hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
9d364f1bcfe20f4a4dd1ba1db0e841b93b086bab
1,672
py
Python
yagoMoviesDown.py
afshinsadeghi/DBPediaDownloder
f9c98cab6fc7ce1d4f1c707ce1491c5dacbaf2cc
[ "Apache-2.0" ]
1
2019-04-02T11:12:52.000Z
2019-04-02T11:12:52.000Z
yagoMoviesDown.py
afshinsadeghi/DBPediaDownloder
f9c98cab6fc7ce1d4f1c707ce1491c5dacbaf2cc
[ "Apache-2.0" ]
null
null
null
yagoMoviesDown.py
afshinsadeghi/DBPediaDownloder
f9c98cab6fc7ce1d4f1c707ce1491c5dacbaf2cc
[ "Apache-2.0" ]
null
null
null
import os from time import sleep import requests querysub0 = 'https://linkeddata1.calcul.u-psud.fr/sparql?default-graph-uri=&query=construct%7B+%3Fs+%3Fp+%3Fo%7D+where+%7B+%0D%0Aselect+distinct+%3Fs+%3Fp+%3Fo+where+%7B%0D%0A%7B%0D%0A%3Fs1+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2FactedIn%3E+++%3Fs+.%0D%0A%3Fs2+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2Fdirected%3E+++%3Fs+.%0D%0A%3Fs+++%3Fp+++%3Fo.%0D%0A%7D+Union%7B%0D%0A%3Fs+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2FactedIn%3E+++%3Fs3+.%0D%0A%3Fs4+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2Fdirected%3E+++%3Fs3+.%0D%0A%3Fs+++%3Fp+++%3Fo.%0D%0A%7D+Union%7B%0D%0A%3Fs7+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2FactedIn%3E+++%3Fs5+.%0D%0A%3Fs+++%3Chttp%3A%2F%2Fyago-knowledge.org%2Fresource%2Fdirected%3E+++%3Fs5+.%0D%0A%3Fs+++%3Fp+++%3Fo.%7D+%0D%0A%7D%0D%0ALimit+10000+offset+' querysub1 = '+%7D%0D%0A&format=text%2Fplain&timeout=0' for counter in range(1, 700, 1): sleep(10) # sleep so to let the server breath download_big_file(counter) print "making yagoMovies.nt ..." os.system('find . -name "*.nt" -size -15 -delete') os.system("cat *.nt > a.ntt") os.system("rm *.nt") os.system("mv a.ntt yagoMovies.nt") print "yagoMovies.nt is created. have fun!"
59.714286
819
0.692584
9d3825f401efd886ac45bc856e7732ecfff783b3
1,418
py
Python
src/TestValues/TestProtractor3D.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
4
2018-02-06T14:41:26.000Z
2020-03-19T14:16:05.000Z
src/TestValues/TestProtractor3D.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
null
null
null
src/TestValues/TestProtractor3D.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
null
null
null
''' Created on Apr 12, 2011 @author: svenkratz ''' import TestGestures import Protractor3D.Protractor3D from Protractor3D.Protractor3D import * triangle = triplify(TestGestures.Triangle) print triangle circle1 = triplify(TestGestures.Circle_1) circle2 = triplify(TestGestures.Circle_2) rectangle = triplify(TestGestures.Rectangle) p_triangle = Protractor3D(triangle) p_circle1 = Protractor3D(circle1) p_circle2 = Protractor3D(circle2) p_rectangle = Protractor3D(rectangle) #print p_circle1.trace # #print "Trace", p_triangle.trace #print "Resampled", p_triangle.resampled #print "Scaled", p_triangle.scaled #print "Centered", p_triangle.centered #print "Template", p_triangle.template print "========== Evaluations ==============" Protractor3D.DEBUG = 5 gesturesAndNames = [(p_triangle,"Triangle"), (p_circle1,"Circle1"), ( p_circle2, "Circle2") , (p_rectangle, "Rectangle")] while gesturesAndNames != []: gesture = gesturesAndNames[0] templates = gesturesAndNames[1:] gesturesAndNames = templates if len(templates) != 0: for t in templates: print "=======================================" print "Results for", gesture[1]," <---> ", t[1] gesture[0].protractor3D_classify(gesture[0].template, t[0].template)
22.507937
121
0.693935
9d3874299d6c36b60cba6fdb324222e4353364ea
481
py
Python
tests/test_actor.py
sdss/HAL
c7a2111f8737a498a124f5571d6f0e6b46e5c371
[ "BSD-3-Clause" ]
null
null
null
tests/test_actor.py
sdss/HAL
c7a2111f8737a498a124f5571d6f0e6b46e5c371
[ "BSD-3-Clause" ]
2
2022-01-14T04:50:58.000Z
2022-02-28T22:31:06.000Z
tests/test_actor.py
sdss/HAL
c7a2111f8737a498a124f5571d6f0e6b46e5c371
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # @Author: Jos Snchez-Gallego (gallegoj@uw.edu) # @Date: 2021-03-24 # @Filename: test_hal.py # @License: BSD 3-clause (http://www.opensource.org/licenses/BSD-3-Clause) import pytest from hal import __version__ pytestmark = [pytest.mark.asyncio]
20.913043
74
0.706861
9d3a4036188d6088bc1ce4cfe8dfff01c0a9fdb1
490
py
Python
day_07/puzzles.py
electronsandstuff/Advent-of-Code-2021
9c23872640e8d092088dcb6d5cb845cd11d98994
[ "BSD-3-Clause" ]
null
null
null
day_07/puzzles.py
electronsandstuff/Advent-of-Code-2021
9c23872640e8d092088dcb6d5cb845cd11d98994
[ "BSD-3-Clause" ]
null
null
null
day_07/puzzles.py
electronsandstuff/Advent-of-Code-2021
9c23872640e8d092088dcb6d5cb845cd11d98994
[ "BSD-3-Clause" ]
null
null
null
import numpy as np if __name__ == '__main__': with open('input.txt') as f: pin = np.array([int(x) for x in f.read().split(',')]) distances = np.abs(pin[None, :] - np.arange(pin.max() + 1)[:, None]) total_fuel = np.sum(distances, axis=1) print(f'Solution 1: {total_fuel.min()}') distances_v2 = crab_fuel(distances) total_fuel_v2 = np.sum(distances_v2, axis=1) print(f'Solution 2: {total_fuel_v2.min()}')
25.789474
72
0.608163
9d3ac14e7019eef027448de09382a14cd8c888c7
352
py
Python
radical_translations/core/migrations/0033_delete_work.py
kingsdigitallab/radical_translations
c18ca1ccc0ab2d88ae472dc2eda58e2ff9dcc76a
[ "MIT" ]
3
2022-02-08T18:03:44.000Z
2022-03-18T18:10:43.000Z
radical_translations/core/migrations/0033_delete_work.py
kingsdigitallab/radical_translations
c18ca1ccc0ab2d88ae472dc2eda58e2ff9dcc76a
[ "MIT" ]
19
2020-05-11T15:36:35.000Z
2022-02-08T11:26:40.000Z
radical_translations/core/migrations/0033_delete_work.py
kingsdigitallab/radical_translations
c18ca1ccc0ab2d88ae472dc2eda58e2ff9dcc76a
[ "MIT" ]
null
null
null
# Generated by Django 2.2.10 on 2020-05-18 10:49 from django.db import migrations
19.555556
63
0.616477
9d3b2ee3ee8d1f5868d497f89b1766382405982d
16,114
py
Python
sampling.py
bigdata-inha/FedDC
c90c48fc7e35b6cb80890194c8cdfb0d412a0819
[ "MIT" ]
null
null
null
sampling.py
bigdata-inha/FedDC
c90c48fc7e35b6cb80890194c8cdfb0d412a0819
[ "MIT" ]
null
null
null
sampling.py
bigdata-inha/FedDC
c90c48fc7e35b6cb80890194c8cdfb0d412a0819
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Python version: 3.6 import numpy as np from torchvision import datasets, transforms import logging import random import torch # Settings for a multiplicative linear congruential generator (aka Lehmer # generator) suggested in 'Random Number Generators: Good # Ones are Hard to Find' by Park and Miller. MLCG_MODULUS = 2**(31) - 1 MLCG_MULTIPLIER = 16807 # Default quantiles for federated evaluations. DEFAULT_QUANTILES = (0.0, 0.25, 0.5, 0.75, 1.0) def mnist_iid(dataset, num_users): """ Sample I.I.D. client data from MNIST dataset :param dataset: :param num_users: :return: dict of image index """ num_items = int(len(dataset) / num_users) dict_users, all_idxs = {}, [i for i in range(len(dataset))] for i in range(num_users): dict_users[i] = set(np.random.choice(all_idxs, num_items, replace=False)) all_idxs = list(set(all_idxs) - dict_users[i]) return dict_users def mnist_noniid(dataset, num_users): """ Sample non-I.I.D client data from MNIST dataset :param dataset: :param num_users: :return: """ # 60,000 training imgs --> 200 imgs/shard X 300 shards num_shards, num_imgs = 200, 300 idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) labels = dataset.train_labels.numpy() # sort labels idxs_labels = np.vstack((idxs, labels)) idxs_labels = idxs_labels[:, idxs_labels[1, :].argsort()] idxs = idxs_labels[0, :] # divide and assign 2 shards/client for i in range(num_users): rand_set = set(np.random.choice(idx_shard, 2, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) return dict_users def mnist_noniid_unequal(dataset, num_users): """ Sample non-I.I.D client data from MNIST dataset s.t clients have unequal amount of data :param dataset: :param num_users: :returns a dict of clients with each clients assigned certain number of training imgs """ # 60,000 training imgs --> 50 imgs/shard X 1200 shards num_shards, num_imgs = 1200, 50 idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) labels = dataset.train_labels.numpy() # sort labels idxs_labels = np.vstack((idxs, labels)) idxs_labels = idxs_labels[:, idxs_labels[1, :].argsort()] idxs = idxs_labels[0, :] # Minimum and maximum shards assigned per client: min_shard = 1 max_shard = 30 # Divide the shards into random chunks for every client # s.t the sum of these chunks = num_shards random_shard_size = np.random.randint(min_shard, max_shard + 1, size=num_users) random_shard_size = np.around(random_shard_size / sum(random_shard_size) * num_shards) random_shard_size = random_shard_size.astype(int) # Assign the shards randomly to each client if sum(random_shard_size) > num_shards: for i in range(num_users): # First assign each client 1 shard to ensure every client has # atleast one shard of data rand_set = set(np.random.choice(idx_shard, 1, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) random_shard_size = random_shard_size - 1 # Next, randomly assign the remaining shards for i in range(num_users): if len(idx_shard) == 0: continue shard_size = random_shard_size[i] if shard_size > len(idx_shard): shard_size = len(idx_shard) rand_set = set(np.random.choice(idx_shard, shard_size, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) else: for i in range(num_users): shard_size = random_shard_size[i] rand_set = set(np.random.choice(idx_shard, shard_size, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) if len(idx_shard) > 0: # Add the leftover shards to the client with minimum images: shard_size = len(idx_shard) # Add the remaining shard to the client with lowest data k = min(dict_users, key=lambda x: len(dict_users.get(x))) rand_set = set(np.random.choice(idx_shard, shard_size, replace=False)) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[k] = np.concatenate( (dict_users[k], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) return dict_users def cifar_iid(dataset, num_users, args): """ Sample I.I.D. client data from CIFAR10 dataset :param dataset: :param num_users: :return: dict of image index """ torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) num_items = int(len(dataset) / num_users) # dict_users? 0~100 50000 100 . indx list dict_users, all_idxs = {}, [i for i in range(len(dataset))] for i in range(num_users): dict_users[i] = set(np.random.choice(all_idxs, num_items, replace=False)) all_idxs = list(set(all_idxs) - dict_users[i]) return dict_users def imagenet_noniid(dataset, num_users, args, class_num=2): """ Sample non-I.I.D client data from CIFAR10 dataset :param dataset: :param num_users: :return: """ #num_shards -> / num_imgs -> .but imagenet . / # idxs torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) # . #idx_shards -> n(n .) -> 2 x 100 = 200 #num_imgs -> . 5/100 =500, 2 500 num_shards, num_imgs = num_users*class_num, int(len(dataset)/num_users/class_num) idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) # labels = dataset.train_labels.numpy() labels = np.array(dataset.targets) # sort labels idxs = np.argsort(labels) class_count = [0 for i in range(num_shards)] for i in labels: class_count[i] += 1 accumulate_class_count = [0 for i in range(num_shards)] for c in range(num_shards): if c==0: accumulate_class_count[c] = class_count[0] else: accumulate_class_count[c] = accumulate_class_count[c-1] + class_count[c] idx_shuffle = np.random.permutation(idx_shard) client_class_set = [] for i in range(num_users): user_class_set = idx_shuffle[i*class_num:(i+1)*class_num] client_class_set.append(user_class_set) for class_seed in user_class_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[accumulate_class_count[class_seed] -class_count[class_seed] :accumulate_class_count[class_seed]]), axis=0) return dict_users,client_class_set def cifar_noniid(dataset, num_users, args, class_num=2): """ Sample non-I.I.D client data from CIFAR10 dataset :param dataset: :param num_users: :return: """ torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) random.seed(args.seed) np.random.seed(args.seed) # . #idx_shards -> n(n .) -> 2 x 100 = 200 #num_imgs -> . 5/100 =500, 2 500 num_shards, num_imgs = num_users*class_num, int(len(dataset)/num_users/class_num) idx_shard = [i for i in range(num_shards)] dict_users = {i: np.array([]) for i in range(num_users)} idxs = np.arange(num_shards * num_imgs) # labels = dataset.train_labels.numpy() labels = np.array(dataset.targets) #sort_index = np.argsort(labels) # sort labels idxs_labels = np.vstack((idxs, labels)) idxs_labels = idxs_labels[:, idxs_labels[1, :].argsort()] idxs = idxs_labels[0, :] user_classs_dict = [] # divide and assign for i in range(num_users): # 200 2 . rand_set = set(np.random.choice(idx_shard, class_num, replace=False)) if class_num > 1 and i != num_users-1: while dataset.targets[idxs[list(rand_set)[1] * num_imgs]] == dataset.targets[idxs[list(rand_set)[0] *num_imgs]]: rand_set = set(np.random.choice(idx_shard, class_num, replace=False)) #print(dataset.targets[idxs[list(rand_set)[1] * num_imgs]]) #print(dataset.targets[idxs[list(rand_set)[0] * num_imgs]]) #print('\t') user_classs_dict.append(rand_set) idx_shard = list(set(idx_shard) - rand_set) for rand in rand_set: dict_users[i] = np.concatenate( (dict_users[i], idxs[rand * num_imgs:(rand + 1) * num_imgs]), axis=0) # for data_idx, j in enumerate(dict_users[i]): # print(i, data_idx, dataset.targets[int(j)]) return dict_users, user_classs_dict if __name__ == '__main__': dataset_train = datasets.MNIST('./data/mnist/', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) num = 100 d = mnist_noniid(dataset_train, num)
37.561772
151
0.608353
9d3ca477c6b29581c9b909f6a0a67fb1fa79ccca
2,502
py
Python
codeforcesRating/codeforcesRating.py
gaurav512/Python-Scripts
46483ab09cccef380c8425d6924507e029745479
[ "MIT" ]
3
2020-05-23T14:31:35.000Z
2020-11-12T12:56:08.000Z
codeforcesRating/codeforcesRating.py
gaurav512/Python-Scripts
46483ab09cccef380c8425d6924507e029745479
[ "MIT" ]
null
null
null
codeforcesRating/codeforcesRating.py
gaurav512/Python-Scripts
46483ab09cccef380c8425d6924507e029745479
[ "MIT" ]
null
null
null
#! /usr/bin/python3 # Author: gaurav512 ''' Script written to scrape basic information about a Codeforces profile given the user id Usage: Enter the userid as command line argument OR as the input after running the following in terminal- python3 codeforces.py [userid] ''' import requests, bs4, sys if __name__ == '__main__': main()
30.144578
136
0.691847
9d3e62b9c9792273ad0f8b50076e62ff7aa9fb5b
566
py
Python
tests/test_combinator.py
BrunoSanchez/capsule_N1
a5ee3b74afc27de1a954ae2f9f96c278a4723226
[ "BSD-3-Clause" ]
12
2017-04-13T06:49:42.000Z
2019-11-19T09:27:43.000Z
tests/test_combinator.py
BrunoSanchez/capsule_N1
a5ee3b74afc27de1a954ae2f9f96c278a4723226
[ "BSD-3-Clause" ]
56
2017-09-05T16:00:57.000Z
2020-11-20T18:02:58.000Z
tests/test_combinator.py
BrunoSanchez/capsule_N1
a5ee3b74afc27de1a954ae2f9f96c278a4723226
[ "BSD-3-Clause" ]
5
2017-10-08T16:55:40.000Z
2020-09-22T14:04:53.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # test_combinator.py # # Copyright 2020 QuatroPe # # This file is part of ProperImage (https://github.com/quatrope/ProperImage) # License: BSD-3-Clause # Full Text: https://github.com/quatrope/ProperImage/blob/master/LICENSE.txt # """ test_combinator module from ProperImage for analysis of astronomical images Written by Bruno SANCHEZ PhD of Astromoy - UNC bruno@oac.unc.edu.ar Instituto de Astronomia Teorica y Experimental (IATE) UNC Cordoba - Argentina Of 301 """
17.151515
76
0.740283
9d3f7a7d27e1b7136efc12dc236457c627b3164e
1,025
py
Python
ch09-linear_model/src/score_card.py
ahitboyZBW/book-ml-sem
73208e7e492c9cbe82c4aaa6459a41e3ac1317be
[ "MIT" ]
137
2020-10-26T11:11:46.000Z
2022-03-29T01:21:22.000Z
ch09-linear_model/src/score_card.py
zengzhongjie/book-ml-sem
5d452a427db5ee65538d968ba5b938af013bb87c
[ "MIT" ]
4
2021-01-18T08:57:04.000Z
2021-07-29T02:39:00.000Z
ch09-linear_model/src/score_card.py
zengzhongjie/book-ml-sem
5d452a427db5ee65538d968ba5b938af013bb87c
[ "MIT" ]
46
2020-10-26T11:11:57.000Z
2022-03-08T00:15:32.000Z
''' parameter --------- df:woe,logit logitsklearn, return ------ Score example: df= cal_score(df,logit) '''
21.808511
77
0.559024
9d41431a104dca3b80f9642ad172c2f1314cf033
3,790
py
Python
Tools/ecl_ekf/batch_process_logdata_ekf.py
lgarciaos/Firmware
26dba1407bd1fbc65c23870a22fed904afba6347
[ "BSD-3-Clause" ]
4,224
2015-01-02T11:51:02.000Z
2020-10-27T23:42:28.000Z
Tools/ecl_ekf/batch_process_logdata_ekf.py
choudhary0parivesh/Firmware
02f4ad61ec8eb4f7906dd06b4eb1fd6abb994244
[ "BSD-3-Clause" ]
11,736
2015-01-01T11:59:16.000Z
2020-10-28T17:13:38.000Z
Tools/ecl_ekf/batch_process_logdata_ekf.py
choudhary0parivesh/Firmware
02f4ad61ec8eb4f7906dd06b4eb1fd6abb994244
[ "BSD-3-Clause" ]
11,850
2015-01-02T14:54:47.000Z
2020-10-28T16:42:47.000Z
#! /usr/bin/env python3 """ Runs process_logdata_ekf.py on the .ulg files in the supplied directory. ulog files are skipped from the analysis, if a corresponding .pdf file already exists (unless the overwrite flag was set). """ # -*- coding: utf-8 -*- import argparse import os, glob from process_logdata_ekf import process_logdata_ekf if __name__ == '__main__': main()
43.563218
125
0.656201
9d429d9ff49854612f73350299d50ebaeb16c00a
1,468
py
Python
goodok_mlu/trackers/neptune.py
roma-goodok/ml_utils
c1d6630021a519102b5c4e029cecccdd8a0da946
[ "MIT" ]
null
null
null
goodok_mlu/trackers/neptune.py
roma-goodok/ml_utils
c1d6630021a519102b5c4e029cecccdd8a0da946
[ "MIT" ]
null
null
null
goodok_mlu/trackers/neptune.py
roma-goodok/ml_utils
c1d6630021a519102b5c4e029cecccdd8a0da946
[ "MIT" ]
1
2021-03-29T13:15:02.000Z
2021-03-29T13:15:02.000Z
import inspect import warnings from pathlib import Path
30.583333
92
0.632834
9d438aadf58244488ff98e5078d8104573590578
3,099
py
Python
pkgs/sdk-pkg/src/genie/libs/sdk/libs/abstracted_libs/iosxr/subsection.py
jbronikowski/genielibs
200a34e5fe4838a27b5a80d5973651b2e34ccafb
[ "Apache-2.0" ]
94
2018-04-30T20:29:15.000Z
2022-03-29T13:40:31.000Z
