hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
de725902f24523dc4f0cb06e33505cadc76a710c
| 38,783
|
py
|
Python
|
pysim/epcstd.py
|
larioandr/thesis-rfidsim
|
6a5b3ef02964ff2d49bf5dae55af270801af28a5
|
[
"MIT"
] | null | null | null |
pysim/epcstd.py
|
larioandr/thesis-rfidsim
|
6a5b3ef02964ff2d49bf5dae55af270801af28a5
|
[
"MIT"
] | null | null | null |
pysim/epcstd.py
|
larioandr/thesis-rfidsim
|
6a5b3ef02964ff2d49bf5dae55af270801af28a5
|
[
"MIT"
] | null | null | null |
from enum import Enum
import random
import collections
import numpy as np
#
#######################################################################
# Data Types
#######################################################################
#
def __str__(self):
return self._string
class _Session0(_Session):
class Session(Enum):
S0 = _Session0()
S1 = _Session('01', 1, 'S1')
S2 = _Session('10', 2, 'S2')
S3 = _Session('11', 3, 'S3')
# noinspection PyInitNewSignature
def power_on_value(self, interval, persistence, stored_value):
return self.__session__.power_on_value(
interval, persistence, stored_value)
def __str__(self):
return self.__session__.__str__()
class TagEncoding(Enum):
FM0 = ('00', 1, "FM0")
M2 = ('01', 2, "M2")
M4 = ('10', 4, "M4")
M8 = ('11', 8, "M8")
# noinspection PyInitNewSignature
def __str__(self):
return self._string
#
#######################################################################
# Default system-wide Reader Parameters
#######################################################################
#
stdParams = StdParams()
#
#######################################################################
# Tag Operations
#######################################################################
#
#
#######################################################################
# API for encoding basic types
#######################################################################
#
#
#######################################################################
# Commands
#######################################################################
#
#
#######################################################################
# Tag replies
#######################################################################
#
def to_bytes(value):
if isinstance(value, str):
return list(bytearray.fromhex(value))
elif isinstance(value, collections.Iterable):
value = list(value)
for b in value:
if not isinstance(b, int) or not (0 <= b < 256):
raise ValueError("each array element must represent a byte")
return value
else:
raise ValueError("value must be a hex string or bytes collections")
class ReqRnReply(Reply):
class ReadReply(Reply):
#
#######################################################################
# Preambles and frames
#######################################################################
#
class ReaderPreamble(ReaderSync):
class TagPreamble:
def get_duration(self, blf):
return (self.bitlen * self.encoding.symbols_per_bit) / blf
class FM0Preamble(TagPreamble):
def __str__(self):
return "{{({}){},{},trext({})}}".format(
self.bitlen, "0..01010v1" if self.extended else "1010v1",
self.encoding, 1 if self.extended else 0)
class MillerPreamble(TagPreamble):
def __str__(self):
return "{{({}){},{},trext({})}}".format(
self.bitlen, "DD..DD010111" if self.extended else "DDDD010111",
self.encoding, 1 if self.extended else 0)
def create_tag_preamble(encoding, extended=False):
if encoding == TagEncoding.FM0:
return FM0Preamble(extended)
else:
return MillerPreamble(m=encoding.symbols_per_bit, extended=extended)
class ReaderFrame:
def __init__(self, preamble, command):
super().__init__()
self.preamble = preamble
self.command = command
def __str__(self):
return "Frame{{{o.preamble}{o.command}}}".format(o=self)
class TagFrame:
def __init__(self, preamble, reply):
super().__init__()
self.preamble = preamble
self.reply = reply
# FIXME: not vectorized
#
#######################################################################
# Reader and Tag frames helpers and accessors
#######################################################################
#
# noinspection PyTypeChecker
# noinspection PyTypeChecker
# noinspection PyTypeChecker
# noinspection PyTypeChecker
# noinspection PyTypeChecker
#
#######################################################################
# Link timings estimation
#######################################################################
#
#
#######################################################################
# Slot duration estimation
#######################################################################
#
#
#######################################################################
# Round duration estimation
#######################################################################
#
#
#######################################################################
# Various helpers
#######################################################################
#
# noinspection PyTypeChecker
| 30.610103
| 79
| 0.592682
|
de72e8f348089a00d8a491df1f651cf4a945ca9c
| 1,500
|
py
|
Python
|
Heap/378-Kth_Smalles_Element_in_a_Sorted_Matrix.py
|
dingwenzheng730/Leet
|
c08bd48e8dcc6bca41134d218d39f66bfc112eaf
|
[
"MIT"
] | 1
|
2021-06-15T21:01:53.000Z
|
2021-06-15T21:01:53.000Z
|
Heap/378-Kth_Smalles_Element_in_a_Sorted_Matrix.py
|
dingwenzheng730/Leet
|
c08bd48e8dcc6bca41134d218d39f66bfc112eaf
|
[
"MIT"
] | null | null | null |
Heap/378-Kth_Smalles_Element_in_a_Sorted_Matrix.py
|
dingwenzheng730/Leet
|
c08bd48e8dcc6bca41134d218d39f66bfc112eaf
|
[
"MIT"
] | null | null | null |
'''
Given an n x n matrix where each of the rows and columns are sorted in ascending order, return the kth smallest element in the matrix.
Note that it is the kth smallest element in the sorted order, not the kth distinct element.
Input: matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8
Output: 13
Explanation: The elements in the matrix are [1,5,9,10,11,12,13,13,15], and the 8th smallest number is 13
Input: matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 2
Output: 10
Input: [[1,5,9],[10,11,13],[12,13,15]], k= 9
Output: 15
Input: [[2]], k= 1
Output: 2
Precondition:
n >= 1
k <= n*n
No int overflow
C1: Single element
C2: k = n^2
C3: k <= n
C4: k > n
Algo:
Brute force: get elements and sort O(n^2logn^2)
Heap:
x = min(k, n)
Runtime: klogx
Space: O(x)
if n >= k:
compare the first column is enough
if n < k
for each row, we have a pointer, use a heap to record the pointer value,
for k times, pop out the smaller pointer and update that pointer to its next value in its list
Init a heap, the heap size should be min of k and n()
'''
| 24.193548
| 134
| 0.611333
|
de73b0477272b09621a0a7e87406fe9c6c2a1f06
| 5,088
|
py
|
Python
|
baseStation/test/vision/service/test_visionService.py
|
olgam4/design3
|
6e05d123a24deae7dda646df535844a158ef5cc0
|
[
"WTFPL"
] | null | null | null |
baseStation/test/vision/service/test_visionService.py
|
olgam4/design3
|
6e05d123a24deae7dda646df535844a158ef5cc0
|
[
"WTFPL"
] | null | null | null |
baseStation/test/vision/service/test_visionService.py
|
olgam4/design3
|
6e05d123a24deae7dda646df535844a158ef5cc0
|
[
"WTFPL"
] | null | null | null |
from unittest import TestCase
from unittest.mock import Mock
import numpy as np
from pathfinding.domain.angle import Angle
from pathfinding.domain.coord import Coord
from vision.domain.image import Image
from vision.domain.rectangle import Rectangle
from vision.infrastructure.cvVisionException import CameraDoesNotExistError
from vision.service.visionService import VisionService
| 45.428571
| 117
| 0.725825
|
de758aaeb7ae98b14c58fbe707173fad48237087
| 8,753
|
py
|
Python
|
bmdal/layer_features.py
|
dholzmueller/bmdal_reg
|
1a9e9c19fbd350ec32a2bd7b505e7015df7dc9bf
|
[
"Apache-2.0"
] | 3
|
2022-03-19T21:30:10.000Z
|
2022-03-30T08:20:48.000Z
|
bmdal/layer_features.py
|
dholzmueller/bmdal_reg
|
1a9e9c19fbd350ec32a2bd7b505e7015df7dc9bf
|
[
"Apache-2.0"
] | null | null | null |
bmdal/layer_features.py
|
dholzmueller/bmdal_reg
|
1a9e9c19fbd350ec32a2bd7b505e7015df7dc9bf
|
[
"Apache-2.0"
] | null | null | null |
from .feature_maps import *
import torch.nn as nn
def create_grad_feature_map(model: nn.Module, grad_layers: List[LayerGradientComputation],
use_float64: bool = False) -> FeatureMap:
"""
Creates a feature map corresponding to phi_{grad} or phi_{ll}, depending on which layers are provided.
:param model: Model to compute gradients of
:param grad_layers: All layers of the model whose parameters we want to compute gradients of
:param use_float64: Set to true if the gradient features should be converted to float64 after computing them
:return: Returns a feature map corresponding to phi_{grad} for the given layers.
"""
tfms = [ModelGradTransform(model, grad_layers)]
if use_float64:
tfms.append(ToDoubleTransform())
return SequentialFeatureMap(SumFeatureMap([l.get_feature_map() for l in grad_layers]),
tfms)
# ----- Specific LayerGradientComputation implementation(s) for linear layers
| 44.207071
| 118
| 0.682052
|
de759ba42ef02e88463fee41b02959bd0f0ddd2c
| 35,389
|
py
|
Python
|
pinsey/gui/MainWindow.py
|
RailKill/Pinsey
|
72a283e6c5683b27918b511d80e45c3af4e67539
|
[
"MIT"
] | 3
|
2021-02-01T06:47:06.000Z
|
2022-01-09T05:54:35.000Z
|
pinsey/gui/MainWindow.py
|
RailKill/Pinsey
|
72a283e6c5683b27918b511d80e45c3af4e67539
|
[
"MIT"
] | 4
|
2019-10-23T09:52:36.000Z
|
2022-03-11T23:17:23.000Z
|
pinsey/gui/MainWindow.py
|
RailKill/Pinsey
|
72a283e6c5683b27918b511d80e45c3af4e67539
|
[
"MIT"
] | null | null | null |
from configparser import ConfigParser
from configparser import DuplicateSectionError
from PyQt5 import QtCore, QtGui, QtWidgets
from pinsey import Constants
from pinsey.Utils import clickable, center, picture_grid, horizontal_line, resolve_message_sender, name_set, windows
from pinsey.gui.MessageWindow import MessageWindow
from pinsey.gui.component.BrowseListing import BrowseListing
from pinsey.gui.component.DislikesListing import DislikesListing
from pinsey.gui.component.LikesListing import LikesListing
from pinsey.handler.DecisionHandler import DecisionHandler
from pinsey.handler.LikesHandler import LikesHandler
from pinsey.thread.DownloadPhotosThread import DownloadPhotosThread
from pinsey.thread.LikesBotThread import LikesBotThread
from pinsey.thread.SessionThread import SessionThread
from pinsey.thread.MatchesThread import MatchesThread
| 50.700573
| 121
| 0.628755
|
de7659b57f254205c0bc591d8af1e1375127f4d8
| 336
|
py
|
Python
|
Chat app/Check IP.py
|
ArturWagnerBusiness/Projects-2018-2020
|
37a217dc325f3ba42d8a7a1a743e5b6f8fab5df4
|
[
"MIT"
] | null | null | null |
Chat app/Check IP.py
|
ArturWagnerBusiness/Projects-2018-2020
|
37a217dc325f3ba42d8a7a1a743e5b6f8fab5df4
|
[
"MIT"
] | null | null | null |
Chat app/Check IP.py
|
ArturWagnerBusiness/Projects-2018-2020
|
37a217dc325f3ba42d8a7a1a743e5b6f8fab5df4
|
[
"MIT"
] | null | null | null |
from os import system as c
i = "ipconfig"
input(c(i))
