)
st.altair_chart(bar + ticks, use_container_width=True)
else:
st.metric(f"Total Spending", total_spending_str)
chart = alt.Chart(curr_df).mark_bar().encode(
x=alt.X("sum(amount)", axis=alt.Axis(title='Spent')),
y=alt.Y("category_1", axis=alt.Axis(title="Category")),
tooltip=alt.Tooltip(field="amount", aggregate="sum", type="quantitative"),
).properties(
height=alt.Step(40),
)
st.altair_chart(chart, use_container_width=True)
with st.expander("Largest Transactions"):
write_df(
curr_df[["date", "amount", "name", "category_1", "category_2"]].sort_values(
by="amount",
ascending=False
)
)
def df_for_certain_categories(df: pd.DataFrame) -> pd.DataFrame:
"""Helper function to get a DF filtered by any user selected categories"""
categories = st.multiselect(
f"Select any categories to only see spending for",
options=sorted(df['category_1'].unique()),
default=[],
)
if len(categories) > 0:
bool_key = df['category_1'] == 'NOT_A CATEGORY'
for cat in categories:
bool_key = bool_key | (df['category_1'] == cat)
df = df[bool_key]
return df
if __name__ == "__main__":
main()
| 33.101351
| 119
| 0.610431
|
720ee96617fe84100cbf9c9517c56d368835bd2c
| 16,818
|
py
|
Python
|
scripts/devvnet_manager.py
|
spmckenney/Devv-Core
|
eb30ae3a092e3fe0f9f756f5f31bdce4f6215b98
|
[
"MIT"
] | null | null | null |
scripts/devvnet_manager.py
|
spmckenney/Devv-Core
|
eb30ae3a092e3fe0f9f756f5f31bdce4f6215b98
|
[
"MIT"
] | null | null | null |
scripts/devvnet_manager.py
|
spmckenney/Devv-Core
|
eb30ae3a092e3fe0f9f756f5f31bdce4f6215b98
|
[
"MIT"
] | null | null | null |
import yaml
import argparse
import sys
import os
import subprocess
import time
def get_nodes(yml_dict, host_index_map):
nodes = []
shard_index = yml_dict['shard_index']
try:
host_index_map = yml_dict['host_index_map']
print("Using shard's {} for shard {}".format(host_index_map, shard_index))
except:
print("Using devvnet host_index_map ({}) for shard {}".format(host_index_map, shard_index))
for proc in yml_dict['process']:
try:
print("creating {} {} processes".format(len(host_index_map), proc['name']))
for node_index in host_index_map:
node = Node(shard_index, node_index, proc['name'], host_index_map[node_index], proc['bind_port'])
try:
rawsubs = proc['subscribe']
for sub in proc['subscribe']:
try:
si = sub['shard_index']
except:
si = yml_dict['shard_index']
node.add_raw_sub(sub['name'], si, sub['node_index'])
except:
pass
nodes.append(node)
except:
nodes.append(Node(shard_index, ind, proc['name'], proc['host'], proc['bind_port']))
print("creating a "+proc['name']+" process")
return nodes
def run_validator(node):
# ./devcash --node-index 0 --config ../opt/basic_shard.conf --config ../opt/default_pass.conf --host-list tcp://localhost:56551 --host-list tcp://localhost:56552 --host-list tcp://localhost:57550 --bind-endpoint tcp://*:56550
cmd = []
cmd.append("./devcash")
cmd.extend(["--shard-index", str(node.get_shard_index())])
cmd.extend(["--node-index", str(node.get_index())])
cmd.extend(["--num-consensus-threads", "1"])
cmd.extend(["--num-validator-threads", "1"])
cmd.extend(["--config", node.get_config_file()])
cmd.extend(["--config", node.get_password_file()])
cmd.extend(["--bind-endpoint", "tcp://*:" + str(node.get_port())])
for sub in node.get_subscriber_list():
cmd.extend(["--host-list", "tcp://" + sub.get_host() + ":" + str(sub.get_port())])
return cmd
def run_announcer(node):
# ./announcer --node-index 0 --shard-index 1 --mode T2 --stop-file /tmp/stop-devcash-announcer.ctl --inn-keys ../opt/inn.key --node-keys ../opt/node.key --bind-endpoint 'tcp://*:50020' --working-dir ../../tmp/working/input/laminar4/ --key-pass password --separate-ops true
cmd = []
cmd.append("./pb_announcer")
cmd.extend(["--shard-index", str(node.get_shard_index())])
cmd.extend(["--node-index", str(node.get_index())])
cmd.extend(["--config", node.get_config_file()])
cmd.extend(["--config", node.get_password_file()])
cmd.extend(["--mode", node.get_type()])
cmd.extend(["--bind-endpoint", "tcp://*:" + str(node.get_port())])
cmd.extend(["--separate-ops", "true"])
cmd.extend(["--start-delay", str(30)])
cmd.extend(["--protobuf-endpoint", "tcp://*:" + str(node.get_port() + 100)])
return cmd
def run_repeater(node):
# ./repeater --node-index 0 --shard-index 1 --mode T2 --stop-file /tmp/stop-devcash-repeater.ctl --inn-keys ../opt/inn.key --node-keys ../opt/node.key --working-dir ../../tmp/working/output/repeater --host-list tcp://localhost:56550 --key-pass password
cmd = []
cmd.append("./repeater")
cmd.extend(["--shard-index", str(node.get_shard_index())])
cmd.extend(["--node-index", str(node.get_index())])
cmd.extend(["--num-consensus-threads", "1"])
cmd.extend(["--num-validator-threads", "1"])
cmd.extend(["--mode", node.get_type()])
cmd.extend(["--working-dir", node.get_working_dir()])
cmd.extend(["--protobuf-endpoint", "tcp://*:" + str(node.get_port() + 200)])
for sub in node.get_subscriber_list():
cmd.extend(["--host-list", "tcp://" + sub.get_host() + ":" + str(sub.get_port())])
return cmd
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Launch a devvnet.')
parser.add_argument('--logdir', action="store", dest='logdir', help='Directory to log output')
parser.add_argument('--start-processes', action="store_true", dest='start', default=True, help='Start the processes')
parser.add_argument('--hostname', action="store", dest='hostname', default=None, help='Debugging output')
parser.add_argument('--debug', action="store_true", dest='start', default=False, help='Debugging output')
parser.add_argument('devvnet', action="store", help='YAML file describing the devvnet')
args = parser.parse_args()
print(args)
print("logdir: " + args.logdir)
print("start: " + str(args.start))
print("hostname: " + str(args.hostname))
print("devvnet: " + args.devvnet)
devvnet = get_devvnet(args.devvnet)
d = Devvnet(devvnet)
num_nodes = d.get_num_nodes()
logfiles = []
cmds = []
for s in d.get_shards():
for n in s.get_nodes():
if args.hostname and (args.hostname != n.get_host()):
continue
if n.get_name() == 'validator':
cmds.append(run_validator(n))
elif n.get_name() == 'repeater':
cmds.append(run_repeater(n))
elif n.get_name() == 'announcer':
cmds.append(run_announcer(n))
logfiles.append(os.path.join(args.logdir,
n.get_name()+"_s"+
str(n.get_shard_index())+"_n"+
str(n.get_index())+"_output.log"))
ps = []
for index,cmd in enumerate(cmds):
print("Node " + str(index) + ":")
print(" Command: ", *cmd)
print(" Logfile: ", logfiles[index])
if args.start:
with open(logfiles[index], "w") as outfile:
ps.append(subprocess.Popen(cmd, stdout=outfile, stderr=outfile))
time.sleep(1.5)
if args.start:
for p in ps:
print("Waiting for nodes ... ctl-c to exit.")
p.wait()
print("Goodbye.")
| 33.171598
| 276
| 0.576347
|
72103568b2899de2bb48ee1f49834b293ab3bb81
| 5,896
|
py
|
Python
|
run_qasm.py
|
t-imamichi/qiskit-utility
|
2e71d0457bba0e6eb91daa9dbb32f52d87fe9f0b
|
[
"Apache-2.0"
] | 6
|
2019-02-27T11:53:18.000Z
|
2022-03-02T21:28:05.000Z
|
run_qasm.py
|
t-imamichi/qiskit-utility
|
2e71d0457bba0e6eb91daa9dbb32f52d87fe9f0b
|
[
"Apache-2.0"
] | null | null | null |
run_qasm.py
|
t-imamichi/qiskit-utility
|
2e71d0457bba0e6eb91daa9dbb32f52d87fe9f0b
|
[
"Apache-2.0"
] | 2
|
2019-05-03T23:52:03.000Z
|
2020-12-22T12:12:38.000Z
|
#!/usr/bin/env python
# coding: utf-8
# Copyright 2018, IBM.
#
# This source code is licensed under the Apache License, Version 2.0 found in
# the LICENSE.txt file in the root directory of this source tree.
'''
This tool submits a QASM file to any backend and show the result.
It requires 'Qconfig.py' to set a token of IBM Quantum Experience.
It supports the following backends:
ibmqx2(5 qubits), ibmqx4(5 qubits), ibmqx5(16 qubits), simulator(32 qubits).
see https://quantumexperience.ng.bluemix.net/qx/devices for more details of the backends.
Examples:
$ python run_qasm.py -b # show backend information
$ python run_qasm.py -c # show remaining credits
$ python run_qasm.py -l 10 # show job list (10 jobs)
$ python run_qasm.py -j (job id) # show the result of a job
$ python run_qasm.py -q (qasm file) # submit a qasm file
$ python run_qasm.py -z -l 10 # show job list (10 jobs) of qconsole
$ python run_qasm.py -z -d ibmq_20_tokyo -q (qasm file) # submit a qasm file to ibmq_20_tokyo
'''
import json
import time
from argparse import ArgumentParser
from IBMQuantumExperience import IBMQuantumExperience
try:
import Qconfig
except ImportError:
raise RuntimeError('You need "Qconfig.py" with a token in the same directory.')
if __name__ == '__main__':
main()
| 39.046358
| 116
| 0.608887
|
72118299f37a0a55a9f0a207024fcdd8ae01fcd7
| 445
|
py
|
Python
|
alembic/versions/175f5441bd46_adding_usrname_column.py
|
thiere18/fastapi-boilerplate
|
6760e0e49caa915563d44897262d493b012207c0
|
[
"MIT"
] | 5
|
2021-12-10T17:35:31.000Z
|
2021-12-30T18:36:23.000Z
|
alembic/versions/175f5441bd46_adding_usrname_column.py
|
thiere18/fastapi-boilerplate
|
6760e0e49caa915563d44897262d493b012207c0
|
[
"MIT"
] | 1
|
2021-11-21T13:59:03.000Z
|
2021-11-21T13:59:03.000Z
|
alembic/versions/175f5441bd46_adding_usrname_column.py
|
thiere18/fastapi-boilerplate
|
6760e0e49caa915563d44897262d493b012207c0
|
[
"MIT"
] | 1
|
2021-12-07T14:08:12.000Z
|
2021-12-07T14:08:12.000Z
|
"""adding usrname column
Revision ID: 175f5441bd46
Revises: 186abcf43cae
Create Date: 2021-11-20 22:54:04.157131
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '175f5441bd46'
down_revision = '186abcf43cae'
branch_labels = None
depends_on = None
| 16.481481
| 79
| 0.72809
|
7211ad9fb739bb9a8cf35bb0752773293df5ab6b
| 2,356
|
py
|
Python
|
api/teams/models.py
|
wepickheroes/wepickheroes.github.io
|
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
|
[
"MIT"
] | 3
|
2018-02-15T20:04:23.000Z
|
2018-09-29T18:13:55.000Z
|
api/teams/models.py
|
wepickheroes/wepickheroes.github.io
|
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
|
[
"MIT"
] | 5
|
2018-01-31T02:01:15.000Z
|
2018-05-11T04:07:32.000Z
|
api/teams/models.py
|
prattl/wepickheroes
|
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
|
[
"MIT"
] | null | null | null |
from django.conf import settings
from django.contrib.auth import get_user_model
from django.db import models
from nucleus.models import (
AbstractBaseModel,
EmailRecord,
TeamMember,
)
User = get_user_model()
INVITE_TEMPLATE = """Hello,
You've been invited to join a team on push.gg. Click the link below to sign up:
{signup_link}
- Push League
"""
| 29.45
| 94
| 0.639219
|
7211e7dcde6526670f3ae011a8fd15606f93b81e
| 1,826
|
py
|
Python
|
tables_io/lazy_modules.py
|
LSSTDESC/tables_io
|
1c2f119c928d05d237b1c8509e340d29650ceb8b
|
[
"MIT"
] | 1
|
2021-08-13T15:41:58.000Z
|
2021-08-13T15:41:58.000Z
|
tables_io/lazy_modules.py
|
LSSTDESC/tables_io
|
1c2f119c928d05d237b1c8509e340d29650ceb8b
|
[
"MIT"
] | 18
|
2021-08-12T00:09:36.000Z
|
2022-02-24T21:11:18.000Z
|
tables_io/lazy_modules.py
|
LSSTDESC/tables_io
|
1c2f119c928d05d237b1c8509e340d29650ceb8b
|
[
"MIT"
] | null | null | null |
""" Lazy loading modules """
import sys
import importlib.util
def lazyImport(modulename):
""" This will allow us to lazy import various modules
Parameters
----------
modulename : `str`
The name of the module in question
Returns
-------
module : `importlib.LazyModule`
A lazy loader for the module in question
"""
try:
return sys.modules[modulename]
except KeyError:
spec = importlib.util.find_spec(modulename)
if spec is None:
print("Can't find module %s" % modulename)
return DeferredModuleError(modulename)
module = importlib.util.module_from_spec(spec)
loader = importlib.util.LazyLoader(spec.loader)