pkgs/sdk-pkg/src/genie/libs/sdk/libs/abstracted_libs/iosxr/subsection.py
jbronikowski/genielibs
200a34e5fe4838a27b5a80d5973651b2e34ccafb
[ "Apache-2.0" ]
67
2018-12-06T21:08:09.000Z
2022-03-29T18:00:46.000Z
pkgs/sdk-pkg/src/genie/libs/sdk/libs/abstracted_libs/iosxr/subsection.py
jbronikowski/genielibs
200a34e5fe4838a27b5a80d5973651b2e34ccafb
[ "Apache-2.0" ]
49
2018-06-29T18:59:03.000Z
2022-03-10T02:07:59.000Z
# Python import logging from os import path # Abstract from genie.abstract import Lookup # Parser from genie.libs import parser from genie.metaparser.util.exceptions import SchemaEmptyParserError # unicon from unicon.eal.dialogs import Statement, Dialog log = logging.getLogger(__name__) def save_device_information(device, **kwargs): """Install the commit packages. This is for IOSXR devices. Args: Mandatory: device (`obj`) : Device object. Returns: True: Result is PASSED False: Result is PASSX Raises: None Example: >>> save_device_information(device=Device()) """ # Checking the config-register has 0x2 # if not configure 0x2 # RP/0/RSP1/CPU0:PE1#admin config-register 0x2 if device.is_ha: conn = device.active else: conn = device # Install commit ( when thre are package to bring up features) # from admin prompt conn.admin_execute('install commit') def get_default_dir(device): """ Get the default directory of this device Args: Mandatory: device (`obj`) : Device object. Returns: default_dir (`str`): Default directory of the system Raises: Exception Example: >>> get_default_dir(device=device) """ try: lookup = Lookup.from_device(device) parsed_dict = lookup.parser.show_platform.Dir(device=device).parse() if ":" in parsed_dict['dir']['dir_name']: default_dir = parsed_dict['dir']['dir_name'] else: default_dir = '' except SchemaEmptyParserError as e: raise Exception("No output when executing 'dir' command") from e except Exception as e: raise Exception("Unable to execute 'dir' command") from e # Return default_dir to caller log.info("Default directory on '{d}' is '{dir}'".format(d=device.name, dir=default_dir)) return default_dir def configure_replace(device, file_location, timeout=60, file_name=None): """Configure replace on device Args: device (`obj`): Device object file_location (`str`): File location timeout (`int`): Timeout value in seconds file_name (`str`): File name Returns: None Raises: pyATS Results """ if file_name: file_location = '{}{}'.format( file_location, file_name) try: # check if file exist device.execute.error_pattern.append('.*Path does not exist.*') device.execute("dir {}".format(file_location)) except Exception: raise Exception("File {} does not exist".format(file_location)) dialog = Dialog([ Statement(pattern=r'\[no\]', action='sendline(y)', loop_continue=True, continue_timer=False)]) device.configure("load {}\ncommit replace".format(file_location), timeout=timeout, reply=dialog)
26.042017
77
0.601162
9d4487b1ae1496a3f2089388dee11fd461798de0
2,933
py
Python
whisper_scalability/plot.py
Evalir/research
0128cdc7c3cecaad4cc057886fd84e79b78f6b9c
[ "MIT" ]
42
2019-08-03T18:04:47.000Z
2022-02-28T14:24:56.000Z
whisper_scalability/plot.py
Evalir/research
0128cdc7c3cecaad4cc057886fd84e79b78f6b9c
[ "MIT" ]
88
2019-10-03T23:11:12.000Z
2022-03-30T05:28:44.000Z
whisper_scalability/plot.py
Evalir/research
0128cdc7c3cecaad4cc057886fd84e79b78f6b9c
[ "MIT" ]
3
2019-09-03T17:19:39.000Z
2021-12-27T16:53:44.000Z
import matplotlib.pyplot as plt import numpy as np from labellines import labelLines # # Trying to get interpolation to work but getting error: # # ValueError: The number of derivatives at boundaries does not match: expected 1, got 0+0 # from scipy.interpolate import make_interp_spline, BSpline # n_users = np.array([100, 10000, 1000000]) # bw_case8 = np.array([1, 1.5, 98.1]) # # 300 represents number of points to make between T.min and T.max # n_users_new = np.linspace(n_users.min(), n_users.max(), 300) # spl8 = make_interp_spline(n_users, bw_case8, k=3) # type: BSpline # bw_case8_smooth = spl8(n_users_new) # plt.plot(n_users_new, bw_case8_smooth, label='case 8', linewidth=2) n_users = [100, 10000, 1000000] bw_case1 = [1, 1, 1] bw_case2 = [97.7, 9.5*1000, 935.7*1000] bw_case3 = [49.3, 4.*10008, 476.8*1000] bw_case4 = [1, 1.5, 98.1] bw_case5 = [10.7, 978, 95.5*1000] bw_case6 = [21.5, 1.9*1000, 190.9*1000] bw_case7 = [3.9, 284.8, 27.8*1000] bw_case8 = [1, 1.5, 98.1] plt.xlim(100, 10**6) plt.ylim(1, 10**6) plt.plot(n_users, bw_case1, label='case 1', linewidth=4, linestyle='dashed') plt.plot(n_users, bw_case2, label='case 2', linewidth=4, linestyle='dashed') plt.plot(n_users, bw_case3, label='case 3', linewidth=4, linestyle='dashed') plt.plot(n_users, bw_case4, label='case 4', linewidth=4, linestyle='dashed') plt.plot(n_users, bw_case5, label='case 5', linewidth=4) plt.plot(n_users, bw_case6, label='case 6', linewidth=4) plt.plot(n_users, bw_case7, label='case 7', linewidth=4) plt.plot(n_users, bw_case8, label='case 8', linewidth=4) #labelLines(plt.gca().get_lines(),zorder=0) case1 = "Case 1. Only receiving messages meant for you [naive case]" case2 = "Case 2. Receiving messages for everyone [naive case]" case3 = "Case 3. All private messages go over one discovery topic [naive case]" case4 = "Case 4. All private messages partitioned into shards [naive case]" case5 = "Case 5. Case 4 + All messages passed through bloom filter" case6 = "Case 6. Case 5 + Benign duplicate receives" case7 = "Case 7. Case 6 + Mailserver case under good conditions with small bloom fp and mostly offline" case8 = "Case 8. Waku - No metadata protection with bloom filter and one node connected; static shard" plt.xlabel('number of users (log)') plt.ylabel('mb/day (log)') plt.legend([case1, case2, case3, case4, case5, case6, case7, case8], loc='upper left') plt.xscale('log') plt.yscale('log') plt.axhspan(0, 10, facecolor='0.2', alpha=0.2, color='blue') plt.axhspan(10, 30, facecolor='0.2', alpha=0.2, color='green') plt.axhspan(30, 100, facecolor='0.2', alpha=0.2, color='orange') plt.axhspan(100, 10**6, facecolor='0.2', alpha=0.2, color='red') #plt.axvspan(0, 10**2+3, facecolor='0.2', alpha=0.5) #plt.axvspan(10**4, 10**4+10**2, facecolor='0.2', alpha=0.5) #plt.axvspan(10**6, 10**6+10**4, facecolor='0.2', alpha=0.5) #for i in range(0, 5): # plt.axhspan(i, i+.2, facecolor='0.2', alpha=0.5) plt.show()
41.309859
103
0.703034
9d44910e8c82debe9ba07f0a00ed736a65d972a9
2,000
py
Python
polydomino/search.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
polydomino/search.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
polydomino/search.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
# import the necessary packages import argparse import cv2 import numpy as np from polydomino.colordescriptor import ColorDescriptor from polydomino.searcher import Searcher # construct the argument parser and parse the arguments ap = argparse.ArgumentParser() ap.add_argument( "-i", "--index", required=True, help="Path to where the computed index will be stored", ) ap.add_argument("-q", "--query", required=True, help="Path to the query image") ap.add_argument( "-fm", "--features", required=True, help="Method to get features of pics", ) ap.add_argument( "-sm", "--searcher", required=True, help="Method to search pics", ) # ap.add_argument("-r", "--result-path", required=True, help="Path to the result path") args = vars(ap.parse_args()) # initialize the image descriptor cd = ColorDescriptor((8, 12, 3)) # load the query image and describe it query = cv2.imread(args["query"]) if args["features"] == "color-moments": features = cd.color_moments(query) elif args["features"] == "hsv-describe": features = cd.hsv_describe(query) elif args["features"] == "gray-matrix": features = cd.gray_matrix(query) elif args["features"] == "humoments": features = cd.humoments(query) elif args["features"] == "ahash": features = cd.ahash(query) elif args["features"] == "phash": features = cd.phash(query) elif args["features"] == "dhash": features = cd.dhash(query) elif args["features"] == "mse": features = cd.mse(query) elif args["features"] == "hog": features = cd.hog(query) else: print("Sorry, we don't support this method.") exit(1) # perform the search method = args["searcher"] searcher = Searcher(args["index"]) results = searcher.search(features, method) print(results) # display the query cv2.namedWindow("Query", 0) cv2.resizeWindow("Query", 640, 480) cv2.imshow("Query", query) # loop over the results for (score, resultID) in results: result = cv2.imread(resultID) cv2.imshow("Result", result) cv2.waitKey(0)
30.30303
87
0.6935
9d44ee135064ae4d96e5b84d0ccf61816f50cfb1
1,253
py
Python
irekua_dev_tools/cli.py
CONABIO-audio/irekua-dev-tools
87485592b7d4793c5e1f6eda2e00247810bfc99c
[ "BSD-4-Clause" ]
null
null
null
irekua_dev_tools/cli.py
CONABIO-audio/irekua-dev-tools
87485592b7d4793c5e1f6eda2e00247810bfc99c
[ "BSD-4-Clause" ]
null
null
null
irekua_dev_tools/cli.py
CONABIO-audio/irekua-dev-tools
87485592b7d4793c5e1f6eda2e00247810bfc99c
[ "BSD-4-Clause" ]
null
null
null
import click from irekua_dev_tools.utils import load_config from irekua_dev_tools.utils import get_working_directory from irekua_dev_tools.utils import load_environment_variables from irekua_dev_tools.utils import load_repository_info from . import git from . import dev from . import config from . import db from .extra import clean cli.add_command(dev.cli) cli.add_command(git.cli) cli.add_command(config.cli) cli.add_command(db.cli) cli.add_command(clean)
29.833333
73
0.751796
9d451d7664d2140e40043248faa30a6b327e59ee
2,880
py
Python
optimism/test/testMinimizeScalar.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
null
null
null
optimism/test/testMinimizeScalar.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
1
2022-03-12T00:01:12.000Z
2022-03-12T00:01:12.000Z
optimism/test/testMinimizeScalar.py
btalamini/optimism
023e1b2a0b137900a7517e4c7ac5056255cf7bbe
[ "MIT" ]
3
2021-12-23T19:53:31.000Z
2022-03-27T23:12:03.000Z
from optimism.JaxConfig import * from optimism import MinimizeScalar from optimism.test import TestFixture from optimism.material import J2Plastic df = jacfwd(f) if __name__ == '__main__': TestFixture.unittest.main()
34.698795
95
0.515278
9d46c2badf319d174f35513f77f2237bac4308e9
2,709
py
Python
anima/ui/review_dialog.py
MehmetErer/anima
f92ae599b5a4c181fc8e131a9ccdde537e635303
[ "MIT" ]
101
2015-02-08T22:20:11.000Z
2022-03-21T18:56:42.000Z
anima/ui/review_dialog.py
MehmetErer/anima
f92ae599b5a4c181fc8e131a9ccdde537e635303
[ "MIT" ]
23
2016-11-30T08:33:21.000Z
2021-01-26T12:11:12.000Z
anima/ui/review_dialog.py
MehmetErer/anima
f92ae599b5a4c181fc8e131a9ccdde537e635303
[ "MIT" ]
27
2015-01-03T06:49:45.000Z
2021-12-28T03:30:54.000Z
# -*- coding: utf-8 -*- """ import datetime from anima import defaults defaults.timing_resolution = datetime.timedelta(minutes=10) from anima.ui import SET_PYSIDE2 SET_PYSIDE2() from anima.ui.widgets.review import APPROVE, REQUEST_REVISION from anima.ui import review_dialog review_dialog.UI(review_type=REQUEST_REVISION) """ from anima.ui.lib import QtCore, QtWidgets from anima.ui.base import ui_caller, AnimaDialogBase def UI(app_in=None, executor=None, **kwargs): """ :param app_in: A Qt Application instance, which you can pass to let the UI be attached to the given applications event process. :param executor: Instead of calling app.exec_ the UI will call this given function. It also passes the created app instance to this executor. """ return ui_caller(app_in, executor, ReviewDialog, **kwargs)
29.769231
80
0.655592
9d47cbe33f2156eddf7fcd553e506425ed8d1607
12,737
py
Python
squares/dsl/interpreter.py
Vivokas20/SKEL
d8766ceaa8aa766ea3580bbb61b747572ebfe77c
[ "Apache-2.0" ]
1
2022-01-20T14:57:30.000Z
2022-01-20T14:57:30.000Z
squares/dsl/interpreter.py
Vivokas20/SKEL
d8766ceaa8aa766ea3580bbb61b747572ebfe77c
[ "Apache-2.0" ]
null
null
null
squares/dsl/interpreter.py
Vivokas20/SKEL
d8766ceaa8aa766ea3580bbb61b747572ebfe77c
[ "Apache-2.0" ]
null
null
null
import math import re from itertools import permutations from logging import getLogger from typing import Tuple, Union from rpy2 import robjects from rpy2.rinterface_lib.embedded import RRuntimeError from z3 import BitVecVal from .. import util, results from ..decider import RowNumberInfo from ..program import LineInterpreter from ..tyrell.interpreter import InterpreterError logger = getLogger('squares.interpreter')
42.885522
176
0.544241
9d4857e094a5401228d6f2b6484e13982abb69b9
7,869
py
Python
src/data_preparation/process_airbnb_data.py
ejgenc/Data-Analysis_Istanbul-Health-Tourism
34b9838690ca640c6a7a60f63eb2f51983ec46ef
[ "MIT" ]
1
2020-11-18T15:27:53.000Z
2020-11-18T15:27:53.000Z
src/data_preparation/process_airbnb_data.py
ejgenc/Data-Analysis_Istanbul-Health-Tourism
34b9838690ca640c6a7a60f63eb2f51983ec46ef
[ "MIT" ]
null
null
null
src/data_preparation/process_airbnb_data.py
ejgenc/Data-Analysis_Istanbul-Health-Tourism
34b9838690ca640c6a7a60f63eb2f51983ec46ef
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ ------ What is this file? ------ This script targets the istanbul_airbnb_raw.csv file. It cleans the .csv file in order to prepare it for further analysis """ #%% --- Import Required Packages --- import os import pathlib from pathlib import Path # To wrap around filepaths import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy.stats import iqr from src.helper_functions.data_preparation_helper_functions import sample_and_read_from_df from src.helper_functions.data_preparation_helper_functions import report_null_values #%% --- Set proper directory to assure integration with doit --- abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) #%% --- Import Data --- import_fp = Path("../../data/raw/istanbul_airbnb_raw.csv") airbnb = pd.read_csv(import_fp, encoding='utf-8-sig') #%% --- Get a general sense of the datasets --- # Shape of the data print(airbnb.shape) # 16251 rows, 16 cols # First few lines print(airbnb.head()) #Not much info, let's print the columns airbnb_columns = airbnb.columns #%% --- Clean the dataset: Relevant - Irrelevant Columns --- airbnb_unwanted_columns = ["neighbourhood_group", "last_review", "number_of_reviews", "minimum_nights", "reviews_per_month", "calculated_host_listings_count", "availability_365"] #Drop unwanted columns airbnb.drop(columns = airbnb_unwanted_columns, axis = 1, inplace = True) # Check shape now print(airbnb.shape) # 16251 rows, 9 cols #%% --- Clean the dataset: Further Troubleshooting --- #I want to be able to randomly take n samples from each dataset and then print them #on a clean format to see the potential problems #If i had something to test for, i'd strive for somewhat of a representative sample size #while sampling. However, i think the best to do here would be to print what i can read #because i don't have any computational measure to test for something: sample_and_read_from_df(airbnb, 20) #SPOTTED PROBLEMS: # dataframe airbnb column neigborhood is not properly formatted: # Formatting fixes # should actually be called "district_tr" # There should be an accompanying "district_eng" column. #%% --- Fix column naming --- #I can use either dataframe.columns attribute to assign new columns #or i can pass a dictionary with old names/new names into dataframe.rename() airbnb_columns_in_english = ["listing_id", "name", "host_id", "host_name", "district_eng", "latitude", "longitude", "room_type", "price"] airbnb.columns = airbnb_columns_in_english #%% --- One-off fix for districts named "Eyup" --- eyup_mask = airbnb.loc[:,"district_eng"] == "Eyup" airbnb.loc[eyup_mask, "district_eng"] = "Eyupsultan" #%% --- Add a new "district_tr" column airbnb.loc[:,"district_tr"] = airbnb.loc[:,"district_eng"].str.lower().str.capitalize() #I will be using df.map() method, so i'll need two dataframes: one for existing values - tr values #and one for exixsting values - eng values unique_districts_tr_corrected = ["Kadky", "Fatih", "Tuzla", "Gaziosmanpaa", "skdar", "Adalar", "Saryer", "Arnavutky", "Silivri", "atalca", "Kkekmece", "Beyolu", "ile", "Kartal", "ili", "Beikta", "Kathane", "Esenyurt", "Bahelievler", "Avclar", "Baakehir", "Sultangazi", "Maltepe", "Sancaktepe", "Beykoz", "Bykekmece", "Bakrky", "Pendik", "Baclar", "Esenler", "Beylikdz", "mraniye", "Eypsultan", "ekmeky", "Ataehir", "Sultanbeyli", "Zeytinburnu", "Gngren", "Bayrampaa"] unique_districts_eng_corrected = ["Kadikoy", "Fatih", "Tuzla", "Gaziosmanpasa", "Uskudar", "Adalar", "Sariyer", "Arnavutkoy", "Silivri", "Catalca", "Kucukcekmece", "Beyoglu", "Sile", "Kartal", "Sisli", "Besiktas", "Kagithane", "Esenyurt", "Bahcelievler", "Avcilar", "Basaksehir", "Sultangazi", "Maltepe", "Sancaktepe", "Beykoz", "Buyukcekmece", "Bakirkoy", "Pendik", "Bagcilar", "Esenler", "Beylikduzu", "Umraniye", "Eyupsultan", "Cekmekoy", "Atasehir", "Sultanbeyli", "Zeytinburnu", "Gungoren", "Bayrampasa"] airbnb_unique_districts_dict_tr = dict(zip(unique_districts_eng_corrected, unique_districts_tr_corrected)) airbnb.loc[:,"district_tr"] = airbnb.loc[:,"district_tr"].map(airbnb_unique_districts_dict_tr) #%% --- EDA: Explore Missing Values --- #Let's check null values first null_report = report_null_values(airbnb) #We have so few missing values, dropping them won't affect our quality at all. # Let's do exactly that. airbnb.dropna(axis = 0, inplace = True) #%% --- EDA: Explore Datatype agreement --- #Now, let's check data type agreement for each column. data_types = airbnb.dtypes # The data types with "object" warrant further investigation #They could just be strings, but mixed data types also show as "object" # Let's select "object" data types and query once again. airbnb_dtype_object_only = airbnb.select_dtypes(include = ["object"]) print(airbnb_dtype_object_only.columns) #As all the column names seem to accomodate only strings, we can be #pretty sure that showing up as object is correct behavior. #%% --- EDA - Explore Outliers in price --- fig = plt.figure(figsize = (19.20, 10.80)) ax = fig.add_subplot(1,1,1) ax.hist(x = airbnb.loc[:,"price"], bins = 20) #Our histogram is very wonky. It's obvious that there are some issues. Let's see: # It doesn't make sense for a airbnb room to cost 0 liras. That's for sure. print(airbnb.loc[:,"price"].sort_values().head(20)) #What about maxes? print(airbnb.loc[:,"price"].sort_values(ascending = False).head(30)) #There are some very high maxes, that's for sure. Let's try to make heads and tails of #what these houses are: possible_outliers = airbnb.sort_values(by = "price", axis = 0, ascending = False).head(30) # A qualitative analysis of such houses show that there really aappears to be a problem #with pricing. Let's calculate the IQR to drop the outliers: #Calculate the iqr price_iqr = iqr(airbnb.loc[:,"price"], axis = 0) #Calculate q3 and q1 q1 = airbnb["price"].quantile(0.25) q3 = airbnb["price"].quantile(0.75) #Create min and max mask min_mask = airbnb.loc[:,"price"] >= q1 - (1.5 * price_iqr) max_mask = airbnb.loc[:,"price"] <= q3 + (1.5 * price_iqr) #Combine masks combined_mask = min_mask & max_mask #Create subset airbnb_within_iqr = airbnb.loc[combined_mask] fig = plt.figure(figsize = (19.20, 10.80)) ax = fig.add_subplot(1,1,1) ax.hist(x = airbnb_within_iqr.loc[:,"price"], bins = 20) #Alright, limiting our data to an IQR appears to omit a whole lot of data. #I am sure that some of the outliers we have are errors of entry. #However, the only ones that we can conclusively prove are the entries that are rated at 0. #We'll drop these #Create a mask for zeros zero_mask = (airbnb.loc[:,"price"] > 0) #Filter using the mask airbnb = airbnb.loc[zero_mask,:] # #%% --- Export Data --- export_fp = Path("../../data/processed/istanbul_airbnb_processed.csv") airbnb.to_csv(export_fp, encoding='utf-8-sig', index = False)