# import win32clipboard
# from time import sleep as wait
# set clipboard data
# while True:
# win32clipboard.OpenClipboard()
# win32clipboard.EmptyClipboard()
# win32clipboard.SetClipboardText('Clipboard Blocked!')
# win32clipboard.CloseClipboard()
# wait(0.1)
| 24
| 59
| 0.720238
|
de766a3b6f5c4477c098e9f336005c2394afbbc1
| 1,506
|
py
|
Python
|
app/api/api_v1/tasks/emails.py
|
cdlaimin/fastapi
|
4acf1a1da4a1eedd81a3bdf6256661c2464928b9
|
[
"BSD-3-Clause"
] | null | null | null |
app/api/api_v1/tasks/emails.py
|
cdlaimin/fastapi
|
4acf1a1da4a1eedd81a3bdf6256661c2464928b9
|
[
"BSD-3-Clause"
] | null | null | null |
app/api/api_v1/tasks/emails.py
|
cdlaimin/fastapi
|
4acf1a1da4a1eedd81a3bdf6256661c2464928b9
|
[
"BSD-3-Clause"
] | null | null | null |
# -*- encoding: utf-8 -*-
"""
@File : emails.py
@Contact : 1053522308@qq.com
@License : (C)Copyright 2017-2018, Liugroup-NLPR-CASIA
@Modify Time @Author @Version @Desciption
------------ ------- -------- -----------
2020/9/27 10:22 wuxiaoqiang 1.0 None
"""
import asyncio
from email.mime.text import MIMEText
import aiosmtplib
from app.core.celery_app import celery_app
from app.core.config import settings
| 34.227273
| 108
| 0.625498
|
de76f5e1a1407299a65c28e63772cca898458059
| 13,487
|
py
|
Python
|
lightwood/encoders/text/distilbert.py
|
ritwik12/lightwood
|
7975688355fba8b0f8349dd55a1b6cb625c3efd0
|
[
"MIT"
] | null | null | null |
lightwood/encoders/text/distilbert.py
|
ritwik12/lightwood
|
7975688355fba8b0f8349dd55a1b6cb625c3efd0
|
[
"MIT"
] | null | null | null |
lightwood/encoders/text/distilbert.py
|
ritwik12/lightwood
|
7975688355fba8b0f8349dd55a1b6cb625c3efd0
|
[
"MIT"
] | null | null | null |
import time
import copy
import random
import logging
from functools import partial
import numpy as np
import torch
from torch.utils.data import DataLoader
from transformers import DistilBertModel, DistilBertForSequenceClassification, DistilBertTokenizer, AlbertModel, AlbertForSequenceClassification, DistilBertTokenizer, AlbertTokenizer, AdamW, get_linear_schedule_with_warmup
from lightwood.config.config import CONFIG
from lightwood.constants.lightwood import COLUMN_DATA_TYPES, ENCODER_AIM
from lightwood.mixers.helpers.default_net import DefaultNet
from lightwood.mixers.helpers.ranger import Ranger
from lightwood.mixers.helpers.shapes import *
from lightwood.mixers.helpers.transformer import Transformer
from lightwood.api.gym import Gym
if __name__ == "__main__":
# Generate some tests data
import random
from sklearn.metrics import r2_score
import logging
from lightwood.encoders.numeric import NumericEncoder
logging.basicConfig(level=logging.DEBUG)
random.seed(2)
priming_data = []
primting_target = []
test_data = []
test_target = []
for i in range(0,300):
if random.randint(1,5) == 3:
test_data.append(str(i) + ''.join(['n'] * i))
#test_data.append(str(i))
test_target.append(i)
#else:
priming_data.append(str(i) + ''.join(['n'] * i))
#priming_data.append(str(i))
primting_target.append(i)
output_1_encoder = NumericEncoder()
output_1_encoder.prepare_encoder(primting_target)
encoded_data_1 = output_1_encoder.encode(primting_target)
encoded_data_1 = encoded_data_1.tolist()
enc = DistilBertEncoder()
enc.prepare_encoder(priming_data, training_data={'targets': [{'output_type': COLUMN_DATA_TYPES.NUMERIC, 'encoded_output': encoded_data_1}, {'output_type': COLUMN_DATA_TYPES.NUMERIC, 'encoded_output': encoded_data_1}]})
encoded_predicted_target = enc.encode(test_data).tolist()
predicted_targets_1 = output_1_encoder.decode(torch.tensor([x[:4] for x in encoded_predicted_target]))
predicted_targets_2 = output_1_encoder.decode(torch.tensor([x[4:] for x in encoded_predicted_target]))
for predicted_targets in [predicted_targets_1, predicted_targets_2]:
real = list(test_target)
pred = list(predicted_targets)
# handle nan
for i in range(len(pred)):
try:
float(pred[i])
except:
pred[i] = 0
print(real[0:25], '\n', pred[0:25])
encoder_accuracy = r2_score(real, pred)
print(f'Categorial encoder accuracy for: {encoder_accuracy} on testing dataset')
#assert(encoder_accuracy > 0.5)
| 46.993031
| 456
| 0.671091
|
de775456d4d41592b9970922b77c527e29122163
| 4,542
|
py
|
Python
|
scripts/scopdominfo.py
|
stivalaa/cuda_satabsearch
|
b947fb711f8b138e5a50c81e7331727c372eb87d
|
[
"MIT"
] | null | null | null |
scripts/scopdominfo.py
|
stivalaa/cuda_satabsearch
|
b947fb711f8b138e5a50c81e7331727c372eb87d
|
[
"MIT"
] | null | null | null |
scripts/scopdominfo.py
|
stivalaa/cuda_satabsearch
|
b947fb711f8b138e5a50c81e7331727c372eb87d
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python
###############################################################################
#
# scomdominfo.py - Report information folds and classes of a list of SCOP sids
#
# File: scomdominfo.py
# Author: Alex Stivala
# Created: November 2008
#
# $Id: scopdominfo.py 3009 2009-12-08 03:01:48Z alexs $
#
###############################################################################
"""
Report information on the folds, superfamilies and classes of a list
of SCOP domain identifiers (sids).
See usage in docstring for main()
SCOP and ASTRAL data is obtained using the Bio.SCOP library (Casbon et
al 2006 'A high level interface to SCOP and ASTRAL implemented in
Python' BMC Bioinformatics 7:10) and depends on having the data
downloaded, in SCOP_DIR (defined below).
Downloaded SCOP files from
http://scop.mrc-lmb.cam.ac.uk/scop/parse/index.html
and ASTRAL files (in scopseq-1.73) from
http://astral.berkeley.edu/scopseq-1.73.html
The files downlaoded are:
/local/charikar/SCOP/:
dir.cla.scop.txt_1.73
dir.des.scop.txt_1.73
dir.hie.scop.txt_1.73
/local/charikar/SCOP/scopseq-1.73:
astral-scopdom-seqres-all-1.73.fa
astral-scopdom-seqres-sel-gs-bib-95-1.73.id
Other files there are indices built by Bio.SCOP when first used.
"""
import sys,os
from Bio.SCOP import *
from pathdefs import SCOP_DIR,SCOP_VERSION
#-----------------------------------------------------------------------------
#
# Function definitions
#
#-----------------------------------------------------------------------------
def write_scopdom_info(scopsid_list, fh, scop):
"""
Write information about the list of SCOP sids (domain identifiers)
in the scopsid_list to fh. For each domain write the fold and class,
then write stats about number of different folds represented
and the number of domains in each class.
Parameters:
scopsid_list - list of SCOP sids (domain ids)
fh - open (write) filehandle to write to
scop - previously built Bio.SCOP Scop instance
Return value:
None.
"""
superfamily_count = {} # dict of {sf_sunid : count} counting domains in eac superfamily
fold_count= {} # dict of {fold_sunid : count} counting domains in each fold
class_count={} # dict of {class_sunid : count} counting domains in each class
for sid in scopsid_list:
scop_dom = scop.getDomainBySid(sid)
scop_superfamily = scop_dom.getAscendent('superfamily')
scop_fold = scop_dom.getAscendent('fold')
scop_class = scop_dom.getAscendent('class')
if superfamily_count.has_key(scop_superfamily.sunid):
superfamily_count[scop_superfamily.sunid] += 1
else:
superfamily_count[scop_superfamily.sunid] = 1
if fold_count.has_key(scop_fold.sunid):
fold_count[scop_fold.sunid] += 1
else:
fold_count[scop_fold.sunid] = 1
if class_count.has_key(scop_class.sunid):
class_count[scop_class.sunid] += 1
else:
class_count[scop_class.sunid] = 1
fh.write('%s\t(%s) %s\t%s\t%s\n' % (sid, scop_superfamily.sccs,scop_superfamily.description, scop_fold.description, scop_class.description))
num_domains = len(scopsid_list)
num_superfamilies = len(superfamily_count)
num_folds = len(fold_count)
num_classes = len(class_count)
fh.write('Totals: %d domains\t%d superfamilies\t%d folds\t%d classes\n' %
(num_domains, num_superfamilies, num_folds, num_classes))
fh.write('Class distribution:\n')
for (class_sunid, count) in class_count.iteritems():
fh.write('\t%s:\t%d\n' % (scop.getNodeBySunid(class_sunid).description,
count))
#-----------------------------------------------------------------------------
#
# Main
#
#-----------------------------------------------------------------------------
def usage(progname):
"""
Print usage message and exit
"""
sys.stderr.write("Usage: " +progname +
" < domainidlist\n")
sys.exit(1)
def main():
"""
main for scomdominfo.py
Usage: scomdominfo.py < domainidlist
The list of SCOP domain ids (sids) is read from stdin
Output is written to stdout.
"""
if len(sys.argv) != 1:
usage(os.path.basename(sys.argv[0]))
# read SCOP data
scop = Scop(dir_path=SCOP_DIR,version=SCOP_VERSION)
scopsid_list = sys.stdin.read().split('\n')[:-1]
write_scopdom_info(scopsid_list, sys.stdout, scop)
if __name__ == "__main__":
main()
| 30.689189
| 148
| 0.610524
|
de79c16d6df471bd5320f3fc4154354634f400a7
| 1,334
|
py
|
Python
|
serverless/pytorch/foolwood/siammask/nuclio/model_handler.py
|
arthurtibame/cvat
|
0062ecdec34a9ffcad33e1664a7cac663bec4ecf
|
[
"MIT"
] | null | null | null |
serverless/pytorch/foolwood/siammask/nuclio/model_handler.py
|
arthurtibame/cvat
|
0062ecdec34a9ffcad33e1664a7cac663bec4ecf
|
[
"MIT"
] | null | null | null |
serverless/pytorch/foolwood/siammask/nuclio/model_handler.py
|
arthurtibame/cvat
|
0062ecdec34a9ffcad33e1664a7cac663bec4ecf
|
[
"MIT"
] | 1
|
2021-09-17T10:19:30.000Z
|
2021-09-17T10:19:30.000Z
|
# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT
from tools.test import *
import os
| 34.205128
| 93
| 0.614693
|
de79c50bcf2db093ce388c48ecf4f5cdef4ddb45
| 10,842
|
py
|
Python
|
pynmt/__init__.py
|
obrmmk/demo
|
b5deb85b2b2bf118b850f93c255ee88d055156a8
|
[
"MIT"
] | null | null | null |
pynmt/__init__.py
|
obrmmk/demo
|
b5deb85b2b2bf118b850f93c255ee88d055156a8
|
[
"MIT"
] | null | null | null |
pynmt/__init__.py
|
obrmmk/demo
|
b5deb85b2b2bf118b850f93c255ee88d055156a8
|
[
"MIT"
] | 1
|
2021-11-23T14:04:36.000Z
|
2021-11-23T14:04:36.000Z
|
import torch
import torch.nn as nn
from torch.nn import (TransformerEncoder, TransformerDecoder,
TransformerEncoderLayer, TransformerDecoderLayer)
from torch import Tensor
from typing import Iterable, List
import math
import os
import numpy as np
try:
from janome.tokenizer import Tokenizer
except ModuleNotFoundError:
import os
os.system('pip install janome')
from janome.tokenizer import Tokenizer
from google_drive_downloader import GoogleDriveDownloader
#
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('DEVICE :', DEVICE)
# SRC (source) :
SRC_LANGUAGE = 'jpn'
# TGT (target) :
TGT_LANGUAGE = 'py'
# special_token IDX
UNK_IDX, PAD_IDX, SOS_IDX, EOS_IDX = 0, 1, 2, 3
tokenizer = Tokenizer(os.path.join(os.path.dirname(
__file__), 'janomedic.csv'), udic_type="simpledic", udic_enc="utf8", wakati=True)
#
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float(
'-inf')).masked_fill(mask == 1, float(0.0))
return mask
def sequential_transforms(*transforms):
return func
def tensor_transform(token_ids: List[int]):
return torch.cat((torch.tensor([SOS_IDX]),
torch.tensor(token_ids),
torch.tensor([EOS_IDX])))
def beam_topk(model, ys, memory, beamsize):
ys = ys.to(DEVICE)
tgt_mask = (generate_square_subsequent_mask(
ys.size(0)).type(torch.bool)).to(DEVICE)
out = model.decode(ys, memory, tgt_mask)
out = out.transpose(0, 1)
prob = model.generator(out[:, -1])
next_prob, next_word = prob.topk(k=beamsize, dim=1)
return next_prob, next_word
# greedy search ()
special_token = ['<A>', '<B>', '<C>', '<D>', '<E>']
| 36.14
| 168
| 0.620365
|
de7a78e426a815b7bd976727be3160a469af797a
| 9,185
|
py
|
Python
|
probedb/certs/builddb.py
|
dingdang2012/tlsprober
|
927f6177939470235bf336bca27096369932fc66
|
[
"Apache-2.0"
] | 1
|
2019-01-30T13:18:02.000Z
|
2019-01-30T13:18:02.000Z
|
probedb/certs/builddb.py
|
dingdang2012/tlsprober
|
927f6177939470235bf336bca27096369932fc66
|
[
"Apache-2.0"
] | null | null | null |
probedb/certs/builddb.py
|
dingdang2012/tlsprober
|
927f6177939470235bf336bca27096369932fc66
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2010-2012 Opera Software ASA
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import standalone
import probedb.probedata2.models as Prober
import probedb.certs.models as Certs
import probedb.resultdb2.models as Results
from django.db.models import Q
import certhandler
import threading
import Queue
"""
Update the database so that the certificate attributes are set for all certificates
Used in case there is a failure in the automatic registration of certificates and
setting of attributes
"""
keys = {}
selfsigned_keys ={}
failed=0
upgraded = 0
EV_conditions = set([
Certs.CertificateConditions.CERTC_EXTENDED_VALIDATION_CERT,
Certs.CertificateConditions.CERTC_NOT_EXTENDED_VALIDATION_CERT
])
summaries = dict([(x.id, x) for x in Results.ResultSummaryList.objects.all()])
i=0;
for x in summaries.itervalues():
x.start()
if 0:
for c,d in Results.ResultCondition.RESULTC_VALUES:
x.check_condition(c)
if 0:
i=0;
for certificate in Prober.Certificate.objects.filter(issuer_b64=None).iterator():
cert = certhandler.Certificate(certificate.certificate_b64)
if not cert:
continue
certificate.issuer_b64 = cert.IssuerNameDER()
certificate.subject_b64 = cert.SubjectNameDER()
certificate.save()
i+=1
if i%100 == 0:
print i
print "finished issuer"
if 0:
i=0
for certificate in Prober.Certificate.objects.filter(subject_b64=None).iterator():
cert = certhandler.Certificate(certificate.certificate_b64)
if not cert:
continue
certificate.issuer_b64 = cert.IssuerNameDER()
certificate.subject_b64 = cert.SubjectNameDER()
certificate.save()
i+=1
if i%100 == 0:
print i
print "finished subject"
if 0:
i=0
for certificate in Certs.CertAttributes.objects.filter(serial_number=None).iterator():
cert = certhandler.Certificate(certificate.cert.certificate_b64)
if not cert:
continue
serial = str(cert.GetSerialNumber())
if len(serial) >100:
serial = "NaN"
certificate.serial_number = serial
certificate.save()
i+=1
if i%100 == 0:
print i
print "finished serial numbers"
if 1:
print "building database"
update_queue = Queue.Queue()
finished_queue = Queue.Queue()
num_probers = 100
threads = []
for i in range(num_probers):
new_thread = threading.Thread(target=do_update_cert, args=(update_queue,finished_queue, i))
new_thread.daemon = True
new_thread.start()
threads.append(new_thread)
progress_thread = threading.Thread(target=__ProgressCounter, args=(finished_queue,))
progress_thread.daemon = True
progress_thread.start()
i=0;
c_ids = list(Prober.Certificate.objects.filter(certattributes=None).values_list("id", flat=True))
print len(c_ids)
for k in c_ids:
#for x in Prober.Certificate.objects.iterator():
i+=1
if i % 100 == 0:
print i
update_queue.put(k)
update_queue.join()
finished_queue.join()
if 0:
print "Marking site certificates"
i=0;
#for k in list(Certs.CertAttributes.objects.filter(cert__server_cert__id__gt =0).distinct().values_list("id", flat=True)):
c_ids = Certs.CertAttributes.objects.filter(cert_kind = Certs.CertAttributes.CERT_UNKNOWN).values_list("cert_id", flat=True)
c_cids = list(Prober.ProbeResult.objects.exclude(server_cert__id__in = c_ids).filter(server_cert__id__gt =0).distinct().values_list("server_cert__id", flat=True))
for k in c_ids :
i+=1
if i % 100 == 0:
print i
try:
x = Certs.CertAttributes.objects.get(cert__id = k)
if x.cert_kind == Certs.CertAttributes.CERT_SELFSIGNED:
x.cert_kind = Certs.CertAttributes.CERT_SELFSIGNED_SERVER
else:
x.cert_kind = Certs.CertAttributes.CERT_SERVER
x.save()
except:
pass
if 0:
print "Locating intermediates"
i=0;
already_fixed = set()
#for k in list(Certs.CertAttributes.objects.filter(cert__server_cert__id__gt =0).distinct().values_list("id", flat=True)):
for k in list(Certs.CertAttributes.objects.exclude(cert_kind__in =[Certs.CertAttributes.CERT_SELFSIGNED,
Certs.CertAttributes.CERT_SELFSIGNED_SERVER,
Certs.CertAttributes.CERT_INTERMEDIATE_CA,
Certs.CertAttributes.CERT_XSIGN_CA,
Certs.CertAttributes.CERT_SERVER,] ).