# Make module with proper locking and get it inserted into sys.modules.
loader.exec_module(module)
try:
_ = dir(module)
except ValueError:
pass
return module
tables = lazyImport('tables')
apTable = lazyImport('astropy.table')
fits = lazyImport('astropy.io.fits')
h5py = lazyImport('h5py')
pd = lazyImport('pandas')
pq = lazyImport('pyarrow.parquet')
HAS_TABLES = tables is not None
HAS_PQ = pq is not None
HAS_FITS = fits is not None
HAS_ASTROPY = apTable is not None
HAS_HDF5 = h5py is not None
HAS_PANDAS = pd is not None
| 26.852941
| 82
| 0.645126
|
721392272e51a8013f6d83d05f9c457dc8ce2f53
| 4,811
|
py
|
Python
|
print_results.py
|
MicImbriani/Keras-PRBX
|
ab9dd8196e6f184336f5b30715635670d3586136
|
[
"CC0-1.0"
] | 1
|
2021-09-18T12:42:28.000Z
|
2021-09-18T12:42:28.000Z
|
print_results.py
|
MicImbriani/SkinLesion-Segm-Classif-UNet-FocusNet-ResNet50
|
ab9dd8196e6f184336f5b30715635670d3586136
|
[
"CC0-1.0"
] | null | null | null |
print_results.py
|
MicImbriani/SkinLesion-Segm-Classif-UNet-FocusNet-ResNet50
|
ab9dd8196e6f184336f5b30715635670d3586136
|
[
"CC0-1.0"
] | null | null | null |
import numpy as np
from keras.optimizers import Adam, SGD
from tensorflow.keras.metrics import AUC
import metrics
from networks.unet_nn import unet
from networks.unet_res_se_nn import unet_res_se
from networks.focus import get_focusnetAlpha
from networks.resnet import get_res
from data_processing.generate_new_dataset import generate_targets
from tensorflow.keras.applications.resnet50 import preprocess_input
########### SEGMENTATION ###########
# U-Net
model = unet(batch_norm=False)
model.load_weights("/var/tmp/mi714/NEW/models/UNET/unet10/unet10_weights.h5")
# U-Net BatchNorm
# model = unet(batch_norm=True)
# model.load_weights("/var/tmp/mi714/NEW/models/UNET_BN/unet_bn10/unet_bn10_weights.h5")
# U-Net Res SE
# model = unet_res_se()
# model.load_weights("/var/tmp/mi714/NEW/models/UNET_RES_SE/unet_res_se10/unet_res_se10_weights.h5")
#Focusnet
# model = get_focusnetAlpha()
# model.load_weights("/var/tmp/mi714/NEW/models/FOCUS/focusnet10/focusnet10_weights.h5")
########### CLASSIFICATION ###########
# model = get_res()
# Original
# model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_OG/resnet_og10/resnet_og10_weights.h5")
# U-Net
# model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_UNET_BN/resnet_unet10/resnet_unet10_weights.h5")
# U-Net BatchNorm
# model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_UNET_BN/resnet_unet_bn10/resnet_unet_bn10_weights.h5")
# Res SE U-Net
# model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_UNET_RES_SE/resnet_unet_res_se10/resnet_unet_res_se10_weights.h5")
# FocusNet
# model.load_weights("/var/tmp/mi714/NEW/models/RESNETS/RESNET_FOCUSNET/resnet_focusnet7/resnet_focusnet7_weights.h5")
# Data, Masks & Classification target labels
# trainData = np.load('/var/tmp/mi714/test_new_npy2/data.npy')
# valData = np.load('/var/tmp/mi714/test_new_npy2/dataval.npy')
testData = np.load('/var/tmp/mi714/NEW/npy_dataset/datatest.npy')
# Segmentation masks
# trainMask = np.load('/var/tmp/mi714/test_new_npy2/dataMask.npy')
# valMask = np.load('/var/tmp/mi714/test_new_npy2/dataMaskval.npy')
testMask = np.load('/var/tmp/mi714/NEW/npy_dataset/dataMasktest.npy')
########### SEGMENTATION ###########
X = testData
y = testMask
X = X.astype('float32')
y /= 255. # scale masks to [0, 1]
my_adam = Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, epsilon=1e-07)
model.compile(optimizer=my_adam,
loss=metrics.focal_loss,
metrics=[metrics.dice_coef_loss,
metrics.jaccard_coef_loss,
metrics.true_positive,
metrics.true_negative,
])
score = model.evaluate(X, y, verbose=1)
dice_coef_loss = score[1]
jac_indx_loss = score[2]
true_positive = score[3]
true_negative = score[4]
print(f"""
RESULTS:
Dice Coefficient Loss: {dice_coef_loss}
Jaccard Index Loss: {jac_indx_loss}
True Positive: {true_positive}
True Negative: {true_negative}
""")
########### CLASSIFICATION ###########
# # Classification data
# # x_train = np.concatenate((trainData,)*3, axis=-1)
# # x_train = preprocess_input(x_train)
# # x_val = np.concatenate((valData,)*3, axis=-1)
# # x_val = preprocess_input(x_val)
# x_test = np.concatenate((testData,)*3, axis=-1)
# x_test = preprocess_input(x_test)
# # Classification target labels
# path = "/var/tmp/mi714/NEW/aug_dataset/"
# # y_train = generate_targets(path + "ISIC-2017_Training_Data",
# # path + "ISIC-2017_Training_Part3_GroundTruth.csv")
# # y_val = generate_targets(path + "ISIC-2017_Validation_Data",
# # path + "ISIC-2017_Validation_Part3_GroundTruth.csv")
# y_test = generate_targets(path + "ISIC-2017_Test_v2_Data",
# path + "ISIC-2017_Test_v2_Part3_GroundTruth.csv")
# X = x_test
# y = y_test
# my_adam = Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, epsilon=1e-07)
# # Compile model and print summary
# rocauc = AUC(num_thresholds=200,
# curve="ROC",
# summation_method="interpolation",
# name=None,
# dtype=None,
# thresholds=None,
# multi_label=False,
# label_weights=None,
# )
# model.compile(loss='categorical_crossentropy',
# optimizer=my_adam,
# metrics=[metrics.sensitivity,
# metrics.specificity,
# rocauc,
# 'acc'
# ])
# score = model.evaluate(X, y, verbose=1)
# binary_ce = score[0]
# sensitivity = score[1]
# specificity = score[2]
# rocauc = score[3]
# acc = score[4]
# print(f"""
# RESULTS:
# Binary Cross-Entropy Loss: {binary_ce}
# Sensitivity: {sensitivity}
# Specificity: {specificity}
# AUC ROC: {rocauc}
# Accuracy: {acc}
# """)
| 29.335366
| 129
| 0.675327
|
72140b20f916fb997edbec8a00bb1402df3614ca
| 9,466
|
py
|
Python
|
game.py
|
distortedsignal/bohnanza
|
dfbcfafbdd07cb924cbbc2adc36db7e51673e546
|
[
"Apache-2.0"
] | null | null | null |
game.py
|
distortedsignal/bohnanza
|
dfbcfafbdd07cb924cbbc2adc36db7e51673e546
|
[
"Apache-2.0"
] | null | null | null |
game.py
|
distortedsignal/bohnanza
|
dfbcfafbdd07cb924cbbc2adc36db7e51673e546
|
[
"Apache-2.0"
] | null | null | null |
"""
An implementation of Bohnanza
@author: David Kelley, 2018
"""
import random
from collections import defaultdict
| 34.421818
| 88
| 0.555145
|
72155749ca290c85d0fa365110369fcce2862271
| 1,872
|
py
|
Python
|
pytype/tests/test_calls.py
|
JelleZijlstra/pytype
|
962a0ebc05bd24dea172381b2bedcc547ba53dd5
|
[
"Apache-2.0"
] | 11
|
2017-02-12T12:19:50.000Z
|
2022-03-06T08:56:48.000Z
|
pytype/tests/test_calls.py
|
JelleZijlstra/pytype
|
962a0ebc05bd24dea172381b2bedcc547ba53dd5
|
[
"Apache-2.0"
] | null | null | null |
pytype/tests/test_calls.py
|
JelleZijlstra/pytype
|
962a0ebc05bd24dea172381b2bedcc547ba53dd5
|
[
"Apache-2.0"
] | 2
|
2017-06-27T14:41:57.000Z
|
2021-12-05T11:27:33.000Z
|
"""Tests for calling other functions, and the corresponding checks."""
from pytype import utils
from pytype.tests import test_inference
if __name__ == "__main__":
test_inference.main()
| 26.742857
| 73
| 0.553953
|
7216c0aa91d2cb7e990847e2823233ead4e36ab3
| 724
|
py
|
Python
|
test/test_learning_00.py
|
autodrive/NAIST_DeepLearning
|
ac2c0512c43f71ea7df68567c5e24e689ac18aea
|
[
"Apache-2.0"
] | 1
|
2018-09-26T01:52:35.000Z
|
2018-09-26T01:52:35.000Z
|
test/test_learning_00.py
|
autodrive/NAIST_DeepLearning
|
ac2c0512c43f71ea7df68567c5e24e689ac18aea
|
[
"Apache-2.0"
] | 5
|
2015-12-31T10:56:43.000Z
|
2018-11-16T08:57:12.000Z
|
test/test_learning_00.py
|
autodrive/NAIST_DeepLearning
|
ac2c0512c43f71ea7df68567c5e24e689ac18aea
|
[
"Apache-2.0"
] | 1
|
2018-09-26T01:52:37.000Z
|
2018-09-26T01:52:37.000Z
|
import unittest
import lecture1_code00 as dl
from sklearn.datasets.samples_generator import make_blobs
| 27.846154
| 97
| 0.585635
|
7217f6133fa71477eb286daa69250fadb04142e7
| 2,389
|
py
|
Python
|
edumediaitem/views_manage.py
|
shagun30/djambala-2
|
06f14e3dd237d7ebf535c62172cfe238c3934f4d
|
[
"BSD-3-Clause"
] | null | null | null |
edumediaitem/views_manage.py
|
shagun30/djambala-2
|
06f14e3dd237d7ebf535c62172cfe238c3934f4d
|
[
"BSD-3-Clause"
] | null | null | null |
edumediaitem/views_manage.py
|
shagun30/djambala-2
|
06f14e3dd237d7ebf535c62172cfe238c3934f4d
|
[
"BSD-3-Clause"
] | null | null | null |
#-*-coding: utf-8 -*-
"""
/dms/edumediaitem/views_manage.py
.. enthaelt den View fuer die Management-Ansicht des Medienpaketes
Django content Management System
Hans Rauch
hans.rauch@gmx.net
Die Programme des dms-Systems koennen frei genutzt und den spezifischen
Beduerfnissen entsprechend angepasst werden.
0.01 11.09.2007 Beginn der Arbeit
"""
from django.utils.translation import ugettext as _
from dms.queries import get_site_url
from dms.roles import require_permission
from dms.roles import UserEditPerms
from dms.folder.views_manage import do_manage
from dms_ext.extension import * # dms-Funktionen ueberschreiben
# -----------------------------------------------------
| 38.532258
| 95
| 0.577648
|
721813c43ddcb76146e7ed608cacf427665451b5
| 414
|
py
|
Python
|
crop_yield_prediction/models/deep_gaussian_process/__init__.py
|
facebookresearch/Context-Aware-Representation-Crop-Yield-Prediction
|
9c29459e9521303f40d9d6aaa938da0c23ab4ad8
|
[
"MIT"
] | 12
|
2020-09-17T21:55:18.000Z
|
2022-01-14T21:05:23.000Z
|
crop_yield_prediction/models/deep_gaussian_process/__init__.py
|
hulaba/Context-Aware-Representation-Crop-Yield-Prediction
|
9c29459e9521303f40d9d6aaa938da0c23ab4ad8
|
[
"MIT"
] | null | null | null |
crop_yield_prediction/models/deep_gaussian_process/__init__.py
|
hulaba/Context-Aware-Representation-Crop-Yield-Prediction
|
9c29459e9521303f40d9d6aaa938da0c23ab4ad8
|
[
"MIT"
] | 5
|
2020-10-10T10:18:14.000Z
|
2021-12-21T07:36:27.000Z
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .feature_engineering import get_features_for_deep_gaussian
from .convnet import ConvModel
from .rnn import RNNModel
__all__ = ['get_features_for_deep_gaussian',
'ConvModel',
'RNNModel']
| 29.571429
| 65
| 0.748792
|
7218bf5a5c0b747c4d1438e666c01d7117d13c58
| 3,546
|
py
|
Python
|
projector_server/projects/views.py
|
changyang-liu/Projector
|
4924400f54e0ce823fd488f9cfd0f7e52d2df55f
|
[
"MIT"
] | null | null | null |
projector_server/projects/views.py
|
changyang-liu/Projector
|
4924400f54e0ce823fd488f9cfd0f7e52d2df55f
|
[
"MIT"
] | 2
|
2021-06-10T19:12:07.000Z
|
2021-09-22T19:00:50.000Z
|
projector_server/projects/views.py
|
CS97-Projector/Projector
|
4924400f54e0ce823fd488f9cfd0f7e52d2df55f
|
[
"MIT"
] | null | null | null |
from django.http import HttpResponse, JsonResponse, Http404
from django.core.exceptions import PermissionDenied
from rest_framework.parsers import JSONParser, FormParser, MultiPartParser
from rest_framework.permissions import IsAuthenticatedOrReadOnly
from rest_framework import generics
from rest_framework.response import Response
from projects.models import Project
from projects.serializers import ProjectSerializer
from projects.permissions import IsOwnerOrReadOnly
from django.contrib.auth.models import User
| 38.129032
| 86
| 0.683305
|
721a5ce052e7d21ea063652b0a161c21042f7f06
| 1,089
|
py
|
Python
|
tests/test_muduapiclient.py
|
hanqingliu/mudu-api-python-client
|
92541df27a518dad5312b39749dfbb8bd471a6b8
|
[
"Apache-2.0"
] | null | null | null |
tests/test_muduapiclient.py
|
hanqingliu/mudu-api-python-client
|
92541df27a518dad5312b39749dfbb8bd471a6b8
|
[
"Apache-2.0"
] | null | null | null |
tests/test_muduapiclient.py
|
hanqingliu/mudu-api-python-client
|
92541df27a518dad5312b39749dfbb8bd471a6b8
|
[
"Apache-2.0"
] | null | null | null |
import ddt
import mock
from unittest import TestCase
from muduapiclient.client import MuduApiClient, gen_signed_params
import time
| 33
| 91
| 0.662994
|
721b25bd54ec37339248810e92f0fd66777d24b1
| 586
|
py
|
Python
|
Projectreview/Projectreview/urls.py
|
bestgunman/Gitwaxingproduct
|
44c5fdd57aaa87765929e12a828d1cd17cfbbc0d
|
[
"MIT"
] | 1
|
2017-01-30T07:02:51.000Z
|
2017-01-30T07:02:51.000Z
|
Projectreview/Projectreview/urls.py
|
bestgunman/Gitwaxingproduct
|
44c5fdd57aaa87765929e12a828d1cd17cfbbc0d
|
[
"MIT"
] | null | null | null |
Projectreview/Projectreview/urls.py
|
bestgunman/Gitwaxingproduct
|
44c5fdd57aaa87765929e12a828d1cd17cfbbc0d
|
[
"MIT"
] | null | null | null |
from django.conf.urls import url, include
from django.contrib import admin
from django.conf import settings
from django.conf.urls.static import static
from productapp.views import product_list
from reviewapp.views import index
urlpatterns = [
url(r'^$', index, name='index'),
url(r'^admin/', admin.site.urls),
url(r'^review/', include('reviewapp.urls')),
url(r'^product/', include('productapp.urls')),
url(r'^account/', include('accountapp.urls')),
]
if settings.DEBUG:
urlpatterns += static(
settings.MEDIA_URL, document_root=settings.MEDIA_ROOT
)
| 30.842105
| 61
| 0.711604
|
721e9bba1e7ea66054b20c27b7571b65855aeaa1
| 5,970
|
py
|
Python
|
ttt.py
|
YukkuriC/PyTicTacToe
|
c38b330faeb956d82b401e5863c4982f725e5dab
|
[
"MIT"
] | null | null | null |
ttt.py
|
YukkuriC/PyTicTacToe
|
c38b330faeb956d82b401e5863c4982f725e5dab
|
[
"MIT"
] | null | null | null |
ttt.py
|
YukkuriC/PyTicTacToe
|
c38b330faeb956d82b401e5863c4982f725e5dab
|
[
"MIT"
] | null | null | null |
__doc__ = '''
'''
from threading import Thread
from time import process_time
if 'enums':
OK = 0 #
ENDGAME = 1 #
DRAW = 2 #
INVALID = -1 # /
CONFILCT = -2 #
ERROR = -3 #
TIMEOUT = -4 #
def match(self):
"""
:
"""
self.board = Board()
timeouts = [self.timeout] * 2
self.timeout_history = []
for nround in range(9):
#
plr_idx = nround % 2
thread_output = {}
frame = self.board.get_board(plr_idx + 1)
thr = Thread(target=self._thread_wrap,
args=(self.codes[plr_idx], frame, thread_output))
#
thr.start()
thr.join(timeouts[plr_idx])
#
if thr.is_alive():
return self._get_result(1 - plr_idx, TIMEOUT, '')
#
timeouts[plr_idx] -= thread_output['dt']
if timeouts[plr_idx] < 0:
return self._get_result(1 - plr_idx, TIMEOUT)
self.timeout_history.append(timeouts.copy())
#
if thread_output['error']:
return self._get_result(
1 - plr_idx,
ERROR,
thread_output['error'],
)
#
res = self.board.drop(plr_idx + 1, thread_output['result'])
if res == OK: #