38.199029
106
0.641632
9d4ac45e3a86ef95dc9b84f578aa4f83f679c9b6
3,695
py
Python
py/shure.py
dman776/micboard
166987dfad529dc35654f402fdbbde7f16b60f77
[ "MIT" ]
44
2019-08-30T02:51:59.000Z
2022-03-15T13:47:18.000Z
py/shure.py
dman776/micboard
166987dfad529dc35654f402fdbbde7f16b60f77
[ "MIT" ]
21
2019-09-01T16:17:22.000Z
2022-02-01T15:47:55.000Z
py/shure.py
dman776/micboard
166987dfad529dc35654f402fdbbde7f16b60f77
[ "MIT" ]
16
2019-09-01T01:40:09.000Z
2022-03-15T17:12:28.000Z
import time import select import queue import atexit import sys import logging from networkdevice import ShureNetworkDevice from channel import chart_update_list, data_update_list # from mic import WirelessMic # from iem import IEM NetworkDevices = [] DeviceMessageQueue = queue.Queue() # @atexit.register # atexit.register(on_exit) # signal.signal(signal.SIGTERM, on_exit) # signal.signal(signal.SIGINT, on_exit)
29.56
97
0.603518
9d4cf41e0ad2b23397f4ee9bbfa792895ce345d0
277
py
Python
alviscorpus/status.py
Bibliome/alviscorpus
ec7bf45efbc6a3cd864fda48e0066090cfb93313
[ "MIT" ]
null
null
null
alviscorpus/status.py
Bibliome/alviscorpus
ec7bf45efbc6a3cd864fda48e0066090cfb93313
[ "MIT" ]
null
null
null
alviscorpus/status.py
Bibliome/alviscorpus
ec7bf45efbc6a3cd864fda48e0066090cfb93313
[ "MIT" ]
null
null
null
import enum QUEUED = Status.QUEUED STARTED = Status.STARTED FINISHED = Status.FINISHED ERROR = Status.ERROR
17.3125
26
0.67148
9d4d51c8583e8a9e583bab2100d07d40d0fad696
977
py
Python
01_simulate_competition_experiment.py
stevenshave/competition-label-affinity
2383309e852954a1bd88c6364087c3d57e7acec0
[ "MIT" ]
null
null
null
01_simulate_competition_experiment.py
stevenshave/competition-label-affinity
2383309e852954a1bd88c6364087c3d57e7acec0
[ "MIT" ]
null
null
null
01_simulate_competition_experiment.py
stevenshave/competition-label-affinity
2383309e852954a1bd88c6364087c3d57e7acec0
[ "MIT" ]
null
null
null
"""Simulation 1:1:1 comptition binding""" import numpy as np from high_accuracy_binding_equations import * # We can choose to work in a common unit, typically nM, or uM, as long as all # numbers are in the same unit, the result is valid. We assume uM for all # concentrations bellow. # First, lets simulate a few single points from three different systems # p, l and i are protrin, ligand and inhibitor concentrations respectively # kdpl is the dissociation constant (KD) of the protein-ligand interaction # kdpi is the dissociation constant (KD) of the protein-inhibitor interaction # We can either expand the dictionary with ** as shown in the example with # system1, or we can pass arguments to competition_pl with the following # singature: competition_pl(p, l , i, kdpl, kdpi) system1={"p":1, "l":2, "i":10, "kdpl":0.1, "kdpi":10} pl_conc=competition_pl(**system1) print(f"pl_conc = {round(pl_conc,4)}, fraction ligand bound = {round(pl_conc/system1['l'],4)}")
36.185185
95
0.745138
9d50b18aa63e6f3b4b6406ced31f91d878b8ae26
773
py
Python
e_vae_proj/qualitative/mnist/btcvae/gen_train.py
kuangdai/disentangling-vae
9a5f9da44a82a2c643b7289c4945320621b86247
[ "MIT" ]
1
2021-06-30T08:58:49.000Z
2021-06-30T08:58:49.000Z
e_vae_proj/qualitative/mnist/btcvae/gen_train.py
kuangdai/disentangling-vae
9a5f9da44a82a2c643b7289c4945320621b86247
[ "MIT" ]
null
null
null
e_vae_proj/qualitative/mnist/btcvae/gen_train.py
kuangdai/disentangling-vae
9a5f9da44a82a2c643b7289c4945320621b86247
[ "MIT" ]
null
null
null
import numpy as np from pathlib import Path import sys if __name__ == '__main__': # absolute path my_path = Path(__file__).parent.resolve().expanduser() main_path = my_path.parent.parent seed = 0 nlat = 10 alpha = 1.0 beta = 6.0 gamma = 1.0 epochs = 100 # cmd template cmd = f'python main.py btcvae_mnist_{epochs}ep/z{nlat}_a{alpha}_b{beta}_g{gamma}_s{seed} -s {seed} ' \ f'--checkpoint-every 25 -d mnist -e {epochs} -b 64 --lr 0.0005 ' \ f'-z {nlat} -l btcvae --btcvae-A {alpha} --btcvae-B {beta} --btcvae-G {gamma} ' \ f'--no-test\n' with open(my_path / f'train_beta{beta}.sh', 'w') as f: unnormalized_beta = beta * nlat f.write(cmd)
28.62963
107
0.564036
9d5197f8d1796538860fe2f3fb98a1af46c8ef38
3,331
py
Python
tests/test_load.py
tom3131/simfin
8ef5a2b0dd67ddcd3f8b92b5cd45c1a483eeada1
[ "MIT" ]
231
2019-09-25T13:30:00.000Z
2022-03-26T08:00:47.000Z
tests/test_load.py
tom3131/simfin
8ef5a2b0dd67ddcd3f8b92b5cd45c1a483eeada1
[ "MIT" ]
11
2019-10-01T14:50:15.000Z
2022-02-23T10:35:47.000Z
tests/test_load.py
tom3131/simfin
8ef5a2b0dd67ddcd3f8b92b5cd45c1a483eeada1
[ "MIT" ]
36
2019-09-30T16:14:48.000Z
2022-03-19T19:59:30.000Z
########################################################################## # # Unit tests (pytest) for load.py # ########################################################################## # SimFin - Simple financial data for Python. # www.simfin.com - www.github.com/simfin/simfin # See README.md for instructions and LICENSE.txt for license details. ########################################################################## import simfin as sf from simfin.datasets import iter_all_datasets ########################################################################## # Test configuration. # Set data directory. sf.set_data_dir(data_dir='~/simfin_data/') # Load API key or use default 'free' if key-file doesn't exist. sf.load_api_key(path='~/simfin_api_key.txt', default_key='free') # Set number of days before refreshing data from SimFin server. refresh_days = 30 ########################################################################## # Helper functions. def _create_kwargs(variant, market): """ Create a dict with keyword args for sf.load() functions that take variant, market and refresh_days as kwargs. """ kwargs = \ { 'variant': variant, 'market': market, 'refresh_days': refresh_days, } return kwargs ########################################################################## # Test functions. def test_load(): """Test simfin.bulk.load()""" for dataset, variant, market in iter_all_datasets(): sf.load(dataset=dataset, variant=variant, market=market, refresh_days=refresh_days) def test_load_income(): """Test simfin.bulk.load_income()""" for dataset, variant, market in iter_all_datasets(datasets='income'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_income(**kwargs) sf.load_income_banks(**kwargs) sf.load_income_insurance(**kwargs) def test_load_balance(): """Test simfin.bulk.load_balance()""" for dataset, variant, market in iter_all_datasets(datasets='balance'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_balance(**kwargs) sf.load_balance_banks(**kwargs) sf.load_balance_insurance(**kwargs) def test_load_cashflow(): """Test simfin.bulk.load_cashflow()""" for dataset, variant, market in iter_all_datasets(datasets='cashflow'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_cashflow(**kwargs) sf.load_cashflow_banks(**kwargs) sf.load_cashflow_insurance(**kwargs) def test_load_shareprices(): """Test simfin.bulk.load_shareprices()""" for dataset, variant, market in iter_all_datasets(datasets='shareprices'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_shareprices(**kwargs) def test_load_companies(): """Test simfin.bulk.load_companies()""" for dataset, variant, market in iter_all_datasets(datasets='companies'): kwargs = _create_kwargs(variant=variant, market=market) sf.load_companies(**kwargs) def test_load_industries(): """Test simfin.bulk.load_industries()""" sf.load_industries(refresh_days=refresh_days) ##########################################################################
31.424528
78
0.576403
9d5477ef2956d3615e64662b0ab23440b2cbff69
447
py
Python
lab/__init__.py
patel-zeel/lab
cc0df2c03196863041e78fa4179445341e86958c
[ "MIT" ]
36
2018-05-08T20:54:21.000Z
2022-02-24T09:15:58.000Z
lab/__init__.py
patel-zeel/lab
cc0df2c03196863041e78fa4179445341e86958c
[ "MIT" ]
4
2021-06-24T11:59:29.000Z
2022-02-01T15:51:30.000Z
lab/__init__.py
patel-zeel/lab
cc0df2c03196863041e78fa4179445341e86958c
[ "MIT" ]
3
2021-02-14T13:00:26.000Z
2021-12-10T08:55:17.000Z
import sys from plum import Dispatcher B = sys.modules[__name__] # Allow both import styles. dispatch = Dispatcher() # This dispatch namespace will be used everywhere. from .generic import * from .shaping import * from .linear_algebra import * from .random import * from .numpy import * from .types import * from .control_flow import * # Fix namespace issues with `B.bvn_cdf` simply by setting it explicitly. B.bvn_cdf = B.generic.bvn_cdf
22.35
75
0.756152
9d556827bb836c6e6f6530ec156f0777935a5dea
1,514
py
Python
async_nbgrader/apps/exportapp.py
IllumiDesk/async_nbgrader
427e1b634277c043a1ed9f00bf7e417e0f611aca
[ "Apache-2.0" ]
2
2021-06-23T17:58:22.000Z
2021-09-27T10:00:01.000Z
async_nbgrader/apps/exportapp.py
IllumiDesk/async-nbgrader
427e1b634277c043a1ed9f00bf7e417e0f611aca
[ "Apache-2.0" ]
6
2021-06-17T21:40:24.000Z
2021-11-11T17:48:15.000Z
async_nbgrader/apps/exportapp.py
IllumiDesk/async-nbgrader
427e1b634277c043a1ed9f00bf7e417e0f611aca
[ "Apache-2.0" ]
2
2021-06-10T18:16:22.000Z
2021-06-17T02:52:45.000Z
# coding: utf-8 from nbgrader.api import Gradebook from nbgrader.apps import ExportApp as BaseExportApp from traitlets import Instance from traitlets import Type from traitlets import default from ..plugins import CanvasCsvExportPlugin from ..plugins import CustomExportPlugin aliases = { "log-level": "Application.log_level", "db": "CourseDirectory.db_url", "to": "CanvasCsvExportPlugin.to", "canvas_import": "CanvasCsvExportPlugin.canvas_import", "exporter": "ExportApp.plugin_class", "assignment": "CanvasCsvExportPlugin.assignment", "student": "CanvasCsvExportPlugin.student", "course": "CourseDirectory.course_id", } flags = {}
27.527273
78
0.703435
9d55833e8ac84841e916071829ab4546156cae04
2,810
py
Python
django_ocr_server/conf.py
shmakovpn/django_ocr_server
4d694629c39c18a6c13bcdfafdb8258b78e5a859
[ "Apache-2.0" ]
17
2019-12-04T03:14:56.000Z
2022-03-27T07:05:19.000Z
django_ocr_server/conf.py
shmakovpn/django_ocr_server
4d694629c39c18a6c13bcdfafdb8258b78e5a859
[ "Apache-2.0" ]
1
2020-04-17T07:32:30.000Z
2020-04-17T07:32:30.000Z
django_ocr_server/conf.py
shmakovpn/django_ocr_server
4d694629c39c18a6c13bcdfafdb8258b78e5a859
[ "Apache-2.0" ]
5
2020-03-16T10:43:03.000Z
2021-07-14T14:43:49.000Z
""" django_ocr_server/conf.py +++++++++++++++++++++++++ The settings manager for **django_ocr_server**. Usage: .. code-block:: python from django_ocr_server.conf import ocr_settings # Next line will print a value of **OCR_TESSERACT_LANG** # using the variable from the Django's *settings.py* file # if the variable is set there. # Or the default value of **OCR_TESSERACT_LANG** from # *django_ocr_server/default_settings.py* otherwise. print(ocr_settings.OCR_TESSERACT_LANG) | Author: shmakovpn <shmakovpn@yandex.ru> | Date: 2021-01-20 """ from typing import List from datetime import timedelta from django.conf import settings as _s import django_ocr_server.default_settings as _ds ocr_settings: DjangoOcrSettings = DjangoOcrSettings() """The instance of settings manager of **django_ocr_server**"""
29.893617
79
0.687544
9d56f0959997626e16345a92ca50c1b01d2ed5e6
105
py
Python
ibms_project/sfm/apps.py
mohdbakhrayba/ibms
029e1f3bf108586289c65bb1d547f86851f9494f
[ "Apache-2.0" ]
null
null
null
ibms_project/sfm/apps.py
mohdbakhrayba/ibms
029e1f3bf108586289c65bb1d547f86851f9494f
[ "Apache-2.0" ]
null
null
null
ibms_project/sfm/apps.py
mohdbakhrayba/ibms
029e1f3bf108586289c65bb1d547f86851f9494f
[ "Apache-2.0" ]
null
null
null
from django.apps import AppConfig
17.5
33
0.704762
9d5735cba5c6faf4bc0915b6d346541d85cbb4ac
15,960
py
Python
torsion/model/symmetry_function.py
hnlab/TorsionNet
e81ab624f1340765345b34240a049a8cc5f4d581
[ "MIT" ]
15
2021-01-15T01:54:26.000Z
2022-03-31T16:00:52.000Z
torsion/model/symmetry_function.py
hnlab/TorsionNet
e81ab624f1340765345b34240a049a8cc5f4d581
[ "MIT" ]
2
2021-07-21T22:42:09.000Z
2021-11-22T06:39:20.000Z
torsion/model/symmetry_function.py
hnlab/TorsionNet
e81ab624f1340765345b34240a049a8cc5f4d581
[ "MIT" ]
6
2021-01-16T04:07:17.000Z
2022-02-23T02:11:49.000Z
import math import numpy as np from openeye import oechem from torsion.inchi_keys import get_torsion_oeatom_list, get_torsion_oebond def GetPairwiseDistanceMatrix(icoords, jcoords): ''' input: two sets of coordinates, icoords, jcoords; each of which are a list of OEDoubleArray(3) containing x, y, and z component output: xij - the x component of the distance matrix yij - the y component of the distance matrix zij - the z component of the distance matrix rij - the distance matrix rij2 - square of the distance matrix ''' nullRet = [None, None, None, None, None] ni = len(icoords) nj = len(jcoords) try: iArrayX = np.array([c[0] for c in icoords]) iArrayY = np.array([c[1] for c in icoords]) iArrayZ = np.array([c[2] for c in icoords]) iArrayX = np.repeat(iArrayX, nj) iArrayY = np.repeat(iArrayY, nj) iArrayZ = np.repeat(iArrayZ, nj) iArrayX = iArrayX.reshape(ni, nj) iArrayY = iArrayY.reshape(ni, nj) iArrayZ = iArrayZ.reshape(ni, nj) jArrayX = np.array([c[0] for c in jcoords]) jArrayY = np.array([c[1] for c in jcoords]) jArrayZ = np.array([c[2] for c in jcoords]) jArrayX = np.repeat(jArrayX, ni) jArrayY = np.repeat(jArrayY, ni) jArrayZ = np.repeat(jArrayZ, ni) jArrayX = jArrayX.reshape(nj, ni) jArrayY = jArrayY.reshape(nj, ni) jArrayZ = jArrayZ.reshape(nj, ni) jArrayX = np.transpose(jArrayX) jArrayY = np.transpose(jArrayY) jArrayZ = np.transpose(jArrayZ) ijArrayX = jArrayX - iArrayX ijArrayY = jArrayY - iArrayY ijArrayZ = jArrayZ - iArrayZ rijArraySq = (ijArrayX * ijArrayX) + (ijArrayY * ijArrayY) + (ijArrayZ * ijArrayZ) rijArray = np.sqrt(rijArraySq) return ijArrayX, ijArrayY, ijArrayZ, rijArray, rijArraySq except: return nullRet def GetThetaIJKMatrix(iCoords, jCoords, kCoords): ''' Using the given input, calculates a matrix of angles ijk iCoords -> OEDoubleArray containing x, y, and z component of the reference coordinate jCoordsList -> list of N OEDoubleArrays, each OEDoubleArray is of size 3 kCoordsList -> list of M OEDoubleArrays, each OEDoubleArray is of size 3 return a N-by-M matrix of angle theta_ijk ''' jiArrayX, jiArrayY, jiArrayZ, rjiArray, rjiArraySq \ = GetPairwiseDistanceMatrix(jCoords, iCoords) jkArrayX, jkArrayY, jkArrayZ, rjkArray, rjkArraySq \ = GetPairwiseDistanceMatrix(jCoords, kCoords) if jCoords == kCoords: rjkArray = np.eye(len(jCoords)) + np.sqrt(rjkArraySq) else: rjkArray = np.sqrt(rjkArraySq) if jCoords == iCoords: rjiArray = np.eye(len(jCoords)) + np.sqrt(rjiArraySq) else: rjiArray = np.sqrt(rjiArraySq) jiArrayX = jiArrayX / rjiArray jiArrayY = jiArrayY / rjiArray jiArrayZ = jiArrayZ / rjiArray jkArrayX = jkArrayX / rjkArray jkArrayY = jkArrayY / rjkArray jkArrayZ = jkArrayZ / rjkArray dotProduct = (jiArrayX * jkArrayX) + (jiArrayY * jkArrayY) + (jiArrayZ * jkArrayZ) dotProduct = np.select([dotProduct <= -1.0, dotProduct >= 1.0, np.abs(dotProduct) < 1.0], [-0.999, 0.999, dotProduct]) theta_ijk = np.arccos(dotProduct) return theta_ijk def GetThetaIJKLMatrix(mol, iAtoms, jAtom, kAtom, lAtoms, transform=True): ''' Using the given input, calculates a matrix of torsion angles around jk jAtom, kAtom -> OEAtombase, middle two atoms of the torsion iAtoms -> list of N OEAtombase lAtoms -> list of M OEAtombase return a N-by-M matrix of angle theta_ijkl ''' torsions = [] for iAtom in iAtoms: for lAtom in lAtoms: tor_angle = oechem.OEGetTorsion(mol, iAtom, jAtom, kAtom, lAtom) if not transform: torsions.append(tor_angle) else: torsions.append((math.pi + tor_angle) / 4.0) theta_ijkl = np.array(torsions) theta_ijkl = theta_ijkl.reshape(len(iAtoms), len(lAtoms)) return theta_ijkl
40.507614
111
0.553446
9d5757c4a8bf60547e9dd883852158e386888c4b
6,785
py
Python
recommendation/recommendation.py
Jackson-Y/Machine-Learning
ea0a8c65ce93501d51fad2d73300dc0a37e2c1d8
[ "MIT" ]
4
2017-08-17T02:11:45.000Z
2017-09-25T00:46:13.000Z
recommendation/recommendation.py
Jackson-Y/Machine-Learning
ea0a8c65ce93501d51fad2d73300dc0a37e2c1d8
[ "MIT" ]
null
null
null
recommendation/recommendation.py
Jackson-Y/Machine-Learning
ea0a8c65ce93501d51fad2d73300dc0a37e2c1d8
[ "MIT" ]
null
null
null