filter(cert__proberesult__server_cert__id__gt =0).
distinct().
values_list("id", flat=True)):
i+=1
if i % 100 == 0:
print i
if k in already_fixed:
continue;
x = Certs.CertAttributes.objects.get(id = k)
for y in x.cert.proberesult_set.filter(server_cert__id__gt =0):
certs0 = [(z, certhandler.Certificate(z.certificate_b64)) for z in y.certificates.all()
if z.certattributes.cert_kind not in [Certs.CertAttributes.CERT_SELFSIGNED_SERVER, Certs.CertAttributes.CERT_SERVER]]
if not certs0:
continue;
certs = {}
for (z, c) in certs0:
if not c:
continue
subject = c.SubjectNameLine()
certs.setdefault(subject,[]).append((z,c))
if not certs:
continue
site = certhandler.Certificate(y.server_cert.certificate_b64)
if not site:
continue
last = site
while True:
issuer = last.IssuerNameLine()
if issuer not in certs:
break;
signer = None
cert = None
for (z,c) in certs[issuer]:
if last.IsSignedBy(c):
signer = z
cert = c
break;
del certs[issuer] # prevent infinite loop
if not signer:
break;
if signer.certattributes.cert_kind in [Certs.CertAttributes.CERT_SELFSIGNED, Certs.CertAttributes.CERT_TRUSTED_ROOT, ]:
break; # Root, already set
if signer.certattributes.cert_kind == Certs.CertAttributes.CERT_UNKNOWN or signer.certattributes.cert_kind =="":
signer.certattributes.cert_kind = Certs.CertAttributes.CERT_INTERMEDIATE_CA
signer.certattributes.save()
already_fixed.add(signer.id)
last = cert
break;
if 0:
print "Locating intermediates #2"
i=0;
already_fixed = set()
name_matches = 0
signed_by = 0
#for k in list(Certs.CertAttributes.objects.filter(cert__server_cert__id__gt =0).distinct().values_list("id", flat=True)):
for k in list(Certs.CertAttributes.objects.exclude(cert_kind__in =[Certs.CertAttributes.CERT_SELFSIGNED,
Certs.CertAttributes.CERT_SELFSIGNED_SERVER,
Certs.CertAttributes.CERT_INTERMEDIATE_CA,
Certs.CertAttributes.CERT_XSIGN_CA,
Certs.CertAttributes.CERT_SERVER,] ).
distinct().
values_list("id", flat=True)):
i+=1
if i % 100 == 0:
print i
if k in already_fixed:
continue;
x = Certs.CertAttributes.objects.get(id = k)
cert = certhandler.Certificate(x.cert.certificate_b64)
if not cert:
continue
assert not cert.IsSelfSigned()
subject = x.subject_oneline
for y in Certs.CertAttributes.objects.filter(issuer_oneline=subject):
name_matches += 1
cert_cand = certhandler.Certificate(y.cert.certificate_b64)
if not cert_cand:
continue;
if cert_cand.IsSignedBy(cert):
signed_by += 1
if x.cert_kind in [Certs.CertAttributes.CERT_UNKNOWN, ""]:
x.cert_kind = Certs.CertAttributes.CERT_INTERMEDIATE_CA
x.save()
already_fixed.add(x.id)
break
print "Name matches: ", name_matches
print "Signed by: ",signed_by
print "completed"
| 27.665663
| 163
| 0.706369
|
de7c4534ed26f1d3158aaf6b53415fa79e0c249d
| 574
|
py
|
Python
|
patron/__init__.py
|
rafaelaraujobsb/patron
|
b2d23d4149a5f48156a4a2b0638daac33a66cc6a
|
[
"MIT"
] | null | null | null |
patron/__init__.py
|
rafaelaraujobsb/patron
|
b2d23d4149a5f48156a4a2b0638daac33a66cc6a
|
[
"MIT"
] | null | null | null |
patron/__init__.py
|
rafaelaraujobsb/patron
|
b2d23d4149a5f48156a4a2b0638daac33a66cc6a
|
[
"MIT"
] | null | null | null |
from flask import Flask
from loguru import logger
from flasgger import Swagger
from patron.api import api_bp
logger.add("api.log", format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}", rotation="500 MB")
template = {
"swagger": "2.0",
"info": {
"title": "PATRON",
"description": "",
"version": "0.0.1"
},
"consumes": [
"application/json"
],
"produces": [
"application/json"
]
}
app = Flask(__name__)
swagger = Swagger(app, template=template)
app.register_blueprint(api_bp, url_prefix='/api')
| 19.793103
| 102
| 0.602787
|
de7dc549a1952d8dda02b33f493f1bb859b37917
| 735
|
py
|
Python
|
src/perceptron.py
|
tomoki/deep-learning-from-scratch
|
0b6144806b6b79462d6d65616a64b1774f876973
|
[
"MIT"
] | 1
|
2018-08-31T09:39:11.000Z
|
2018-08-31T09:39:11.000Z
|
src/perceptron.py
|
tomoki/deep-learning-from-scratch
|
0b6144806b6b79462d6d65616a64b1774f876973
|
[
"MIT"
] | null | null | null |
src/perceptron.py
|
tomoki/deep-learning-from-scratch
|
0b6144806b6b79462d6d65616a64b1774f876973
|
[
"MIT"
] | null | null | null |
import numpy as np
import matplotlib.pylab as plt
| 17.093023
| 31
| 0.469388
|
de8007cfcf1b7fa53b4609e54f0ca14a7d5ba1bb
| 210
|
py
|
Python
|
notebooks/_solutions/case4_air_quality_analysis18.py
|
jorisvandenbossche/2018-Bordeaux-pandas-course
|
3f6b9fe6f02c2ab484c3f9744d7d39b926438dd6
|
[
"BSD-3-Clause"
] | 3
|
2019-07-23T15:14:03.000Z
|
2020-11-10T06:12:18.000Z
|
notebooks/_solutions/case4_air_quality_analysis18.py
|
jorisvandenbossche/2018-Bordeaux-pandas-course
|
3f6b9fe6f02c2ab484c3f9744d7d39b926438dd6
|
[
"BSD-3-Clause"
] | null | null | null |
notebooks/_solutions/case4_air_quality_analysis18.py
|
jorisvandenbossche/2018-Bordeaux-pandas-course
|
3f6b9fe6f02c2ab484c3f9744d7d39b926438dd6
|
[
"BSD-3-Clause"
] | 3
|
2020-03-04T23:40:20.000Z
|
2021-11-04T16:41:10.000Z
|
# with tidy long table
fig, ax = plt.subplots()
sns.violinplot(x='station', y='no2', data=data_tidy[data_tidy['datetime'].dt.year == 2011], palette="GnBu_d", ax=ax)
ax.set_ylabel("NO$_2$ concentration (g/m)")
| 52.5
| 116
| 0.704762
|
de82bbe06365e1885857bfec2f5eb9144e01b08c
| 1,729
|
py
|
Python
|
dncnn/dncnn.py
|
kTonpa/DnCNN
|
aca7e07ccbe6b75bee7d4763958dade4a8eee609
|
[
"MIT"
] | null | null | null |
dncnn/dncnn.py
|
kTonpa/DnCNN
|
aca7e07ccbe6b75bee7d4763958dade4a8eee609
|
[
"MIT"
] | null | null | null |
dncnn/dncnn.py
|
kTonpa/DnCNN
|
aca7e07ccbe6b75bee7d4763958dade4a8eee609
|
[
"MIT"
] | null | null | null |
"""
Project: dncnn
Author: khalil MEFTAH
Date: 2021-11-26
DnCNN: Deep Neural Convolutional Network for Image Denoising model implementation
"""
import torch
from torch import nn
import torch.nn.functional as F
# helper functions
# main classe
| 25.80597
| 142
| 0.638519
|
de848d1a58c8622dd6042ce58386b34d78eaa285
| 41,886
|
py
|
Python
|
scripts/fabfile/tasks.py
|
Alchem-Lab/deneva
|
5201ef12fd8235fea7833709b8bffe45f53877eb
|
[
"Apache-2.0"
] | 88
|
2017-01-19T03:15:24.000Z
|
2022-03-30T16:22:19.000Z
|
scripts/fabfile/tasks.py
|
Alchem-Lab/deneva
|
5201ef12fd8235fea7833709b8bffe45f53877eb
|
[
"Apache-2.0"
] | null | null | null |
scripts/fabfile/tasks.py
|
Alchem-Lab/deneva
|
5201ef12fd8235fea7833709b8bffe45f53877eb
|
[
"Apache-2.0"
] | 22
|
2017-01-20T10:22:31.000Z
|
2022-02-10T18:55:36.000Z
|
#!/usr/bin/python
from __future__ import print_function
import logging
from fabric.api import task,run,local,put,get,execute,settings
from fabric.decorators import *
from fabric.context_managers import shell_env,quiet
from fabric.exceptions import *
from fabric.utils import puts,fastprint
from time import sleep
from contextlib import contextmanager
import traceback
import os,sys,datetime,re,ast
import itertools
import glob,shlex,subprocess
import pprint
sys.path.append('..')
from environment import *
from experiments import *
from experiments import configs
from helper import get_cfgs,get_outfile_name,get_execfile_name,get_args,CONFIG_PARAMS,FLAG
# (see https://github.com/fabric/fabric/issues/51#issuecomment-96341022)
logging.basicConfig()
paramiko_logger = logging.getLogger("paramiko.transport")
paramiko_logger.disabled = True
COLORS = {
"info" : 32, #green
"warn" : 33, #yellow
"error" : 31, #red
"debug" : 36, #cyan
}
#OUT_FMT = "[{h}] {p}: {fn}:".format
PP = pprint.PrettyPrinter(indent=4)
NOW=datetime.datetime.now()
STRNOW=NOW.strftime("%Y%m%d-%H%M%S")
os.chdir('../..')