continue
return self._get_result(
plr_idx if res == ENDGAME else 1 - plr_idx,
res,
)
return self._get_result(None, DRAW) #
if __name__ == '__main__':
import codes.dumb_ordered as plr1, codes.dumb_random as plr2
game = Game([plr1, plr2])
print(game.match())
| 25.512821
| 78
| 0.469514
|
721ec82c86e8517afd6fcd583254496b9ad3500f
| 400
|
py
|
Python
|
cursoemvideo/ex008.py
|
rafaelsantosmg/cev_python3
|
2fa2561b46409bebbd6a2020c60aa8f946fe6244
|
[
"MIT"
] | 1
|
2021-03-22T03:08:41.000Z
|
2021-03-22T03:08:41.000Z
|
cursoemvideo/ex008.py
|
rafaelsantosmg/cev_python3
|
2fa2561b46409bebbd6a2020c60aa8f946fe6244
|
[
"MIT"
] | null | null | null |
cursoemvideo/ex008.py
|
rafaelsantosmg/cev_python3
|
2fa2561b46409bebbd6a2020c60aa8f946fe6244
|
[
"MIT"
] | null | null | null |
"""Escreva um programa que leia o valor em metros e o exiba convertido em centmetros e milmetros"""
from utilidadescev.dado import leia_real
n = leia_real('Digite a metragem: ')
km = n / 1000
hec = n / 100
dam = n / 10
dec = n * 10
cent = n * 100
mil = n * 1000
print(f'{km:.3f}km')
print(f'{hec:.2f}hm')
print(f'{dam:.1f}dam')
print(f'{dec:.0f}dm')
print(f'{cent:.0f}cm ')
print(f'{mil:.0f}mm')
| 22.222222
| 101
| 0.6525
|
72207e110b7ba0434449b56ad831fee21813b6dc
| 1,015
|
py
|
Python
|
Minor Project/Weather GUI/pyowm_helper.py
|
ComputerScientist-01/Technocolabs-Internship-Project
|
3675cc6b9a40a885a29b105ec9b29945a1e4620c
|
[
"MIT"
] | 4
|
2020-07-08T11:32:29.000Z
|
2021-08-05T02:54:02.000Z
|
Minor Project/Weather GUI/pyowm_helper.py
|
ComputerScientist-01/Technocolabs-Internship-Project
|
3675cc6b9a40a885a29b105ec9b29945a1e4620c
|
[
"MIT"
] | null | null | null |
Minor Project/Weather GUI/pyowm_helper.py
|
ComputerScientist-01/Technocolabs-Internship-Project
|
3675cc6b9a40a885a29b105ec9b29945a1e4620c
|
[
"MIT"
] | null | null | null |
import os
import pyowm
from datetime import datetime
from timezone_conversion import gmt_to_eastern
#API_KEY = os.environ['API_KEY']
owm=pyowm.OWM('0833f103dc7c2924da06db624f74565c')
mgr=owm.weather_manager()
if __name__ == '__main__':
get_temperature()
| 28.194444
| 63
| 0.639409
|
7221d6876591c7703ef947738f8354cdcf1efa5d
| 82,647
|
py
|
Python
|
MCDR.py
|
Qltan/MCDR
|
ad8abfafcbe19dd50f31fc4122faf3eb633be9d5
|
[
"MIT"
] | null | null | null |
MCDR.py
|
Qltan/MCDR
|
ad8abfafcbe19dd50f31fc4122faf3eb633be9d5
|
[
"MIT"
] | null | null | null |
MCDR.py
|
Qltan/MCDR
|
ad8abfafcbe19dd50f31fc4122faf3eb633be9d5
|
[
"MIT"
] | null | null | null |
import copy
import datetime
import json
import math
import multiprocessing
import numpy as np
import os
import pandas as pd
import pydotplus
import random
import re
import time
from math import *
from sklearn import metrics
_CLUSTER_DATA = './bike_sharing_data/mydata'
RATEDATA = './bike_sharing_data/mydata/'
rateName = 'rental_return_rate_cluster_6_month_678_timedelta_5.json'
# STATION_STATUS = './station_status_by_id'
###########################
# MCTS algorithm
def start(availStations, neighbor, lostNums, visitedPath, cumulativeDis, startStation, balanceNum, mutex, realtimeBikes,
day, olderNeighbor):
print("start running, the process number is %d" % (os.getpid()))
mcts = MCTS(availStations)
selectedSta = startStation
starttime = 0
rateData = getRateData()
station_status, totalDocksDict = getStation_status()
# visitedPath = []
# cumulativeDis = []
info = {}
visitedPath.append(selectedSta)
totalLost = 0
print('start station:' + str(selectedSta))
# lostNums = {}
isRequest, starttime, dropNum, pickNum, rentalLost, returnLost, realbikes = getRequest(selectedSta, selectedSta,
starttime,
cumulativeDis, rateData,
station_status,
totalDocksDict, day)
lostNums[str(selectedSta)] = float(rentalLost) + float(returnLost)
totalLost += lostNums[str(selectedSta)]
info['time'] = starttime
info['realbikes'] = realbikes
realtimeBikes[str(selectedSta)] = info
if int(dropNum) > 0:
balanceNum[str(selectedSta)] = -int(dropNum)
elif int(pickNum) > 0:
balanceNum[str(selectedSta)] = int(pickNum)
else:
balanceNum[str(selectedSta)] = 0
if isRequest:
print('sub-process:pid=%d' % os.getpid())
print('balance station:' + str(selectedSta) + ' dropNum:' + str(dropNum) + ' pickNum:' + str(pickNum))
print('customer loss:' + str(lostNums[str(selectedSta)]))
print('current time:' + str(starttime) + ' min')
print('travel distance:')
print(cumulativeDis)
# bikeSystem.update(selectedSta)
availStations.remove(str(selectedSta))
mcts.fileCount = 0
while 1:
lastSta = selectedSta
info = {}
mutex.acquire()
if not len(availStations):
print('There are no stations need to be balanced')
lostNums['totalLost'] = totalLost
mutex.release()
break
selectedSta = mcts.get_action(lastSta, starttime, neighbor, rateData, station_status, totalDocksDict, day,
olderNeighbor)
mcts.fileCount += 1
print('through station:' + str(selectedSta))
# bikeSystem.update(selectedSta)
availStations.remove(str(selectedSta))
mutex.release()
visitedPath.append(selectedSta)
isRequest, starttime, dropNum, pickNum, rentalLost, returnLost, realbikes = getRequest(lastSta, selectedSta,
starttime,
cumulativeDis, rateData,
station_status,
totalDocksDict, day)
lostNums[str(selectedSta)] = float(rentalLost) + float(returnLost)
totalLost += lostNums[str(selectedSta)]
info['time'] = starttime
info['realbikes'] = realbikes
realtimeBikes[str(selectedSta)] = info
if int(dropNum) > 0:
balanceNum[str(selectedSta)] = -int(dropNum)
elif int(pickNum) > 0:
balanceNum[str(selectedSta)] = int(pickNum)
else:
balanceNum[str(selectedSta)] = 0
if isRequest:
print('sub-process:pid=%d' % os.getpid())
print('balance station:' + str(selectedSta) + ' dropNum:' + str(dropNum) + ' pickNum:' + str(pickNum))
print('customer loss:' + str(lostNums[str(selectedSta)]))
print('current time:' + str(starttime) + ' min')
print('travel distance:')
print(cumulativeDis)
if not len(availStations):
print('There are no stations need to be balanced')
lostNums['totalLost'] = totalLost
break
print('****************************************************')
if __name__ == '__main__':
mctsAlgorithm()
# noReposition()
# staticReposition()
# nearestNeihborReposition()
# nearestNeihborBaseServiceLevelReposition()
| 42.77795
| 121
| 0.527799
|
7222707469c1717bc369a16b35dc8703f4ba96c7
| 4,692
|
py
|
Python
|
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Components/Energy/Storages/Batteries/Constant_Mass/Lithium_Ion_LiFePO4_18650.py
|
Vinicius-Tanigawa/Undergraduate-Research-Project
|
e92372f07882484b127d7affe305eeec2238b8a9
|
[
"MIT"
] | null | null | null |
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Components/Energy/Storages/Batteries/Constant_Mass/Lithium_Ion_LiFePO4_18650.py
|
Vinicius-Tanigawa/Undergraduate-Research-Project
|
e92372f07882484b127d7affe305eeec2238b8a9
|
[
"MIT"
] | null | null | null |
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Components/Energy/Storages/Batteries/Constant_Mass/Lithium_Ion_LiFePO4_18650.py
|
Vinicius-Tanigawa/Undergraduate-Research-Project
|
e92372f07882484b127d7affe305eeec2238b8a9
|
[
"MIT"
] | null | null | null |
## @ingroup Components-Energy-Storages-Batteries-Constant_Mass
# Lithium_Ion_LiFePO4_18650.py
#
# Created: Feb 2020, M. Clarke
# Modified: Sep 2021, R. Erhard
# ----------------------------------------------------------------------
# Imports
# ----------------------------------------------------------------------
# suave imports
from SUAVE.Core import Units
from .Lithium_Ion import Lithium_Ion
# package imports
import numpy as np
## @ingroup Components-Energy-Storages-Batteries-Constant_Mass
| 53.931034
| 136
| 0.449915
|
7222d418de71e1a6408735de5ac964a29e9e3865
| 83,182
|
py
|
Python
|
motor/__init__.py
|
globocom/motor
|
a1c91ab7b223bb1ada742605e2e8d11a39fe5f1e
|
[
"Apache-2.0"
] | null | null | null |
motor/__init__.py
|
globocom/motor
|
a1c91ab7b223bb1ada742605e2e8d11a39fe5f1e
|
[
"Apache-2.0"
] | null | null | null |
motor/__init__.py
|
globocom/motor
|
a1c91ab7b223bb1ada742605e2e8d11a39fe5f1e
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2011-2012 10gen, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Motor, an asynchronous driver for MongoDB and Tornado."""
import collections
import functools
import inspect
import socket
import time
import warnings
import weakref
from tornado import ioloop, iostream, gen, stack_context
from tornado.concurrent import Future
import greenlet
import bson
import pymongo
import pymongo.auth
import pymongo.common
import pymongo.database
import pymongo.errors
import pymongo.mongo_client
import pymongo.mongo_replica_set_client
import pymongo.son_manipulator
from pymongo.pool import _closed, SocketInfo
import gridfs
from pymongo.database import Database
from pymongo.collection import Collection
from pymongo.cursor import Cursor, _QUERY_OPTIONS
from gridfs import grid_file
import util
__all__ = ['MotorClient', 'MotorReplicaSetClient', 'Op']
version_tuple = (0, 1, '+')
version = get_version_string()
"""Current version of Motor."""
# TODO: ensure we're doing
# timeouts as efficiently as possible, test performance hit with timeouts
# from registering and cancelling timeouts
HAS_SSL = True
try:
import ssl
except ImportError:
ssl = None
HAS_SSL = False
callback_type_error = TypeError("callback must be a callable")
def motor_sock_method(method):
"""Wrap a MotorSocket method to pause the current greenlet and arrange
for the greenlet to be resumed when non-blocking I/O has completed.
"""
return _motor_sock_method
def callback_from_future(future):
"""Return a callback that sets a Future's result or exception"""
return callback
def asynchronize(motor_class, sync_method, has_write_concern, doc=None):
"""Decorate `sync_method` so it accepts a callback or returns a Future.
The method runs on a child greenlet and calls the callback or resolves
the Future when the greenlet completes.
:Parameters:
- `motor_class`: Motor class being created, e.g. MotorClient.
- `sync_method`: Bound method of pymongo Collection, Database,
MongoClient, or Cursor
- `has_write_concern`: Whether the method accepts getLastError options
- `doc`: Optionally override sync_method's docstring
"""
# This is for the benefit of motor_extensions.py, which needs this info to
# generate documentation with Sphinx.
method.is_async_method = True
method.has_write_concern = has_write_concern
name = sync_method.__name__
if name.startswith('__') and not name.endswith("__"):
# Mangle, e.g. Cursor.__die -> Cursor._Cursor__die
classname = motor_class.__delegate_class__.__name__
name = '_%s%s' % (classname, name)
method.pymongo_method_name = name
if doc is not None:
method.__doc__ = doc
return method
def check_delegate(obj, attr_name):
if not obj.delegate:
raise pymongo.errors.InvalidOperation(
"Call open() on %s before accessing attribute '%s'" % (
obj.__class__.__name__, attr_name))
DelegateMethod = ReadOnlyProperty
"""A method on the wrapped PyMongo object that does no I/O and can be called
synchronously"""
def _delegate_init_args(self):
"""Override MotorOpenable._delegate_init_args to ensure
auto_start_request is False and _pool_class is MotorPool.
"""
kwargs = self._init_kwargs.copy()
kwargs['auto_start_request'] = False
kwargs['_pool_class'] = functools.partial(MotorPool, self.io_loop)
return self._init_args, kwargs
class MotorClient(MotorClientBase):
__delegate_class__ = pymongo.mongo_client.MongoClient
kill_cursors = AsyncCommand()
fsync = AsyncCommand()
unlock = AsyncCommand()
nodes = ReadOnlyProperty()
host = ReadOnlyProperty()
port = ReadOnlyProperty()
_simple_command = AsyncCommand(attr_name='__simple_command')
def __init__(self, *args, **kwargs):
"""Create a new connection to a single MongoDB instance at *host:port*.
:meth:`open` or :meth:`open_sync` must be called before using a new
MotorClient. No property access is allowed before the connection
is opened.
MotorClient takes the same constructor arguments as
`MongoClient`_, as well as:
:Parameters:
- `io_loop` (optional): Special :class:`tornado.ioloop.IOLoop`
instance to use instead of default
.. _MongoClient: http://api.mongodb.org/python/current/api/pymongo/mongo_client.html
"""
super(MotorClient, self).__init__(
None, kwargs.pop('io_loop', None), *args, **kwargs)
def _async_get_socket(self, pool):
"""Return a ``Future`` that will resolve to a socket."""
# MongoClient passes host and port into the pool for each call to
# get_socket.
return pool.async_get_socket((self.host, self.port))
class MotorReplicaSetClient(MotorClientBase):
__delegate_class__ = pymongo.mongo_replica_set_client.MongoReplicaSetClient
primary = ReadOnlyProperty()
secondaries = ReadOnlyProperty()
arbiters = ReadOnlyProperty()
hosts = ReadOnlyProperty()
seeds = ReadOnlyProperty()
close = DelegateMethod()
_simple_command = AsyncCommand(attr_name='__simple_command')
def __init__(self, *args, **kwargs):
"""Create a new connection to a MongoDB replica set.
:meth:`open` or :meth:`open_sync` must be called before using a new
MotorReplicaSetClient. No property access is allowed before the
connection is opened.
MotorReplicaSetClient takes the same constructor arguments as
`MongoReplicaSetClient`_, as well as:
:Parameters:
- `io_loop` (optional): Special :class:`tornado.ioloop.IOLoop`
instance to use instead of default
.. _MongoReplicaSetClient: http://api.mongodb.org/python/current/api/pymongo/mongo_replica_set_client.html
"""
super(MotorReplicaSetClient, self).__init__(
None, kwargs.pop('io_loop', None), *args, **kwargs)
def open_sync(self):
"""Synchronous open(), returning self.
Under the hood, this method creates a new Tornado IOLoop, runs
:meth:`open` on the loop, and deletes the loop when :meth:`open`
completes.
"""
super(MotorReplicaSetClient, self).open_sync()
# We need to wait for open_sync() to complete and restore the
# original IOLoop before starting the monitor.
self.delegate._MongoReplicaSetClient__monitor.start_motor(self.io_loop)
return self
def open(self, callback=None):
"""Actually initialize. Takes an optional callback, or returns a Future
that resolves to self when opened.