""" Candidate generation & LTR Learning to Ranking""" # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import argparse from operator import itemgetter from math import sqrt import pandas as pd import pymysql from sklearn.model_selection import train_test_split # from sklearn.metrics.pairwise import pairwise_distances # from sklearn.metrics import mean_squared_error FLAGS = None def main(_): """main function""" user_cf = UserBasedCF(20, 10) user_cf.load_data() user_cf.calc_user_similarity() recommended_articled = user_cf.recommendation(FLAGS.uid) print(recommended_articled[0:10]) out = PrintArticles(recommended_articled[0:10]) out.output() # user_cf.evaluate() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--uid", type=int, default=80871, help="The user who is going to be recommended articles." ) parser.add_argument( "--n", type=int, default=10, help="Number of recommended articles." ) FLAGS, unparsed = parser.parse_known_args() print("{} {}".format(sys.argv[0], unparsed)) print(FLAGS) main(FLAGS)
36.875
115
0.592336
9d59344dd6f980db538f0cd26f71a979f4b914e4
1,592
py
Python
orchestration/dags/twitter_streaming.py
amommendes/tweetstream
ef09928a4f3344210c597388332d18a53149bb41
[ "Apache-2.0" ]
null
null
null
orchestration/dags/twitter_streaming.py
amommendes/tweetstream
ef09928a4f3344210c597388332d18a53149bb41
[ "Apache-2.0" ]
null
null
null
orchestration/dags/twitter_streaming.py
amommendes/tweetstream
ef09928a4f3344210c597388332d18a53149bb41
[ "Apache-2.0" ]
null
null
null
from datetime import timedelta from airflow import DAG from airflow.utils.dates import days_ago from airflow.operators.python_operator import PythonOperator from tweetstream.consumers.twitter_streaming import TwitterStreamingConsumer from tweetstream.clients.spark import SparkClient default_args = { "owner": "tweeetstream", "depends_on_past": False, "start_date": days_ago(1), "email": ["tweetstream@team.com"], "email_on_failure": False, "email_on_retry": False, "retries": 1, "retry_delay": timedelta(minutes=5), } dag = DAG( dag_id="twitter_streaming", default_args=default_args, description="Tweets Streaming Consumer", schedule_interval=timedelta(days=1), ) start_job_task = PythonOperator( dag=dag, task_id="start_streaming", python_callable=main, execution_timeout=None, )
30.615385
105
0.692839
9d59ba6b91ae4d068be41f7bfb3634b177f8ade2
217
py
Python
tests/expr/expr09.py
ktok07b6/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
83
2015-11-30T09:59:13.000Z
2021-08-03T09:12:28.000Z
tests/expr/expr09.py
jesseclin/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
4
2017-02-10T01:43:11.000Z
2020-07-14T03:52:25.000Z
tests/expr/expr09.py
jesseclin/polyphony
657c5c7440520db6b4985970bd50547407693ac4
[ "MIT" ]
11
2016-11-18T14:39:15.000Z
2021-02-23T10:05:20.000Z
from polyphony import testbench test()
16.692308
38
0.654378
9d5d5a4039dbeb89722961536cacebbce65b4ec3
1,059
py
Python
setup.py
fg1/ipynb_format
58dc276fca4f1fbb179d7e84ce41d59663d011c2
[ "BSD-3-Clause" ]
null
null
null
setup.py
fg1/ipynb_format
58dc276fca4f1fbb179d7e84ce41d59663d011c2
[ "BSD-3-Clause" ]
null
null
null
setup.py
fg1/ipynb_format
58dc276fca4f1fbb179d7e84ce41d59663d011c2
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python from setuptools import setup, find_packages from codecs import open with open('README.rst', 'r', 'utf-8') as fd: long_description = fd.read() setup(name='ipynb_format', version='0.1.1', description='A code formatter for python code in ipython notebooks', long_description=long_description, url='https://github.com/fg1/ipynb_format', author='fg1', license='BSD', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', ], keywords='ipython notebook', packages=find_packages(), install_requires=['yapf'], entry_points={ 'console_scripts': [ 'ipynb_format=ipynb_format:cli', ], }, )
31.147059
74
0.588291
9d5e11c9180f5fb664452c5f269722fdf9e6a4db
140
py
Python
Homework/Homework2/2_3.py
404nofound/CS521-Info-Str-Python
2ead691c519f29713419e79d600a2d2a1c87d1c1
[ "Apache-2.0" ]
null
null
null
Homework/Homework2/2_3.py
404nofound/CS521-Info-Str-Python
2ead691c519f29713419e79d600a2d2a1c87d1c1
[ "Apache-2.0" ]
null
null
null
Homework/Homework2/2_3.py
404nofound/CS521-Info-Str-Python
2ead691c519f29713419e79d600a2d2a1c87d1c1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- feet = eval(input("Enter a value for feet: ")) meter = feet * 0.305 print (feet, "feet is %.4f meters" %(meter))
17.5
46
0.585714
9d5e75f8cb60c04470b0412ae613020592c5aad7
16,072
py
Python
nn/units/ceecnet.py
feevos/ceecnet
9dc76f8cd16d44b264cae8c5846eefb8fcf6162d
[ "BSD-3-Clause", "MIT" ]
45
2020-09-07T01:19:44.000Z
2022-03-15T14:44:20.000Z
nn/units/ceecnet.py
xautdestiny/ceecnet
897cd5c128ffd85369732d1cac82a6ddc7643afa
[ "MIT", "BSD-3-Clause" ]
10
2020-10-02T10:14:47.000Z
2021-10-19T09:34:14.000Z
nn/units/ceecnet.py
xautdestiny/ceecnet
897cd5c128ffd85369732d1cac82a6ddc7643afa
[ "MIT", "BSD-3-Clause" ]
14
2020-09-29T02:46:18.000Z
2021-09-27T07:13:47.000Z
from mxnet import gluon from mxnet.gluon import HybridBlock from ceecnet.nn.layers.conv2Dnormed import * from ceecnet.utils.get_norm import * from ceecnet.nn.layers.attention import * # ======= Definitions for CEEC unit v2 (replace concatenations with Fusion ========================= # -------------------------------------- helper functions ------------------------------------------- # -------------------------------------------------------------------------------------------------------------------
45.659091
186
0.66059
9d6069e2ba0263497aa9f814cd08018989e4473f
1,928
py
Python
reviewboard/reviews/search_indexes.py
znick/reviewboard
f32320b267efcdf2feff1661eabe57f99ef490a7
[ "MIT" ]
1
2018-08-23T09:19:02.000Z
2018-08-23T09:19:02.000Z
reviewboard/reviews/search_indexes.py
klpyang/reviewboard
d7dabf36e5b492f18048dd7084026bf99d6933c5
[ "MIT" ]
null
null
null
reviewboard/reviews/search_indexes.py
klpyang/reviewboard
d7dabf36e5b492f18048dd7084026bf99d6933c5
[ "MIT" ]
1
2021-11-23T15:25:44.000Z
2021-11-23T15:25:44.000Z
from django.db.models import Q from haystack import indexes from reviewboard.reviews.models import ReviewRequest
39.346939
76
0.705394
19b2caec75b18b0aa3e0597b5caa0b0c55ce8cad
7,365
py
Python
gpss/transaction.py
martendo/gpss.py
52c6781bd8a65b651381ed11da9e31ddfae6e313
[ "MIT" ]
2
2021-11-28T08:48:02.000Z
2022-03-09T16:19:06.000Z
gpss/transaction.py
martendo/gpss.py
52c6781bd8a65b651381ed11da9e31ddfae6e313
[ "MIT" ]
null
null
null
gpss/transaction.py
martendo/gpss.py
52c6781bd8a65b651381ed11da9e31ddfae6e313
[ "MIT" ]
null
null
null
from .statement import Statement, StatementType from .event import Event from ._helpers import debugmsg, simulation_error
41.610169
81
0.509029
19b32c34ea299311dabdf3d678344f668cb1f1a4
234
py
Python
stone/config.py
ichengplus/mpmatrix
41cf1ac48abe9aef1b92f1174157608a60e30da0
[ "Apache-2.0" ]
null
null
null
stone/config.py
ichengplus/mpmatrix
41cf1ac48abe9aef1b92f1174157608a60e30da0
[ "Apache-2.0" ]
3
2021-03-10T16:23:59.000Z
2022-02-13T12:02:00.000Z
stone/config.py
ichengplus/mpmatrix
41cf1ac48abe9aef1b92f1174157608a60e30da0
[ "Apache-2.0" ]
null
null
null
REDIS_URL = "redis://redis:6379/0" DEBUG = True TESTING = False JOBS = [ { 'id': 'actoken_refresh', 'func': 'actoken:refresh', 'args': None, 'trigger': 'interval', 'seconds': 7000 } ]
15.6
34
0.504274
19b3b12f916bfa71763e1f5555965f2dffc3a223
727
py
Python
utils/update.py
adavila0703/warehouse-hub
29778d605e372d6d6b41d05a3637edefb047f0bc
[ "MIT" ]
null
null
null
utils/update.py
adavila0703/warehouse-hub
29778d605e372d6d6b41d05a3637edefb047f0bc
[ "MIT" ]
null
null
null
utils/update.py
adavila0703/warehouse-hub
29778d605e372d6d6b41d05a3637edefb047f0bc
[ "MIT" ]
null
null
null
from shutil import copy, copytree, rmtree import pathlib import os import time def update(): """Update is a script to auto update all the files that the user is using""" print('Warehouse Hub is updating, do not close this window...') time.sleep(3) print('Applying patch...') time.sleep(1) copy('C:/warehousehub/warehousehub.exe', pathlib.Path().absolute()) rmtree(f'{pathlib.Path().absolute()}/templates') copytree('C:/warehousehub/templates', f'{pathlib.Path().absolute()}/templates') print('Patch Completed!') print('Warehouse Hub is restarting, please wait...') os.system(f'cmd /c "{pathlib.Path().absolute()}/warehousehub.exe"') if __name__ == '__main__': update()
25.068966
83
0.672627
19b3f6aeb28dd07d2770e4ea600d2a99c0c06e65
3,134
py
Python
train_video.py
jacke121/MBMD
2daf5edb4fb40ee652baead4f9332ca00fa111a5
[ "MIT" ]
220
2018-09-17T15:42:54.000Z
2021-09-13T13:14:22.000Z
train_video.py
jacke121/MBMD
2daf5edb4fb40ee652baead4f9332ca00fa111a5
[ "MIT" ]
12
2018-09-19T09:30:42.000Z
2019-07-01T04:03:51.000Z
train_video.py
jacke121/MBMD
2daf5edb4fb40ee652baead4f9332ca00fa111a5
[ "MIT" ]
60
2018-09-18T00:29:50.000Z
2021-02-22T03:55:19.000Z
import functools import tensorflow as tf from core import trainer_video, input_reader from core.model_builder import build_man_model from google.protobuf import text_format from object_detection.builders import input_reader_builder from object_detection.protos import input_reader_pb2 from object_detection.protos import model_pb2 from object_detection.protos import pipeline_pb2 from object_detection.protos import train_pb2 import os ''' lijun's code modify bb to conv1*2 conv3*2 l2 normalization to match ''' os.environ["CUDA_VISIBLE_DEVICES"]="0" #os.environ["CUDA_VISIBLE_DEVICES"]="0" tf.logging.set_verbosity(tf.logging.INFO) flags = tf.app.flags flags.DEFINE_string('train_dir', 'model/dump', 'Directory to save the checkpoints and training summaries.') flags.DEFINE_string('pipeline_config_path', 'model/ssd_mobilenet_video.config', 'Path to a pipeline_pb2.TrainEvalPipelineConfig config ' 'file. If provided, other configs are ignored') flags.DEFINE_string('train_config_path', '', 'Path to a train_pb2.TrainConfig config file.') flags.DEFINE_string('input_config_path', '', 'Path to an input_reader_pb2.InputReader config file.') flags.DEFINE_string('model_config_path', '', 'Path to a model_pb2.DetectionModel config file.') flags.DEFINE_string('image_root', '/home/xiaobai/Documents/ILSVRC2014_DET_train/image/ILSVRC2014_DET_train', 'Root path to input images') flags.DEFINE_string('video_root', '/home/xiaobai/Documents/ILSVRC2015/', 'Root path to input videos') flags.DEFINE_string('image_tfrecord', './train_seq.record', 'Path to image tfrecord.') flags.DEFINE_string('video_tfrecord', './train_vid.record', 'Path to video tfrecord') FLAGS = flags.FLAGS def get_configs_from_pipeline_file(): """Reads training configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads training config from file specified by pipeline_config_path flag. Returns: model_config: model_pb2.DetectionModel train_config: train_pb2.TrainConfig input_config: input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model.ssd train_config = pipeline_config.train_config input_config = pipeline_config.train_input_reader return model_config, train_config, input_config if __name__ == '__main__': # update moving average tf.app.run()
35.613636
128
0.744735
19b4fbf622ea3b5c2b94266b63984fdd1ea1e133
460
py
Python
config.py
icewing1996/biaffine-parser
f5a4ece7ba9a087d81b76dd6a8ea6aa7d90c6c82
[ "MIT" ]
1
2019-04-02T14:42:20.000Z
2019-04-02T14:42:20.000Z
config.py
icewing1996/biaffine-parser
f5a4ece7ba9a087d81b76dd6a8ea6aa7d90c6c82
[ "MIT" ]
null
null
null
config.py
icewing1996/biaffine-parser
f5a4ece7ba9a087d81b76dd6a8ea6aa7d90c6c82
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*-
15.862069
24
0.558696
19b7ef31e8ac32e464e2b7f9641c6ad98cd6de46
3,301
py
Python
conf_dblp.py
AmiraKetfi/ScientificProductScraper
c700fb579ac47266e76ec834ccbd8674abeaff50
[ "MIT" ]
4
2018-04-04T12:10:59.000Z
2020-02-22T17:26:14.000Z
conf_dblp.py
AmiraKetfi/ScientificProductScraper
c700fb579ac47266e76ec834ccbd8674abeaff50
[ "MIT" ]
null
null
null
conf_dblp.py
AmiraKetfi/ScientificProductScraper
c700fb579ac47266e76ec834ccbd8674abeaff50
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat Mar 17 23:01:40 2018 @author: pc """ import scholarly,re,urllib.request,nltk import bs4 as bs # ============================================================================= # #Problme les derniere conf ne se rajoute pas # ============================================================================= # pass url_deb='https://dblp.uni-trier.de/db/conf/' url_deb2='http://dblp.uni-trier.de/db/conf/3dim/3dimpvt2012.html' url_deb3='http://dblp.uni-trier.de/db/conf/3dpvt/' #Timeline_of_conferences(url_deb2) publication_conf_dblp(url_deb3) #find_ComputerScienceConferences_Workshops_names_DBLP(url_deb)
38.383721
124
0.499546
19b8ce0aa97bf71df30c5a8e086263306534c4c7
4,540
py
Python
src/robot.py
FROG3160/FRC2018-ARWING
6635274d79839ea92d8591af2c8e51f8e1112ec1
[ "MIT" ]
1
2019-01-15T00:47:16.000Z
2019-01-15T00:47:16.000Z
src/robot.py
FROG3160/FRC2018-ARWING
6635274d79839ea92d8591af2c8e51f8e1112ec1
[ "MIT" ]
18
2018-02-15T01:07:03.000Z
2018-04-10T00:25:59.000Z
src/robot.py
FROG3160/FRC2018-ARWING
6635274d79839ea92d8591af2c8e51f8e1112ec1
[ "MIT" ]
4
2018-01-31T01:53:44.000Z
2018-02-16T00:30:14.000Z
#!/usr/bin/env python3 """ Main code for Robot """ import wpilib import robotmap from wpilib import Joystick from subsystems.drivetrain import DriveTrain as Drive from subsystems.grabber import cubeGrabber from subsystems.elevator import Elevator from subsystems.climber import Climber from subsystems.autonomous import Autonomous from wpilib.sendablechooser import SendableChooser # from robotpy_ext.common_drivers.navx import AHRS if __name__ == "__main__": wpilib.run(Robot)
32.661871
83
0.652643
19b94d7c9d394f09ecf7228b67004f998dd55522
1,764
py
Python
api/attomized_avm.py
johncoleman83/attom_python_client
2fad572162f481a71cccf6003da4cbd8ec4477d4
[ "MIT" ]
null
null
null
api/attomized_avm.py
johncoleman83/attom_python_client
2fad572162f481a71cccf6003da4cbd8ec4477d4
[ "MIT" ]
null
null
null
api/attomized_avm.py
johncoleman83/attom_python_client
2fad572162f481a71cccf6003da4cbd8ec4477d4
[ "MIT" ]
1
2020-11-20T19:28:36.000Z
2020-11-20T19:28:36.000Z
#!/usr/bin/env python3 """ ATTOM API https://api.developer.attomdata.com """ import requests from urllib.parse import quote, urlencode from api import api PATH = "attomavm/detail" def get_avm_by_address(number_street, city_state): """ API request to get attomavm/detail """ params = urlencode( { "address1": number_street, "address2": city_state, } ) url = "{}/{}?{}".format(api.ATTOM_URL, PATH, params) r = requests.get(url, headers=api.headers) return r.json()
27.138462
77
0.620181
19b9c7cf12ec5b8b173b1bc2764d7bfc2577385f
7,064
py
Python
idmap/models.py
tkhyn/django-idmap
383124fc4bd537d053f9d4c0d02a498f66831baa
[ "BSD-2-Clause" ]
1
2021-04-24T16:35:15.000Z
2021-04-24T16:35:15.000Z
idmap/models.py
tkhyn/django-idmap
383124fc4bd537d053f9d4c0d02a498f66831baa
[ "BSD-2-Clause" ]
null
null
null
idmap/models.py
tkhyn/django-idmap
383124fc4bd537d053f9d4c0d02a498f66831baa
[ "BSD-2-Clause" ]
1
2021-02-27T14:45:48.000Z
2021-02-27T14:45:48.000Z
import django from django.db import models from django.db.models.base import ModelBase from django.utils import six from .manager import IdMapManager from . import tls # thread local storage META_VALUES = { 'use_strong_refs': False, 'multi_db': False }
33.799043
80
0.58876
19bbd9ee5d1a69e647b6029452a9fd29e645da59
1,345
py
Python
test_search_in_rotated_sorted_array.py
jaebradley/leetcode.py
64634cc7d0e975ddd163f35acb18cc92960b8eb5
[ "MIT" ]
null
null
null
test_search_in_rotated_sorted_array.py
jaebradley/leetcode.py
64634cc7d0e975ddd163f35acb18cc92960b8eb5
[ "MIT" ]
2
2019-11-13T19:55:49.000Z
2019-11-13T19:55:57.000Z
test_search_in_rotated_sorted_array.py
jaebradley/leetcode.py
64634cc7d0e975ddd163f35acb18cc92960b8eb5
[ "MIT" ]
null
null
null
from unittest import TestCase from search_in_rotated_sorted_array import Solution
37.361111
72
0.684758
19bd0b651a92c3989a6dcd3e14655ea86b1f4a83
2,501
py
Python
pyrfu/pyrf/ts_skymap.py
ablotekar/irfu-python
740cb51ca9ce2ab0d62cb6fef3a7a722d430d79e
[ "MIT" ]
2
2020-11-27T11:35:42.000Z
2021-07-17T11:08:10.000Z
pyrfu/pyrf/ts_skymap.py
ablotekar/irfu-python
740cb51ca9ce2ab0d62cb6fef3a7a722d430d79e
[ "MIT" ]
1
2021-12-04T07:55:48.000Z
2021-12-10T12:45:27.000Z
pyrfu/pyrf/ts_skymap.py
ablotekar/irfu-python
740cb51ca9ce2ab0d62cb6fef3a7a722d430d79e
[ "MIT" ]
2
2021-07-17T11:08:12.000Z
2021-07-18T18:41:42.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # 3rd party imports import numpy as np import xarray as xr __author__ = "Louis Richard" __email__ = "louisr@irfu.se" __copyright__ = "Copyright 2020-2021" __license__ = "MIT" __version__ = "2.3.7" __status__ = "Prototype" def ts_skymap(time, data, energy, phi, theta, **kwargs): r"""Creates a skymap of the distribution function. Parameters ---------- time : ndarray List of times. data : ndarray Values of the distribution function. energy : ndarray Energy levels. phi : ndarray Azimuthal angles. theta : ndarray Elevation angles. Other Parameters --------------- **kwargs Hash table of keyword arguments with : * energy0 : ndarray Energy table 0 (odd time indices). * energy1 : ndarray Energy table 1 (even time indices). * esteptable : ndarray Time series of the stepping table between energies (burst). Returns ------- out : xarray.Dataset Skymap of the distribution function. """ energy0, energy1, esteptable = [None] * 3 energy0_ok, energy1_ok, esteptable_ok = [False] * 3 if energy is None: if "energy0" in kwargs: energy0, energy0_ok = [kwargs["energy0"], True] if "energy1" in kwargs: energy1, energy1_ok = [kwargs["energy1"], True] if "esteptable" in kwargs: esteptable, esteptable_ok = [kwargs["esteptable"], True] if not energy0_ok and not energy1_ok and not esteptable_ok: raise ValueError("Energy input required") energy = np.tile(energy0, (len(esteptable), 1)) energy[esteptable == 1] = np.tile(energy1, (int(np.sum(esteptable)), 1)) if phi.ndim == 1: phi = np.tile(phi, (len(time), 1)) out_dict = {"data": (["time", "idx0", "idx1", "idx2"], data), "phi": (["time", "idx1"], phi), "theta": (["idx2"], theta), "energy": (["time", "idx0"], energy), "time": time, "idx0": np.arange(energy.shape[1]), "idx1": np.arange(phi.shape[1]), "idx2": np.arange(len(theta))} out = xr.Dataset(out_dict) if energy0_ok: out.attrs["energy0"] = energy0 if energy1_ok: out.attrs["energy1"] = energy1 if energy0_ok: out.attrs["esteptable"] = esteptable return out