#MAX_TIME_PER_EXP = 60 * 2 # in seconds
MAX_TIME_PER_EXP = 60 * 10 # in seconds
EXECUTE_EXPS = True
SKIP = False
CC_ALG = ""
set_env()
## Basic usage:
## fab using_vcloud run_exps:experiment_1
## fab using_local run_exps:experiment_1
## fab using_istc run_exps:experiment_1
# execute(run_exp,exps,delay=delay)
## Basic usage:
## fab using_vcloud network_test
## fab using_istc network_test:4
#delay is in ms
#delay is in ms
# run("pkill -f runsq")
def get_good_hosts():
# good_hosts = []
set_hosts()
good_hosts = env.hosts
# Find and skip bad hosts
ping_results = execute(ping)
for host in ping_results:
if ping_results[host] == 0:
# good_hosts.append(host)
continue
else:
with color("warn"):
puts("Skipping non-responsive host {}".format(host),show_prefix=True)
good_hosts.remove(host)
return good_hosts
# for e in experiments:
# execute(compile_binary,fmt,e)
def succeeded(outcomes):
for host,outcome in outcomes.iteritems():
if not outcome:
return False
return True
| 36.549738
| 172
| 0.542138
|
de852461942a9c2a911b8c95e145d87c827bf61c
| 651
|
py
|
Python
|
mezzanine_recipes/forms.py
|
tjetzinger/mezzanine-recipes
|
f00be89ae5b93fdb2cf2771270efb4ecfa30e313
|
[
"MIT"
] | 6
|
2015-02-01T18:08:41.000Z
|
2021-06-20T16:24:11.000Z
|
mezzanine_recipes/forms.py
|
tjetzinger/mezzanine-recipes
|
f00be89ae5b93fdb2cf2771270efb4ecfa30e313
|
[
"MIT"
] | 2
|
2020-02-11T21:19:13.000Z
|
2020-06-05T16:38:44.000Z
|
mezzanine_recipes/forms.py
|
tjetzinger/mezzanine-recipes
|
f00be89ae5b93fdb2cf2771270efb4ecfa30e313
|
[
"MIT"
] | 1
|
2016-05-17T20:16:25.000Z
|
2016-05-17T20:16:25.000Z
|
from django import forms
from mezzanine.blog.forms import BlogPostForm
from .models import BlogPost
# These fields need to be in the form, hidden, with default values,
# since it posts to the blog post admin, which includes these fields
# and will use empty values instead of the model defaults, without
# these specified.
hidden_field_defaults = ("status", "gen_description", "allow_comments")
| 26.04
| 73
| 0.723502
|
de86c719ac9ffce9e1f273be9d0dc93bbd224576
| 14,533
|
py
|
Python
|
reviews/migrations/0022_auto_20190302_1556.py
|
UrbanBogger/horrorexplosion
|
3698e00a6899a5e8b224cd3d1259c3deb3a2ca80
|
[
"MIT"
] | null | null | null |
reviews/migrations/0022_auto_20190302_1556.py
|
UrbanBogger/horrorexplosion
|
3698e00a6899a5e8b224cd3d1259c3deb3a2ca80
|
[
"MIT"
] | 4
|
2020-06-05T18:21:18.000Z
|
2021-06-10T20:17:31.000Z
|
reviews/migrations/0022_auto_20190302_1556.py
|
UrbanBogger/horrorexplosion
|
3698e00a6899a5e8b224cd3d1259c3deb3a2ca80
|
[
"MIT"
] | null | null | null |
# -*- coding: utf-8 -*-
# Generated by Django 1.11.6 on 2019-03-02 15:56
from __future__ import unicode_literals
import ckeditor.fields
from django.db import migrations, models
import django.db.models.deletion
| 113.539063
| 1,908
| 0.637515
|
de876b3ed14bbdc7196b4d80c31ffed86152546c
| 1,414
|
py
|
Python
|
setup.py
|
imdaveho/intermezzo
|
3fe4824a747face996e301ca5190caec0cb0a6fd
|
[
"MIT"
] | 8
|
2018-02-26T16:24:07.000Z
|
2021-06-30T07:40:52.000Z
|
setup.py
|
imdaveho/intermezzo
|
3fe4824a747face996e301ca5190caec0cb0a6fd
|
[
"MIT"
] | null | null | null |
setup.py
|
imdaveho/intermezzo
|
3fe4824a747face996e301ca5190caec0cb0a6fd
|
[
"MIT"
] | null | null | null |
import platform
from setuptools import setup
if platform.system() == "Windows":
setup(
name="intermezzo",
version="0.1.0",
description="A library for creating cross-platform text-based interfaces using termbox-go.",
long_description="",
url="https://github.com/imdaveho/intermezzo",
author="Dave Ho",
author_email="imdaveho@gmail.com",
license="MIT",
classifiers=[],
packages=["intermezzo"],
package_data={"intermezzo": ["build/*/*.dll"]},
keywords="termbox tui terminal command-line",
install_requires=["cffi>=1.10.0"],
cffi_modules=["intermezzo/build/build_ffi_win.py:ffi"],
setup_requires=["cffi>=1.10.0"],
)
else:
setup(
name="intermezzo",
version="0.1.0",
description="A library for creating cross-platform text-based interfaces using termbox-go.",
long_description="",
url="https://github.com/imdaveho/intermezzo",
author="Dave Ho",
author_email="imdaveho@gmail.com",
license="MIT",
classifiers=[],
packages=["intermezzo"],
package_data={"intermezzo": ["build/*/*.so"]},
keywords="termbox tui terminal command-line",
install_requires=["cffi>=1.10.0"],
cffi_modules=["intermezzo/build/build_ffi_nix.py:ffi"],
setup_requires=["cffi>=1.10.0"],
)
| 35.35
| 100
| 0.601839
|
de87df11dbf3b3a221e585a21372627cd71cbf40
| 173
|
py
|
Python
|
aula3/ola/urls.py
|
Danilo-Xaxa/django_cs50w
|
5ae2e076f35a8c32a4e445f8cfd1c66500fbc496
|
[
"MIT"
] | null | null | null |
aula3/ola/urls.py
|
Danilo-Xaxa/django_cs50w
|
5ae2e076f35a8c32a4e445f8cfd1c66500fbc496
|
[
"MIT"
] | null | null | null |
aula3/ola/urls.py
|
Danilo-Xaxa/django_cs50w
|
5ae2e076f35a8c32a4e445f8cfd1c66500fbc496
|
[
"MIT"
] | null | null | null |
from django.urls import path
from . import views
urlpatterns = [
path('', views.index, name='index'),
path('<str:nome>', views.cumprimentar, name='cumprimentar'),
]
| 24.714286
| 64
| 0.676301
|
de88715741307a44df748cb0254417ebbcf130e6
| 70,016
|
py
|
Python
|
MOTION.py
|
catubc/MOTION
|
528ce8a860e4f1f1075b85d3bcb162fb78bdad81
|
[
"MIT"
] | null | null | null |
MOTION.py
|
catubc/MOTION
|
528ce8a860e4f1f1075b85d3bcb162fb78bdad81
|
[
"MIT"
] | null | null | null |
MOTION.py
|
catubc/MOTION
|
528ce8a860e4f1f1075b85d3bcb162fb78bdad81
|
[
"MIT"
] | null | null | null |
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import cv2, os, sys, glob
import scipy
import sklearn
import imageio
import matplotlib.cm as cm
import matplotlib
import time
from sklearn import decomposition, metrics, manifold, svm
from tsne import bh_sne
from matplotlib.path import Path
from numpy import linalg as LA
from scipy.signal import butter, filtfilt, cheby1
from scipy.spatial import distance
#**************************************************************************************************************************
#*************************************************CODE START***************************************************************
#**************************************************************************************************************************
| 39.049637
| 257
| 0.638211
|
de88b285c3b2ad75dee639aa1cc273972692cd58
| 619
|
py
|
Python
|
MinersArchers/game/game_data/cells/Cell_pygame.py
|
ea-evdokimov/MinersArchers
|
2e2830d3723b66cbd0e8829092124e30f8b4c854
|
[
"MIT"
] | null | null | null |
MinersArchers/game/game_data/cells/Cell_pygame.py
|
ea-evdokimov/MinersArchers
|
2e2830d3723b66cbd0e8829092124e30f8b4c854
|
[
"MIT"
] | null | null | null |
MinersArchers/game/game_data/cells/Cell_pygame.py
|
ea-evdokimov/MinersArchers
|
2e2830d3723b66cbd0e8829092124e30f8b4c854
|
[
"MIT"
] | null | null | null |
import pygame
from game.game_data.cells.Cell import Cell
from game.pygame_ import PICS_pygame, CELL_SIZE
from game.pygame_.Object import Object
| 30.95
| 91
| 0.691438
|
de8b266bc66642e780d1f515de7639ab0386bd85
| 2,690
|
py
|
Python
|
scheduler.py
|
shuaiqi361/a-PyTorch-Tutorial-to-Object-Detection
|
5706b82ff67911864967aa72adf7e4a994c7ec89
|
[
"MIT"
] | null | null | null |
scheduler.py
|
shuaiqi361/a-PyTorch-Tutorial-to-Object-Detection
|
5706b82ff67911864967aa72adf7e4a994c7ec89
|
[
"MIT"
] | null | null | null |
scheduler.py
|
shuaiqi361/a-PyTorch-Tutorial-to-Object-Detection
|
5706b82ff67911864967aa72adf7e4a994c7ec89
|
[
"MIT"
] | null | null | null |
import json
import os
import torch
import math
def adjust_learning_rate(optimizer, scale):
"""
Scale learning rate by a specified factor.
:param optimizer: optimizer whose learning rate must be shrunk.
:param scale: factor to multiply learning rate with.
"""
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * scale
print("DECAYING learning rate, the new LR is %f" % (optimizer.param_groups[1]['lr'],))
def warm_up_learning_rate(optimizer, rate=5.):
"""
Scale learning rate by a specified factor.
:param rate:
:param optimizer: optimizer whose learning rate must be shrunk.
:param scale: factor to multiply learning rate with.
"""
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * rate
print("WARMING up learning rate, the new LR is %f" % (optimizer.param_groups[1]['lr'],))
| 36.351351
| 106
| 0.600743
|
de8c74beee9cae08acd3e8037eb35833307f76e4
| 93
|
py
|
Python
|
app/routing/feeds/feed_type.py
|
wolfhardfehre/guide-io
|
cf076bad0634bcaf4ad0be4822539b7c8d254e76
|
[
"MIT"
] | null | null | null |
app/routing/feeds/feed_type.py
|
wolfhardfehre/guide-io
|
cf076bad0634bcaf4ad0be4822539b7c8d254e76
|
[
"MIT"
] | null | null | null |
app/routing/feeds/feed_type.py
|
wolfhardfehre/guide-io
|
cf076bad0634bcaf4ad0be4822539b7c8d254e76
|
[
"MIT"
] | null | null | null |
from enum import Enum
| 13.285714
| 26
| 0.645161
|
de8c915237260239c036a5cbacb8018944e669da
| 8,774
|
py
|
Python
|
lego_sorter.py
|
bmleedy/lego_sorter
|
0164bc0042127f255590d1883b5edadfba781537
|
[
"BSD-2-Clause"
] | null | null | null |
lego_sorter.py
|
bmleedy/lego_sorter
|
0164bc0042127f255590d1883b5edadfba781537
|
[
"BSD-2-Clause"
] | null | null | null |
lego_sorter.py
|
bmleedy/lego_sorter
|
0164bc0042127f255590d1883b5edadfba781537
|
[
"BSD-2-Clause"
] | null | null | null |
#!/bin/python3
"""This is the top-level program to operate the Raspberry Pi based lego sorter."""
# Things I can set myself: AWB, Brightness, crop, exposure_mode,
# exposure_speed,iso (sensitivity), overlays, preview_alpha,
# preview_window, saturation, shutter_speed,
# Thought for future enhancement: at start time, calibrate against
# a background image. Possibly only evaluate pixels which
# deviate significantly in hue from the original background image.
# Thoughts on controlling the air valves:
# I'm going to take the simple approach first, and hopefully it's sufficient:
# 1. Detect different colors in zones in front of their respective valves
# 2. If enough of the first color is detected, puff it into that color's bin
# 3. Otherwise, let it ride through as many detection zones as
# necessary until it's detected or falls off the track
# Upsides:
# 1. It's dead simple and reactive. No state needed to manage
# 2. No timing tuning needed for detect-then-wait method (source of failure)
# 3. No tracking needed (source of failure/flakiness)
# 4. Less memory/CPU intensive
#
# Downsides:
# 1. A multi-color part could slip past without enough "density" of any one color
# 2. More detection zones means more potential variation in the
# lighting - same part could look yellow in one zone and orange
# in the next, causing misses
import os
import json
import time
from datetime import datetime
import cv2
from picamera import PiCamera
from picamera.array import PiRGBArray
import numpy as np
# GPIO Imports
import RPi.GPIO as GPIO
# constants for tweaking
WINDOW_NAME = "Recognition"
SCALE_PERCENT = 20
PIXEL_THRESHOLD = 50
RANGE_PADDING = 10
SHOW_OVERLAY = True
COLOR_COLUMN_WIDTH = 10
OUTPUT_VIDEO = False
VIDEO_NAME = "output.avi"
LEGO_CONFIG_NAME = "legos.config.json"
# setup GPIO (https://pythonhosted.org/RPIO/)
VALVE_PIN = 18
GPIO.setmode(GPIO.BCM)
GPIO.setup(VALVE_PIN, GPIO.OUT)
GPIO.output(VALVE_PIN, GPIO.HIGH)
# Detection box location
XMIN = 36
XMAX = 85
YMIN = 96
YMAX = 121
SHOW_BOX = True
# todo: fork data to a logfile in /var
# Setup the display window
if SHOW_OVERLAY:
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL)
cv2.resizeWindow(WINDOW_NAME, 800, 800)
# Load jets we want to use
jets = []
with open('jets.config.json') as json_file:
jets = json.load(json_file)
# Load legos we want to recognize
legos = []
with open('legos.config.json') as json_file:
config = json.load(json_file)
for lego_config in config:
if((lego_config["jet_number"] >= 0) and
(lego_config["jet_number"] < len(jets))):
legos.append(
Lego(
lconfig=lego_config,
recognition_box=jets[lego_config["jet_number"]]["bounding_box_corners"],
)
)
else:
legoname = lego_config["name"]
print(f"Lego color {legoname} disabled")
# Run the camera
with PiCamera(
camera_num=0, # default
stereo_mode='none', # default
stereo_decimate=False, # default
resolution=(160, 96), # default (10% of full resolution of 1600x900)
framerate=10, # 10 fps, default is 30
sensor_mode=5) as camera: # default=1, 5 is full FOV with 2x2 binning
#camera.awb_mode = 'off' # turn off AWB because I will control lighting
camera.awb_gains = (1.184, 2.969) # Set constant AWB (tuple for red and blue, or constant)
# time.sleep(2)
print("{datetime.now()} Camera setup complete.")