:Parameters:
- `callback`: Optional function taking parameters (self, error)
"""
if callback and not callable(callback):
raise callback_type_error
if callback:
super(MotorReplicaSetClient, self)._open(callback=opened)
else:
future = Future()
# The final callback run from inside opened
callback = callback_from_future(future)
super(MotorReplicaSetClient, self)._open(callback=opened)
return future
def _async_get_socket(self, pool):
"""Return a ``Future`` that will resolve to a socket."""
# MongoReplicaSetClient sets pools' host and port when it creates them.
return pool.async_get_socket()
# PyMongo uses a background thread to regularly inspect the replica set and
# monitor it for changes. In Motor, use a periodic callback on the IOLoop to
# monitor the set.
MotorGridIn.set = asynchronize(
MotorGridIn, gridfs.GridIn.__setattr__, False, doc="""
Set an arbitrary metadata attribute on the file. Stores value on the server
as a key-value pair within the file document once the file is closed. If
the file is already closed, calling `set` will immediately update the file
document on the server.
Metadata set on the file appears as attributes on a :class:`~MotorGridOut`
object created from the file.
:Parameters:
- `name`: Name of the attribute, will be stored as a key in the file
document on the server
- `value`: Value of the attribute
- `callback`: Optional callback to execute once attribute is set.
""")
def Op(fn, *args, **kwargs):
"""Obsolete; here for backwards compatibility with Motor 0.1.
Op had been necessary for ease-of-use with Tornado 2 and @gen.engine. But
Motor 0.2 is built for Tornado 3, @gen.coroutine, and Futures, so motor.Op
is deprecated.
"""
msg = "motor.Op is deprecated, simply call %s and yield its Future." % (
fn.__name__)
warnings.warn(msg, DeprecationWarning, stacklevel=2)
result = fn(*args, **kwargs)
assert isinstance(result, Future)
return result
| 36.936945
| 118
| 0.608112
|
72230a4712ff2722d5fd895c22c3d235aabfdf44
| 3,544
|
py
|
Python
|
del_dupli_in_fasta.py
|
ba1/BioParsing
|
8a0257d4765a7bc86fef7688762abbeaaf3cef07
|
[
"MIT"
] | 1
|
2017-06-19T15:15:26.000Z
|
2017-06-19T15:15:26.000Z
|
del_dupli_in_fasta.py
|
ba1/BioParsing
|
8a0257d4765a7bc86fef7688762abbeaaf3cef07
|
[
"MIT"
] | null | null | null |
del_dupli_in_fasta.py
|
ba1/BioParsing
|
8a0257d4765a7bc86fef7688762abbeaaf3cef07
|
[
"MIT"
] | null | null | null |
'''
Created on Oct 20, 2015
@author: bardya
'''
import os
import argparse
from Bio import SeqIO
if __name__ == '__main__':
args = parse_args()
try:
inputfile = open(args.infilepath.name, 'r')
outputfile = open(args.outfilepath.name, 'w')
# if not os.path.basename(args.outfilepath.name) == "basename":
# outputfile = open(args.outfilepath.name, 'w')
# else:
# outputfile = open(os.path.join(os.path.dirname(args.outfilepath.name),os.path.basename(args.infilepath.name) + '_consensus.faa'), 'w')
except:
print('IOError occured')
seqlst, stats_dict = readfasta(args.infilepath.name, keep_flag=args.keep_flag, rename_flag=args.rename_flag)
printStats(stats_dict)
writefasta(outputfile, seqlst)
| 35.79798
| 165
| 0.615406
|
7224268eb003eeb3fc96967b78416eccf0509110
| 491
|
py
|
Python
|
lclpy/aidfunc/logging.py
|
nobody1570/lspy
|
1cf6efbafbbf8ddb54ba7a875e82c562f010edd1
|
[
"MIT"
] | 3
|
2021-11-27T22:11:38.000Z
|
2022-02-10T11:42:06.000Z
|
lclpy/aidfunc/logging.py
|
nobody1570/lspy
|
1cf6efbafbbf8ddb54ba7a875e82c562f010edd1
|
[
"MIT"
] | null | null | null |
lclpy/aidfunc/logging.py
|
nobody1570/lspy
|
1cf6efbafbbf8ddb54ba7a875e82c562f010edd1
|
[
"MIT"
] | null | null | null |
def log_improvement(value):
"""function to log improvements to the command line.
Parameters
----------
value : int or float
The value for the improvement
"""
print("Improvement : " + str(value))
def log_passed_worse(value):
"""function to log the passing of worse solutions to the command line.
Parameters
----------
value : int or float
The value for the improvement
"""
print("Passed worse: " + str(value))
| 18.185185
| 74
| 0.592668
|
72244921b06692f1b6e6b261aabc73be9e8ccb0e
| 897
|
py
|
Python
|
tests/test_as_class_methods.py
|
pokidovea/immobilus
|
42f115a13b4aa060b7ed186e81fe56e1a07c4b2d
|
[
"Apache-2.0"
] | 13
|
2016-11-26T16:13:11.000Z
|
2021-12-21T11:10:50.000Z
|
tests/test_as_class_methods.py
|
pokidovea/immobilus
|
42f115a13b4aa060b7ed186e81fe56e1a07c4b2d
|
[
"Apache-2.0"
] | 20
|
2017-03-06T00:50:22.000Z
|
2019-08-26T20:12:39.000Z
|
tests/test_as_class_methods.py
|
pokidovea/immobilus
|
42f115a13b4aa060b7ed186e81fe56e1a07c4b2d
|
[
"Apache-2.0"
] | 6
|
2017-08-28T07:23:54.000Z
|
2021-12-03T13:03:50.000Z
|
# https://github.com/pokidovea/immobilus/issues/30
from immobilus import immobilus # noqa
from immobilus.logic import fake_time, fake_localtime, fake_gmtime, fake_strftime, fake_mktime
from datetime import datetime
| 18.6875
| 94
| 0.723523
|
722517ddb7cf57ba0cdaeeaa839501f03c9155b4
| 322
|
py
|
Python
|
plotter/plotter.py
|
kalinkinisaac/modular
|
301d26ad222a5ef3278aaf251908e0a8537bb58f
|
[
"MIT"
] | null | null | null |
plotter/plotter.py
|
kalinkinisaac/modular
|
301d26ad222a5ef3278aaf251908e0a8537bb58f
|
[
"MIT"
] | null | null | null |
plotter/plotter.py
|
kalinkinisaac/modular
|
301d26ad222a5ef3278aaf251908e0a8537bb58f
|
[
"MIT"
] | null | null | null |
import abc
| 23
| 67
| 0.63354
|
72279efb6ba56531335b2f093691a4196e8f4923
| 2,531
|
py
|
Python
|
ardupilot/Tools/autotest/param_metadata/wikiemit.py
|
quadrotor-IITKgp/emulate_GPS
|
3c888d5b27b81fb17e74d995370f64bdb110fb65
|
[
"MIT"
] | 1
|
2021-07-17T11:37:16.000Z
|
2021-07-17T11:37:16.000Z
|
ardupilot/Tools/autotest/param_metadata/wikiemit.py
|
arl-kgp/emulate_GPS
|
3c888d5b27b81fb17e74d995370f64bdb110fb65
|
[
"MIT"
] | null | null | null |
ardupilot/Tools/autotest/param_metadata/wikiemit.py
|
arl-kgp/emulate_GPS
|
3c888d5b27b81fb17e74d995370f64bdb110fb65
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python
import re
from param import *
from emit import Emit
# Emit docs in a form acceptable to the APM wiki site
| 34.671233
| 121
| 0.468589
|
722ad974ef9283199399d93bbd17a334c7d31249
| 1,038
|
py
|
Python
|
master.py
|
iAzurel/thepicturesorter
|
21a3aee26adcfca0838db63be1434f7c49cd9548
|
[
"MIT"
] | null | null | null |
master.py
|
iAzurel/thepicturesorter
|
21a3aee26adcfca0838db63be1434f7c49cd9548
|
[
"MIT"
] | null | null | null |
master.py
|
iAzurel/thepicturesorter
|
21a3aee26adcfca0838db63be1434f7c49cd9548
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python
from PIL import Image
import os, os.path
import cv2
import sys
# Detect faces, then returns number of faces.
# Moves pictures based on detection of faces.
if __name__ == "__main__":
main()
| 23.590909
| 76
| 0.716763
|
722c1e45a1768734b80ecc9c4958f9182d017de1
| 1,241
|
py
|
Python
|
src/si/supervised/Ensemble.py
|
pg42862/Sistemas_Inteligentes_para_a_MBIONF
|
5dd5b487da5b3c6a0989274598c911cc639138a3
|
[
"Apache-2.0"
] | null | null | null |
src/si/supervised/Ensemble.py
|
pg42862/Sistemas_Inteligentes_para_a_MBIONF
|
5dd5b487da5b3c6a0989274598c911cc639138a3
|
[
"Apache-2.0"
] | null | null | null |
src/si/supervised/Ensemble.py
|
pg42862/Sistemas_Inteligentes_para_a_MBIONF
|
5dd5b487da5b3c6a0989274598c911cc639138a3
|
[
"Apache-2.0"
] | 1
|
2021-11-15T16:15:50.000Z
|
2021-11-15T16:15:50.000Z
|
from.Model import Model
import numpy as np
| 32.657895
| 140
| 0.65834
|
722cd36e985871c8a2f5b1f558365071a7104a73
| 11,915
|
py
|
Python
|
pygto900.py
|
marissakotze/timDIMM
|
dde00a3bb6ca7c3d9b71e24f9363350a0e2a323f
|
[
"BSD-3-Clause"
] | 1
|
2021-06-06T15:26:36.000Z
|
2021-06-06T15:26:36.000Z
|
pygto900.py
|
marissakotze/timDIMM
|
dde00a3bb6ca7c3d9b71e24f9363350a0e2a323f
|
[
"BSD-3-Clause"
] | null | null | null |
pygto900.py
|
marissakotze/timDIMM
|
dde00a3bb6ca7c3d9b71e24f9363350a0e2a323f
|
[
"BSD-3-Clause"
] | 3
|
2015-07-29T15:16:35.000Z
|
2017-12-01T13:02:36.000Z
|
#!/usr/bin/env python
"""pygto900 contains commands to interface with a astro-physics gto900 mount
"""
import serial
import io
import sys
import string
import math
import time
from binutils import *
from datetime import datetime
from astropy.coordinates import Angle
def status(g):
"""Chck the values for the telescope"""
ra = g.ra()
dec = g.dec()
lst = g.lst()
ha = Angle('%s hour' % lst) - Angle('%s hour' % ra)
alt = g.alt()
az = g.az()
a = Angle(alt, unit='degree')
z = airmass(a)
p = g.pier()
return ra,dec,ha,lst,alt,az,z,p
def slew(g, ra, dec, niter=100):
"""Slew to a location
Paramters
---------
ra: astropy.coordinates.Angle
Right Ascension of source
dec: astropy.coordinates.Angle
Declination of source
niter: int
Number of loops to attempt if monitoring progress
"""
g.command_ra(ra.hms[0], ra.hms[1], ra.hms[2])
g.command_dec(dec.dms[0], dec.dms[1], dec.dms[2])
g.slew()
for i in range(niter):
try:
r = Angle(g.ra(), unit='hour')
d = Angle(g.dec(), unit='degree')
except Exception,e:
print e
continue
dist = ((r.degree - ra.degree)**2 + (d.degree-dec.degree)**2)**0.5
if dist < 1.0/60.0:
print 'Done Slewing'
return
else:
print '%5.2f degrees to go until target' % dist
return
def init(g):
"""Initialize the telescope"""
print "Initializing mount...."