26.892473
79
0.562575
19be0f2de874f8b441c89b5d8fd8cac69393789a
2,037
py
Python
src/log_utils.py
alexklwong/calibrated-backprojection-network
57dbec03c6da94ee0cd020b6de5f02e7e8ee726e
[ "Intel" ]
38
2021-08-28T06:01:25.000Z
2022-03-03T03:23:23.000Z
src/log_utils.py
alexklwong/calibrated-backprojection-network
57dbec03c6da94ee0cd020b6de5f02e7e8ee726e
[ "Intel" ]
14
2021-11-15T12:30:34.000Z
2022-03-30T14:03:16.000Z
src/log_utils.py
alexklwong/calibrated-backprojection-network
57dbec03c6da94ee0cd020b6de5f02e7e8ee726e
[ "Intel" ]
9
2021-10-19T23:45:07.000Z
2021-12-20T07:45:37.000Z
''' Author: Alex Wong <alexw@cs.ucla.edu> If you use this code, please cite the following paper: A. Wong, and S. Soatto. Unsupervised Depth Completion with Calibrated Backprojection Layers. https://arxiv.org/pdf/2108.10531.pdf @inproceedings{wong2021unsupervised, title={Unsupervised Depth Completion with Calibrated Backprojection Layers}, author={Wong, Alex and Soatto, Stefano}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={12747--12756}, year={2021} } ''' import os import torch import numpy as np from matplotlib import pyplot as plt def log(s, filepath=None, to_console=True): ''' Logs a string to either file or console Arg(s): s : str string to log filepath output filepath for logging to_console : bool log to console ''' if to_console: print(s) if filepath is not None: if not os.path.isdir(os.path.dirname(filepath)): os.makedirs(os.path.dirname(filepath)) with open(filepath, 'w+') as o: o.write(s + '\n') else: with open(filepath, 'a+') as o: o.write(s + '\n') def colorize(T, colormap='magma'): ''' Colorizes a 1-channel tensor with matplotlib colormaps Arg(s): T : torch.Tensor[float32] 1-channel tensor colormap : str matplotlib colormap ''' cm = plt.cm.get_cmap(colormap) shape = T.shape # Convert to numpy array and transpose if shape[0] > 1: T = np.squeeze(np.transpose(T.cpu().numpy(), (0, 2, 3, 1))) else: T = np.squeeze(np.transpose(T.cpu().numpy(), (0, 2, 3, 1)), axis=-1) # Colorize using colormap and transpose back color = np.concatenate([ np.expand_dims(cm(T[n, ...])[..., 0:3], 0) for n in range(T.shape[0])], axis=0) color = np.transpose(color, (0, 3, 1, 2)) # Convert back to tensor return torch.from_numpy(color.astype(np.float32))
26.802632
92
0.60972
19c214d222aa500c556609e883b1ff02ba286869
788
py
Python
add-two-numbers/add-two-numbers.py
shaurya-src/code-leet
f642b81eb7bead46c66404bd48ca74bdfeb2abbb
[ "MIT" ]
null
null
null
add-two-numbers/add-two-numbers.py
shaurya-src/code-leet
f642b81eb7bead46c66404bd48ca74bdfeb2abbb
[ "MIT" ]
null
null
null
add-two-numbers/add-two-numbers.py
shaurya-src/code-leet
f642b81eb7bead46c66404bd48ca74bdfeb2abbb
[ "MIT" ]
null
null
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next
28.142857
98
0.497462
19c251bd8c7eb79b25c470c6951dca0f932a8918
2,834
py
Python
likedtweets.py
PoliTwit1984/Politwitverse
837dd2d05b3977aa24a70f52a3b951ef22c51dc6
[ "MIT" ]
3
2022-01-05T07:12:14.000Z
2022-02-19T20:58:25.000Z
likedtweets.py
PoliTwit1984/Politwitverse
837dd2d05b3977aa24a70f52a3b951ef22c51dc6
[ "MIT" ]
25
2022-01-05T08:23:59.000Z
2022-02-07T01:25:39.000Z
likedtweets.py
PoliTwit1984/Politwitverse
837dd2d05b3977aa24a70f52a3b951ef22c51dc6
[ "MIT" ]
1
2022-02-01T22:39:57.000Z
2022-02-01T22:39:57.000Z
import time import re import tweepy import preprocessor as p import config import string consumer_key = config.consumer_key consumer_secret = config.consumer_secret access_token = config.access_token access_token_secret = config.access_token_secret bearer_token = config.bearer_token username = config.username password = config.password def clean_text(text): """ Function to clean the text. Parameters: text: the raw text as a string value that needs to be cleaned Returns: cleaned_text: the cleaned text as string """ # convert to lower case cleaned_text = text.lower() # remove HTML tags html_pattern = re.compile('<.*?>') cleaned_text = re.sub(html_pattern, '', cleaned_text) # remove punctuations cleaned_text = cleaned_text.translate( str.maketrans('', '', string.punctuation)) return cleaned_text.strip() client = tweepy.Client(bearer_token=bearer_token) list_id = "1467207384011526144" # all missouri legislators response = client.get_list_members(list_id, max_results = 100) users = response.data metadata = response.meta next_token = metadata.get("next_token") print(next_token) while next_token is not None: for user in users: string = str(user.name)+","+str(user.id)+","+str(user.username)+"\n" with open('moleglistmembership.txt', 'a') as f: f.write(string) response = client.get_list_members(list_id, pagination_token = next_token, max_results = 100) users = response.data metadata = response.meta next_token = metadata.get("next_token") print(next_token) # tweet_text = tweet.text # tweet_clean_text = clean_tweets(tweet.text) # tweet_created_at = tweet.created_at # tweet_clean_text = clean_text(tweet_clean_text) # print(tweet_clean_text) # print('\n') # print(tweet_created_at) # print('\n') # print('-----------------------------------------------------------------') # with open('molegmembership.txt', 'a') as f: # f.write(tweet_clean_text) # f.write('\n') # response = client.get_list_tweets(list_id, max_results=100)
26.485981
97
0.677135
19c32bbd1169664ffd8d06d663183110a2d5e53c
391
py
Python
src/app/migrations/0004_history_missed.py
deadlock-delegate/arkdelegates
8a5262f51b519ba3bc10094756c8866fc550df65
[ "MIT" ]
2
2018-05-22T13:47:09.000Z
2018-05-23T12:45:05.000Z
src/app/migrations/0004_history_missed.py
deadlock-delegate/arkdelegates
8a5262f51b519ba3bc10094756c8866fc550df65
[ "MIT" ]
21
2018-05-08T12:56:46.000Z
2020-06-05T18:59:38.000Z
src/app/migrations/0004_history_missed.py
deadlock-delegate/arkdelegates
8a5262f51b519ba3bc10094756c8866fc550df65
[ "MIT" ]
4
2018-05-04T15:00:59.000Z
2019-02-13T02:39:07.000Z
# Generated by Django 2.0.3 on 2018-03-14 09:59 from django.db import migrations, models
20.578947
59
0.595908
19c43d42b7108f348940b9fd8fc9fb33a8830e2c
2,112
py
Python
audclass.py
theunafraid/audiofeedback-prevention
0dd3e8ab7b5a65aff214e74b7bd7869366b1b7b5
[ "Apache-2.0" ]
1
2022-01-20T08:30:20.000Z
2022-01-20T08:30:20.000Z
audclass.py
theunafraid/audiofeedback-prevention
0dd3e8ab7b5a65aff214e74b7bd7869366b1b7b5
[ "Apache-2.0" ]
null
null
null
audclass.py
theunafraid/audiofeedback-prevention
0dd3e8ab7b5a65aff214e74b7bd7869366b1b7b5
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import numpy as np from tensorflow.python.ops.gen_batch_ops import batch from model import AudioClass from qrnn import QRNN from numpy.random import seed from numpy.random import randn from random import randint from lstmfcn import LSTM_FCN import librosa import os if __name__ == "__main__": main()
26.734177
78
0.588542
19c4cd4bbbc8cea75d64211787db92e8b023d09a
3,135
py
Python
pytanga/components/OpenConfig/routing/ospfv2/ospfv2Interface.py
renatoalmeidaoliveira/Pytanga
aa02f1c0f2573da1330d1d246ab780fa3be336a5
[ "MIT" ]
null
null
null
pytanga/components/OpenConfig/routing/ospfv2/ospfv2Interface.py
renatoalmeidaoliveira/Pytanga
aa02f1c0f2573da1330d1d246ab780fa3be336a5
[ "MIT" ]
null
null
null
pytanga/components/OpenConfig/routing/ospfv2/ospfv2Interface.py
renatoalmeidaoliveira/Pytanga
aa02f1c0f2573da1330d1d246ab780fa3be336a5
[ "MIT" ]
null
null
null
from pytanga.components import AbstractComponent
32.319588
94
0.500797
19c79aebe6cccec71cf534b0497f44d1a8496883
4,127
py
Python
python_implementation/matriz/quadrada.py
SousaPedro11/algoritmos
86a3601912778d120b9ec8094267c26a7eb6d153
[ "MIT" ]
null
null
null
python_implementation/matriz/quadrada.py
SousaPedro11/algoritmos
86a3601912778d120b9ec8094267c26a7eb6d153
[ "MIT" ]
null
null
null
python_implementation/matriz/quadrada.py
SousaPedro11/algoritmos
86a3601912778d120b9ec8094267c26a7eb6d153
[ "MIT" ]
null
null
null
import math from typing import List, Tuple if __name__ == '__main__': solucao_problema()
33.282258
100
0.628544
19c7ee6d99159a70af01f16f7e183bb9ec3972a5
7,017
py
Python
app_mongo.py
emmpets/MongoProject
cbef19b590503825158909703125b34c1bf536ec
[ "Apache-2.0" ]
null
null
null
app_mongo.py
emmpets/MongoProject
cbef19b590503825158909703125b34c1bf536ec
[ "Apache-2.0" ]
null
null
null
app_mongo.py
emmpets/MongoProject
cbef19b590503825158909703125b34c1bf536ec
[ "Apache-2.0" ]
null
null
null
from pymongo import MongoClient import pymongo from datetime import datetime,time import time from bson.code import Code mongo_client=MongoClient('mongodb://localhost:27017/') db=mongo_client.mydb db_col=db.things dbc = mongo_client.mydb.things print mongo_client print(db) print("connected") data = dbc.find() ans=True while ans: print(""" 1.How many unique users are there? 2.How many tweets (%) did the top 10 users (measured by the number of messages) publish? 3.What was the earliest and latest date (YYYY-MM-DD HH:MM:SS) that a message was published? 4.What is the mean time delta between all messages? 5.What is the mean length of a message? 6.What are the 10 most common unigram within the messages? 7.What are the 10 most common bigram within the messages? 8.What is the average number of hashtags (#) used within a message? 10.Exit/Quit """) ans = raw_input("What would you like to do? ") if ans == "1": print "The summary of all unique users is: ", first_querry() elif ans == "2": print("The percentage of the ALL messages of top ten user"), second_querry(), "%", elif ans == "3": print"The last message published on:", third_querry()[0] print"The earliest message published on:", third_querry()[1] elif ans == "4": print"The mean time delta between all messages is :", fourth_querry() elif ans == "5": print"The mean length of the messages is :", fifth_querry(data) elif ans == "6": print"The 10 most common unigrams within the messages are:", sixth_querry() elif ans == "7": print"The 10 most common bigrams within the messages are:", seventh_querry() elif ans == "8": print"The average number of hashtags (#) used within a message is:", eight_querry(data) elif ans == "9": ninth_querry() elif ans == "10": print("\n Goodbye") ans = None else: print("\n Not Valid Choice Try again")
30.11588
110
0.584865
19c9e0f683fb12bcf45633873b78ecba612bb09f
7,399
py
Python
theseus/util/serialize.py
shiplift/theseus
9324d67e6e0c6b93a7734a5531838c5a909a1424
[ "0BSD" ]
null
null
null
theseus/util/serialize.py
shiplift/theseus
9324d67e6e0c6b93a7734a5531838c5a909a1424
[ "0BSD" ]
null
null
null
theseus/util/serialize.py
shiplift/theseus
9324d67e6e0c6b93a7734a5531838c5a909a1424
[ "0BSD" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ serialize provide means to persist and recreate the currently known set of W_Tags and all shapes and transformations reachable from there. The rmarshal modules is used for serialization; the format is marshal_proto = ( int, # number of shapes [ # shape list ( # a shape int, # id (str, int), # tag [int], # structure: list of id's { # _hist (int, int) : # index, id int # count }, { # transformation_rules (int, int) : # index, id int # id } ) ], { (str, int) : # name arity int #id } ) The serialized tree is written to a '.docked' files """ import os.path from rpython.rlib.streamio import open_file_as_stream from rpython.rlib.rmarshal import get_marshaller, get_unmarshaller from rpython.rlib.debug import debug_start, debug_stop, debug_print from theseus.model import W_Tag from theseus.shape import in_storage_shape, CompoundShape marshal_proto = ( int, # number of shapes [ # shape list ( # a shape int, # id (str, int), # tag [int], # structure: list of id's { # _hist (int, int) : # index, id int # count }, { # transformation_rules (int, int) : # index, id int # id } ) ], { (str, int) : # name arity int #id } ) marshaller = get_marshaller(marshal_proto) unmarshaller = get_unmarshaller(marshal_proto) def punch_shape(s, registry): """ Punch a shape to a tuple for marshalling. See slurp_shapes, configure_shapes for inverse. Format is ( # a shape int, # id (str, int), # tag [int], # structure: list of id's { # _hist (int, int) : # index, id int # count }, { # transformation_rules (int, int) : # index, id int # id } ) """ if s == in_storage_shape: return (0, ('', 0), [], {}, {}) else: assert isinstance(s, CompoundShape) my_index = registry.index(s) hist = {} for (index, shape), count in s._hist.items(): shape_id = registry.index(shape) hist[(index, shape_id)] = count trans = {} for (index, shape), to_shape in s.transformation_rules.items(): shape_id = registry.index(shape) to_shape_id = registry.index(to_shape) trans[(index, registry.index(shape))] = registry.index(to_shape) punchee = ( registry.index(s), (s._tag.name, s._tag.arity()), [registry.index(subshape) for subshape in s._structure], hist, trans ) return punchee def recreate_shape(shape_desc, tags, registry): """ Recreate a shape from its punched format; see punch_shape. Does not handle history and transformations. See configure_shape(s). """ id, tag, structure_ids = shape_desc structure = [None] * len(structure_ids) for structure_index, sub_id in enumerate(structure_ids): assert sub_id < id subshape = registry[sub_id] assert subshape is not None structure[structure_index] = subshape return CompoundShape(tags[tag], structure) def configure_shape(shape, hist, trans, registry): """ Reconfigure a shape from its punched format; see punch_shape. Does _only_ handle history and transformations. See configure_shapes. """ assert isinstance(shape, CompoundShape) shape._hist = {} for (index, s_id), count in hist.items(): k = (index, registry[s_id]) shape._hist[k] = count shape.transformation_rules = {} for (index, s_id), to_s_id in trans.items(): k = (index, registry[s_id]) shape.transformation_rules[k] = registry[to_s_id] def configure_shapes(shapes, registry): """ Reconfigure all shapes. Does _only_ handle history and transformations. See configure_shapes. """ for id, _tag, _structure_ids, hist, trans in shapes: if id == 0: continue # in_storage_shape, no configure configure_shape(registry[id], hist, trans, registry) def slurp_registry(shapes, registry, tags_slurp, tags): """ Slurp all shapes from their punched format (see punch_shape) not including history or transformation """ known_ids = [0] for default_id in tags_slurp.values(): known_ids.append(default_id) for id, tag, structure_ids, _hist, _trans in shapes: if id in known_ids: continue assert registry[id] is None registry[id] = recreate_shape((id, tag, structure_ids), tags, registry) def punch_tags(tags): """ Punch all tags into marshallable format: ( int, # number of shapes [ # shape list ], { (str, int) : # name arity int #id } ) """ reg = [in_storage_shape] + CompoundShape._shapes punch_reg = [punch_shape(s, reg) for s in reg] res = {} for key, value in tags.items(): res[key] = reg.index(value.default_shape) return (len(punch_reg), punch_reg, res) def slurp_tags(un_tags): """ Slurp all tags from their punched format (see punch_tag). Recursively slurps shapes and then configures them. """ num_shapes, shapes_slurp, tags_slurp = un_tags registry = [None] * num_shapes registry[0] = in_storage_shape tags = {} for (name, arity), default_id in tags_slurp.items(): tag = W_Tag(name, arity) tags[(name, arity)] = tag registry[default_id] = tag.default_shape slurp_registry(shapes_slurp, registry, tags_slurp, tags) configure_shapes(shapes_slurp, registry) return tags def come_up(basename): """ Bring up previously marshalled Tags, shapes and transformations from '.docked' file un-marshalling, slurping and replacement of current Tags. """ from theseus.shape import CompoundShape # later # from os import stat # statres = stat(path) debug_start("theseus-come-up") path = basename + '.docked' if not os.path.exists(path): return try: f = open_file_as_stream(path, buffering=0) except OSError as e: os.write(2, "Error(come_up)%s -- %s\n" % (os.strerror(e.errno), path)) return try: res = unmarshaller(f.readall()) finally: f.close() del CompoundShape._shapes[:] W_Tag.tags.clear() new_tags = slurp_tags(res) for key, value in new_tags.items(): W_Tag.tags[key] = value debug_stop("theseus-come-up") def settle(basename): """ Settle Tags, shapes and transformations to a '.docked' file punching and marshalling all current Tags. """ debug_start("theseus-settle") path = basename + '.docked' buf = [] marshaller(buf, punch_tags(W_Tag.tags)) try: f = open_file_as_stream(path, mode="w", buffering=0) except OSError as e: os.write(2, "Error(settle)%s -- %s\n" % (os.strerror(e.errno), path)) return try: f.write(''.join(buf)) finally: f.close() debug_stop("theseus-settle")
27.403704
79
0.592783
19cc7f391c49230cd25af4f7949e261ca27ffe2b
1,359
py
Python
external_scripts/run2.py
AAS97/tokenizRE
0186a2b533edaa0045b16b0b111b9637248e5046
[ "MIT" ]
null
null
null
external_scripts/run2.py
AAS97/tokenizRE
0186a2b533edaa0045b16b0b111b9637248e5046
[ "MIT" ]
null
null
null
external_scripts/run2.py
AAS97/tokenizRE
0186a2b533edaa0045b16b0b111b9637248e5046
[ "MIT" ]
null
null
null
from web3 import Web3, HTTPProvider import json import os w3 = Web3(HTTPProvider("http://127.0.0.1:7545", request_kwargs={'timeout': 60})) print(f"Web3 is connected : {w3.isConnected()}") accounts = w3.eth.accounts # ------------------------------- get contract ------------------------------- # abi_path = "./vapp/src/contracts/" with open(os.path.join(abi_path, 'TokenHolderPayer.json'), "r") as file: property_contract_compiled = json.load(file) property_contract_abi = property_contract_compiled['abi'] contract_address = "0xE5972821D1218120C4E98986A3eEc997931690b4" property_contract = w3.eth.contract(address=contract_address, abi=property_contract_abi) # ------------------- buy some token from realestate agent ------------------- # amount = 500 # Allow token to be sent property_contract.functions.increaseAllowance(accounts[1], amount).transact({'from':accounts[0], 'gas': 420000, 'gasPrice': 21000}) balance = property_contract.functions.balanceOf(accounts[1]).call() print(f"initial balance {balance}") tx_hash = property_contract.functions.transferFrom(accounts[0], accounts[1], 500).transact({'from':accounts[1], 'gas': 420000, 'gasPrice': 21000}) receipt = w3.eth.waitForTransactionReceipt(tx_hash) balance = property_contract.functions.balanceOf(accounts[1]).call() print(f"final balance {balance}")