print(f"{datetime.now()} AWB Gains are {camera.awb_gains}")
# time.sleep(3)
# Setup the buffer into which we'll capture the images
cam_image = PiRGBArray(camera)
if OUTPUT_VIDEO:
cap = cv2.VideoCapture(0)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 10.0, (160, 96))
# start the preview window in the top left corner
camera.start_preview(resolution=(160, 96),
window=(40, 40, 320, 192),
fullscreen=False)
camera.preview_alpha = 200
print("{datetime.now()} Camera preview started")
# continuously capture files
last_loop_time = time.time()
for i, filename in enumerate(
camera.capture_continuous(
cam_image,
format='bgr',
use_video_port=True, # faster, but less good images
resize=None # resolution was specified above
)):
# clear the screen
os.system('clear')
# load the image
image = cam_image.array.copy()
image_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Run recognition on the same image for each lego type
for lego in legos:
lego.recognize_at(image_hsv)
all_pixel_counts = 0
for lego in legos:
all_pixel_counts += lego.pixel_count
print(f"{datetime.now()} {all_pixel_counts} Pixels detected")
print_string = ""
for lego in legos:
print_string += f"{lego.name:^{COLOR_COLUMN_WIDTH}}|"
print(print_string)
print_string = ""
for lego in legos:
print_string += f"{lego.pixel_count:^{COLOR_COLUMN_WIDTH}}|"
print(print_string)
for lego in legos:
yxmin = (jets[lego.jet_number]["bounding_box_corners"][0][1],
jets[lego.jet_number]["bounding_box_corners"][0][0])
yxmax = (jets[lego.jet_number]["bounding_box_corners"][1][1],
jets[lego.jet_number]["bounding_box_corners"][1][0])
if lego.pixel_count > PIXEL_THRESHOLD:
GPIO.output(jets[lego.jet_number]["gpio_pin"], GPIO.LOW)
print(f"{lego.name} RECOGNIZED! {lego.pixel_count} pixels")
if SHOW_BOX:
cv2.rectangle(image, yxmin, yxmax, lego.display_bgr, 1)
else:
GPIO.output(jets[lego.jet_number]["gpio_pin"], GPIO.HIGH)
if SHOW_BOX:
cv2.rectangle(image, yxmin, yxmax, (0, 0, 0), 1)
if SHOW_OVERLAY:
for lego in legos:
image[lego.recognition_indices[0]+
jets[lego.jet_number]["bounding_box_corners"][0][0],
lego.recognition_indices[1]+
jets[lego.jet_number]["bounding_box_corners"][0][1]] = lego.display_bgr
cv2.waitKey(1)
cv2.imshow(WINDOW_NAME, image)
if OUTPUT_VIDEO:
out.write(image)
# display the loop speed
now_time = int(round(time.time() * 1000))
print(f"Loop [{i}] completed in {now_time-last_loop_time}ms")
last_loop_time = now_time
# clear the buffers for the image
cam_image.truncate(0)
camera.stop_preview()
out.release()
cv2.destroyAllWindows()
| 35.379032
| 94
| 0.624915
|
de8d539f5152c1d0482b8d70ccc7c573352b8f81
| 6,061
|
py
|
Python
|
tableloader/tableFunctions/types.py
|
warlof/yamlloader
|
ff1c1e62ec40787dd77115f6deded8a93e77ebf6
|
[
"MIT"
] | 26
|
2015-07-08T12:55:30.000Z
|
2022-01-21T11:44:35.000Z
|
tableloader/tableFunctions/types.py
|
warlof/yamlloader
|
ff1c1e62ec40787dd77115f6deded8a93e77ebf6
|
[
"MIT"
] | 16
|
2016-05-01T17:42:44.000Z
|
2021-06-02T04:33:53.000Z
|
tableloader/tableFunctions/types.py
|
warlof/yamlloader
|
ff1c1e62ec40787dd77115f6deded8a93e77ebf6
|
[
"MIT"
] | 17
|
2016-05-01T11:15:00.000Z
|
2021-12-02T03:25:04.000Z
|
# -*- coding: utf-8 -*-
from yaml import load, dump
try:
from yaml import CSafeLoader as SafeLoader
print "Using CSafeLoader"
except ImportError:
from yaml import SafeLoader
print "Using Python SafeLoader"
import os
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
from sqlalchemy import Table
| 63.135417
| 193
| 0.530606
|
de8e61ed55aedc48bfff03d78334a493e87826b6
| 242
|
py
|
Python
|
core/views.py
|
AlikBerry/countdown_timer
|
457f6d499b1fd702d43c348a012ae78780009e3b
|
[
"MIT"
] | null | null | null |
core/views.py
|
AlikBerry/countdown_timer
|
457f6d499b1fd702d43c348a012ae78780009e3b
|
[
"MIT"
] | null | null | null |
core/views.py
|
AlikBerry/countdown_timer
|
457f6d499b1fd702d43c348a012ae78780009e3b
|
[
"MIT"
] | null | null | null |
from django.shortcuts import render
from core.models import Projects,InfoNotifications,WarningNotifications
from django.http import HttpResponse
from .tasks import sleepy
| 22
| 71
| 0.801653
|
de8e8bcbbb73ed82dfadbb561cfbfe8bb447a711
| 5,017
|
py
|
Python
|
networks/autoencoder/losses.py
|
annachen/dl_playground
|
f263dc16b4f0d91f6d33d94e678a9bbe2ace8913
|
[
"MIT"
] | null | null | null |
networks/autoencoder/losses.py
|
annachen/dl_playground
|
f263dc16b4f0d91f6d33d94e678a9bbe2ace8913
|
[
"MIT"
] | null | null | null |
networks/autoencoder/losses.py
|
annachen/dl_playground
|
f263dc16b4f0d91f6d33d94e678a9bbe2ace8913
|
[
"MIT"
] | null | null | null |
import tensorflow as tf
import numpy as np
EPS = 1e-5
def KL_monte_carlo(z, mean, sigma=None, log_sigma=None):
"""Computes the KL divergence at a point, given by z.
Implemented based on https://www.tensorflow.org/tutorials/generative/cvae
This is the part "log(p(z)) - log(q(z|x)) where z is sampled from
q(z|x).
Parameters
----------
z : (B, N)
mean : (B, N)
sigma : (B, N) | None
log_sigma : (B, N) | None
Returns
-------
KL : (B,)
"""
if log_sigma is None:
log_sigma = tf.math.log(sigma)
zeros = tf.zeros_like(z)
log_p_z = log_multivar_gaussian(z, mean=zeros, log_sigma=zeros)
log_q_z_x = log_multivar_gaussian(z, mean=mean, log_sigma=log_sigma)
return log_q_z_x - log_p_z
def KL(mean, sigma=None, log_sigma=None):
"""KL divergence between a multivariate Gaussian and Multivariate
N(0, I).
Implemented based on
https://mr-easy.github.io/2020-04-16-kl-divergence-between-2-gaussian-distributions/
Parameters
----------
mean : (B, N)
sigma : (B, N) | None
The diagonol of a covariance matrix of a factorized Gaussian
distribution.
log_sigma : (B, N) | None
The log diagonol of a covariance matrix of a factorized
Gaussian distribution.
One of `sigma` and `log_sigma` has to be passed in.
Returns
-------
KL : (B,)
"""
if sigma is None:
sigma = tf.math.exp(log_sigma)
if log_sigma is None:
log_sigma = tf.math.log(sigma)
u = tf.reduce_sum(mean * mean, axis=1) # (B,)
tr = tf.reduce_sum(sigma, axis=1) # (B,)
k = tf.cast(tf.shape(mean)[1], tf.float32) # scalar
lg = tf.reduce_sum(log_sigma, axis=1) # (B,)
return 0.5 * (u + tr - k - lg)
def log_multivar_gaussian(x, mean, sigma=None, log_sigma=None):
"""Computes log pdf at x of a multi-variate Gaussian.
Parameters
----------
x : (B, N)
mean : (B, N)
sigma : (B, N) | None
log_sigma: (B, N) | None
Returns
-------
log_p : (B,)
"""
if sigma is None:
sigma = tf.math.exp(log_sigma)
if log_sigma is None:
log_sigma = tf.math.log(sigma)
x = x - mean
upper = -0.5 * tf.reduce_sum(x * x / (sigma + EPS), axis=-1) # (B,)
k = tf.cast(tf.shape(x)[1], tf.float32)
log_pi = tf.math.log(np.pi * 2)
log_prod_sig = tf.reduce_sum(log_sigma, axis=1) # (B,)
lower = -0.5 * (k * log_pi + log_prod_sig)
return upper - lower
def multivar_gaussian(x, mean, sigma):
"""Computes pdf at x of a multi-variate Gaussian
Parameters
----------
x : (B, N)
mean : (B, N)
sigma : (B, N)
Represents the diagonol of a covariance matrix of a factorized
Gaussian distribution.
Returns
-------
p_x : (B,)
"""
x = x - mean
upper = tf.reduce_sum(x * x / sigma, axis=-1) # (B,)
upper = tf.math.exp(-0.5 * upper) # (B,)
pi_vec = tf.ones_like(x) * np.pi * 2 # (B, N)
lower = pi_vec * sigma
lower = tf.reduce_prod(lower, axis=-1) # (B,)
lower = tf.math.sqrt(lower)
return upper / lower
def reconstruction_cross_entropy(prediction, labels, is_logit=True):
"""Computes reconstruction error using cross entropy.
Parameters
----------
prediction : (B, ...)
labels : (B, ...)
Same dimensions as `prediction`
is_logit : bool
Whether the prediction is logit (pre-softmax / sigmoid)
Returns
-------
recons_error : (B,)
"""
assert is_logit, "Not Implemented"
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.cast(labels, tf.float32),
logits=prediction,
)
batch_size = tf.shape(prediction)[0]
cross_ent = tf.reshape(cross_ent, (batch_size, -1))
return tf.reduce_mean(cross_ent, -1)
def reconstruction_mean_square_error(prediction, labels, is_logit=True):
"""Computes reconstruction error using mean-square-error.
Parameters
----------
prediction : (B, ...)
labels : (B, ...)
Same dimensions as `prediction`
is_logit : bool
Whether the prediciton is logit.