g.startup()
return
def nudge(g, mdir):
"""Nudge the telescope in one direction"""
g.set_center_rate(10)
g.move(mdir)
time.sleep(1)
g.halt(mdir)
time.sleep(1)
def usage():
"""Print the usage string"""
usage_str = """
Usage for pygto900:
python pygto900 [init/status/log/move/nudge/slew/sync/park/help] [optional]
"""
print usage_str
if __name__=='__main__':
task = sys.argv[1].lower()
if len(sys.argv) < 2:
usage()
exit()
if task in ['help']:
usage()
exit()
with GTO900() as g:
if task == 'status':
results = status(g)
output ="At RA = %s, Dec = %s, HA = %s, LST = %s, Alt = %s, Az = %s, secz = %.2f, on the %s side of the pier" % results
print output
elif task == 'log':
results = status(g)
print '%s %s %s %s %s %s %.2f %s' % results
elif task == 'init':
init(g)
elif task == 'park':
g.park_mode()
elif task == 'park_off':
g.park_off()
elif task == 'sync':
g.sync()
elif task == 'move':
g.move(sys.argv[2])
elif task == 'nudge':
nudge(g, sys.argv[2])
elif task == 'slew':
ra = Angle(sys.argv[2], unit='hour')
dec = Angle(sys.argv[3], unit='degree')
slew(g, ra, dec)
elif task == 'help':
usage()
else:
usage()
#y=GTO900()
#print y.ra(), y.dec()
#y.lst(), y.get_local_time(), y.get_local_date()
#print y.get_UTC_offset(), y.get_longitude(), y.get_latitude()
#print y.command_ra(12,01,34)
#print y.command_dec(-37,01,34)
#print y.slew()
#print y.ra(), y.dec()
#print y.alt(), y.az()
#print y.move('e')
#print y.alt(), y.az()
| 24.56701
| 130
| 0.544943
|
7230fd2e2774f3460096d023d321613a2a314e63
| 2,850
|
py
|
Python
|
webscripts/plotlygraphs.py
|
KathrynDH/DataDashboard
|
1bf61497480f778a1c7cc9ce9fc7fb48b3067606
|
[
"MIT"
] | null | null | null |
webscripts/plotlygraphs.py
|
KathrynDH/DataDashboard
|
1bf61497480f778a1c7cc9ce9fc7fb48b3067606
|
[
"MIT"
] | null | null | null |
webscripts/plotlygraphs.py
|
KathrynDH/DataDashboard
|
1bf61497480f778a1c7cc9ce9fc7fb48b3067606
|
[
"MIT"
] | null | null | null |
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 23 15:56:55 2021
@author: Kathryn Haske
Create plotly graphs for webpage
"""
import pandas as pd
import plotly.graph_objs as go
def line_graph(x_list, df, name_col, y_cols, chart_title, x_label, y_label):
"""
Function to create plotly line graph
Args:
x_list (list): graph x values
df (Pandas DataFrame): dataframe to use for series and y-values
name_col (string): df column to use for series names
y_cols (int or slice object): df column numbers to use for y-values
chart_title (string): title for chart
x_label (string): label for x-axis
y_label (string): label for y-axis
Returns:
dictionary for plotly line graph
"""
graph = []
for index, row in df.iterrows():
graph.append(go.Scatter(
x = x_list,
y = row.tolist()[y_cols],
mode = 'lines',
name = row[name_col]
))
graph_layout = dict(title = chart_title,
xaxis = dict(title = x_label),
yaxis = dict(title = y_label),
)
return dict(data=graph, layout=graph_layout)
def scatter_plot(x_vals, y_vals, names, chart_title, x_label, y_label):
"""
Function to create plotly scatter plot
Args:
x_vals (list): graph x values
y_vals (list): graph y values
names (list of strings): title for each marker
chart_title (string): title for chart
x_label (string): label for x-axis
y_label (string): label for y-axis
Returns:
dictionary for plotly scatter plot
"""
graph= [go.Scatter(
x = x_vals,
y = y_vals,
mode = 'markers',
text=names,
marker=dict(
color=y_vals, #set color equal to a variable
colorscale='Viridis' # plotly colorscale
)
)]
graph_layout = dict(title = chart_title,
xaxis = dict(title = x_label),
yaxis = dict(title = y_label),
)
return dict(data=graph, layout=graph_layout)
def bar_chart(x_vals, y_vals, chart_title, x_label, y_label):
"""
Function to create plotly bar graph
Args:
x_vals (list): graph x values
y_vals (list): graph y values
chart_title (string): title for chart
x_label (string): label for x-axis
y_label (string): label for y-axis
Returns:
dictionary for plotly bar graph
"""
graph = [go.Bar(
x = x_vals,
y = y_vals
)]
graph_layout = dict(title = chart_title,
xaxis = dict(title = x_label),
yaxis = dict(title = y_label),
)
return dict(data=graph, layout=graph_layout)
| 27.403846
| 76
| 0.567018
|
72314feeba462045a5c4c66db5b70dc7ce89e3a1
| 2,505
|
py
|
Python
|
jsl/experimental/seql/agents/bfgs_agent.py
|
AdrienCorenflos/JSL
|
8a3ba27179a2bd90207214fccb81df884b05c3d0
|
[
"MIT"
] | null | null | null |
jsl/experimental/seql/agents/bfgs_agent.py
|
AdrienCorenflos/JSL
|
8a3ba27179a2bd90207214fccb81df884b05c3d0
|
[
"MIT"
] | null | null | null |
jsl/experimental/seql/agents/bfgs_agent.py
|
AdrienCorenflos/JSL
|
8a3ba27179a2bd90207214fccb81df884b05c3d0
|
[
"MIT"
] | null | null | null |
import jax.numpy as jnp
from jax import vmap
from jax.scipy.optimize import minimize
import chex
import typing_extensions
from typing import Any, NamedTuple
import warnings
from jsl.experimental.seql.agents.agent_utils import Memory
from jsl.experimental.seql.agents.base import Agent
from jsl.experimental.seql.utils import posterior_noise, mse
Params = Any
def bfgs_agent(objective_fn: ObjectiveFn = mse,
model_fn: ModelFn = lambda mu, x: x @ mu,
obs_noise: float = 0.01,
buffer_size: int = jnp.inf,
threshold: int = 1):
assert threshold <= buffer_size
memory = Memory(buffer_size)
return Agent(init_state, update, predict)
| 26.09375
| 68
| 0.578842
|
72320fd783db7905693b184e50b586992cf4d02b
| 2,379
|
py
|
Python
|
abusech/urlhaus.py
|
threatlead/abusech
|
6c62f51f773cb17ac6943d87fb697ce1e9dae049
|
[
"MIT"
] | null | null | null |
abusech/urlhaus.py
|
threatlead/abusech
|
6c62f51f773cb17ac6943d87fb697ce1e9dae049
|
[
"MIT"
] | null | null | null |
abusech/urlhaus.py
|
threatlead/abusech
|
6c62f51f773cb17ac6943d87fb697ce1e9dae049
|
[
"MIT"
] | null | null | null |
from .abusech import AbuseCh
from collections import namedtuple
from datetime import datetime
| 43.254545
| 121
| 0.584279
|
7232736c521560e15f88e41ebeb5b1e597203059
| 114
|
py
|
Python
|
ufmt/tests/__init__.py
|
pmeier/ufmt
|
29385731d3399d065968921b7502d321acf6faef
|
[
"MIT"
] | null | null | null |
ufmt/tests/__init__.py
|
pmeier/ufmt
|
29385731d3399d065968921b7502d321acf6faef
|
[
"MIT"
] | null | null | null |
ufmt/tests/__init__.py
|
pmeier/ufmt
|
29385731d3399d065968921b7502d321acf6faef
|
[
"MIT"
] | null | null | null |
# Copyright 2021 John Reese
# Licensed under the MIT license
from .cli import CliTest
from .core import CoreTest
| 19
| 32
| 0.789474
|
7233257f2eb3efc2be88861adf3e83bb76f78498
| 442
|
py
|
Python
|
tests/components/eafm/conftest.py
|
erogleva/core
|
994ae09f69afe772150a698953c0d7386a745de2
|
[
"Apache-2.0"
] | 2
|
2021-05-19T19:05:08.000Z
|
2021-06-06T06:51:05.000Z
|
tests/components/eafm/conftest.py
|
erogleva/core
|
994ae09f69afe772150a698953c0d7386a745de2
|
[
"Apache-2.0"
] | 56
|
2020-08-03T07:30:54.000Z
|
2022-03-31T06:02:04.000Z
|
tests/components/eafm/conftest.py
|
erogleva/core
|
994ae09f69afe772150a698953c0d7386a745de2
|
[
"Apache-2.0"
] | 2
|
2020-12-25T16:31:22.000Z
|
2020-12-30T20:53:56.000Z
|
"""eafm fixtures."""
import pytest
from tests.async_mock import patch
| 22.1
| 84
| 0.719457
|
7233678cd98a3bf61296f7c1aa2006b01024a6ac
| 5,894
|
py
|
Python
|
thorbanks/checks.py
|
Jyrno42/django-thorbanks
|
a8e2daf20b981aecb0c8ee76b0474b6c8e2baad1
|
[
"BSD-3-Clause"
] | 6
|
2015-06-15T12:47:05.000Z
|
2019-04-24T01:32:12.000Z
|
thorbanks/checks.py
|
Jyrno42/django-thorbanks
|
a8e2daf20b981aecb0c8ee76b0474b6c8e2baad1
|
[
"BSD-3-Clause"
] | 13
|
2015-12-23T14:29:26.000Z
|
2021-02-18T18:35:56.000Z
|
thorbanks/checks.py
|
Jyrno42/django-thorbanks
|
a8e2daf20b981aecb0c8ee76b0474b6c8e2baad1
|
[
"BSD-3-Clause"
] | 3
|
2016-08-08T10:35:39.000Z
|
2020-12-29T23:10:55.000Z
|
import os
from django.conf import settings
from django.core.checks import Error, register
from thorbanks.settings import configure, parse_banklinks
| 35.293413
| 119
| 0.449779
|
72349a7b999fcd7724c457b5d3ee54f95ec82969
| 36,028
|
py
|
Python
|
otk/trains.py
|
draustin/otk
|
c6e91423ec79b85b380ee9385f6d27c91f92503d
|
[
"MIT"
] | 7
|
2020-05-17T14:26:42.000Z
|
2022-02-14T04:52:54.000Z
|
otk/trains.py
|
uamhforever/otk
|
c6e91423ec79b85b380ee9385f6d27c91f92503d
|
[
"MIT"
] | 17
|
2020-04-10T22:50:00.000Z
|
2020-06-18T04:54:19.000Z
|
otk/trains.py
|
uamhforever/otk
|
c6e91423ec79b85b380ee9385f6d27c91f92503d
|
[
"MIT"
] | 1
|
2022-02-14T04:52:45.000Z
|
2022-02-14T04:52:45.000Z
|
"""Defining and analysing axisymmetric optical systems."""
import itertools
from functools import singledispatch
from dataclasses import dataclass
from abc import ABC, abstractmethod
from typing import Sequence, Tuple, Mapping
import numpy as np
import scipy.optimize
from . import abcd, paraxial, functions, ri
from .functions import calc_sphere_sag
# TODO Make Interface composition of Surface and refractive indeices.
class Surface(ABC):
"""An axisymmetric surface between two media.
TODO define radius. Is sag constant outside this i.e. is sag(rho) = sag(radius) for rho > radius?"""
roc: float
radius: float
class ConicSurface(Surface):
# TODO move to rt1
# def make_profile(self):
# return rt1.ConicProfile(self.roc, self.kappa, self.alphas)
def calc_sag(self, rho, derivative: bool = False):
"""Calculate sag of surface.
Positive ROC means positive sag.
Args:
rho: Distance from center.
derivative: If True, tuple of sag and its derivative is returned.
"""
sag = functions.calc_conic_sag(self.roc, self.kappa, self.alphas, rho, False)
if derivative:
grad_sag = functions.calc_conic_sag(self.roc, self.kappa, self.alphas, rho, True)
return sag, grad_sag
else:
return sag
# TODO make radius of each segment the outer radius rather than the incremental radius.
class SingletSequence:
def __init__(self, singlets: Sequence[Singlet], spaces: Sequence[float], n_external: ri.Index = ri.vacuum):
"""A sequence of singlets in a homogeneous medium with external and internal spaces.
The first and last spaces must be included i.e. len(spaces) = len(singlets) + 1.
"""
assert len(spaces) == len(singlets) + 1
self.singlets = tuple(singlets)
self.spaces = tuple(spaces)
self.n_external = n_external
self.center_length = sum(self.spaces) + sum(s.thickness for s in self.singlets)
| 39.634763
| 199
| 0.601865
|
723547959ebc4a91f17440d870c4a23f152e86d1
| 4,705
|
py
|
Python
|
rm_protection/rm_p.py
|
https-waldoww90-wadewilson-com/rm-protection
|
4dcc678fa687373fb4439c5c4409f7649e653084
|
[
"MIT"
] | 490
|
2017-02-03T14:15:50.000Z
|
2022-03-31T02:57:20.000Z
|
rm_protection/rm_p.py
|
https-waldoww90-wadewilson-com/rm-protection
|
4dcc678fa687373fb4439c5c4409f7649e653084
|
[
"MIT"
] | 8
|
2017-02-03T16:13:53.000Z
|
2017-05-28T05:20:45.000Z
|
rm_protection/rm_p.py
|
alanzchen/rm-protection
|
4dcc678fa687373fb4439c5c4409f7649e653084
|
[
"MIT"
] | 41
|
2017-02-04T15:13:26.000Z
|
2021-12-19T08:58:38.000Z
|
from sys import argv, exit
from os.path import expanduser as expu, expandvars as expv
from os.path import basename, dirname, abspath, isdir, exists
from subprocess import Popen, PIPE
from builtins import input
from rm_protection.config import Config
c = Config()
evaledpaths = []
if __name__ == "__main__":
rm()
| 30.953947
| 120
| 0.530287
|
72381b6de058125b33932e8f4cd988e19b104ff7
| 6,856
|
py
|
Python
|
src/text_normalizer/tokenization/_tokenize.py
|
arkataev/text_normalizer
|
a99326e31012157980d014c9730ac94bd1d18c1d
|
[
"MIT"
] | null | null | null |
src/text_normalizer/tokenization/_tokenize.py
|
arkataev/text_normalizer
|
a99326e31012157980d014c9730ac94bd1d18c1d
|
[
"MIT"
] | null | null | null |
src/text_normalizer/tokenization/_tokenize.py
|
arkataev/text_normalizer
|
a99326e31012157980d014c9730ac94bd1d18c1d
|
[
"MIT"
] | null | null | null |
""" """
import logging
import re
import string
from enum import IntEnum
from functools import lru_cache
from typing import Tuple, Iterator
from nltk.corpus import stopwords
from nltk.tokenize import ToktokTokenizer
from nltk.tokenize.api import TokenizerI
from ..config import RegexConfigType, PipelineConfigType, load_regex_conf, load_conf
__all__ = [
'sent_tokenize',
'TokTok',
'token_type',
'to_token',
'TokenType',
'iTokenTuple',
'russian_stopwords',
'replace_bigrams',
'KILO_POSTFIX',
'init_cache',
'cache_clear',
'get_tokenizer'
]
logger = logging.getLogger('rtn')
# , "" (e.g. 5, 5 )
KILO_POSTFIX = '%'
russian_stopwords = stopwords.words("russian")
_spaces = string.whitespace
_punct = set(f'{string.punctuation}{"=#-``"}{string.whitespace}')
_isolating_punct = {'"', "'", '{', '}', '[', ']', '(', ')', '', ''}
_synonyms = load_conf(PipelineConfigType.SYNONIMS)
_regex_time = load_regex_conf(RegexConfigType.TIME)
def sent_tokenize(sentence: str, tokenizer: TokenizerI) -> Iterator[iTokenTuple]:
"""
:param sentence:
:param tokenizer: NLTK-TokenizerI
"""
return map(to_token, tokenizer.tokenize(sentence))
def token_type(token_string: str) -> TokenType:
""" """
if not token_string:
return TokenType.NONE
if token_string in _spaces: # "in" works faster then calling a method ' '.isspace()
return TokenType.SPACE
elif token_string in _isolating_punct:
return TokenType.PUNKT_ISO
elif token_string in _punct:
return TokenType.PUNKT
elif token_string.isnumeric():
return TokenType.NUM
rextype = get_regex_type()
type_ = rextype(token_string)
if type_ is not TokenType.NONE:
return type_
return TokenType.TXT
def to_token(token_string: str) -> iTokenTuple:
"""
>>> to_token('.')
('.', TokenType.PUNKT)
>>> to_token('1')
('1', TokenType.NUM)
>>> to_token('hello@gmail.com')
('hello@gmail.com', TokenType.EMAIL)
:param token_string:
"""
return token_string, token_type(token_string)
def replace_bigrams(tokens: Iterator[iTokenTuple]) -> Iterator[iTokenTuple]:
"""
.
" " "-", .
>>> from text_normalizer.tokenization import replace_bigrams
>>> replace_bigrams(iter(['', TokenType.TXT), ('', TokenType.TXT)]))
('-', TokenType.TXT)
"""
crnt = None
buffer = []
for token, _type in tokens:
crnt, prev = token, crnt
synonym = _synonyms.get(f'{crnt}', crnt)
if prev:
bigram = _synonyms.get(f'{prev} {crnt}')
if bigram:
buffer[-1] = (bigram, _type)
continue
buffer.append((synonym, _type))
yield from buffer
def init_cache():
get_regex_type()
get_tokenizer()
logger.debug('Cache initiated')
def cache_clear():
get_regex_type.cache_clear()
get_tokenizer.cache_clear()
logger.debug('Cache cleared')
| 27.534137
| 107
| 0.641774
|
723871eadc62b9694db68243f51e537122c22e01
| 299
|
py
|
Python
|
tests/data/test_to_array.py
|
maki-nage/rxsci
|
64c9956752cbdd4c65aa9f054b6b28318a056625
|
[
"MIT"
] | 3
|
2021-05-03T13:40:46.000Z
|
2022-03-06T07:59:30.000Z
|
tests/data/test_to_array.py
|
maki-nage/rxsci
|
64c9956752cbdd4c65aa9f054b6b28318a056625
|
[
"MIT"
] | 9
|
2020-10-22T21:08:10.000Z
|
2021-08-05T09:01:26.000Z
|
tests/data/test_to_array.py
|
maki-nage/rxsci
|
64c9956752cbdd4c65aa9f054b6b28318a056625
|
[
"MIT"
] | 2
|
2021-01-05T16:48:54.000Z
|
2021-08-07T12:51:01.000Z
|
from array import array
import rx
import rxsci as rs
| 17.588235
| 54
| 0.595318
|
7239365caa1436583482800c75a7cb1d2a4fbe35
| 18,942
|
py
|
Python
|
pi/los.py
|
Coding-Badly/Little-Oven
|
3d1178f495aea1180e25bddbb4f139d8e37e6a65
|
[
"Apache-2.0"
] | null | null | null |
pi/los.py
|
Coding-Badly/Little-Oven
|
3d1178f495aea1180e25bddbb4f139d8e37e6a65
|
[
"Apache-2.0"
] | null | null | null |
pi/los.py
|
Coding-Badly/Little-Oven
|
3d1178f495aea1180e25bddbb4f139d8e37e6a65
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python3
"""=============================================================================
los for Little-Oven. los (Little Oven Setup) prepares a Raspberry Pi for
Little-Oven development. This module does the actual work. los (no
extension) is a bash script that creates a service that runs this code.