37.75
146
0.693893
19cc949ad53b4cdcbc1b975b94608f7737a43f64
825
py
Python
main.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
main.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
main.py
cltl-students/hamersma-agression-causes
11cbfd94031a0a3c84a27afa20d8a539acdab609
[ "MIT" ]
null
null
null
from preprocessing import preprocess from approach1_rulebased import get_predictions_rulebased from approach2_machine_learning import get_predictions_ml from bertopic_clustering import cluster_precursors def main(): '''Main function to use from commandline, preprocess input to generate embeddings, detect agression clauses using provided approach, extract features and labels from training and features from input data, trains a model and classifies test data using the trained model, evaluates predictions and goldlabels from input''' inputfile = 'sample_input.xls' preprocess(inputfile) get_predictions_rulebased() get_predictions_ml() ### only clusters with enough data, else everything in outlier cluster cluster_precursors() if __name__ == '__main__': main()
43.421053
118
0.778182
19cd9765a8c1a72e36854304f427fda7349e31d0
8,985
pyw
Python
12th project cs/Gui pages.pyw
Jatin-Ya/ChatApp-12th-project-
77ced9b18205728334f4370fbce8d74687bc5373
[ "Apache-2.0" ]
null
null
null
12th project cs/Gui pages.pyw
Jatin-Ya/ChatApp-12th-project-
77ced9b18205728334f4370fbce8d74687bc5373
[ "Apache-2.0" ]
null
null
null
12th project cs/Gui pages.pyw
Jatin-Ya/ChatApp-12th-project-
77ced9b18205728334f4370fbce8d74687bc5373
[ "Apache-2.0" ]
null
null
null
from tkinter import * import threading import sql_manager as ss g=GUI()
35.654762
111
0.575292
19cea24c1060f2d6ff7113c23c57266d177697db
1,528
py
Python
19/19a.py
jamOne-/adventofcode2018
d51c01578ae7e4f30824c4f6ace66958491c1ed4
[ "MIT" ]
null
null
null
19/19a.py
jamOne-/adventofcode2018
d51c01578ae7e4f30824c4f6ace66958491c1ed4
[ "MIT" ]
null
null
null
19/19a.py
jamOne-/adventofcode2018
d51c01578ae7e4f30824c4f6ace66958491c1ed4
[ "MIT" ]
null
null
null
import sys OPERATIONS = { 'addr': lambda a, b, c, registers: registers[a] + registers[b], 'addi': lambda a, b, c, registers: registers[a] + b, 'mulr': lambda a, b, c, registers: registers[a] * registers[b], 'muli': lambda a, b, c, registers: registers[a] * b, 'banr': lambda a, b, c, registers: registers[a] & registers[b], 'bani': lambda a, b, c, registers: registers[a] & b, 'borr': lambda a, b, c, registers: registers[a] | registers[b], 'bori': lambda a, b, c, registers: registers[a] | b, 'setr': lambda a, b, c, registers: registers[a], 'seti': lambda a, b, c, registers: a, 'grir': lambda a, b, c, registers: 1 if a > registers[b] else 0, 'gtri': lambda a, b, c, registers: 1 if registers[a] > b else 0, 'gtrr': lambda a, b, c, registers: 1 if registers[a] > registers[b] else 0, 'eqir': lambda a, b, c, registers: 1 if a == registers[b] else 0, 'eqri': lambda a, b, c, registers: 1 if registers[a] == b else 0, 'eqrr': lambda a, b, c, registers: 1 if registers[a] == registers[b] else 0 } print(solve(sys.stdin))
36.380952
77
0.633508
19d1e57d2a97ef66002ffa2d6966b97f5f533bee
1,878
py
Python
examples/websocket_echo_server.py
HMXHIU/VeryPowerfulAgents
06abd52776aeaf701637533f760176459c9c361c
[ "MIT" ]
2
2021-11-30T16:14:01.000Z
2022-03-04T09:20:51.000Z
examples/websocket_echo_server.py
HMXHIU/VeryPowerfulAgents
06abd52776aeaf701637533f760176459c9c361c
[ "MIT" ]
8
2021-02-10T15:43:49.000Z
2021-02-10T16:00:16.000Z
examples/websocket_echo_server.py
HMXHIU/VeryPowerfulAgents
06abd52776aeaf701637533f760176459c9c361c
[ "MIT" ]
1
2021-01-01T12:31:48.000Z
2021-01-01T12:31:48.000Z
from aiohttp import web from agents import Agent if __name__ == "__main__": webserver = WebServer("127.0.0.1", 8080, "/ws")
30.786885
86
0.510117
19d3c2532fdc242dd0fdaf80342fa01cfdf2a61d
5,401
py
Python
janaganana/tables.py
deshetti/janaganana
f29ced95fc9f8b98f77560d9afdbd999510dd497
[ "MIT" ]
11
2017-02-16T20:45:54.000Z
2021-12-31T01:08:40.000Z
janaganana/tables.py
deshetti/janaganana
f29ced95fc9f8b98f77560d9afdbd999510dd497
[ "MIT" ]
18
2017-02-15T20:24:29.000Z
2022-03-29T21:54:36.000Z
janaganana/tables.py
deshetti/janaganana
f29ced95fc9f8b98f77560d9afdbd999510dd497
[ "MIT" ]
13
2017-02-16T20:45:25.000Z
2020-09-23T21:40:57.000Z
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # Household tables FieldTable(['rural population'], universe='Population', table_per_level=False) FieldTable(['area', 'sex'], universe='Population', table_per_level=False) FieldTable(['census_year', 'measure'], universe='A2-Decadal Variation', table_per_level=False) FieldTable(['census_year', 'sex_vis'], universe='VISUAL', table_per_level=False) FieldTable(['area', 'sex', 'literacy'], universe='Population', table_per_level=False) FieldTable(['area','village_town_comparison'], universe='A3APPENDIX', table_per_level=False) FieldTable(['religion', 'area', 'sex'], universe='Religion', table_per_level=False) FieldTable(['age', 'area', 'sex'], universe='Age', table_per_level=False) FieldTable(['village_town_measures','area'], universe='A1-', table_per_level=False) FieldTable(['education', 'area', 'sex'], universe='Education', table_per_level=False) FieldTable(['houseless_population','area', 'sex'], universe='A7-Houseless', table_per_level=False) FieldTable(['sc_houseless_population','area', 'sex'], universe='A8-SC_Houseless', table_per_level=False) FieldTable(['st_houseless_population','area', 'sex'], universe='A9-ST_Houseless', table_per_level=False) FieldTable(['village_measures','population_range'], universe='A3-Inhabited Villages', table_per_level=False) FieldTable(['maritalstatus', 'area', 'sex'], universe='Relation', table_per_level=False) FieldTable(['workertype','age_group','area','sex'], universe='B1-Workerstype', table_per_level=False) FieldTable(['sc_workertype','age_group','area','sex'], universe='B1SC-Workerstype', table_per_level=False) FieldTable(['st_workertype','age_group','area','sex'], universe='B1ST-Workerstype', table_per_level=False) FieldTable(['workers', 'area', 'workerssex'], universe='Workers', table_per_level=False) FieldTable(['workertype','education_level', 'area', 'sex'], universe='B3', table_per_level=False) FieldTable(['education_level', 'area', 'sex_vis'], universe='VISUAL', table_per_level=False) FieldTable(['sc_workertype','education_level', 'area', 'sex'], universe='B3SC', table_per_level=False) FieldTable(['st_workertype','education_level', 'area', 'sex'], universe='B3ST', table_per_level=False) FieldTable(['nonworkertype', 'age_group','area','sex'], universe='B13', table_per_level=False) FieldTable(['nonworkertype_vis', 'age_group','area','sex'], universe='VISUAL', table_per_level=False) FieldTable(['sc_nonworkertype', 'age_group','area','sex'], universe='B13SC', table_per_level=False) FieldTable(['st_nonworkertype', 'age_group','area','sex'], universe='B13ST', table_per_level=False) FieldTable(['religion','nonworkertype','age_group','area', 'sex'], universe='B14', table_per_level=False) FieldTable(['religion','area', 'sex'], universe='C1', table_per_level=False) FieldTable(['religious_community','area', 'sex'], universe='C1APPENDIX', table_per_level=False) FieldTable(['age_group','marital_status','area', 'sex'], universe='C2', table_per_level=False) FieldTable(['religion','marital_status','area', 'sex'], universe='C3', table_per_level=False) FieldTable(['mother_tongue_vis','area', 'sex'], universe='VISUAL', table_per_level=False) FieldTable(['disability','age_group','area', 'sex'], universe='c20', table_per_level=False) FieldTable(['mother_tongue','area', 'sex'], universe='c16', table_per_level=False) FieldTable(['educational_institution','age','area', 'sex'], universe='c10', table_per_level=False) FieldTable(['sc_educational_institution','age','area', 'sex'], universe='c10sc', table_per_level=False) FieldTable(['st_educational_institution','age','area', 'sex'], universe='c10st', table_per_level=False) FieldTable(['economic_activity','age','area', 'sex'], universe='c12', table_per_level=False) FieldTable(['marriage_duration','age','area', 'sex'], universe='c4', table_per_level=False) FieldTable(['parity','age','area'], universe='F1', table_per_level=False) FieldTable(['sc_parity','age','area'], universe='F1sc', table_per_level=False) FieldTable(['st_parity','age','area'], universe='F1st', table_per_level=False) FieldTable(['parity_vis','age','area'], universe='VISUAL', table_per_level=False) FieldTable(['surviving_children','age','area'], universe='F5', table_per_level=False) FieldTable(['sc_surviving_children','age','area'], universe='F5SC', table_per_level=False) FieldTable(['st_surviving_children','age','area'], universe='F5ST', table_per_level=False) FieldTable(['household_size','area'], universe='HH1', table_per_level=False) FieldTable(['household_size_vis','area'], universe='VISUAL', table_per_level=False) FieldTable(['sc_household_size','area'], universe='HH1SC', table_per_level=False) FieldTable(['st_household_size','area'], universe='HH1ST', table_per_level=False) FieldTable(['household_workers','workers_in_household','area'], universe='HH11', table_per_level=False) FieldTable(['household_size','available_for_work','area'], universe='HH12', table_per_level=False) FieldTable(['sevenyearsandabove','literates_in_household','area'], universe='HH08', table_per_level=False) FieldTable(['age','area', 'head','household_marital_status'], universe='HH06', table_per_level=False) FieldTable(['houseless_households','area'], universe='HH02', table_per_level=False) FieldTable(['households_size','aged_persons','area'], universe='HH05', table_per_level=False)
66.679012
108
0.755601
19d4df790639614b567c8829dbce219210c26642
585
py
Python
src/weekly-reset.py
SlimeeGameS/VirginityBot
a1745893f21a16112bbf775fb2aff199c14dbbbb
[ "CC0-1.0" ]
null
null
null
src/weekly-reset.py
SlimeeGameS/VirginityBot
a1745893f21a16112bbf775fb2aff199c14dbbbb
[ "CC0-1.0" ]
14
2020-03-26T01:02:31.000Z
2021-03-24T23:48:44.000Z
src/weekly-reset.py
SlimeeGameS/VirginityBot
a1745893f21a16112bbf775fb2aff199c14dbbbb
[ "CC0-1.0" ]
2
2020-08-09T19:08:41.000Z
2021-05-12T17:44:28.000Z
import os import asyncio import logging from pony.orm import * import logger from database import start_orm, get_biggest_virgin, Guild, Virgin logger = logging.getLogger('virginity-bot') if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
18.870968
65
0.729915
19d525875da360fb20fb2929a08fff78176398d0
1,165
py
Python
hardhat/recipes/racket.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
hardhat/recipes/racket.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
hardhat/recipes/racket.py
stangelandcl/hardhat
1ad0c5dec16728c0243023acb9594f435ef18f9c
[ "MIT" ]
null
null
null
import os import shutil from .base import GnuRecipe
31.486486
73
0.572532
19d5619a8ce652fe7933c1843f9585227eb325de
3,257
py
Python
lichess-gist.py
swimmy4days/lichess-gist
b70e605345f789e032291253df506384ccbaa270
[ "MIT" ]
null
null
null
lichess-gist.py
swimmy4days/lichess-gist
b70e605345f789e032291253df506384ccbaa270
[ "MIT" ]
null
null
null
lichess-gist.py
swimmy4days/lichess-gist
b70e605345f789e032291253df506384ccbaa270
[ "MIT" ]
null
null
null
import os import sys import berserk from github import Github, InputFileContent, Gist SEPARATOR = "." PADDING = {"puzzle": 0, "crazyhouse": 0, "chess960": 0, "kingOfTheHill": 0, "threeCheck": 2, "antichess": 0, "atomic": 0, "horde": 0, "racingKings": 0, "ultraBullet": 0, "blitz": 1, "classical": 1, "rapid": 0, "bullet": 0, "correspondence": 3} emojis = {"puzzle": "", "crazyhouse": "", "chess960": "960", "kingOfTheHill": "", "threeCheck": "3", "antichess": "", "atomic": "", "horde": "", "racingKings": "", "ultraBullet": "", "blitz": "", "classical": "", "rapid": "", "bullet": "", "correspondence": ""} ENV_VAR_GIST_ID = "GIST_ID" ENV_VAR_GITHUB_TOKEN = "GH_TOKEN" ENV_VAR_LICHESS_USERNAME = "LICHESS_USERNAME" REQUIRED_ENVS = [ ENV_VAR_GIST_ID, ENV_VAR_GITHUB_TOKEN, ENV_VAR_LICHESS_USERNAME ] if __name__ == "__main__": # test with python lichess-gist.py test <gist> <github-token> <user> if len(sys.argv) > 1: os.environ[ENV_VAR_GIST_ID] = sys.argv[2] os.environ[ENV_VAR_GITHUB_TOKEN] = sys.argv[3] os.environ[ENV_VAR_LICHESS_USERNAME] = sys.argv[4] main() # %%
31.317308
118
0.612834
19d5e02630a84a1866bbfe9f9deb571cc98a96cc
951
py
Python
alembic/versions/60c735df8d2f_.py
brouberol/grand-cedre
05f18d1f8b7253ffa7fb5b33b30ceadcc93c4e93
[ "BSD-3-Clause" ]
null
null
null
alembic/versions/60c735df8d2f_.py
brouberol/grand-cedre
05f18d1f8b7253ffa7fb5b33b30ceadcc93c4e93
[ "BSD-3-Clause" ]
22
2019-09-03T20:08:42.000Z
2022-03-11T23:58:02.000Z
alembic/versions/60c735df8d2f_.py
brouberol/grand-cedre
05f18d1f8b7253ffa7fb5b33b30ceadcc93c4e93
[ "BSD-3-Clause" ]
null
null
null
"""empty message Revision ID: 60c735df8d2f Revises: 88bb7e12da60 Create Date: 2019-09-06 08:27:03.082097 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "60c735df8d2f" down_revision = "88bb7e12da60" branch_labels = None depends_on = None
27.171429
84
0.690852
19d5e29e652c7abc55afdd0fed0c5112571018a1
3,640
py
Python
python/genre_classifier.py
nscharrenberg/Aliran
628de0476b8f8b413a6fdddf5392c590e8b27654
[ "MIT" ]
null
null
null
python/genre_classifier.py
nscharrenberg/Aliran
628de0476b8f8b413a6fdddf5392c590e8b27654
[ "MIT" ]
null
null
null
python/genre_classifier.py
nscharrenberg/Aliran
628de0476b8f8b413a6fdddf5392c590e8b27654
[ "MIT" ]
null
null
null
import scipy.io.wavfile as wav import numpy as np import os import pickle import random import operator from python_speech_features import mfcc dataset = [] training_set = [] test_set = [] # Get the distance between feature vectors # Find Neighbors # Identify the Nearest Neighbor (Genres) # Model Evaluation to get the accuracy # Extract features from the audio files and store them in a model file # Load in the Dataset if __name__ == '__main__': print('Starting....') local_filename = "dataset.aliran" extracting = False if extracting: print('Extracting Features...') print('Building Model...') extract_features(local_filename) print('Loading Dataset...') load_dataset(local_filename, 0.66, training_set, test_set) print('Making a prediction...') print('(This may take a few minutes)') predictions = [] for x in range(len(test_set)): predictions.append(nearest_genre(get_neighbors(training_set, test_set[x], 5))) accuracy = get_accuracy(test_set, predictions) print('Prediction Accuracy is:') print(accuracy)
26.376812
102
0.613462
19d94ed3daa7c3c452d53a4b890d6a26c3139991
1,653
py
Python
run.py
dkosilov/reconciler_anchor_salesforce
5cf6a8ccaedce84e7dab6c32955c644ede0c6e07
[ "Xnet", "X11" ]
1
2020-09-22T11:49:07.000Z
2020-09-22T11:49:07.000Z
run.py
dkosilov/reconciler_anchor_salesforce
5cf6a8ccaedce84e7dab6c32955c644ede0c6e07
[ "Xnet", "X11" ]
null
null
null
run.py
dkosilov/reconciler_anchor_salesforce
5cf6a8ccaedce84e7dab6c32955c644ede0c6e07
[ "Xnet", "X11" ]
null
null
null
import argparse from libs.data_model import AnchorNorthstarDataframe, SalesForceDataframe, \ AnchorSalesforceAccountsDataframe, AnchorSalesforceContactsDataframe from libs.utils import save_dataframes_to_excel parser = argparse.ArgumentParser(description='Reconcile accounts and contacts between Anchor and Salesforce') parser.add_argument('-a', '--anchor-file', help='Path to Anchor Excel workbook', required=True) parser.add_argument('-n', '--northstar-file', help='Path to Northstar Excel workbook', required=True) parser.add_argument('-s', '--salesforce-file', help='Path to Salesforce Excel workbook', required=True) parser.add_argument('-t', '--account-name-match-ratio-threshold', type=int, help='Account names with specified (or above) similarity ratio will be used for joining Anchor and ' 'Salesforce account data. Number between 0 and 100.', default=75) parser.add_argument('-r', '--result-file', help='Path to result Excel workbook. The file will have 2 spreadsheets for accounts and ' 'contacts reconciliation', required=True) args = parser.parse_args() anchor_ns = AnchorNorthstarDataframe(args.anchor_file, args.northstar_file) salesforce = SalesForceDataframe(args.salesforce_file) anchor_sf_accounts = AnchorSalesforceAccountsDataframe(anchor_ns, salesforce, args.account_name_match_ratio_threshold) anchor_sf_contacts = AnchorSalesforceContactsDataframe(anchor_ns, salesforce) save_dataframes_to_excel(args.result_file, {'Accounts': anchor_sf_accounts.df, 'Contacts': anchor_sf_contacts.df}, wrap_text=False)
57
120
0.754991
19db3143b0967735343ec7fb40012d028a989ea5
1,650
py
Python
billrelease.py
arby36/BillAi
e5c10c35279a1669d218439671e03bc17acb7fdc
[ "MIT" ]
null
null
null
billrelease.py
arby36/BillAi
e5c10c35279a1669d218439671e03bc17acb7fdc
[ "MIT" ]
null
null
null
billrelease.py
arby36/BillAi
e5c10c35279a1669d218439671e03bc17acb7fdc
[ "MIT" ]
null
null
null
bill()
27.966102
139
0.527273
19ddf831a5a3b46c86717f74ec094bf9d7bcc0cd
757
py
Python
homeworks/hw05/tests/q3b1.py
cwakamiya/ieor135
084490380f265225927d11b43d948c1206b0aab8
[ "Apache-2.0" ]
28
2020-06-15T23:53:36.000Z
2022-03-19T09:27:02.000Z
homeworks/hw05/tests/q3b1.py
cwakamiya/ieor135
084490380f265225927d11b43d948c1206b0aab8
[ "Apache-2.0" ]
4
2020-06-24T22:20:31.000Z
2022-02-28T01:37:36.000Z
homeworks/hw05/tests/q3b1.py
cwakamiya/ieor135
084490380f265225927d11b43d948c1206b0aab8
[ "Apache-2.0" ]
78
2020-06-19T09:41:01.000Z
2022-02-05T00:13:29.000Z