Returns
-------
recons_error : (B,)
"""
if is_logit:
prediction = tf.nn.sigmoid(prediction)
error = prediction - tf.cast(labels, tf.float32)
error = error * error
batch_size = tf.shape(labels)[0]
error = tf.reshape(error, (batch_size, -1))
return tf.reduce_mean(error, axis=1)
| 24.960199
| 88
| 0.590592
|
de9037d4a2c6b5fbbf0a5f4e22a9796ae161e5b0
| 4,288
|
py
|
Python
|
Onderdelen/Hoofdscherm.py
|
RemcoTaal/IDP
|
33959e29235448c38b7936f16c7421a24130e745
|
[
"MIT"
] | null | null | null |
Onderdelen/Hoofdscherm.py
|
RemcoTaal/IDP
|
33959e29235448c38b7936f16c7421a24130e745
|
[
"MIT"
] | null | null | null |
Onderdelen/Hoofdscherm.py
|
RemcoTaal/IDP
|
33959e29235448c38b7936f16c7421a24130e745
|
[
"MIT"
] | null | null | null |
from tkinter import *
import os, xmltodict, requests
def knop1():
'Open GUI huidig station'
global root
root.destroy()
os.system('Huidig_Station.py')
def knop2():
'Open GUI ander station'
global root
root.destroy()
os.system('Ander_Station.py')
def nl_to_eng():
'Wanneer er op de Engelse vlag wordt gedrukt veranderd de Nederlandstalige tekst naar het Engels'
button1['text'] = 'Departure\ntimes current station'
button2['text'] = 'Departure\ntimes other station'
welkomlabel['text'] = 'Welcome to NS'
photo['file'] = 'afbeeldingen\kaartlezerengels.PNG'
def eng_to_nl():
'Wanneer er op de Nederlandse vlag wordt gedrukt veranderd de Engelstalige tekst naar het Nederlands'
button1['text'] = 'Actuele vertrektijden\nhuidig station'
button2['text'] = 'Actuele vertrektijden\nander station'
welkomlabel['text'] = 'Welkom bij NS'
photo['file'] = 'afbeeldingen\kaartlezer.PNG'
root = Tk() # Maakt het venster
root.attributes('-fullscreen',True) #Open fullscreen
hoofdframe = Frame(master=root, #Venster gele gedeelte
background='#FFD720',
width=1920,
height=980)
hoofdframe.pack(side='top', fill=X)
onderframe = Frame(master=root, #Venster blauwe gedeelte
background='#001F6A',
width=1920,
height=100)
onderframe.pack(side='bottom', fill=X)
welkomlabel = Label(master=hoofdframe, #Welkom bij NS tekst
text='Welkom bij NS',
foreground='#001F6A',
background='#FFD720',
font=('Helvetica', 60, 'bold'),
width=14,
height=3)
welkomlabel.place(x=615, y=50)
photo = PhotoImage(file='afbeeldingen\kaartlezer.PNG') #Foto kaartlezer
fotolabel = Label(master=hoofdframe, image=photo, borderwidth=-1)
fotolabel.place(x=745, y=320)
button1 = Button(master=hoofdframe, #Knop 2
text="Actuele vertrektijden\nhuidig station",
foreground="white",
background="#001F6A",
font=('arial', 12, 'bold'),
width=17,
height=3,
command=knop1)
button1.place(x=765, y=650)
button2 = Button(master=hoofdframe, #Knop 3
text="Actuele vertrektijden\nander station",
foreground="white",
background="#001F6A",
font=('arial', 12, 'bold'),
width=17,
height=3,
command=knop2)
button2.place(x=965, y=650)
buttonNL = Button (master=onderframe, #Knop van Engels naar Nederlands
width=10,
height=10,
command=eng_to_nl)
photoNL = PhotoImage (file='afbeeldingen\kroodwitblauw.png')
buttonNL.config(image=photoNL, #Het converteren dat de afbeelding een knop wordt
width=48,
height=25)
buttonNL.place(x=50, y=25)
labelengels = Label(master=onderframe, #Label onder de Engelse vlag
text='English',
foreground='white',
background='#001F6A',
font=('arial', 9))
labelengels.place(x=128, y=55)
buttonENG = Button (master=onderframe, #Knop van Nederlands naar Engels
width=10,
height=10,
command=nl_to_eng)
photoENG = PhotoImage (file='afbeeldingen\kengenland.png')
buttonENG.config(image=photoENG, #Het converteren dat de afbeelding een knop wordt
width=48,
height=25)
buttonENG.place(x=125, y=25)
labelnederlands = Label(master=onderframe, #Label onder de Nederlandse vlag
text='Nederlands',
foreground='white',
background='#001F6A',
font=('arial', 9))
labelnederlands.place(x=42, y=55)
root.mainloop()
| 34.861789
| 117
| 0.541045
|
de93263b9043812ffa8057bd744f43dfad03bbdf
| 27
|
py
|
Python
|
py2ifttt/__init__.py
|
moevis/py2ifttt
|
99dc2be647c53c9279f2f212528fef7190de7476
|
[
"MIT"
] | 3
|
2018-05-04T12:50:04.000Z
|
2020-02-28T03:22:53.000Z
|
py2ifttt/__init__.py
|
moevis/py2ifttt
|
99dc2be647c53c9279f2f212528fef7190de7476
|
[
"MIT"
] | null | null | null |
py2ifttt/__init__.py
|
moevis/py2ifttt
|
99dc2be647c53c9279f2f212528fef7190de7476
|
[
"MIT"
] | null | null | null |
from .py2ifttt import IFTTT
| 27
| 27
| 0.851852
|
de9373d0df66278e0b02dc262104db37303b9a61
| 3,806
|
py
|
Python
|
server-program/clientApplication.py
|
ezequias2d/projeto-so
|
993f3dd12135946fe5b4351e8488b7aa8a18f37e
|
[
"MIT"
] | null | null | null |
server-program/clientApplication.py
|
ezequias2d/projeto-so
|
993f3dd12135946fe5b4351e8488b7aa8a18f37e
|
[
"MIT"
] | null | null | null |
server-program/clientApplication.py
|
ezequias2d/projeto-so
|
993f3dd12135946fe5b4351e8488b7aa8a18f37e
|
[
"MIT"
] | null | null | null |
import socket
import tokens
import connection
import io
import os
from PIL import Image
from message.literalMessage import LiteralMessage
from baseApplication import BaseApplication
host = input('Host: ')
ClientApplication(host, 50007)
| 34.288288
| 121
| 0.547031
|
de949d00cedaeb2c6790aaae5c34a82b7c16d8c5
| 230
|
py
|
Python
|
ethernet/recv.py
|
bobbae/pingcap
|
c573688b42d35cefdbfa0121580807885aae8869
|
[
"Unlicense"
] | null | null | null |
ethernet/recv.py
|
bobbae/pingcap
|
c573688b42d35cefdbfa0121580807885aae8869
|
[
"Unlicense"
] | 1
|
2019-10-11T16:16:22.000Z
|
2019-10-11T16:16:22.000Z
|
ethernet/recv.py
|
bobbae/pingcap
|
c573688b42d35cefdbfa0121580807885aae8869
|
[
"Unlicense"
] | null | null | null |
import sys
import socket
ETH_P_ALL=3 # not defined in socket module, sadly...
s=socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(ETH_P_ALL))
s.bind((sys.argv[1], 0))
r=s.recv(2000)
sys.stdout.write("<%s>\n"%repr(r))
| 25.555556
| 75
| 0.726087
|
de94dc8dcf783cae1964a6addda472d802119e98
| 1,110
|
py
|
Python
|
legacy/exam.py
|
wangxinhe2006/xyzzyy
|
3267614132a3b9e448b6733f13e8019aa79db922
|
[
"MIT"
] | 1
|
2021-07-16T02:29:35.000Z
|
2021-07-16T02:29:35.000Z
|
legacy/exam.py
|
wangxinhe2006/xyzzyy
|
3267614132a3b9e448b6733f13e8019aa79db922
|
[
"MIT"
] | null | null | null |
legacy/exam.py
|
wangxinhe2006/xyzzyy
|
3267614132a3b9e448b6733f13e8019aa79db922
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python3
from json import loads
from urllib.request import urlopen, Request
SITE = input('Site: ')
COOKIE = 'pj=' + input('pj=')
examList = loads(urlopen(Request(f'{SITE}/data/module/homework/all.asp?sAct=GetHomeworkListByStudent&iIsExam=1&iPageCount=' + loads(urlopen(Request(f'{SITE}/data/module/homework/all.asp?sAct=GetHomeworkListByStudent&iIsExam=1', headers={'Cookie': COOKIE})).read())['iCount'], headers={'Cookie': COOKIE})).read())
assert examList['sRet'] == 'succeeded', examList
for exam in examList['aHomework']:
if not exam['sTimeFlag'] and not int(exam['iFinished']):
examContent = loads(urlopen(Request(f'{SITE}/data/module/exam/all.asp?sAct=GetExamContent&iExamId=' + exam['sQuestionIds'], headers={'Cookie': COOKIE})).read())
assert examContent['sRet'] == 'succeeded', examContent
try:
for content in examContent['aContent']:
print(content['sTitle'])
for process in examContent['aProcess']:
print(process['iOrder'], process['sAnswer'], sep='\t')
except IndexError:
pass
| 48.26087
| 312
| 0.664865
|
de95cb380efb4a5351375e80063db451dd2899b5
| 3,803
|
py
|
Python
|
TkPy/module.py
|
tbor8080/pyprog
|
3642b9af2a92f7369d9b6fa138e47ba22df3271c
|
[
"MIT"
] | null | null | null |
TkPy/module.py
|
tbor8080/pyprog
|
3642b9af2a92f7369d9b6fa138e47ba22df3271c
|
[
"MIT"
] | null | null | null |
TkPy/module.py
|
tbor8080/pyprog
|
3642b9af2a92f7369d9b6fa138e47ba22df3271c
|
[
"MIT"
] | null | null | null |
import sys
import os
import tkinter.filedialog as fd
from time import sleep
import datetime
import tkinter
import tkinter as tk
from tkinter import ttk
from tkinter import scrolledtext
import threading
# New File & Duplicate File Save
# FileSave
| 34.261261
| 106
| 0.616618
|
de97499bd44b3c33d3853cafca12103889273c3c
| 6,005
|
py
|
Python
|
core/polyaxon/cli/components/tuner.py
|
Ohtar10/polyaxon
|
1e41804e4ae6466b6928d06bc6ee6d2d9c7b8931
|
[
"Apache-2.0"
] | null | null | null |
core/polyaxon/cli/components/tuner.py
|
Ohtar10/polyaxon
|
1e41804e4ae6466b6928d06bc6ee6d2d9c7b8931
|
[
"Apache-2.0"
] | null | null | null |
core/polyaxon/cli/components/tuner.py
|
Ohtar10/polyaxon
|
1e41804e4ae6466b6928d06bc6ee6d2d9c7b8931
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/python
#
# Copyright 2018-2021 Polyaxon, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import click
from polyaxon.logger import logger
| 28.732057
| 85
| 0.657119
|
de974a6af213636bff804abc1abfb40a31e4354d
| 8,810
|
py
|
Python
|
judge/base/__init__.py
|
fanzeyi/Vulpix
|
9448e968973073c98231b22663bbebb2a452dcd7
|
[
"BSD-3-Clause"
] | 13
|
2015-03-08T11:59:28.000Z
|
2021-07-11T11:58:01.000Z
|
src/tornado/demos/Vulpix-master/judge/base/__init__.py
|
ptphp/PyLib
|
07ac99cf2deb725475f5771b123b9ea1375f5e65
|
[
"Apache-2.0"
] | null | null | null |
src/tornado/demos/Vulpix-master/judge/base/__init__.py
|
ptphp/PyLib
|
07ac99cf2deb725475f5771b123b9ea1375f5e65
|
[
"Apache-2.0"
] | 3
|
2015-05-29T16:14:08.000Z
|
2016-04-29T07:25:26.000Z
|
# -*- coding: utf-8 -*-
# AUTHOR: Zeray Rice <fanzeyi1994@gmail.com>
# FILE: judge/base/__init__.py
# CREATED: 01:49:33 08/03/2012
# MODIFIED: 15:42:49 19/04/2012
# DESCRIPTION: Base handler
import re
import time
import urllib
import hashlib
import httplib
import datetime
import functools
import traceback
import simplejson as json
from operator import itemgetter
from pygments import highlight
from pygments.lexers import CLexer
from pygments.lexers import CppLexer
from pygments.lexers import DelphiLexer
from pygments.formatters import HtmlFormatter
from sqlalchemy.exc import StatementError
from sqlalchemy.orm.exc import NoResultFound
import tornado.web
import tornado.escape
from tornado.httpclient import AsyncHTTPClient
from judge.db import Auth
from judge.db import Member
from judge.utils import _len
CODE_LEXER = {
1 : DelphiLexer,
2 : CLexer,
3 : CppLexer,
}
CODE_LANG = {
1 : "delphi",
2 : "c",
3 : "cpp",
}
def unauthenticated(method):
"""Decorate methods with this to require that user be NOT logged in"""
return wrapper
| 40.787037
| 147
| 0.559932
|
de9773cffe9839ef07dd2219fd1b0246be382284
| 1,839
|
py
|
Python
|
src/blog/migrations/0001_initial.py
|
triump0870/rohan
|
3bd56ccdc35cb67823117e78dc02becbfbd0b329
|
[
"MIT"
] | null | null | null |
src/blog/migrations/0001_initial.py
|
triump0870/rohan
|
3bd56ccdc35cb67823117e78dc02becbfbd0b329
|
[
"MIT"
] | null | null | null |
src/blog/migrations/0001_initial.py
|
triump0870/rohan
|
3bd56ccdc35cb67823117e78dc02becbfbd0b329
|
[
"MIT"
] | null | null | null |
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
import markdownx.models
import myblog.filename
from django.conf import settings
| 39.12766
| 152
| 0.582926
|
de9904583298a90d85047bd7e803be42fe6b0d62
| 1,545
|
py
|
Python
|
exams/61a-su20-practice-mt/q6/tests/q6.py
|
jjllzhang/CS61A
|
57b68c7c06999210d96499f6d84e4ec99085d396
|
[
"MIT"
] | 1
|
2022-01-22T11:45:01.000Z
|
2022-01-22T11:45:01.000Z
|
exams/61a-su20-practice-mt/q6/tests/q6.py
|
jjllzhang/CS61A
|
57b68c7c06999210d96499f6d84e4ec99085d396
|
[
"MIT"
] | null | null | null |
exams/61a-su20-practice-mt/q6/tests/q6.py
|
jjllzhang/CS61A
|
57b68c7c06999210d96499f6d84e4ec99085d396
|
[
"MIT"
] | null | null | null |
test = {'name': 'q6',
'points': 10,
'suites': [{'cases': [{'code': '>>> increment = lambda x: x + 1\n'
'\n'
'>>> square = lambda x: x * x\n'
'\n'
'>>> do_nothing = make_zipper(increment, '
'square, 0)\n'
'\n'
">>> do_nothing(2) # Don't call either f1 or "
'f2, just return your input untouched\n'
'2\n'
'\n'
'>>> incincsq = make_zipper(increment, square, '
'112)\n'
'\n'
'>>> incincsq(2) # '
'increment(increment(square(2))), so 2 -> 4 -> '
'5 -> 6\n'
'6\n'
'\n'
'>>> sqincsqinc = make_zipper(increment, '
'square, 2121)\n'
'\n'
'>>> sqincsqinc(2) # '
'square(increment(square(increment(2)))), so 2 '
'-> 3 -> 9 -> 10 -> 100\n'
'100\n'}],
'scored': True,
'setup': 'from q6 import *',
'type': 'doctest'}]}
| 49.83871
| 80
| 0.253722
|
de9bc65cbfa30de1a8294fb16fd3712d1ce427db
| 3,566
|
py
|
Python
|
#17.py
|
Domino2357/daily-coding-problem
|
95ddef9db53c8b895f2c085ba6399a3144a4f8e6
|
[
"MIT"
] | null | null | null |
#17.py
|
Domino2357/daily-coding-problem
|
95ddef9db53c8b895f2c085ba6399a3144a4f8e6
|
[
"MIT"
] | null | null | null |
#17.py
|
Domino2357/daily-coding-problem
|
95ddef9db53c8b895f2c085ba6399a3144a4f8e6
|
[
"MIT"
] | null | null | null |
"""
This problem was asked by Google.