Running the following puts the whole mess in motion...
curl -s "https://raw.githubusercontent.com/Coding-Badly/Little-Oven/master/pi/los" | bash
journalctl -u los.service
----------------------------------------------------------------------------
Copyright 2019 Brian Cook (aka Coding-Badly)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
============================================================================="""
import grp
import json
import os
import pathlib
import pwd
import requests
import stat
import subprocess
import time
import uuid
def wall(text):
subprocess.run(['wall',text], check=True)
def wall_and_print(text, step=None):
if step is not None:
text = 'Step #{}: {}'.format(int(step), text)
wall(text)
print(text)
def update_then_upgrade():
time.sleep(5.0)
wall('Update the APT package list.')
subprocess.run(['apt-get','-y','update'], check=True)
wall('Upgrade APT packages.')
subprocess.run(['apt-get','-y','upgrade'], check=True)
def simple_get(source_url, destination_path):
r = requests.get(source_url, stream=True)
r.raise_for_status()
with destination_path.open('wb') as f:
for chunk in r.iter_content(64*1024):
f.write(chunk)
def check_global_config():
global global_config
if path_los_json.exists():
with path_los_json.open() as f:
global_config = json.load(f)
else:
global_config = dict()
csm = CurrentStepManager()
path_los_json = pathlib.Path('los.json')
check_global_config()
MODE_EXECUTABLE = stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH
need_reboot = False
go_again = True
while go_again:
go_again = False
if csm.get_current_step() == 1:
wall_and_print('Ensure the operating system is up-to-date.', csm.get_current_step())
update_then_upgrade()
need_reboot = True
csm.increment_current_step()
elif csm.get_current_step() == 2:
wall_and_print('Install Git.', csm.get_current_step())
subprocess.run(['apt-get','-y','install','git'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 3:
wall_and_print('Install Python development.', csm.get_current_step())
subprocess.run(['apt-get','-y','install','python3-dev'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 4:
wall_and_print('Ensure the operating system is up-to-date again.', csm.get_current_step())
update_then_upgrade()
need_reboot = True
csm.increment_current_step()
elif csm.get_current_step() == 5:
wall_and_print('Install pip.', csm.get_current_step())
path_get_pip = pathlib.Path('get-pip.py')
simple_get('https://bootstrap.pypa.io/get-pip.py', path_get_pip)
subprocess.run(['python3',str(path_get_pip)], check=True)
path_get_pip.unlink()
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 6:
wall_and_print('Install Python modules required by this module.', csm.get_current_step())
subprocess.run(['pip','install', 'xkcdpass'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 7:
wall_and_print('Get the global configuration file.', csm.get_current_step())
base_url = os.environ.get('LOS_BASE_URL', 'https://raw.githubusercontent.com/Coding-Badly/Little-Oven/master/pi')
get_this = base_url + '/' + 'los.json'
try:
simple_get(get_this, path_los_json)
except requests.exceptions.HTTPError:
pass
check_global_config()
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 8:
wall_and_print('Set the password using the https://xkcd.com/936/ technique.', csm.get_current_step())
from xkcdpass import xkcd_password as xp
wordfile = xp.locate_wordfile()
mywords = xp.generate_wordlist(wordfile=wordfile, min_length=5, max_length=8)
new_password = xp.generate_xkcdpassword(mywords, delimiter=',', numwords=3)
wall_and_print(' The new password is...')
wall_and_print(' {}'.format(new_password))
# fix: Send the new password to a repository.
new_password = 'whatever' # rmv
pi_new_password = ('pi:' + new_password).encode('ascii')
subprocess.run("chpasswd", input=pi_new_password, check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 9:
wall_and_print('Change the hostname.', csm.get_current_step())
path_hostname = pathlib.Path('/etc/hostname')
path_hostname.write_text('Little-Oven\n')
subprocess.run(['sed','-i',"s/raspberrypi/Little-Oven/",'/etc/hosts'], check=True)
need_reboot = True
csm.increment_current_step()
elif csm.get_current_step() == 10:
wall_and_print('Change the timezone.', csm.get_current_step())
# Why localtime has to be removed...
# https://bugs.launchpad.net/ubuntu/+source/tzdata/+bug/1554806
# date "+%Z %z"
pathlib.Path('/etc/timezone').write_text('America/Chicago\n')
pathlib.Path('/etc/localtime').unlink()
subprocess.run(['dpkg-reconfigure','-f','noninteractive','tzdata'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 11:
wall_and_print('Change the keyboard layout.', csm.get_current_step())
# debconf-get-selections | grep keyboard-configuration
# The top entry is suspect. "gb" was the value after changing
# keyboards using dpkg-reconfigure.
keyboard_conf = """
keyboard-configuration\tkeyboard-configuration/xkb-keymap\tselect\tus
keyboard-configuration\tkeyboard-configuration/layoutcode\tstring\tus
keyboard-configuration\tkeyboard-configuration/layout\tselect\tEnglish (US)
keyboard-configuration\tkeyboard-configuration/variant\tselect\tEnglish (US)
""".encode("ascii")
subprocess.run("debconf-set-selections", input=keyboard_conf, check=True)
subprocess.run(['dpkg-reconfigure','-f','noninteractive','keyboard-configuration'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 12:
wall_and_print('Change the locale.', csm.get_current_step())
# locale
locale_conf = """
locales\tlocales/locales_to_be_generated\tmultiselect\ten_US.UTF-8 UTF-8
locales\tlocales/default_environment_locale\tselect\ten_US.UTF-8
""".encode("ascii")
subprocess.run("debconf-set-selections", input=locale_conf, check=True)
subprocess.run(['sed','-i',"s/^# en_US.UTF-8 UTF-8/en_US.UTF-8 UTF-8/",'/etc/locale.gen'], check=True)
subprocess.run(['dpkg-reconfigure','-f','noninteractive','locales'], check=True)
subprocess.run(['update-locale','LANG=en_US.UTF-8'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 13:
wall_and_print('Configure Git.', csm.get_current_step())
this_mac = format(uuid.getnode(), 'X')
config_by_this_mac = global_config.get(this_mac, None)
config_github = config_by_this_mac.get('github', None) if config_by_this_mac else None
if config_github:
# Set basic Git configuration.
git_user_name = config_github.get('user.name', 'Git User Name Goes Here')
git_user_email = config_github.get('user.email', 'whomever@dallasmakerspace.org')
git_core_editor = config_github.get('core.editor', 'nano')
subprocess.run(['git','config','--system','user.name',git_user_name], check=True)
subprocess.run(['git','config','--system','user.email',git_user_email], check=True)
subprocess.run(['git','config','--system','core.editor',git_core_editor], check=True)
# Ensure the .ssh directory exists.
path_dot_ssh = pathlib.Path('/home/pi/.ssh')
# https://superuser.com/questions/215504/permissions-on-private-key-in-ssh-folder
dm = DirectoryMaker()
dm.mkdir(path_dot_ssh)
# Add a Github section to the .ssh/config file.
path_ssh_config = path_dot_ssh / 'config'
with path_ssh_config.open('at') as f:
f.write('Host github.com\n')
f.write(' User git\n')
f.write(' Hostname github.com\n')
f.write(' PreferredAuthentications publickey\n')
f.write(' IdentityFile ~/.ssh/github/id_rsa\n')
dm.chown(path_ssh_config)
# Create a github subdirectory for the Github key pair.
path_github = path_dot_ssh / 'github'
dm.mkdir(path_github)
# Generate the Github key pair.
path_id_rsa = path_github / 'id_rsa'
# ssh-keygen -t rsa -C "arduino.tiny@gmail.com" -b 1024 -N '' -f ~/.ssh/github/id_rsa
subprocess.run(['ssh-keygen','-t','rsa','-C',git_user_email,'-b','4096','-N','','-f',str(path_id_rsa)], check=True)
dm.chown(path_id_rsa)
dm.chown(path_id_rsa.with_suffix('.pub'))
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 14:
# wall_and_print('Install PiFace Digital 2 packages from GitHub.', csm.get_current_step())
# # Common
# subprocess.run(['git','clone','git://github.com/piface/pifacecommon.git','/home/pi/python-things/pifacecommon'], check=True)
# subprocess.run(['python3','/home/pi/python-things/pifacecommon/setup.py','install'], cwd='/home/pi/python-things/pifacecommon/', check=True)
# #subprocess.run(['rm','-rf','/home/pi/python-things/pifacecommon'], check=True)
# # Digital I/O
# subprocess.run(['git','clone','git://github.com/piface/pifacedigitalio.git','/home/pi/python-things/pifacedigitalio'], check=True)
# subprocess.run(['python3','/home/pi/python-things/pifacedigitalio/setup.py','install'], cwd='/home/pi/python-things/pifacedigitalio/', check=True)
# #subprocess.run(['rm','-rf','/home/pi/python-things/pifacedigitalio'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 15:
# wall_and_print('Install python-dispatch package from GitHub.', csm.get_current_step())
# subprocess.run(['git','clone','https://github.com/Coding-Badly/python-dispatch.git','/home/pi/python-things/python-dispatch'], check=True)
# subprocess.run(['python3','/home/pi/python-things/python-dispatch/setup.py','install'], cwd='/home/pi/python-things/python-dispatch/', check=True)
# #subprocess.run(['rm','-rf','/home/pi/python-dispatch'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 16:
wall_and_print('Clone the Little Oven.', csm.get_current_step())
# git clone git@github.com:Coding-Badly/Little-Oven.git /home/pi/Little-Oven
# git clone https://github.com/Coding-Badly/Little-Oven.git /home/pi/Little-Oven
subprocess.run(['git','clone','https://github.com/Coding-Badly/Little-Oven.git','/home/pi/Little-Oven'], check=True)
try:
subprocess.run(['git','checkout','-t','remotes/origin/master'], cwd='/home/pi/Little-Oven', stderr=subprocess.PIPE, check=True)
except subprocess.CalledProcessError as exc:
if not "already exists" in exc.stderr.decode("utf-8"):
raise
# Change the remote url to use ssh.
# git remote set-url origin git@github.com:Coding-Badly/Little-Oven.git
subprocess.run(['git','remote','set-url','origin','git@github.com:Coding-Badly/Little-Oven.git'], cwd='/home/pi/Little-Oven', check=True)
# Use pip to install dependencies.
path_requirements = pathlib.Path('/home/pi/Little-Oven/requirements.txt')
if path_requirements.exists():
subprocess.run(['pip','install','-U','-r',str(path_requirements)], check=True)
# Fix ownership of the Little-Oven repository.
subprocess.run(['chown','-R','pi:pi','/home/pi/Little-Oven'], check=True)
# Prepare the cache directory.
dm = DirectoryMaker(default_final_mode=0o755)
path_cache = pathlib.Path('/var/cache/Rowdy Dog Software/Little-Oven/pans')
dm.mkdir(path_cache, parents=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 17:
# wall_and_print('Install PiFace Digital 2 initialization service.', csm.get_current_step())
# subprocess.run(['cp','/home/pi/Little-Oven/pi/init_PiFace_Digital_2.service','/etc/systemd/system/init_PiFace_Digital_2.service'], check=True)
# subprocess.run(['systemctl','enable','init_PiFace_Digital_2.service'], check=True)
# need_reboot = True
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 18:
wall_and_print('Configure Rust to be easily installed.', csm.get_current_step())
# Download rustup.sh to a common location and make it Read + Execute
# for everyone. Writable for the owner (root).
path_rustup_sh = pathlib.Path('/usr/local/bin/rustup.sh')
simple_get('https://sh.rustup.rs', path_rustup_sh)
path_rustup_sh.chmod(MODE_EXECUTABLE)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 19:
wall_and_print('Install FUSE (support for VeraCrypt).', csm.get_current_step())
subprocess.run(['apt-get','-y','install','fuse'], check=True)
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 20:
wall_and_print('Configure VeraCrypt to be easily installed.', csm.get_current_step())
# Prepare a directory for the VeraCrypt files.
dm = DirectoryMaker(default_final_mode=0o755)
path_temp = pathlib.Path('./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW')
dm.mkdir(path_temp, parents=True)
# Download the install script
path_tar_bz2 = path_temp / 'veracrypt-setup.tar.bz2'
simple_get('https://launchpad.net/veracrypt/trunk/1.21/+download/veracrypt-1.21-raspbian-setup.tar.bz2', path_tar_bz2)
# Extract the contents
subprocess.run(['tar','xvfj',str(path_tar_bz2),'-C',str(path_temp)], check=True)
path_src = path_temp / 'veracrypt-1.21-setup-console-armv7'
path_dst = pathlib.Path('/usr/local/bin/veracrypt-setup')
# Copy the console setup to a location on the PATH
subprocess.run(['cp',str(path_src),str(path_dst)], check=True)
# Remove the temporary directory
subprocess.run(['rm','-rf',str(path_temp)], check=True)
# Run the install script
#subprocess.run(['bash',str(path_setup),'--quiet'], check=True)
# mkdir veracrypt_CErQ2nnwvZCVeKQHhLV24TWW
# wget --output-document=./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW/veracrypt-setup.tar.bz2 https://launchpad.net/veracrypt/trunk/1.21/+download/veracrypt-1.21-raspbian-setup.tar.bz2
# tar xvfj ./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW/veracrypt-setup.tar.bz2 -C ./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW
# ./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW/veracrypt-1.21-setup-console-armv7 --check
# ./veracrypt_CErQ2nnwvZCVeKQHhLV24TWW/veracrypt-1.21-setup-console-armv7 --quiet
# rm -rf veracrypt_CErQ2nnwvZCVeKQHhLV24TWW
go_again = True
csm.increment_current_step()
elif csm.get_current_step() == 21:
wall_and_print('Check for Rust and VeraCrypt after login.', csm.get_current_step())
# Write the following to /etc/profile.d/check_for_rust_and_veracrypt.sh and make it
# executable.
check_for_rust_and_veracrypt = """#!/bin/bash
if [ ! -e $HOME/.cargo ]; then
rustup.sh -y
fi
if ! command -v veracrypt; then
veracrypt-setup
fi
"""
path_check_for = pathlib.Path('/etc/profile.d/check_for_rust_and_veracrypt.sh')
path_check_for.write_text(check_for_rust_and_veracrypt)
path_check_for.chmod(MODE_EXECUTABLE)
go_again = True
csm.increment_current_step()
#elif csm.get_current_step() == 20:
# wall_and_print('One last reboot for good measure.', csm.get_current_step())
# need_reboot = True
# csm.increment_current_step()
# fix: Configure Little-Oven to automatically run on boot.
else:
wall_and_print('Little-Oven installed. Disabling the los service.')
subprocess.run(['systemctl','disable','los.service'], check=True)
if need_reboot:
wall_and_print('REBOOT!')