test = { 'name': 'q3b1', 'points': 2, 'suites': [ { 'cases': [ { 'code': '>>> 4 <= ' "sum(list(X1.describe().loc['mean'])) " '<= 9\n' 'True', 'hidden': False, 'locked': False}, { 'code': '>>> len(X1) == 768\nTrue', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
47.3125
86
0.211361
19e32a5576ac8d30a109ed4090fee43e0912beb9
3,050
py
Python
scanpy/api/__init__.py
gioelelm/scanpy
97391a0e7908b9644b2d6640c8e26d37bdc7811e
[ "BSD-3-Clause" ]
null
null
null
scanpy/api/__init__.py
gioelelm/scanpy
97391a0e7908b9644b2d6640c8e26d37bdc7811e
[ "BSD-3-Clause" ]
null
null
null
scanpy/api/__init__.py
gioelelm/scanpy
97391a0e7908b9644b2d6640c8e26d37bdc7811e
[ "BSD-3-Clause" ]
1
2019-02-18T07:39:59.000Z
2019-02-18T07:39:59.000Z
"""Scanpy's high-level API provides an overview of all features relevant to pratical use:: import scanpy.api as sc .. raw:: html <h3>Preprocessing tools</h3> Filtering of highly-variable genes, batch-effect correction, per-cell (UMI) normalization, preprocessing recipes. .. raw:: html <h4>Basic Preprocessing</h4> .. autosummary:: :toctree: . pp.filter_cells pp.filter_genes pp.filter_genes_dispersion pp.log1p pp.pca pp.normalize_per_cell pp.regress_out pp.scale pp.subsample .. raw:: html <h4>Recipes</h4> .. autosummary:: :toctree: . pp.recipe_zheng17 pp.recipe_weinreb16 .. raw:: html <h3>Machine Learning and Statistics tools<h3> .. raw:: html <h4>Visualization</h4> .. autosummary:: :toctree: . tl.pca tl.tsne tl.diffmap tl.draw_graph .. raw:: html <h4>Branching trajectories and pseudotime, clustering, differential expression</h4> .. autosummary:: :toctree: . tl.aga tl.louvain tl.dpt tl.rank_genes_groups .. raw:: html <h4>Simulations</h4> .. autosummary:: :toctree: . tl.sim .. raw:: html <h3>Generic methods</h3> .. raw:: html <h4>Reading and Writing</h4> .. autosummary:: :toctree: . read write read_10x_h5 .. raw:: html <h4>Data Structures</h4> .. autosummary:: :toctree: . AnnData DataGraph .. raw:: html <h3>Plotting</h3> .. raw:: html <h4>Generic plotting with AnnData</h4> .. autosummary:: :toctree: . pl.scatter pl.violin pl.ranking .. raw:: html <h4>Plotting tool results</h4> Methods that extract and visualize tool-specific annotation in an AnnData object. .. raw:: html <h5>Visualization</h5> .. autosummary:: :toctree: . pl.pca pl.pca_loadings pl.pca_scatter pl.pca_variance_ratio pl.tsne pl.diffmap pl.draw_graph .. raw:: html <h5>Branching trajectories and pseudotime, clustering, differential expression</h5> .. autosummary:: :toctree: . pl.aga pl.aga_graph pl.aga_path pl.louvain pl.dpt pl.dpt_scatter pl.dpt_groups_pseudotime pl.dpt_timeseries pl.rank_genes_groups pl.rank_genes_groups_violin .. raw:: html <h5>Simulations</h5> .. autosummary:: :toctree: . pl.sim .. raw:: html <h4>Builtin datasets</h4> Simple functions that provide annotated datasets for benchmarking. See `here <https://scanpy.readthedocs.io/en/latest/examples.html>`_ for extensive documented tutorials and use cases. All of these functions return an Annotated Data object. .. autosummary:: :toctree: . datasets.paul15 datasets.toggleswitch datasets.krumsiek11 datasets.blobs datasets.moignard15 """ from .. import __version__ from .. import settings from .. import logging from . import tl tools = tl from . import pl plotting = pl from . import pp preprocessing = pp from ..readwrite import read, read_10x_h5, write, read_params, write_params from . import datasets from ..data_structs import AnnData, DataGraph from .. import utils
14.95098
113
0.679016
19e36b29ee592d089dc07f0b81f9a1312e103cce
34,894
py
Python
sw/EdgeBERT/transformers/src/transformers/modeling_highway_albert.py
yihuajack/EdgeBERT
a51ae7557187e3251f4b11bc13ef9cbd336019ff
[ "Apache-2.0" ]
8
2021-11-01T01:38:04.000Z
2022-03-20T16:03:39.000Z
sw/EdgeBERT/transformers/src/transformers/modeling_highway_albert.py
yihuajack/EdgeBERT
a51ae7557187e3251f4b11bc13ef9cbd336019ff
[ "Apache-2.0" ]
1
2021-11-19T08:04:02.000Z
2021-12-19T07:21:48.000Z
sw/EdgeBERT/transformers/src/transformers/modeling_highway_albert.py
yihuajack/EdgeBERT
a51ae7557187e3251f4b11bc13ef9cbd336019ff
[ "Apache-2.0" ]
5
2021-11-19T07:52:44.000Z
2022-02-10T08:23:19.000Z
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from .modeling_albert import AlbertPreTrainedModel, AlbertLayerNorm, AlbertLayerGroup from .modeling_bert import BertEmbeddings from .modeling_highway_bert import BertPooler import numpy as np
46.963661
148
0.611366
19e3c7e8cb0d8e13048dc4a21c8f8d2b1867724a
1,809
py
Python
tests/test_sar.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
8
2021-05-18T02:22:03.000Z
2021-09-11T02:49:04.000Z
tests/test_sar.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
1
2021-04-26T04:38:35.000Z
2021-04-26T04:38:35.000Z
tests/test_sar.py
chris-angeli-rft/cloud-custodian
5ff331b114a591dbaf6d672e30ceefb7ae64a5dd
[ "Apache-2.0" ]
1
2021-11-10T02:28:47.000Z
2021-11-10T02:28:47.000Z
# Copyright 2020 Kapil Thangavelu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .common import BaseTest
35.470588
74
0.616363
19e3cc99b66e2939b99c81e570efb9afd33fa23d
5,773
py
Python
rovina.py
Pandoro/tools
631c6036cb74dc845668fd912588fd31aae46f8b
[ "MIT" ]
1
2019-04-22T16:38:03.000Z
2019-04-22T16:38:03.000Z
rovina.py
afcarl/tools-Pandoro
631c6036cb74dc845668fd912588fd31aae46f8b
[ "MIT" ]
2
2018-03-13T10:49:48.000Z
2018-03-13T10:54:01.000Z
rovina.py
afcarl/tools-Pandoro
631c6036cb74dc845668fd912588fd31aae46f8b
[ "MIT" ]
2
2018-03-08T19:40:10.000Z
2018-06-11T14:43:49.000Z
import json import os import sys sys.path.append('/usr/lib/python2.7/dist-packages') import cv2 import numpy as np from tqdm import * import dataset_utils
37.245161
161
0.625498
19e85b96640382129fd31d8131a6692e41afddf9
4,952
py
Python
gpgLabs/GPR/GPRlab1.py
victortocantins/gpgLabs
310b69c681dd1ebf91ba8be2b5ac27adf5fc0f12
[ "MIT" ]
null
null
null
gpgLabs/GPR/GPRlab1.py
victortocantins/gpgLabs
310b69c681dd1ebf91ba8be2b5ac27adf5fc0f12
[ "MIT" ]
null
null
null
gpgLabs/GPR/GPRlab1.py
victortocantins/gpgLabs
310b69c681dd1ebf91ba8be2b5ac27adf5fc0f12
[ "MIT" ]
null
null
null
import numpy as np from scipy.constants import mu_0, epsilon_0 import matplotlib.pyplot as plt from PIL import Image import warnings warnings.filterwarnings('ignore') from ipywidgets import interact, interactive, IntSlider, widget, FloatText, FloatSlider, fixed from .Wiggle import wiggle, PrimaryWave, ReflectedWave import requests from io import BytesIO ######################################## # DOWNLOAD FUNCTIONS ######################################## ######################################## # WIDGETS ######################################## ######################################## # FUNCTIONS ########################################
24.636816
94
0.544628
19ebb2a3f5203d8e575a8e0bab417177a0a48924
5,010
py
Python
third_party/unidecode/x0bd.py
asysc2020/contentbox
5c155976e0ce7ea308d62293ab89624d97b21d09
[ "Apache-2.0" ]
39
2015-06-10T23:18:07.000Z
2021-10-21T04:29:06.000Z
third_party/unidecode/x0bd.py
asysc2020/contentbox
5c155976e0ce7ea308d62293ab89624d97b21d09
[ "Apache-2.0" ]
2
2016-08-22T12:38:10.000Z
2017-01-26T18:37:33.000Z
third_party/unidecode/x0bd.py
asysc2020/contentbox
5c155976e0ce7ea308d62293ab89624d97b21d09
[ "Apache-2.0" ]
26
2015-06-10T22:09:15.000Z
2021-06-27T15:45:15.000Z
data = ( 'bols', # 0x00 'bolt', # 0x01 'bolp', # 0x02 'bolh', # 0x03 'bom', # 0x04 'bob', # 0x05 'bobs', # 0x06 'bos', # 0x07 'boss', # 0x08 'bong', # 0x09 'boj', # 0x0a 'boc', # 0x0b 'bok', # 0x0c 'bot', # 0x0d 'bop', # 0x0e 'boh', # 0x0f 'bwa', # 0x10 'bwag', # 0x11 'bwagg', # 0x12 'bwags', # 0x13 'bwan', # 0x14 'bwanj', # 0x15 'bwanh', # 0x16 'bwad', # 0x17 'bwal', # 0x18 'bwalg', # 0x19 'bwalm', # 0x1a 'bwalb', # 0x1b 'bwals', # 0x1c 'bwalt', # 0x1d 'bwalp', # 0x1e 'bwalh', # 0x1f 'bwam', # 0x20 'bwab', # 0x21 'bwabs', # 0x22 'bwas', # 0x23 'bwass', # 0x24 'bwang', # 0x25 'bwaj', # 0x26 'bwac', # 0x27 'bwak', # 0x28 'bwat', # 0x29 'bwap', # 0x2a 'bwah', # 0x2b 'bwae', # 0x2c 'bwaeg', # 0x2d 'bwaegg', # 0x2e 'bwaegs', # 0x2f 'bwaen', # 0x30 'bwaenj', # 0x31 'bwaenh', # 0x32 'bwaed', # 0x33 'bwael', # 0x34 'bwaelg', # 0x35 'bwaelm', # 0x36 'bwaelb', # 0x37 'bwaels', # 0x38 'bwaelt', # 0x39 'bwaelp', # 0x3a 'bwaelh', # 0x3b 'bwaem', # 0x3c 'bwaeb', # 0x3d 'bwaebs', # 0x3e 'bwaes', # 0x3f 'bwaess', # 0x40 'bwaeng', # 0x41 'bwaej', # 0x42 'bwaec', # 0x43 'bwaek', # 0x44 'bwaet', # 0x45 'bwaep', # 0x46 'bwaeh', # 0x47 'boe', # 0x48 'boeg', # 0x49 'boegg', # 0x4a 'boegs', # 0x4b 'boen', # 0x4c 'boenj', # 0x4d 'boenh', # 0x4e 'boed', # 0x4f 'boel', # 0x50 'boelg', # 0x51 'boelm', # 0x52 'boelb', # 0x53 'boels', # 0x54 'boelt', # 0x55 'boelp', # 0x56 'boelh', # 0x57 'boem', # 0x58 'boeb', # 0x59 'boebs', # 0x5a 'boes', # 0x5b 'boess', # 0x5c 'boeng', # 0x5d 'boej', # 0x5e 'boec', # 0x5f 'boek', # 0x60 'boet', # 0x61 'boep', # 0x62 'boeh', # 0x63 'byo', # 0x64 'byog', # 0x65 'byogg', # 0x66 'byogs', # 0x67 'byon', # 0x68 'byonj', # 0x69 'byonh', # 0x6a 'byod', # 0x6b 'byol', # 0x6c 'byolg', # 0x6d 'byolm', # 0x6e 'byolb', # 0x6f 'byols', # 0x70 'byolt', # 0x71 'byolp', # 0x72 'byolh', # 0x73 'byom', # 0x74 'byob', # 0x75 'byobs', # 0x76 'byos', # 0x77 'byoss', # 0x78 'byong', # 0x79 'byoj', # 0x7a 'byoc', # 0x7b 'byok', # 0x7c 'byot', # 0x7d 'byop', # 0x7e 'byoh', # 0x7f 'bu', # 0x80 'bug', # 0x81 'bugg', # 0x82 'bugs', # 0x83 'bun', # 0x84 'bunj', # 0x85 'bunh', # 0x86 'bud', # 0x87 'bul', # 0x88 'bulg', # 0x89 'bulm', # 0x8a 'bulb', # 0x8b 'buls', # 0x8c 'bult', # 0x8d 'bulp', # 0x8e 'bulh', # 0x8f 'bum', # 0x90 'bub', # 0x91 'bubs', # 0x92 'bus', # 0x93 'buss', # 0x94 'bung', # 0x95 'buj', # 0x96 'buc', # 0x97 'buk', # 0x98 'but', # 0x99 'bup', # 0x9a 'buh', # 0x9b 'bweo', # 0x9c 'bweog', # 0x9d 'bweogg', # 0x9e 'bweogs', # 0x9f 'bweon', # 0xa0 'bweonj', # 0xa1 'bweonh', # 0xa2 'bweod', # 0xa3 'bweol', # 0xa4 'bweolg', # 0xa5 'bweolm', # 0xa6 'bweolb', # 0xa7 'bweols', # 0xa8 'bweolt', # 0xa9 'bweolp', # 0xaa 'bweolh', # 0xab 'bweom', # 0xac 'bweob', # 0xad 'bweobs', # 0xae 'bweos', # 0xaf 'bweoss', # 0xb0 'bweong', # 0xb1 'bweoj', # 0xb2 'bweoc', # 0xb3 'bweok', # 0xb4 'bweot', # 0xb5 'bweop', # 0xb6 'bweoh', # 0xb7 'bwe', # 0xb8 'bweg', # 0xb9 'bwegg', # 0xba 'bwegs', # 0xbb 'bwen', # 0xbc 'bwenj', # 0xbd 'bwenh', # 0xbe 'bwed', # 0xbf 'bwel', # 0xc0 'bwelg', # 0xc1 'bwelm', # 0xc2 'bwelb', # 0xc3 'bwels', # 0xc4 'bwelt', # 0xc5 'bwelp', # 0xc6 'bwelh', # 0xc7 'bwem', # 0xc8 'bweb', # 0xc9 'bwebs', # 0xca 'bwes', # 0xcb 'bwess', # 0xcc 'bweng', # 0xcd 'bwej', # 0xce 'bwec', # 0xcf 'bwek', # 0xd0 'bwet', # 0xd1 'bwep', # 0xd2 'bweh', # 0xd3 'bwi', # 0xd4 'bwig', # 0xd5 'bwigg', # 0xd6 'bwigs', # 0xd7 'bwin', # 0xd8 'bwinj', # 0xd9 'bwinh', # 0xda 'bwid', # 0xdb 'bwil', # 0xdc 'bwilg', # 0xdd 'bwilm', # 0xde 'bwilb', # 0xdf 'bwils', # 0xe0 'bwilt', # 0xe1 'bwilp', # 0xe2 'bwilh', # 0xe3 'bwim', # 0xe4 'bwib', # 0xe5 'bwibs', # 0xe6 'bwis', # 0xe7 'bwiss', # 0xe8 'bwing', # 0xe9 'bwij', # 0xea 'bwic', # 0xeb 'bwik', # 0xec 'bwit', # 0xed 'bwip', # 0xee 'bwih', # 0xef 'byu', # 0xf0 'byug', # 0xf1 'byugg', # 0xf2 'byugs', # 0xf3 'byun', # 0xf4 'byunj', # 0xf5 'byunh', # 0xf6 'byud', # 0xf7 'byul', # 0xf8 'byulg', # 0xf9 'byulm', # 0xfa 'byulb', # 0xfb 'byuls', # 0xfc 'byult', # 0xfd 'byulp', # 0xfe 'byulh', # 0xff )
19.343629
20
0.436128
19ecf7e3e7e37b889b168edf93836870ccf82afb
55
py
Python
social/backends/azuread.py
raccoongang/python-social-auth
81c0a542d158772bd3486d31834c10af5d5f08b0
[ "BSD-3-Clause" ]
1,987
2015-01-01T16:12:45.000Z
2022-03-29T14:24:25.000Z
social/backends/azuread.py
raccoongang/python-social-auth
81c0a542d158772bd3486d31834c10af5d5f08b0
[ "BSD-3-Clause" ]
731
2015-01-01T22:55:25.000Z
2022-03-10T15:07:51.000Z
virtual/lib/python3.6/site-packages/social/backends/azuread.py
dennismwaniki67/awards
80ed10541f5f751aee5f8285ab1ad54cfecba95f
[ "MIT" ]
1,082
2015-01-01T16:27:26.000Z
2022-03-22T21:18:33.000Z
from social_core.backends.azuread import AzureADOAuth2
27.5
54
0.890909
19ed8ee16410261911df594fb0af9ff20f20ca7e
6,556
py
Python
pystitchy/grid.py
iht/Stitchy-Studio
f7faf846d7ce498ef5945caaff2b09f9108e2919
[ "MIT" ]
1
2021-02-28T17:27:16.000Z
2021-02-28T17:27:16.000Z
pystitchy/grid.py
iht/Stitchy-Studio
f7faf846d7ce498ef5945caaff2b09f9108e2919
[ "MIT" ]
null
null
null
pystitchy/grid.py
iht/Stitchy-Studio
f7faf846d7ce498ef5945caaff2b09f9108e2919
[ "MIT" ]
null
null
null
# Copyright (c) 2012 Israel Herraiz <isra@herraiz.org> # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import wx import numpy from numpy import zeros
33.968912
107
0.585265
19eeab362b9fb0e2d6b801d0a756ec8fc09dd20a
2,837
py
Python
usps_tools/exceptions.py
pedrovagner/usps-tools
6a241fda35db6590684a534b9c3cf78a589ea09d
[ "MIT" ]
null
null
null
usps_tools/exceptions.py
pedrovagner/usps-tools
6a241fda35db6590684a534b9c3cf78a589ea09d
[ "MIT" ]
null
null
null
usps_tools/exceptions.py
pedrovagner/usps-tools
6a241fda35db6590684a534b9c3cf78a589ea09d
[ "MIT" ]
null
null
null
import traceback from typing import Optional from .i18n import _
27.813725
114
0.601692
19effa59bdd92c4854c56be758df2693cacdcb3d
1,158
py
Python
scraper/engine.py
pesya/scraper
c088dc3dc613fec94e297ac71302d2305b44b14c
[ "BSD-3-Clause" ]
null
null
null
scraper/engine.py
pesya/scraper
c088dc3dc613fec94e297ac71302d2305b44b14c
[ "BSD-3-Clause" ]
null
null
null
scraper/engine.py
pesya/scraper
c088dc3dc613fec94e297ac71302d2305b44b14c
[ "BSD-3-Clause" ]
null
null
null
import sys import csv import requests from parsel import Selector from scraper.parser import get_features_from_item start_url = 'http://www.world-art.ru/animation/rating_top.php' SIGN_STDOUT = '-' FORMAT_CSV = 'csv' FORMAT_JL = 'jl' def parse(url: str, out_path: str, out_format: str): """ gets link and returns the response """ response = requests.get(url) assert response.status_code == 200, f'bad status code: {response.status_code}' response_html = Selector(response.text) links_to_films = response_html.xpath('//td[@class="review"]/a[@class="review"]/@href').getall() out_file = sys.stdout if out_path == SIGN_STDOUT else open(out_path, 'w', buffering=1, newline='') for link in links_to_films: item_response = requests.get(link) assert response.status_code == 200, f'bad status code: {item_response.status_code}' item = get_features_from_item(item_response) if out_format == FORMAT_CSV: item_writer = csv.writer(out_file, delimiter=' ', quotechar=',', quoting=csv.QUOTE_MINIMAL) item_writer.writerow(item.values()) out_file.close() return
28.243902
103
0.69171
19f24b3bd880d9e6bed48acb8886bc868d4be2dd
14,592
py
Python
gui/python/photogate/photogate/photogate_app.py
iorodeo/photogate_software
c9a97dc3da644fe093397dd11024825ba0d79519
[ "Apache-2.0" ]
1
2020-07-23T19:02:50.000Z
2020-07-23T19:02:50.000Z
gui/python/photogate/photogate/photogate_app.py
iorodeo/photogate_software
c9a97dc3da644fe093397dd11024825ba0d79519
[ "Apache-2.0" ]
null
null
null
gui/python/photogate/photogate/photogate_app.py
iorodeo/photogate_software
c9a97dc3da644fe093397dd11024825ba0d79519
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import os import sys import serial.tools.list_ports from PyQt4 import QtCore from PyQt4 import QtGui from photogate_ui import Ui_PhotogateMainWindow from photogate_serial import PhotogateDevice from photogate_serial import getListOfPorts import dependency_hack try: import scipy.io HAVE_SCIPY_IO = True except ImportError: HAVE_SCIPY_IO = False # Utility functions # ----------------------------------------------------------------------------- def getPhotogateTimes(photogateDict): entryTime = uSecToSec(float(photogateDict['entryTime'])) exitTime = uSecToSec(float(photogateDict['exitTime'])) timeInGate = exitTime - entryTime return entryTime, exitTime, timeInGate def getTimeBetweenGates(photogateList): entryTime0 = uSecToSec(float(photogateList[0]['entryTime'])) entryTime1 = uSecToSec(float(photogateList[1]['entryTime'])) timeBetween = entryTime1 - entryTime0 return timeBetween def autoAddFileExtension(fileName,autoExt): fileNameBase, fileNameExt = os.path.splitext(fileName) if not fileNameExt: # Only add extension if there isn't one already fileName = '{0}{1}'.format(fileNameBase,autoExt) return fileName def uSecToSec(value): return (1.0e-6)*value def runPhotogateApp(): app = QtGui.QApplication(sys.argv) mainWindow = PhotogateMainWindow() mainWindow.main() app.exec_() # ----------------------------------------------------------------------------- if __name__ == '__main__': runPhotogateApp()
37.22449
94
0.614172
19f364dac17ba32accfedb9fef8b6459dc8369f0
114
py
Python
playground/step2/test1.py
jhson989/jhML
eb8b76d3b47df858e82cd971bb32794e12de4747
[ "Apache-2.0" ]
null
null
null
playground/step2/test1.py
jhson989/jhML
eb8b76d3b47df858e82cd971bb32794e12de4747
[ "Apache-2.0" ]
null
null
null
playground/step2/test1.py
jhson989/jhML
eb8b76d3b47df858e82cd971bb32794e12de4747
[ "Apache-2.0" ]
null
null
null
from core import Variable from operation import * a = Variable(2) b = square(a) c = square(b) print(c.data)
8.769231
25
0.675439
19f3a16361bc6bc5804201c9d2a4c2d8f966a4a0
106
py
Python
sharepoint/__init__.py
nessalc/python-sharepoint
d264cf5be56c8f9f619a4f72fd039c167cd01ba8
[ "MIT" ]
1
2019-06-03T03:16:44.000Z
2019-06-03T03:16:44.000Z
sharepoint/__init__.py
nessalc/python-sharepoint
d264cf5be56c8f9f619a4f72fd039c167cd01ba8
[ "MIT" ]
null
null
null
sharepoint/__init__.py
nessalc/python-sharepoint
d264cf5be56c8f9f619a4f72fd039c167cd01ba8
[ "MIT" ]
null
null
null
name = 'sharepoint' from .sharepoint import SharePointSite __author__='James Classen' __version__='0.0.2'
21.2
38
0.792453
19f6250f9d15cae4fb338cfbac1c36e435b2c1ca
3,188
py
Python
third_party/nkata/tests/transformvideo_test.py
google/offline-content-packager
5a023eeeed4973e452309b434a59ce745487fdd6
[ "Apache-2.0" ]
32
2016-05-31T13:01:46.000Z
2022-03-18T11:17:36.000Z
third_party/nkata/tests/transformvideo_test.py
google/offline-content-packager
5a023eeeed4973e452309b434a59ce745487fdd6
[ "Apache-2.0" ]
null
null
null
third_party/nkata/tests/transformvideo_test.py
google/offline-content-packager
5a023eeeed4973e452309b434a59ce745487fdd6