Suppose we represent our file system by a string in the following manner:
The string "dir\n\tsubdir1\n\tsubdir2\n\t\tfile.ext" represents:
dir
subdir1
subdir2
file.ext
The directory dir contains an empty sub-directory subdir1 and a sub-directory subdir2 containing a file file.ext.
The string "dir\n\tsubdir1\n\t\tfile1.ext\n\t\tsubsubdir1\n\tsubdir2\n\t\tsubsubdir2\n\t\t\tfile2.ext" represents:
dir
subdir1
file1.ext
subsubdir1
subdir2
subsubdir2
file2.ext
The directory dir contains two sub-directories subdir1 and subdir2. subdir1 contains a file file1.ext and an empty
second-level sub-directory subsubdir1. subdir2 contains a second-level sub-directory subsubdir2 containing a file file2.ext.
We are interested in finding the longest (number of characters) absolute path to a file within our file system. For example,
in the second example above, the longest absolute path is "dir/subdir2/subsubdir2/file2.ext", and its length is 32
(not including the double quotes).
Given a string representing the file system in the above format, return the length of the longest absolute path to a
file in the abstracted file system. If there is no file in the system, return 0.
Note:
The name of a file contains at least a period and an extension.
The name of a directory or sub-directory will not contain a period.
"""
# I am assuming that the number of t's in /n/t/t/t.../t/ stands for the level in the tree
# Furthermore, I am assuming the format of the string to be consistent
# last but not least I'll make the assumption that this is actually a tree, i.e., it has no cycles
# top level idea: deserialize the tree and then perform the operation on it
if __name__ == '__main__':
print()
| 31.280702
| 124
| 0.666854
|
de9bd50729808fda9f77f7ae5831c5d7b432a027
| 1,315
|
py
|
Python
|
turbot/db.py
|
emre/turbot
|
7bc49a8b79bce7f2490036d9255e5b3df8fff4b1
|
[
"MIT"
] | 3
|
2017-10-17T22:02:06.000Z
|
2018-05-07T10:29:31.000Z
|
turbot/db.py
|
emre/turbot
|
7bc49a8b79bce7f2490036d9255e5b3df8fff4b1
|
[
"MIT"
] | null | null | null |
turbot/db.py
|
emre/turbot
|
7bc49a8b79bce7f2490036d9255e5b3df8fff4b1
|
[
"MIT"
] | 3
|
2018-10-16T13:28:57.000Z
|
2021-02-24T13:23:29.000Z
|
from os.path import expanduser, exists
from os import makedirs
TURBOT_PATH = expanduser('~/.turbot')
UPVOTE_LOGS = expanduser("%s/upvote_logs" % TURBOT_PATH)
CHECKPOINT = expanduser("%s/checkpoint" % TURBOT_PATH)
REFUND_LOG = expanduser("%s/refunds" % TURBOT_PATH)
| 24.351852
| 56
| 0.650951
|
de9c334f30690be489dc54509a0861d269ca08ea
| 111
|
py
|
Python
|
output/models/ms_data/additional/member_type021_xsd/__init__.py
|
tefra/xsdata-w3c-tests
|
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
|
[
"MIT"
] | 1
|
2021-08-14T17:59:21.000Z
|
2021-08-14T17:59:21.000Z
|
output/models/ms_data/additional/member_type021_xsd/__init__.py
|
tefra/xsdata-w3c-tests
|
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
|
[
"MIT"
] | 4
|
2020-02-12T21:30:44.000Z
|
2020-04-15T20:06:46.000Z
|
output/models/ms_data/additional/member_type021_xsd/__init__.py
|
tefra/xsdata-w3c-tests
|
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
|
[
"MIT"
] | null | null | null |
from output.models.ms_data.additional.member_type021_xsd.member_type021 import Root
__all__ = [
"Root",
]
| 18.5
| 83
| 0.774775
|
de9ca51de5e3ba22b379f50a5e136405d59c8422
| 4,361
|
py
|
Python
|
estimator.py
|
2besweet/Covid-19-project
|
8cfa76662ed0b84999134a9faacbf390e8de31f3
|
[
"MIT"
] | 1
|
2021-01-31T19:04:11.000Z
|
2021-01-31T19:04:11.000Z
|
estimator.py
|
2besweet/Covid-19-project
|
8cfa76662ed0b84999134a9faacbf390e8de31f3
|
[
"MIT"
] | 1
|
2021-05-11T10:34:00.000Z
|
2021-05-11T10:34:00.000Z
|
estimator.py
|
2besweet/Covid-19-project
|
8cfa76662ed0b84999134a9faacbf390e8de31f3
|
[
"MIT"
] | null | null | null |
reportedCases=eval(input('Enter the number of reported cases:-'))
name=input('Enter the name of the region:-')
days=eval(input('Enter the number of days:-'))
totalHospitalbeds=eval(input('Enter the total number of beds available in the region:'))
avgDailyIncomeInUsd=eval(input('Enter the Average income:-'))
avgDailyIncomePopulation=eval(input('Enter the average daily income of the population:-'))/100
reportedCases=674
name="Africa"
days=28
totalHospitalbeds=1380614
avgDailyIncomeInUsd=1.5
avgDailyIncomePopulation=0.65
| 40.757009
| 127
| 0.698234
|
dea196647fceafaeec0ee9058ac3907d2c76082c
| 3,752
|
py
|
Python
|
pys3crypto.py
|
elitest/pys3crypto
|
9dfef5935ff1c663b8641eaa052e778cdf34a565
|
[
"MIT"
] | null | null | null |
pys3crypto.py
|
elitest/pys3crypto
|
9dfef5935ff1c663b8641eaa052e778cdf34a565
|
[
"MIT"
] | null | null | null |
pys3crypto.py
|
elitest/pys3crypto
|
9dfef5935ff1c663b8641eaa052e778cdf34a565
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python3
# Original Author @elitest
# This script uses boto3 to perform client side decryption
# of data encryption keys and associated files
# and encryption in ways compatible with the AWS SDKs
# This support is not available in boto3 at this time
# Wishlist:
# Currently only tested with KMS managed symmetric keys.
# Error checking
import boto3, argparse, base64, json
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import padding
from cryptography.hazmat.primitives.ciphers import (
Cipher, algorithms, modes
)
# Build the parser
argparser = argparse.ArgumentParser(description='Prints info about deleted items in s3 buckets and helps you download them.')
argparser.add_argument('bucket', help='The bucket that contains the file.')
argparser.add_argument('region', help='The region the CMK is in.')
argparser.add_argument('key', help='The name of the file that you would like to download and decrypt.')
argparser.add_argument('--profile', default='default', help='The profile name in ~/.aws/credentials')
args = argparser.parse_args()
# Set variables from arguments
bucket = args.bucket
region = args.region
profile = args.profile
key = args.key
# Setup AWS clients
boto3.setup_default_session(profile_name=profile, region_name=region)
s3_client = boto3.client('s3')
response = s3_client.get_object(Bucket=bucket,Key=key)
kms_client = boto3.client('kms')
# This function decrypts the encrypted key associated with the file
# and decrypts it
# Decrypt the DEK
plaintextDek = decrypt_dek(response)
# Get the encrypted body
# Haven't tested with large files
body=response['Body'].read()
# We need the content length for GCM to build the tag
contentLen = response['Metadata']['x-amz-unencrypted-content-length']
# IV
iv = base64.b64decode(response['Metadata']['x-amz-iv'])
# Algorithm
alg = response['Metadata']['x-amz-cek-alg']
# This splits the tag and data from the body if GCM
if alg == 'AES/GCM/NoPadding':
data = body[0:int(contentLen)]
tagLen = response['Metadata']['x-amz-tag-len']
tag = body[int(contentLen):int(tagLen)]
else:
data = body[:]
tag = ''
# Decrypt the file
plaintext = decrypt(plaintextDek,alg,iv,data,tag)
print(plaintext)
| 36.427184
| 125
| 0.709488
|
dea3d4b6a9500edd440cd83df9ceb44f4b4e36eb
| 1,777
|
py
|
Python
|
openTEL_11_19/presentation_figures/tm112_utils.py
|
psychemedia/presentations
|
a4d7058b1f716c59a89d0bcd1390ead75d769d43
|
[
"Apache-2.0"
] | null | null | null |
openTEL_11_19/presentation_figures/tm112_utils.py
|
psychemedia/presentations
|
a4d7058b1f716c59a89d0bcd1390ead75d769d43
|
[
"Apache-2.0"
] | null | null | null |
openTEL_11_19/presentation_figures/tm112_utils.py
|
psychemedia/presentations
|
a4d7058b1f716c59a89d0bcd1390ead75d769d43
|
[
"Apache-2.0"
] | 1
|
2019-11-05T10:35:40.000Z
|
2019-11-05T10:35:40.000Z
|
from IPython.display import HTML
#TO DO - the nested table does not display?
#Also, the nested execution seems to take a long time to run?
#Profile it to see where I'm going wrong!
| 38.630435
| 133
| 0.563309
|
dea4ec2e4ccc51ad602efcb7e648252790b6ff2d
| 984
|
py
|
Python
|
src/pages/artists_main.py
|
haoweini/spotify_stream
|
83fd13d4da9fb54a595611d4c0cd594eb5b8a9fd
|
[
"MIT"
] | null | null | null |
src/pages/artists_main.py
|
haoweini/spotify_stream
|
83fd13d4da9fb54a595611d4c0cd594eb5b8a9fd
|
[
"MIT"
] | null | null | null |
src/pages/artists_main.py
|
haoweini/spotify_stream
|
83fd13d4da9fb54a595611d4c0cd594eb5b8a9fd
|
[
"MIT"
] | null | null | null |
from turtle import width
import streamlit as st
import numpy as np
import pandas as pd
from dis import dis
import streamlit as st
from data.get_saved_library import get_saved_library, display_user_name, display_user_pic
from data.get_recently_played import get_recently_played
from data.get_top_artists import get_top_artists, get_related_artists, get_top_artists_tracks_features, NormalizeData, draw_feature_plot
from data.image_url import path_to_image_html
from PIL import Image
import requests
from io import BytesIO
from IPython.core.display import HTML
import streamlit.components.v1 as components
import plotly.express as px
from subpage import SubPage
from pages import welcome, artists_top_saved, artists_select_random
# @st.cache
| 31.741935
| 136
| 0.816057
|
dea61adbc856f28630be94c795fc850aa45a1770
| 595
|
py
|
Python
|
Leetcode/res/Longest Common Prefix/2.py
|
AllanNozomu/CompetitiveProgramming
|
ac560ab5784d2e2861016434a97e6dcc44e26dc8
|
[
"MIT"
] | 1
|
2022-03-04T16:06:41.000Z
|
2022-03-04T16:06:41.000Z
|
Leetcode/res/Longest Common Prefix/2.py
|
AllanNozomu/CompetitiveProgramming
|
ac560ab5784d2e2861016434a97e6dcc44e26dc8
|
[
"MIT"
] | null | null | null |
Leetcode/res/Longest Common Prefix/2.py
|
AllanNozomu/CompetitiveProgramming
|
ac560ab5784d2e2861016434a97e6dcc44e26dc8
|
[
"MIT"
] | null | null | null |
# Author: allannozomu
# Runtime: 56 ms
# Memory: 13 MB
| 24.791667
| 58
| 0.403361
|
dea6d3637da9acba0c0473fcafaedf9d82d434e7
| 884
|
py
|
Python
|
tests/factory_fixtures/contact_number.py
|
donovan-PNW/dwellinglybackend
|
448df61f6ea81f00dde7dab751f8b2106f0eb7b1
|
[
"MIT"
] | null | null | null |
tests/factory_fixtures/contact_number.py
|
donovan-PNW/dwellinglybackend
|
448df61f6ea81f00dde7dab751f8b2106f0eb7b1
|
[
"MIT"
] | 56
|
2021-08-05T02:49:38.000Z
|
2022-03-31T19:35:13.000Z
|
tests/factory_fixtures/contact_number.py
|
donovan-PNW/dwellinglybackend
|
448df61f6ea81f00dde7dab751f8b2106f0eb7b1
|
[
"MIT"
] | null | null | null |
import pytest
from models.contact_number import ContactNumberModel
| 29.466667
| 82
| 0.70362
|
dea6d4847a9416f809c2342943ab00ca26b745bd
| 835
|
py
|
Python
|
tests/test_seq_comparision.py
|
krzjoa/sciquence
|
6a5f758c757200fffeb0fdc9206462f1f89e2444
|
[
"MIT"
] | 8
|
2017-10-23T17:59:35.000Z
|
2021-05-10T03:01:30.000Z
|
tests/test_seq_comparision.py
|
krzjoa/sciquence
|
6a5f758c757200fffeb0fdc9206462f1f89e2444
|
[
"MIT"
] | 2
|
2019-08-25T19:24:12.000Z
|
2019-09-05T12:16:10.000Z
|
tests/test_seq_comparision.py
|
krzjoa/sciquence
|
6a5f758c757200fffeb0fdc9206462f1f89e2444
|
[
"MIT"
] | 2
|
2018-02-28T09:47:53.000Z
|
2019-08-25T19:24:16.000Z
|
import unittest
import numpy as np
from sciquence.sequences import *
if __name__ == '__main__':
unittest.main()
| 30.925926
| 91
| 0.475449
|
dea6f4a43ec33dab31441d90f5221fa29eeb9456
| 8,191
|
py
|
Python
|
analysis_guis/code_test.py
|
Sepidak/spikeGUI
|
25ae60160308c0a34e7180f3e39a1c4dc6aad708
|
[
"MIT"
] | null | null | null |
analysis_guis/code_test.py
|
Sepidak/spikeGUI
|
25ae60160308c0a34e7180f3e39a1c4dc6aad708
|
[
"MIT"
] | 3
|
2021-08-09T21:51:41.000Z
|
2021-08-09T21:51:45.000Z
|
analysis_guis/code_test.py
|
Sepidak/spikeGUI
|
25ae60160308c0a34e7180f3e39a1c4dc6aad708
|
[
"MIT"
] | 3
|
2021-10-16T14:07:59.000Z
|
2021-10-16T17:09:03.000Z
|
# -*- coding: utf-8 -*-
"""
Simple example using BarGraphItem
"""
# import initExample ## Add path to library (just for examples; you do not need this)
import numpy as np
import pickle as p
import pandas as pd
from analysis_guis.dialogs.rotation_filter import RotationFilter
from analysis_guis.dialogs import config_dialog
from analysis_guis.dialogs.info_dialog import InfoDialog
from rotation_analysis.analysis.probe.probe_io.probe_io import TriggerTraceIo, BonsaiIo, IgorIo
from PyQt5.QtWidgets import QApplication
from datetime import datetime
from dateutil import parser
import analysis_guis.calc_functions as cfcn
import analysis_guis.rotational_analysis as rot
import matplotlib.pyplot as plt
from pyphys.pyphys.pyphys import PxpParser
from collections import OrderedDict
import analysis_guis.common_func as cf
import pyqtgraph as pg
from pyqtgraph.Qt import QtCore, QtGui
date2sec = lambda t: np.sum([3600 * t.hour, 60 * t.minute, t.second])
trig_count = lambda data, cond: len(np.where(np.diff(data[cond]['cpg_ttlStim']) > 1)[0]) + 1
get_bin_index = lambda x, y: next((i for i in range(len(y)) if x < y[i]), len(y)) - 1
def setup_polar_spike_freq(r_obj, sFreq, b_sz, is_pos):
'''
:param wvPara:
:param tSpike:
:param sFreq:
:param b_sz:
:return:
'''
# memory allocation
wvPara, tSpike = r_obj.wvm_para[i_filt], r_obj.t_spike[i_filt],
ind_inv, xi_bin_tot = np.empty(2, dtype=object), np.empty(2, dtype=object)
# calculates the bin times
xi_bin_tot[0], t_bin, t_phase = rot.calc_wave_kinematic_times(wvPara[0][0], b_sz, sFreq, is_pos, yDir=-1)
xi_bin_tot[1], dt_bin = -xi_bin_tot[0], np.diff(t_bin)
# determines the bin indices
for i in range(2):
xi_mid, ind_inv[i] = np.unique(0.5 * (xi_bin_tot[i][:-1] + xi_bin_tot[i][1:]), return_inverse=True)
# memory allocation
yDir = wvPara[0]['yDir']
n_trial, n_bin = len(yDir), len(xi_mid)
tSp_bin = np.zeros((n_bin, n_trial))
#
for i_trial in range(n_trial):
# combines the time spikes in the order that the CW/CCW phases occur
ii = int(yDir[i_trial] == 1)
tSp = np.hstack((tSpike[1 + ii][i_trial], tSpike[2 - ii][i_trial] + t_phase))
# appends the times
t_hist = np.histogram(tSp, bins=t_bin)
for j in range(len(t_hist[0])):
i_bin = ind_inv[ii][j]
tSp_bin[i_bin, i_trial] += t_hist[0][j] / (2.0 * dt_bin[j])