time.sleep(5.0)
subprocess.run(['reboot'], check=True)
| 50.244032
| 184
| 0.658853
|
72395e4c87b9f1d8044b25a00bbab7ea6fe4633a
| 337
|
py
|
Python
|
tests/graphql/readme_forum/readme_forum_permissions/models.py
|
karlosss/simple_api
|
03f87035c648f161d5e7a59b24f4e04bd34399f1
|
[
"MIT"
] | 2
|
2020-11-13T14:00:06.000Z
|
2020-12-19T11:50:22.000Z
|
tests/graphql/readme_forum/readme_forum_permissions/models.py
|
ladal1/simple_api
|
1b5d560476bccad9f68a7331d092dbdb68c48bf7
|
[
"MIT"
] | 5
|
2021-02-04T14:27:43.000Z
|
2021-06-04T23:22:24.000Z
|
tests/graphql/readme_forum/readme_forum_permissions/models.py
|
ladal1/simple_api
|
1b5d560476bccad9f68a7331d092dbdb68c48bf7
|
[
"MIT"
] | 1
|
2021-01-06T13:54:38.000Z
|
2021-01-06T13:54:38.000Z
|
from django.contrib.auth.models import User
from django.db.models import Model, CharField, TextField, ForeignKey, CASCADE
| 28.083333
| 77
| 0.712166
|
723b9095a8d15e2c9c1b3f5d5be4c81a6f6e858e
| 2,304
|
py
|
Python
|
streamlit_app.py
|
fhebal/nlp-medical-notes
|
f1fed9e34ba47da14220b5719f28c1e720302f45
|
[
"MIT"
] | null | null | null |
streamlit_app.py
|
fhebal/nlp-medical-notes
|
f1fed9e34ba47da14220b5719f28c1e720302f45
|
[
"MIT"
] | null | null | null |
streamlit_app.py
|
fhebal/nlp-medical-notes
|
f1fed9e34ba47da14220b5719f28c1e720302f45
|
[
"MIT"
] | null | null | null |
import streamlit as st
import yaml
from load_css import local_css
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
import numpy as np
from random import sample
import os
local_css("style.css")
prediction_key = {
0:'Gastroenterology',
1:'Neurology',
2:'Orthopedic',
3:'Radiology',
4:'Urology'
}
# Load model from file
model = tf.keras.models.load_model('/home/muody/saved_model/my_model', compile=False)
# load data
if st.button("New Text Sample"):
main()
| 29.538462
| 126
| 0.647569
|
723d7e8a6d6158d63e1b5536dbcf3fd946d29dec
| 2,440
|
py
|
Python
|
tests/test_functions.py
|
aerial-defence/pytak
|
e20c2dedfee88489bf21ad931970c2cb982d72ed
|
[
"Apache-2.0"
] | null | null | null |
tests/test_functions.py
|
aerial-defence/pytak
|
e20c2dedfee88489bf21ad931970c2cb982d72ed
|
[
"Apache-2.0"
] | null | null | null |
tests/test_functions.py
|
aerial-defence/pytak
|
e20c2dedfee88489bf21ad931970c2cb982d72ed
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Python Team Awareness Kit (PyTAK) Module Tests."""
import asyncio
import urllib
import pytest
import pytak
__author__ = 'Greg Albrecht W2GMD <oss@undef.net>'
__copyright__ = 'Copyright 2022 Greg Albrecht'
__license__ = 'Apache License, Version 2.0'
| 29.047619
| 73
| 0.702049
|
723d802339794483e5614abac1a27413e8db4aa8
| 1,054
|
py
|
Python
|
tests/test_aoc_day_02.py
|
ladokp/AdventOfCode2021
|
03f8b9f8579ae562d5f2784a131370a32ed19f8b
|
[
"BSD-2-Clause"
] | null | null | null |
tests/test_aoc_day_02.py
|
ladokp/AdventOfCode2021
|
03f8b9f8579ae562d5f2784a131370a32ed19f8b
|
[
"BSD-2-Clause"
] | null | null | null |
tests/test_aoc_day_02.py
|
ladokp/AdventOfCode2021
|
03f8b9f8579ae562d5f2784a131370a32ed19f8b
|
[
"BSD-2-Clause"
] | null | null | null |
# test_aoc_day_02.py
import pytest
import solution.aoc_day_02 as aoc
def test_parse_test_solution(test_solution):
"""Test that input is parsed properly"""
assert test_solution.data == [
("forward", 5),
("down", 5),
("forward", 8),
("up", 3),
("down", 8),
("forward", 2),
]
def test_part1_test_solution(test_solution):
"""Test part 1 on example input"""
assert test_solution.part1() == 150
def test_part2_test_solution(test_solution):
"""Test part 2 on example input"""
assert test_solution.part2() == 900
def test_part1_exercise_solution(exercise_solution):
"""Test part 1 on exercise_solution input"""
assert exercise_solution.part1() == 1383564
def test_part2_exercise_solution(exercise_solution):
"""Test part 2 on exercise_solution input"""
assert exercise_solution.part2() == 1488311643
| 22.425532
| 52
| 0.683112
|
723e3c60c657572c4703c5d71bdcbccb656fe914
| 18,265
|
py
|
Python
|
src/elora/elora.py
|
morelandjs/elora
|
e902c40d66b0bf95a8d2374afa0cc165b87c9b82
|
[
"MIT"
] | 1
|
2021-07-26T20:36:32.000Z
|
2021-07-26T20:36:32.000Z
|
src/elora/elora.py
|
morelandjs/elora
|
e902c40d66b0bf95a8d2374afa0cc165b87c9b82
|
[
"MIT"
] | null | null | null |
src/elora/elora.py
|
morelandjs/elora
|
e902c40d66b0bf95a8d2374afa0cc165b87c9b82
|
[
"MIT"
] | null | null | null |
from operator import add, sub
import numpy as np
from scipy.stats import norm
| 36.750503
| 80
| 0.594854
|
723f049018f7dbaf5f55c465cf88ce5aa8c8ec4d
| 48
|
py
|
Python
|
atcoder/abc179/a.py
|
sugitanishi/competitive-programming
|
51af65fdce514ece12f8afbf142b809d63eefb5d
|
[
"MIT"
] | null | null | null |
atcoder/abc179/a.py
|
sugitanishi/competitive-programming
|
51af65fdce514ece12f8afbf142b809d63eefb5d
|
[
"MIT"
] | null | null | null |
atcoder/abc179/a.py
|
sugitanishi/competitive-programming
|
51af65fdce514ece12f8afbf142b809d63eefb5d
|
[
"MIT"
] | null | null | null |
s=input()
print(s+'s' if s[-1]!='s' else s+'es')
| 24
| 38
| 0.520833
|
723fcadfa719088f86b59d8093c6f9655d115794
| 48,147
|
py
|
Python
|
steady_cell_phenotype/poly.py
|
knappa/steadycellphenotype
|
b033f01ebc1fa062d310296f19f2f11b484cb557
|
[
"MIT"
] | 1
|
2021-12-13T22:20:19.000Z
|
2021-12-13T22:20:19.000Z
|
steady_cell_phenotype/poly.py
|
knappa/steadycellphenotype
|
b033f01ebc1fa062d310296f19f2f11b484cb557
|
[
"MIT"
] | 5
|
2021-04-07T01:47:19.000Z
|
2021-11-17T01:46:19.000Z
|
steady_cell_phenotype/poly.py
|
knappa/steadycellphenotype
|
b033f01ebc1fa062d310296f19f2f11b484cb557
|
[
"MIT"
] | null | null | null |
from __future__ import annotations
import operator
from enum import Enum
from itertools import product
from typing import Dict, Union
import numpy as np
####################################################################################################
def h(x, fx):
"""helper function as in the PLoS article, doi:10.1371/journal.pcbi.1005352.t003 pg 16/24"""
fx = fx % 3
x = x % 3
if fx > x:
return x + 1
elif fx < x:
return x - 1
else:
return x
####################################################################################################
# monomial and sparse polynomial classes. These should be faster than the sympy versions due to
# their reduced scope.
####################################################################################################
####################################################################################################
def rename_helper(expression: Union[Expression, int], name_dict: Dict[str, str]):
if is_integer(expression):
return expression
else:
return expression.rename_variables(name_dict=name_dict)
####################################################################################################
# actions on expressions, suitable for conversion to polynomial form. Not best for simulator.
####################################################################################################
####################################################################################################
__rmul__ = __mul__
def as_poly(self):
"""converts this monomial to a polynomial with only one term"""
return Mod3Poly({self: 1})
__repr__ = __str__
# def as_sympy(self):
# # sympy empty product is 1, consistent with power_dict
# return sympy.prod([sympy.Symbol(var, integer=True) ** pow
# for var, pow in self._power_dict.items()])
# # Fun fact: sympy doesn't recognize Symbol(var) and Symbol(var, integer=True) to be the same
####################################################################################################
def eval(self, variable_dict):
"""evaluates the polynomial. variable_dict is expected to be a dict containing str:Expression or
Monomial:Expression pairs. The latter are constrained to be of single-variable type. """
if type(variable_dict) != dict:
raise Exception("Mod3Poly.eval is not defined on this input")
accumulator = Mod3Poly.zero()
for monomial, coeff in self.coeff_dict.items():
accumulator += coeff * monomial.eval(variable_dict)
return accumulator
def get_variable_set(self):
"""return a set containing all variables which occur in this polynomial"""
var_set = set()
for monomial in self.coeff_dict:
var_set = var_set.union(monomial.get_variable_set())
return var_set
def __clear_zero_monomials(self):
"""purge unneeded data"""
self.coeff_dict = {monomial: self.coeff_dict[monomial]
for monomial in self.coeff_dict
if self.coeff_dict[monomial] != 0}
# assure at least one entry
if len(self.coeff_dict) == 0:
self.coeff_dict = {Monomial.unit(): 0}
__radd__ = __add__
__rmul__ = __mul__
__repr__ = __str__
# def as_sympy(self):
# return sum([coeff * expr.as_sympy() for expr, coeff in self.coeff_dict.items()])
| 38.985425
| 117
| 0.577897
|
72404631e2e0ae2fb28f9c18c6b107f7f88a83f4
| 23,165
|
py
|
Python
|
django_tidb/features.py
|
killuminatixhr/django-tidb
|
8de093dd7242fc70a5b9b5240711bef00722ff03
|
[
"Apache-2.0"
] | 17
|
2021-07-30T17:02:53.000Z
|
2021-12-10T02:28:59.000Z
|
django_tidb/features.py
|
killuminatixhr/django-tidb
|
8de093dd7242fc70a5b9b5240711bef00722ff03
|
[
"Apache-2.0"
] | 7
|
2021-08-02T09:56:27.000Z
|
2022-03-23T03:36:07.000Z
|
django_tidb/features.py
|
killuminatixhr/django-tidb
|
8de093dd7242fc70a5b9b5240711bef00722ff03
|
[
"Apache-2.0"
] | 6
|
2021-07-30T10:04:15.000Z
|
2022-03-29T05:44:37.000Z
|
# Copyright 2021 PingCAP, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
import operator
from django.db.backends.mysql.features import (
DatabaseFeatures as MysqlDatabaseFeatures,
)
from django.utils.functional import cached_property
| 55.286396
| 118
| 0.699763
|
72404d3d39210b175e825c5b94b9e21a7e2698f1
| 421
|
py
|
Python
|
src/combine_npy.py
|
hongli-ma/RNANetMotif
|
34b4de443ec7edb59f4e4e06b17686543c438366
|
[
"MIT"
] | null | null | null |
src/combine_npy.py
|
hongli-ma/RNANetMotif
|
34b4de443ec7edb59f4e4e06b17686543c438366
|
[
"MIT"
] | null | null | null |
src/combine_npy.py
|
hongli-ma/RNANetMotif
|
34b4de443ec7edb59f4e4e06b17686543c438366
|
[
"MIT"
] | null | null | null |
import numpy as np
import sys
import glob
rbp=sys.argv[1]
kmer=sys.argv[2]
pfile_list=glob.glob("result_VDM3_"+rbp+"_positive_"+kmer+"_*.npy")
pfile1=np.load(pfile_list[0])
psha=np.shape(pfile1)
pmatrix=np.zeros(psha)
for pfile in pfile_list:
file=np.load(pfile)
# file=np.fromfile(pfile,dtype=np.float32)
pmatrix+=file
np.save("positive_"+rbp+"_vdm3_nopaircontrol_distance_matrix_"+kmer+"mer.npy",pmatrix)
| 23.388889
| 86
| 0.750594
|
7241a2c99b3dfd4732a6af0ad6cf19b2e1c6a517
| 1,238
|
py
|
Python
|
fgvcdata/__init__.py
|
catalys1/fgvc-data-pytorch
|
e2666d011c71308c4975776fbc41e947424f0723
|
[
"MIT"
] | 4
|
2020-07-05T10:19:20.000Z
|
2021-09-15T08:22:36.000Z
|
fgvcdata/__init__.py
|
catalys1/fgvc-data-pytorch
|
e2666d011c71308c4975776fbc41e947424f0723
|
[
"MIT"
] | 1
|
2020-11-13T22:01:47.000Z
|
2020-11-13T22:01:47.000Z
|
fgvcdata/__init__.py
|
catalys1/fgvc-data-pytorch
|
e2666d011c71308c4975776fbc41e947424f0723
|
[
"MIT"
] | null | null | null |
'''A common interface to FGVC datasets.
Currently supported datasets are
- CUB Birds
- CUB Birds with expert labels
- NA Birds
- Stanford Cars
- Stanford Dogs
- Oxford Flowers
- Oxford FGVC Aircraft
- Tsinghua Dogs
Datasets are constructed and used following the pytorch
data.utils.data.Dataset paradigm, and have the signature
fgvcdata.Dataset(root='path/to/data/'[,transform[,target_transform[,train]]])
`root` is the path to the base folder for the dataset. Additionally, `root` can
end in `/train` or `/test`, to indicate whether to use train or test data --
even if the root folder does not contain `train` or `test` subfolders.
The use of training or test data can also be specified through the use of the
`train` flag (the path extension on `root` takes precedence).
`transform` and `target_transform` are optional callables that preprocess data
and targets respectively. It is common to use the torchvision.transforms
module for this.