[ "Apache-2.0" ]
29
2016-06-08T18:11:00.000Z
2021-09-28T04:14:34.000Z
# Copyright 2015 The Offline Content Packager Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os import makedirs from os.path import dirname from os.path import isdir from os.path import join import shutil import tempfile import unittest import jinja2 from scripts.transformations import VideoTransformation import yaml if __name__ == "__main__": unittest.main()
32.20202
78
0.69542
19f6287b8eec32e7e9ec1cec1c39636f68949b75
2,308
py
Python
src/E_get_mpns_v8_analyses_answers/query_mpns_v8_name_relationships.py
feiphoon/mpns-pipeline
d34a8609dc4cb04ccc3f5c9b79a52bfeecdb38f6
[ "MIT" ]
1
2022-03-28T10:46:58.000Z
2022-03-28T10:46:58.000Z
src/E_get_mpns_v8_analyses_answers/query_mpns_v8_name_relationships.py
feiphoon/mpns-pipeline
d34a8609dc4cb04ccc3f5c9b79a52bfeecdb38f6
[ "MIT" ]
null
null
null
src/E_get_mpns_v8_analyses_answers/query_mpns_v8_name_relationships.py
feiphoon/mpns-pipeline
d34a8609dc4cb04ccc3f5c9b79a52bfeecdb38f6
[ "MIT" ]
null
null
null
from pathlib import Path from pyspark.sql import SparkSession, functions as f from pyspark.sql.dataframe import DataFrame # Monkeypatch in case I don't use Spark 3.0 DataFrame.transform = transform # Sample/demo purposes mpns_v8_name_relationships_filepath: str = ( "data/analysis/mpns/sample_mpns_v8/name_relationships/" ) output_filepath: str = "data/analysis/mpns/sample_mpns_v8/name_relationships/query/" query_mpns_v8_name_relationships( input_filepath=mpns_v8_name_relationships_filepath, output_filepath=output_filepath, sample_run=True, ) # # Real data # mpns_v8_name_relationships_filepath: str = ( # "data/analysis/mpns/mpns_v8/name_relationships/" # ) # output_filepath: str = "data/analysis/mpns/mpns_v8/name_relationships/query/" # query_mpns_v8_name_relationships( # input_filepath=mpns_v8_name_relationships_filepath, # output_filepath=output_filepath, # sample_run=False, # )
30.368421
86
0.747834
19f803a96ec5d364efd732c5edf09bf82c3dfe31
124
py
Python
library_homework/my_project/my_program.py
Tommy3121173/tommy
429aefb377f84a1d49e85f825a32ac2c160ebc85
[ "MIT" ]
null
null
null
library_homework/my_project/my_program.py
Tommy3121173/tommy
429aefb377f84a1d49e85f825a32ac2c160ebc85
[ "MIT" ]
null
null
null
library_homework/my_project/my_program.py
Tommy3121173/tommy
429aefb377f84a1d49e85f825a32ac2c160ebc85
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed May 23 16:56:57 2018 @author: tommy_mizuki """ import my_library my_func(1,2)
11.272727
35
0.645161
19f8e4fcaecd9a3968eed26a324bf80026d1583f
246
py
Python
algorithm/python/BAEKJOON_1436.py
cjsrhd94/TIL
b91bab7d99d10c63f91af0790cb28ec3d228b68b
[ "MIT" ]
1
2021-08-19T06:23:00.000Z
2021-08-19T06:23:00.000Z
algorithm/python/BAEKJOON_1436.py
cjsrhd94/TIL
b91bab7d99d10c63f91af0790cb28ec3d228b68b
[ "MIT" ]
null
null
null
algorithm/python/BAEKJOON_1436.py
cjsrhd94/TIL
b91bab7d99d10c63f91af0790cb28ec3d228b68b
[ "MIT" ]
null
null
null
n = int(input()) count = 0 number = 0 while True: if '666' in str(number): # '666' count . count += 1 if count == n: #count print -> n print(number) break number += 1
24.6
68
0.565041
19f91845aaff11955f6b430aa3684474c464bf80
3,599
py
Python
cacheTraceAnalysis/plot/reqRate.py
Thesys-lab/cacheWorkloadAnalysisOSDI20
cfc5bbb5c8d909571546c78c247561c9db449469
[ "Apache-2.0" ]
6
2020-11-12T07:51:02.000Z
2022-03-27T20:20:01.000Z
cacheTraceAnalysis/plot/reqRate.py
Thesys-lab/InMemoryCachingWorkloadAnalysis
5f6f9f7e29a164478f3fc28eb64c170bbbafdec7
[ "Apache-2.0" ]
null
null
null
cacheTraceAnalysis/plot/reqRate.py
Thesys-lab/InMemoryCachingWorkloadAnalysis
5f6f9f7e29a164478f3fc28eb64c170bbbafdec7
[ "Apache-2.0" ]
1
2021-12-31T01:16:09.000Z
2021-12-31T01:16:09.000Z
""" plot request rate """ import os, sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../")) from utils.common import * if __name__ == "__main__": import argparse ap = argparse.ArgumentParser() ap.add_argument("--trace", type=str, help="trace path") ap.add_argument("--type", type=str, default="cnt", help="plot type") ap.add_argument("--window", type=int, default=60, help="the size of window in sec") p = ap.parse_args() plot_req_rate(TwrShortBinTraceReader(p.trace), p.window, plot_type=(p.type, ))
38.698925
159
0.689358
19f928aecd4ff7011c0373aab909dea8913438c6
1,373
py
Python
config.py
ShallweJohn/MonsterBlog
f3bd0bdab99af6ba06b7b8fb0eaa6770115fc9c5
[ "MIT" ]
null
null
null
config.py
ShallweJohn/MonsterBlog
f3bd0bdab99af6ba06b7b8fb0eaa6770115fc9c5
[ "MIT" ]
3
2021-03-18T20:36:25.000Z
2021-09-07T23:54:49.000Z
config.py
ShallweJohn/MonsterBlog
f3bd0bdab99af6ba06b7b8fb0eaa6770115fc9c5
[ "MIT" ]
null
null
null
import os import redis import logging config = { 'development': DevelopmentConfig, 'production': ProductionConfig, 'default': DevelopmentConfig }
19.614286
81
0.699927
19fac7af0c83f21b636a9b1fa9c53ac1705d1cfb
5,097
py
Python
utils.py
sjenni/DeepBilevel
9db6c9d81188e891104677a7ffc4b045421fb097
[ "MIT" ]
8
2019-10-23T12:16:13.000Z
2020-11-16T02:20:28.000Z
utils.py
sjenni/DeepBilevel
9db6c9d81188e891104677a7ffc4b045421fb097
[ "MIT" ]
null
null
null
utils.py
sjenni/DeepBilevel
9db6c9d81188e891104677a7ffc4b045421fb097
[ "MIT" ]
4
2020-02-06T14:54:47.000Z
2020-10-25T03:03:04.000Z
import tensorflow as tf from tensorflow.python import pywrap_tensorflow from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import saver as tf_saver def average_gradients(tower_grads): """Calculate the average gradient for each shared variable across all towers. Note that this function provides a synchronization point across all towers. Args: tower_grads: List of lists of (gradient, variable) tuples. The outer list is over individual gradients. The inner list is over the gradient calculation for each tower. Returns: List of pairs of (gradient, variable) where the gradient has been averaged across all towers. """ average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads def montage_tf(imgs, num_h, num_w): """Makes a montage of imgs that can be used in image_summaries. Args: imgs: Tensor of images num_h: Number of images per column num_w: Number of images per row Returns: A montage of num_h*num_w images """ imgs = tf.unstack(imgs) img_rows = [None] * num_h for r in range(num_h): img_rows[r] = tf.concat(axis=1, values=imgs[r * num_w:(r + 1) * num_w]) montage = tf.concat(axis=0, values=img_rows) return tf.expand_dims(montage, 0) def assign_from_checkpoint_fn(model_path, var_list, ignore_missing_vars=False, reshape_variables=False): """Returns a function that assigns specific variables from a checkpoint. Args: model_path: The full path to the model checkpoint. To get latest checkpoint use `model_path = tf.train.latest_checkpoint(checkpoint_dir)` var_list: A list of `Variable` objects or a dictionary mapping names in the checkpoint to the correspoing variables to initialize. If empty or None, it would return no_op(), None. ignore_missing_vars: Boolean, if True it would ignore variables missing in the checkpoint with a warning instead of failing. reshape_variables: Boolean, if True it would automatically reshape variables which are of different shape then the ones stored in the checkpoint but which have the same number of elements. Returns: A function that takes a single argument, a `tf.Session`, that applies the assignment operation. Raises: ValueError: If the checkpoint specified at `model_path` is missing one of the variables in `var_list`. """ if ignore_missing_vars: var_list = remove_missing(var_list, model_path) saver = tf_saver.Saver(var_list, reshape=reshape_variables) return callback def get_variables_to_train(trainable_scopes=None): """Returns a list of variables to train. Returns: A list of variables to train by the optimizer. """ if trainable_scopes is None: variables_to_train = tf.trainable_variables() else: scopes = [scope.strip() for scope in trainable_scopes.split(',')] variables_to_train = [] for scope in scopes: variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) variables_to_train.extend(variables) print('Variables to train: {}'.format([v.op.name for v in variables_to_train])) return variables_to_train
36.148936
84
0.673141
19fb9cf0c33a5df90f7ff935997f2b53b4510673
1,234
py
Python
paralleldomain/model/annotation/polygon_2d.py
parallel-domain/pd-sdk
20e3d052a5cb612a2dd84bda7b1b5487a6a60edc
[ "Apache-2.0" ]
10
2021-11-17T17:23:49.000Z
2022-03-18T09:51:23.000Z
paralleldomain/model/annotation/polygon_2d.py
parallel-domain/pd-sdk
20e3d052a5cb612a2dd84bda7b1b5487a6a60edc
[ "Apache-2.0" ]
3
2021-12-02T17:16:20.000Z
2022-01-07T12:47:13.000Z
paralleldomain/model/annotation/polygon_2d.py
parallel-domain/pd-sdk
20e3d052a5cb612a2dd84bda7b1b5487a6a60edc
[ "Apache-2.0" ]
2
2022-03-09T07:03:54.000Z
2022-03-23T15:53:48.000Z
from dataclasses import dataclass from typing import List from paralleldomain.model.annotation.common import Annotation from paralleldomain.model.annotation.polyline_2d import Polyline2D
29.380952
114
0.691248
19fd46480858b4a1d5b5836cc3a46a14d32272f9
828
py
Python
tests/backup_bsps.py
LaudateCorpus1/bsp_tool
e8c2489ac3bda5a4467f1dce220a76bbf4ce5b19
[ "MIT" ]
null
null
null
tests/backup_bsps.py
LaudateCorpus1/bsp_tool
e8c2489ac3bda5a4467f1dce220a76bbf4ce5b19
[ "MIT" ]
null
null
null
tests/backup_bsps.py
LaudateCorpus1/bsp_tool
e8c2489ac3bda5a4467f1dce220a76bbf4ce5b19
[ "MIT" ]
null
null
null
import os import shutil import sys from maplist import installed_games backup_dir = "F:/bsps" if len(sys.argv) == 2: backup_dir = sys.argv[1] print(f"Making backups in '{backup_dir}'") i = 0 for base_dir, game_dir in installed_games: i += 1 print(f"Backing up ({i}/{len(installed_games)}) {game_dir}...") for map_dir in installed_games[(base_dir, game_dir)]: src_dir = os.path.join(base_dir, game_dir, map_dir) dest_dir = os.path.join(backup_dir, game_dir, map_dir) os.makedirs(dest_dir, exist_ok=True) try: # note the missed file(s) and continue shutil.copytree(src_dir, dest_dir, dirs_exist_ok=True) except shutil.Error as err: print(f"*** ERROR *** {err}") except FileNotFoundError as err: print(f"*** ERROR *** {err}")
30.666667
67
0.642512
19fe235467f017d20a959660a872441f0b170a74
770
py
Python
infobip_channels/whatsapp/models/response/get_templates.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
infobip_channels/whatsapp/models/response/get_templates.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
infobip_channels/whatsapp/models/response/get_templates.py
infobip-community/infobip-api-python-sdk
5ffc5ab877ee1748aa29391f991c8c5324387487
[ "MIT" ]
null
null
null
from typing import List, Optional from pydantic import AnyHttpUrl from infobip_channels.core.models import CamelCaseModel, ResponseBase
19.25
69
0.711688
19ff517f6d368213182e5f5031c40842eae17a49
1,391
py
Python
examples/server.py
fhamborg/Giveme5W
b5f49712654ab466e605716b4cd9f8dce9bcdd88
[ "Apache-2.0" ]
16
2018-03-28T11:20:11.000Z
2020-09-17T19:39:25.000Z
examples/server.py
fhamborg/Giveme5W
b5f49712654ab466e605716b4cd9f8dce9bcdd88
[ "Apache-2.0" ]
3
2018-03-15T10:17:29.000Z
2018-05-16T13:14:28.000Z
examples/server.py
fhamborg/Giveme5W
b5f49712654ab466e605716b4cd9f8dce9bcdd88
[ "Apache-2.0" ]
6
2018-05-08T12:53:51.000Z
2021-09-25T03:21:02.000Z
import logging from flask import Flask, request, jsonify from extractor.document import Document from extractor.five_w_extractor import FiveWExtractor app = Flask(__name__) log = logging.getLogger(__name__) host = None port = 5000 debug = False options = None extractor = FiveWExtractor() ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) log.addHandler(ch) log.setLevel(logging.DEBUG) if __name__ == "__main__": run()
26.245283
82
0.675054
19ffa347e490ab19819ef9b329ffa153417391c5
826
py
Python
CPAC/utils/tests/test_symlinks.py
Lawreros/C-PAC
ce26ba9a38cbd401cd405150eeed23b805007724
[ "BSD-3-Clause" ]
125
2015-03-04T09:14:46.000Z
2022-03-29T07:46:12.000Z
CPAC/utils/tests/test_symlinks.py
Lawreros/C-PAC
ce26ba9a38cbd401cd405150eeed23b805007724
[ "BSD-3-Clause" ]
1,018
2015-01-04T16:01:29.000Z
2022-03-31T19:23:09.000Z
CPAC/utils/tests/test_symlinks.py
Lawreros/C-PAC
ce26ba9a38cbd401cd405150eeed23b805007724
[ "BSD-3-Clause" ]
117
2015-01-10T08:05:52.000Z
2022-01-18T05:16:51.000Z
import os import tempfile import pkg_resources as p from CPAC.utils.symlinks import create_symlinks mocked_outputs = \ p.resource_filename( "CPAC", os.path.join( 'utils', 'tests', 'test_symlinks-outputs.txt' ) )
19.666667
55
0.579903
c200bfcfb3506f7b5d5aa61e676f674b8d4fef20
14,488
py
Python
web/migrations/0001_initial.py
jmason-ebi/pdx
aec38d74a78c907041332f4623c01047f45f3f0a
[ "Apache-2.0" ]
null
null
null
web/migrations/0001_initial.py
jmason-ebi/pdx
aec38d74a78c907041332f4623c01047f45f3f0a
[ "Apache-2.0" ]
null
null
null
web/migrations/0001_initial.py
jmason-ebi/pdx
aec38d74a78c907041332f4623c01047f45f3f0a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-09-09 15:33 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import django_extensions.db.fields
50.835088
143
0.574752
c202c2c6ef86a127b7a659f1ab70e457fb054b54
4,799
py
Python
dserve/__init__.py
JIC-CSB/dserve
5f20d9de8ffb52f98ef9c68b327fe1ca9fcee17e
[ "MIT" ]
null
null
null
dserve/__init__.py
JIC-CSB/dserve
5f20d9de8ffb52f98ef9c68b327fe1ca9fcee17e
[ "MIT" ]
null
null
null
dserve/__init__.py
JIC-CSB/dserve
5f20d9de8ffb52f98ef9c68b327fe1ca9fcee17e
[ "MIT" ]
null
null
null
"""Script for running the dserve server.""" import os from flask import ( Flask, jsonify, send_file, abort, request, ) from flask_cors import CORS, cross_origin app = Flask(__name__) cors = CORS(app) def overlay_root(): overlays = app._dataset.access_overlays() content = { "_links": { "self": {"href": "/overlays"}}, } for overlay_name in overlays.keys(): value = {"href": "/overlays/{}".format(overlay_name)} content["_links"][overlay_name] = value return jsonify(content) def specific_overlay(overlay_name): overlays = app._dataset.access_overlays() try: overlay = overlays[overlay_name] except KeyError: abort(404) return jsonify(overlay) def creaate_new_overlay(overlay_name): empty_overlay = app._dataset.empty_overlay() try: app._dataset.persist_overlay(overlay_name, empty_overlay) except IOError: abort(409) return "", 201
25.526596
77
0.600542
c203136ec3038930bc5926aaf959f30e095e46a5
1,610
py
Python
kkutil/security.py
kaka19ace/kkutils
1ac449488d85ba2c6b18c5dc9cf77a0bc36579b1
[ "MIT" ]
1
2015-12-13T18:42:52.000Z
2015-12-13T18:42:52.000Z
kkutil/security.py
kaka19ace/kkutil
1ac449488d85ba2c6b18c5dc9cf77a0bc36579b1
[ "MIT" ]
null
null
null
kkutil/security.py
kaka19ace/kkutil
1ac449488d85ba2c6b18c5dc9cf77a0bc36579b1
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # """ util regex tool refs: http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks """ import re INJECTION_REGEX = re.compile( r"(%27)|(\')|(\-\-)|(%23)|(#)|" # Regex for detection of SQL meta-characters r"\w*((%27)|(\'))\s+((%6F)|o|(%4F))((%72)|r|(%52))\s*|" # Modified regex for detection of SQL meta-characters eg: ' or 1 = 1' detect word 'or', r"((%3D)|(=))[^\n]*((%27)|(\')|(\-\-)|(%3B)|(;))" # Regex for typical SQL Injection attack eg: '= 1 --' r"((%27)|(\'))union|" # Regex for detecting SQL Injection with the UNION keyword r"((%27)|(\'))select|" # Regex for detecting SQL Injection with the UNION keyword r"((%27)|(\'))insert|" # Regex for detecting SQL Injection with the UNION keyword r"((%27)|(\'))update|" # Regex for detecting SQL Injection with the UNION keyword r"((%27)|(\'))drop", # Regex for detecting SQL Injection with the UNION keyword re.IGNORECASE ) CSS_ATTACK_REGREX = re.compile(r"((%3C)|<)((%2F)|/)*[a-z0-9%]+((%3E)|>)", re.IGNORECASE) CSS_IMG_SRC_ATTACK_REGEX = re.compile( r"((%3C)|<)((%69)|i|(%49))((%6D)|m|(%4D))((%67)|g|(%47))[^\n]+((%3E)|>)", re.IGNORECASE ) CSS_PARANOID_ATTACK_REGEX = re.compile("((%3C)|<)[^\n]+((%3E)|>)", re.IGNORECASE)
35
148
0.608075
c204bfd19101390dbf534e7049d9b49aef3685e3
1,520
py
Python
update_eeprom_rc.py
rkojedzinszky/thermo-sensor
f0b5aa6dbf231b566e00a683c5bb1551569d2463
[ "BSD-3-Clause" ]
2
2019-04-25T17:38:02.000Z
2020-03-03T22:50:04.000Z
update_eeprom_rc.py
rkojedzinszky/thermo-sensor
f0b5aa6dbf231b566e00a683c5bb1551569d2463
[ "BSD-3-Clause" ]
null
null
null
update_eeprom_rc.py
rkojedzinszky/thermo-sensor
f0b5aa6dbf231b566e00a683c5bb1551569d2463
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python REGISTERS = { 'IOCFG2': 0x00, 'IOCFG1': 0x01, 'IOCFG0': 0x02, 'FIFOTHR': 0x03, 'SYNC1': 0x04, 'SYNC0': 0x05, 'PKTLEN': 0x06, 'PKTCTRL1': 0x07, 'PKTCTRL0': 0x08, 'ADDR': 0x09, 'CHANNR': 0x0A, 'FSCTRL1': 0x0B, 'FSCTRL0': 0x0C, 'FREQ2': 0x0D, 'FREQ1': 0x0E, 'FREQ0': 0x0F, 'MDMCFG4': 0x10, 'MDMCFG3': 0x11, 'MDMCFG2': 0x12, 'MDMCFG1': 0x13, 'MDMCFG0': 0x14, 'DEVIATN': 0x15, 'MCSM2': 0x16, 'MCSM1': 0x17, 'MCSM0': 0x18, 'FOCCFG': 0x19, 'BSCFG': 0x1A, 'AGCCTRL2': 0x1B, 'AGCCTRL1': 0x1C, 'AGCCTRL0': 0x1D, 'WOREVT1': 0x1E, 'WOREVT0': 0x1F, 'WORCTRL': 0x20, 'FREND1': 0x21, 'FREND0': 0x22, 'FSCAL3': 0x23, 'FSCAL2': 0x24, 'FSCAL1': 0x25, 'FSCAL0': 0x26, 'RCCTRL1': 0x27, 'RCCTRL0': 0x28, 'FSTEST': 0x29, 'PTEST': 0x2A, 'AGCTEST': 0x2B, 'TEST2': 0x2C, 'TEST1': 0x2D, 'TEST0': 0x2E, 'PATABLE': 0x3E, } if __name__ == '__main__': import sys import re with open('eeprom', 'r+b') as fh: fh.seek(20) for line in sys.stdin: if re.match('^\s*#', line): continue m = re.match('(?P<reg>\w+)\s+(?P<value>[0-9a-fA-F]+)', line) if not m: continue m = m.groupdict() fh.write(chr(REGISTERS[m['reg']])) fh.write(chr(int(m['value'], 16))) fh.write(b"\xff" * (512 - fh.tell()))
20.540541
72
0.484211
c205b5f889cdcc188c5b89c3efa9505bfb938fe3
384
py
Python
UsefulLink.py
qyu6/TAILab
6c3e7a7e2e49f7c673ab46b90c1568a96cce75b7
[ "Apache-2.0" ]
1
2022-01-10T15:14:55.000Z
2022-01-10T15:14:55.000Z
UsefulLink.py
qyu6/TAILab
6c3e7a7e2e49f7c673ab46b90c1568a96cce75b7
[ "Apache-2.0" ]
null
null
null
UsefulLink.py
qyu6/TAILab
6c3e7a7e2e49f7c673ab46b90c1568a96cce75b7
[ "Apache-2.0" ]
null
null
null
''' @func:to store useful links module @create:2021.10.20 '''
25.6
74
0.65625