'''
from .birds import *
from .cars import *
from .dogs import *
from .aircraft import *
from .flowers import *
from .icub import *
IMAGENET_STATS = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
datasets = []
for f in [birds,icub,cars,dogs,aircraft,flowers]:
datasets += f.__all__
| 29.47619
| 79
| 0.747981
|
72422e4892bc1b2767ffe8812f2e9e5e44e84b64
| 10,491
|
py
|
Python
|
app/auth/api.py
|
Anti-Counter021/Anti-YouTube-back-end
|
eca9b26b4a1feb7e516c0164e86c5d6444af8db5
|
[
"MIT"
] | null | null | null |
app/auth/api.py
|
Anti-Counter021/Anti-YouTube-back-end
|
eca9b26b4a1feb7e516c0164e86c5d6444af8db5
|
[
"MIT"
] | null | null | null |
app/auth/api.py
|
Anti-Counter021/Anti-YouTube-back-end
|
eca9b26b4a1feb7e516c0164e86c5d6444af8db5
|
[
"MIT"
] | null | null | null |
from typing import List
from celery.result import AsyncResult
from fastapi import APIRouter, status, Depends, Form, UploadFile, File, Request, WebSocket
from fastapi.responses import RedirectResponse
from app.auth import service
from app.auth.models import User
from app.auth.permission import is_active
from app.auth.schemas import (
RegisterUser,
VerificationUUID,
Tokens,
RefreshToken,
AccessToken,
Password,
ChangeUserDataResponse,
ChangeUserData,
Channel,
ChangePassword,
Tasks,
)
from app.config import oauth
from app.db import async_session
from app.schemas import Message
from app.videos.schemas import GetVideo, SubscriptionsVideos
auth_router = APIRouter()
| 29.304469
| 96
| 0.691354
|
7242536c3707c16822eadee50c71c7b05cdd3796
| 7,768
|
py
|
Python
|
concourse/steps/scan_container_images.py
|
jia-jerry/cc-utils
|
01322d2acb7343c92138dcf0b6ac913b276525bc
|
[
"Apache-2.0"
] | null | null | null |
concourse/steps/scan_container_images.py
|
jia-jerry/cc-utils
|
01322d2acb7343c92138dcf0b6ac913b276525bc
|
[
"Apache-2.0"
] | null | null | null |
concourse/steps/scan_container_images.py
|
jia-jerry/cc-utils
|
01322d2acb7343c92138dcf0b6ac913b276525bc
|
[
"Apache-2.0"
] | null | null | null |
# Copyright (c) 2019 SAP SE or an SAP affiliate company. All rights reserved. This file is licensed
# under the Apache Software License, v. 2 except as noted otherwise in the LICENSE file
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import textwrap
import typing
import tabulate
import clamav.util
import mailutil
from concourse.model.traits.image_scan import Notify
from product.model import ComponentName, UploadResult
def protecode_results_table(protecode_cfg, upload_results: typing.Iterable[UploadResult]):
table = tabulate.tabulate(
map(result_to_tuple, upload_results),
headers=('Component Name', 'Greatest CVE', 'Container Image Reference'),
tablefmt='html',
)
return table
| 36.299065
| 99
| 0.660788
|
72430bcb51d12558e07e88c7e1a6d221c05d6f85
| 647
|
py
|
Python
|
py/cv/video.py
|
YodaEmbedding/experiments
|
567c6a1c18fac2d951fe2af54aaa4917b7d529d2
|
[
"MIT"
] | null | null | null |
py/cv/video.py
|
YodaEmbedding/experiments
|
567c6a1c18fac2d951fe2af54aaa4917b7d529d2
|
[
"MIT"
] | null | null | null |
py/cv/video.py
|
YodaEmbedding/experiments
|
567c6a1c18fac2d951fe2af54aaa4917b7d529d2
|
[
"MIT"
] | null | null | null |
import cv2
import numpy as np
height = 500
width = 700
gray = np.zeros((height, width), dtype=np.uint8)
# fourcc = cv2.VideoWriter_fourcc(*"MJPG")
# filename = "output.avi"
fourcc = cv2.VideoWriter_fourcc(*"MP4V")
filename = "output.mp4"
writer = cv2.VideoWriter(
filename, fourcc, fps=30, frameSize=(width, height), isColor=False
)
# NOTE isColor doesn't seem to influence resulting file size
xs = np.arange(width // 10)
ys = np.arange(height // 10)
locations = np.dstack(np.meshgrid(ys, xs)).reshape(-1, 2)
for y, x in locations:
gray[y, x] = 255
# gray_3c = cv2.merge([gray, gray, gray])
writer.write(gray)
writer.release()
| 24.884615
| 70
| 0.689335
|
72450375a565716f2e2d7e0a06b152a00332048e
| 1,062
|
py
|
Python
|
po/loginpage.py
|
imzengyang/datadrivertestexample
|
a37520c2f5f0ae6dfbcaaa371586ba7e98540537
|
[
"MIT"
] | 1
|
2018-06-03T05:31:46.000Z
|
2018-06-03T05:31:46.000Z
|
po/loginpage.py
|
imzengyang/datadrivertestexample
|
a37520c2f5f0ae6dfbcaaa371586ba7e98540537
|
[
"MIT"
] | null | null | null |
po/loginpage.py
|
imzengyang/datadrivertestexample
|
a37520c2f5f0ae6dfbcaaa371586ba7e98540537
|
[
"MIT"
] | null | null | null |
from po.base import BasePage
from po.base import InvalidPageException
| 33.1875
| 100
| 0.733522
|
724561c601c848d5d6d0e629507abb99ee03ff0a
| 1,329
|
py
|
Python
|
app.py
|
jesseokeya/linkedin-scraper
|
6b9d5af5167c8c936db63a855a9885728efbfeb5
|
[
"MIT"
] | null | null | null |
app.py
|
jesseokeya/linkedin-scraper
|
6b9d5af5167c8c936db63a855a9885728efbfeb5
|
[
"MIT"
] | 1
|
2020-01-04T19:33:58.000Z
|
2021-09-07T15:03:03.000Z
|
app.py
|
jesseokeya/linkedin-scraper
|
6b9d5af5167c8c936db63a855a9885728efbfeb5
|
[
"MIT"
] | 1
|
2021-12-02T06:51:46.000Z
|
2021-12-02T06:51:46.000Z
|
from lib import Scrape
from typing import List
from os import environ
main()
| 27.122449
| 74
| 0.678706
|
724593364a3fe88c699961a3b8ddb8f17f617e15
| 100
|
py
|
Python
|
Loops/for_in.py
|
1302580MK/Udemy_Python
|
c7aef0645ae15a954c2356ba96288deaa087fb32
|
[
"MIT"
] | null | null | null |
Loops/for_in.py
|
1302580MK/Udemy_Python
|
c7aef0645ae15a954c2356ba96288deaa087fb32
|
[
"MIT"
] | null | null | null |
Loops/for_in.py
|
1302580MK/Udemy_Python
|
c7aef0645ae15a954c2356ba96288deaa087fb32
|
[
"MIT"
] | null | null | null |
var1 = "hello world"
# left what you get from the right
for character in var1:
print(character)
| 20
| 34
| 0.72
|
7247650bb946b4cd8155dc4709b0e70976c42ea4
| 546
|
py
|
Python
|
forum/migrations/0003_auto_20190307_1825.py
|
AdityaJ42/DJ-Comps-Book-Exchange
|
12bba45f016e1b708477c642c2595b7f15e3dcfc
|
[
"MIT"
] | null | null | null |
forum/migrations/0003_auto_20190307_1825.py
|
AdityaJ42/DJ-Comps-Book-Exchange
|
12bba45f016e1b708477c642c2595b7f15e3dcfc
|
[
"MIT"
] | null | null | null |
forum/migrations/0003_auto_20190307_1825.py
|
AdityaJ42/DJ-Comps-Book-Exchange
|
12bba45f016e1b708477c642c2595b7f15e3dcfc
|
[
"MIT"
] | null | null | null |
# -*- coding: utf-8 -*-
# Generated by Django 1.11.8 on 2019-03-07 12:55
from __future__ import unicode_literals
from django.db import migrations, models
import django.db.models.deletion
| 24.818182
| 125
| 0.64652
|
724a427f96e1eeeba039df150a14e4acaeb34725
| 495
|
py
|
Python
|
datahub/event/migrations/0018_move_to_metadata_trade_agreement.py
|
Staberinde/data-hub-api
|
3d0467dbceaf62a47158eea412a3dba827073300
|
[
"MIT"
] | 6
|
2019-12-02T16:11:24.000Z
|
2022-03-18T10:02:02.000Z
|
datahub/event/migrations/0018_move_to_metadata_trade_agreement.py
|
Staberinde/data-hub-api
|
3d0467dbceaf62a47158eea412a3dba827073300
|
[
"MIT"
] | 1,696
|
2019-10-31T14:08:37.000Z
|
2022-03-29T12:35:57.000Z
|
datahub/event/migrations/0018_move_to_metadata_trade_agreement.py
|
Staberinde/data-hub-api
|
3d0467dbceaf62a47158eea412a3dba827073300
|
[
"MIT"
] | 9
|
2019-11-22T12:42:03.000Z
|
2021-09-03T14:25:05.000Z
|
# Generated by Django 3.1.7 on 2021-04-08 11:12
from django.db import migrations, models
| 24.75
| 83
| 0.638384
|
724a51915fb64beb06bbeb6fa5488524f3f99f3f
| 16,905
|
py
|
Python
|
pbs/scripts/update_burn_dataOLD.py
|
jawaidm/pbs
|
87f5c535c976d6a5eccbfbbf2073589b6e366d04
|
[
"Apache-2.0"
] | null | null | null |
pbs/scripts/update_burn_dataOLD.py
|
jawaidm/pbs
|
87f5c535c976d6a5eccbfbbf2073589b6e366d04
|
[
"Apache-2.0"
] | 12
|
2019-10-22T23:16:38.000Z
|
2022-03-11T23:17:45.000Z
|
pbs/scripts/update_burn_dataOLD.py
|
jawaidm/pbs
|
87f5c535c976d6a5eccbfbbf2073589b6e366d04
|
[
"Apache-2.0"
] | 5
|
2019-12-19T06:18:42.000Z
|
2022-01-07T01:16:18.000Z
|
''' ----------------------------------------------------------------------------------------
This script will update the Prescribed Burn System's ePFP data according to txt input
files found in the relevant scripts folder.
It requires user input of the Corporate Executive Approval date, which it will then use
to set PREVIOUS_YEAR, TARGET_YEAR, DATE_APPROVED and DATE_APPROVED_TO variables used by
relevant functions in the script.
Sample output below:
Please enter the date that the Burn Program was approved by Corporate Executive (dd/mm/yyyy): 03/07/2019
Script will run with the following details:
- Previous Year: 2018/2019
- Target Year: 2019/2020
- Script Data Folder: pbs/scripts/eofy_data/2019
Do you wish to continue [y/n]? y
Updating financial year and setting planning status modified date for carry over currently approved ePFPs from 2018/2019.
Total prescriptions in query: 331
Financial year for ABC_123(2013/2014) is not 2018/2019 or already in 2019/2020.
Updated financial year and set planning status modified date for 330 carry over currently approved ePFPs
Applying corporate approval and setting planning status modified date for ePFPs currently seeking approval in 2019/2020.
Total prescriptions in query: 51
Applied corporate approval and set planning status modified date for 51 ePFPs that were seeking approval
Updating financial year only selected ePFPs from 2018/2019
Total prescriptions in query: 330
Financial year for ABC_123(2013/2014) is not 2018/2019.
Updated financial year only for 0 ePFPs
329 records already in 2019/2020
Updating priority for selected ePFPs in 2019/2020
Financial year for ABC_123(2013/2014) is not 2019/2020.
Updated priority for 412 ePFPs (expected 412)
Updating area for selected ePFPs in 2019/2020
Financial year for ABC_123(2013/2014) is not 2019/2020.
Updated area for 412 ePFPs (expected 412)
Updating perimeters for selected ePFPs in 2019/2020
Financial year for ABC_123(2013/2014) is not 2019/2020.
Updated perimeter for 412 ePFPs (expected 412)
Updating overall rationale for selected ePFPs in 2019/2020
Financial year for ABC_123(2013/2014) is not 2019/2020.
Updated rationale for 168 ePFPs (expected 168)
----------------------------------------------------------------------------------------
'''
import os
import sys
import confy
from django.db import transaction
from django.core.wsgi import get_wsgi_application
from decimal import Decimal
import csv
from datetime import datetime, date
import pytz
application = get_wsgi_application() # This is so models get loaded.
try:
confy.read_environment_file('.env')
except:
print('ERROR: Script must be runs from PROJECT BASE_DIR')
exit()
proj_path = os.getcwd()
sys.path.append(proj_path)
os.chdir(proj_path)
# ----------------------------------------------------------------------------------------
# Script starts here
# ----------------------------------------------------------------------------------------
from pbs.prescription.models import Prescription
if __name__ == "__main__":
try:
SCRIPT_FOLDER = 'pbs/scripts'
DATE_APPROVED_INPUT = raw_input("Please enter the date that the Burn Program was approved "
"by Corporate Executive (dd/mm/yyyy): ")
DATE_APPROVED = datetime.strptime(DATE_APPROVED_INPUT, '%d/%m/%Y').replace(tzinfo=pytz.UTC)
if DATE_APPROVED.month != 7 or DATE_APPROVED.year != date.today().year:
print('Can only run this script in July of the current year')
sys.exit()
DATE_APPROVED_TO = date(DATE_APPROVED.year, 9, 30)
PREVIOUS_YEAR = '{}/{}'.format(DATE_APPROVED.year-1, DATE_APPROVED.year)
TARGET_YEAR = '{}/{}'.format(DATE_APPROVED.year, DATE_APPROVED.year+1)
SCRIPT_DATA_FOLDER = '{}/eofy_data/{}'.format(SCRIPT_FOLDER, TARGET_YEAR.split('/')[0])
except BaseException:
print('Error')
sys.exit()
print('\nScript will run with the following details:')
print(' - Previous Year: {}'.format(PREVIOUS_YEAR))
print(' - Target Year: {}'.format(TARGET_YEAR))
print(' - Script Data Folder: {}/'.format(SCRIPT_DATA_FOLDER))
CONTINUE_INPUT = raw_input("Do you wish to continue [y/n]? ")
if CONTINUE_INPUT == 'y':
try:
with transaction.atomic():
corp_approved_carryover_ids = read_ids('{}/corp_approved_carryover.txt'.format(SCRIPT_DATA_FOLDER))
carryover_currently_approved(corp_approved_carryover_ids)
seeking_approval_ids = read_ids('{}/approve_seeking_approval.txt'.format(SCRIPT_DATA_FOLDER))
update_seeking_approval(seeking_approval_ids)
update_financial_year_ids = read_ids('{}/financial_year_only.txt'.format(SCRIPT_DATA_FOLDER))
update_financial_year(update_financial_year_ids)
burn_priority_tuples = read_id_tuples('{}/burn_priority.txt'.format(SCRIPT_DATA_FOLDER))
update_burn_priority(burn_priority_tuples)
burn_area_tuples = read_id_tuples('{}/burn_areas.txt'.format(SCRIPT_DATA_FOLDER))
update_burn_areas(burn_area_tuples)
burn_perimeter_tuples = read_id_tuples('{}/burn_perimeters.txt'.format(SCRIPT_DATA_FOLDER))
update_burn_perimeters(burn_perimeter_tuples)
overall_rationale_tuples = read_id_tuples_pipe_separated('{}/overall_rationales.txt'
.format(SCRIPT_DATA_FOLDER))
update_overall_rationales(overall_rationale_tuples)
except BaseException:
print('Error')
else:
sys.exit()
| 47.089136
| 125
| 0.644898
|
724b92184d8f2e9819e55008805cce856be796bd
| 4,012
|
py
|
Python
|
learnware/algorithm/anomaly_detect/iforest.py
|
marvinren/aiops_gaussian_learnware
|
47683546d6648a38bb71988c33f959cf7308376f
|
[
"Apache-2.0"
] | null | null | null |
learnware/algorithm/anomaly_detect/iforest.py
|
marvinren/aiops_gaussian_learnware
|
47683546d6648a38bb71988c33f959cf7308376f
|
[
"Apache-2.0"
] | null | null | null |
learnware/algorithm/anomaly_detect/iforest.py
|
marvinren/aiops_gaussian_learnware
|
47683546d6648a38bb71988c33f959cf7308376f
|
[
"Apache-2.0"
] | null | null | null |
import numpy as np
from scipy.stats import binom
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import MinMaxScaler
from scipy.special import erf
from learnware.algorithm.anomaly_detect.base import BaseAnomalyDetect
| 37.148148
| 79
| 0.598704
|
724cda3b3a14ff18ab5608878c35ee486f9afa69
| 217
|
py
|
Python
|
noxfile.py
|
rshnn/Practical-RL
|
f7688e224a342c7f67478f2c4cd6bb7b1a122205
|
[
"MIT"
] | 3
|
2022-02-14T17:59:56.000Z
|
2022-02-15T10:08:43.000Z
|
noxfile.py
|
rshnn/Practical-RL
|
f7688e224a342c7f67478f2c4cd6bb7b1a122205
|
[
"MIT"
] | 21
|
2021-11-02T21:35:26.000Z
|
2022-01-17T18:50:42.000Z
|
noxfile.py
|
rshnn/Practical-RL
|
f7688e224a342c7f67478f2c4cd6bb7b1a122205
|
[
"MIT"
] | 2
|
2021-11-24T15:25:17.000Z
|
2022-02-14T19:04:56.000Z
|
from nox import session
| 24.111111
| 74
| 0.686636
|
724da380c925fd0be608bd11f30b6d426eb5746d
| 27
|
py
|
Python
|
megnet/data/__init__.py
|
abdalazizrashid/megnet
|
8ad0fca246465bd57d66392f790c5310c610dfff
|
[
"BSD-3-Clause"
] | 367
|
2018-12-13T14:49:00.000Z
|
2022-03-31T10:17:04.000Z
|
megnet/data/__init__.py
|
kdmsit/MEGNet
|
4f3c76c6b99edcb41d52ae5e8ae9dc89956d33d1
|
[
"MIT"
] | 162
|
2019-02-08T20:38:12.000Z
|
2022-03-31T21:13:06.000Z
|
megnet/data/__init__.py
|
kdmsit/MEGNet
|
4f3c76c6b99edcb41d52ae5e8ae9dc89956d33d1
|
[
"MIT"
] | 119
|
2018-12-17T10:16:12.000Z
|
2022-03-31T17:26:57.000Z
|
"""
Data manipulations
"""
| 6.75
| 18
| 0.62963
|