# returns the final bin
return xi_mid, tSp_bin
## Start Qt event loop unless running in interactive mode or using pyside.
if __name__ == '__main__':
# loads the data for testing
with open('C:\\Work\\EPhys\\Code\\Sepi\\wvPara.p', 'rb') as fp:
wvPara = p.load(fp)
tSpike = p.load(fp)
#
sFreq = 30000
kb_sz = 10
title_str = ['Displacement', 'Velocity']
lg_str = ['Type 1', 'Type 2', 'Type 3']
# memory allocation
n_filt = len(wvPara)
c = cf.get_plot_col(n_filt)
#
fig = plt.figure()
ax = np.empty(2, dtype=object)
#
for i_type in range(2):
# sets up the spiking frequency arrays
tSp_bin = np.empty(n_filt, dtype=object)
for i_filt in range(n_filt):
xi_mid, tSp_bin[i_filt] = setup_polar_spike_freq(wvPara[i_filt], tSpike[i_filt], sFreq, kb_sz, i_type==0)
#
xi_min = xi_mid[0] - np.diff(xi_mid[0:2])[0]/2
theta = np.pi * (1 - (xi_mid - xi_min) / np.abs(2 * xi_min))
x_tick = np.linspace(xi_min, -xi_min, 7 + 2 * i_type)
# creates the subplot
ax[i_type] = plt.subplot(1, 2, i_type + 1, projection='polar')
ax[i_type].set_thetamin(0)
ax[i_type].set_thetamax(180)
# creates the radial plots for each of the filter types
h_plt = []
for i_filt in range(n_filt):
# creates the plot and resets the labels
tSp_mn = np.mean(tSp_bin[i_filt], axis=1)
h_plt.append(ax[i_type].plot(theta, tSp_mn, 'o-', c=c[i_filt]))
# sets the axis properties (first filter only)
if i_filt == 0:
ax[i_type].set_title(title_str[i_type])
ax[i_type].set_xticks(np.pi * (x_tick - xi_min) / np.abs(2 * xi_min))
ax[i_type].set_xticklabels([str(int(np.round(-x))) for x in x_tick])
# sets the legend (first subplot only)
if i_type == 0:
ax[i_type].legend(lg_str, loc=1)
# determines the overall radial maximum (over all subplots) and resets the radial ticks
y_max = [max(x.get_ylim()) for x in ax]
i_max = np.argmax(y_max)
dy = np.diff(ax[i_max].get_yticks())[0]
y_max_tot = dy * (np.floor(y_max[i_max] / dy) + 1)
# resets the axis radial limits
for x in ax:
x.set_ylim(0, y_max_tot)
# shows the plot
plt.show()
a = 1
# app = QApplication([])
# h_obj = RotationFilter(data)
# h_obj = InfoDialog(data)
# a = 1
# #
# igor_waveforms_path = 'G:\\Seagate\\Work\\EPhys\\Data\\CA326_C_day3\\Igor\\CA326_C_day3'
# bonsai_metadata_path = 'G:\\Seagate\\Work\\EPhys\\Data\\CA326_C_day3\\Bonsai\\CA326_C_day3_all.csv'
#
# #
# file_time_key = 'FileTime'
# bonsai_io = BonsaiIo(bonsai_metadata_path)
#
#
# # determines the indices of the experiment condition triel group
# t_bonsai = [parser.parse(x) for x in bonsai_io.data['Timestamp']]
# t_bonsai_sec = np.array([date2sec(x) for x in t_bonsai])
# d2t_bonsai = np.diff(t_bonsai_sec, 2)
# grp_lim = grp_lim = [-1] + list(np.where(d2t_bonsai > 60)[0] + 1) + [len(d2t_bonsai) + 1]
# ind_grp = [np.arange(grp_lim[x] + 1, grp_lim[x + 1] + 1) for x in range(len(grp_lim) - 1)]
#
# # sets the time, name and trigger count from each of these groups
# t_bonsai_grp = [t_bonsai_sec[x[0]] for x in ind_grp]
# c_bonsai_grp = [bonsai_io.data['Condition'][x[0]] for x in ind_grp]
# n_trig_bonsai = [len(x) for x in ind_grp]
#
# # determines the feasible variables from the igor data file
# igor_data = PxpParser(igor_waveforms_path)
# var_keys = list(igor_data.data.keys())
# is_ok = ['command' in igor_data.data[x].keys() if isinstance(igor_data.data[x], OrderedDict) else False for x in var_keys]
#
# # sets the name, time and trigger count from each of the igor trial groups
# c_igor_grp = [y for x, y in zip(is_ok, var_keys) if x]
# t_igor_grp, t_igor_str, n_trig_igor = [], [], [trig_count(igor_data.data, x) for x in c_igor_grp]
# for ck in c_igor_grp:
# t_igor_str_nw = igor_data.data[ck]['vars'][file_time_key][0]
# t_igor_str.append(t_igor_str_nw)
# t_igor_grp.append(date2sec(datetime.strptime(t_igor_str_nw, '%H:%M:%S').time()))
#
# # calculates the point-wise differences between the trial timer and trigger count
# dt_grp = cfcn.calc_pointwise_diff(t_igor_grp, t_bonsai_grp)
# dn_grp = cfcn.calc_pointwise_diff(n_trig_igor, n_trig_bonsai)
#
# # ensures that only groups that have equal trigger counts are matched
# dt_max = np.max(dt_grp) + 1
# dt_grp[dn_grp > 0] = dt_max
#
# #
# iter = 0
# while 1:
# i2b = np.argmin(dt_grp, axis=1)
# i2b_uniq, ni2b = np.unique(i2b, return_counts=True)
#
# ind_multi = np.where(ni2b > 1)[0]
# if len(ind_multi):
# if iter == 0:
# for ii in ind_multi:
# jj = np.where(i2b == i2b_uniq[ii])[0]
#
# imn = np.argmin(dt_grp[jj, i2b[ii]])
# for kk in jj[jj != jj[imn]]:
# dt_grp[kk, i2b[ii]] = dt_max
# else:
# pass
# else:
# break
#
# # sets the igor-to-bonsai name groupings
# i2b_key, x = {}, np.array(c_igor_grp)[i2b]
# for cc in c_bonsai_grp:
# if cc not in i2b_key:
# jj = np.where([x == cc for x in c_bonsai_grp])[0]
# i2b_key[cc] = x[jj]
| 37.401826
| 129
| 0.605421
|
dea94f5c042a5187e7e181584aadcbc88251aee3
| 2,852
|
py
|
Python
|
att/gm.py
|
thexdesk/foiamail
|
d135bbb5f52d5a31ca8ce3450bd0035f94a182f5
|
[
"MIT"
] | null | null | null |
att/gm.py
|
thexdesk/foiamail
|
d135bbb5f52d5a31ca8ce3450bd0035f94a182f5
|
[
"MIT"
] | null | null | null |
att/gm.py
|
thexdesk/foiamail
|
d135bbb5f52d5a31ca8ce3450bd0035f94a182f5
|
[
"MIT"
] | null | null | null |
"""
downloads gmail atts
"""
import base64, os
from auth.auth import get_service
from msg.label import agencies, get_atts
from report.response import get_threads, get_status
from att.drive import get_or_create_atts_folder,\
check_if_drive, make_drive_folder, upload_to_drive
### START CONFIG ###
buffer_path = '/tmp/'
### END CONFIG ###
gmail_service = get_service(type='gmail')
def roll_thru():
"""
controller function rolls through each agency:
- checks if already filed in Drive
- checks if labeled done
... if neither:
- makes Drive folder
- downloads buffer file to this server
- uploads file to Drive folder
- deleteds buffer file
TODO: optimize by check_if_drive first before getting threads
"""
atts_drive_folder = get_or_create_atts_folder()
for agency in agencies:
try:
threads = get_threads(agency)
if not check_if_drive(agency.replace("'","")) and check_if_done(threads,agency): # no apostrophes allowed
# only proceed if agency is done, has atts and not already in drive
atts = get_agency_atts(threads)
if atts:
print agency
drive_folder = make_drive_folder(agency.replace("'",""),atts_drive_folder) # no apostrophes allowed
for att in atts:
path = download_buffer_file(att)
upload_to_drive(att, drive_folder)
os.remove(path)
else:
print 'skipping', agency
except Exception, e:
print agency,'failed',e
def check_if_done(threads,agency):
"""
checks if this agency's threads
include any messages labeled 'done'
"""
return get_status(threads,agency) == 'done'
def get_agency_atts(threads):
"""
given a list of threads,
iterates through messages,
finds attachments
and appends att data to atts list
"""
atts = []
for thread in threads:
for msg in gmail_service.users().threads().get(\
id=thread['id'],userId='me').execute().get('messages'):
for att in get_atts(msg):
atts.append({'att_id':att['body']['attachmentId'],'msg_id':msg['id'],'file_name':att['filename']})
return atts
def download_buffer_file(att):
"""
downloads specified att to
buffer file
and returns path
"""
attachment = gmail_service.users().messages().attachments().get(\
id=att['att_id'],messageId=att['msg_id'],userId='me').execute()
file_data = base64.urlsafe_b64decode(attachment['data'].encode('UTF-8'))
buffer_file_path = buffer_path + att['file_name']
buffer_file = open(buffer_file_path,'w')
buffer_file.write(file_data)
buffer_file.close()
return buffer_file_path
| 32.781609
| 119
| 0.630785
|
dea9df41450058a28e28c535ce8960f8b770dc38
| 1,147
|
py
|
Python
|
pex/pip/download_observer.py
|
sthagen/pantsbuild-pex
|
bffe6c3641b809cd3b20adbc7fdb2cf7e5f54309
|
[
"Apache-2.0"
] | null | null | null |
pex/pip/download_observer.py
|
sthagen/pantsbuild-pex
|
bffe6c3641b809cd3b20adbc7fdb2cf7e5f54309
|
[
"Apache-2.0"
] | null | null | null |
pex/pip/download_observer.py
|
sthagen/pantsbuild-pex
|
bffe6c3641b809cd3b20adbc7fdb2cf7e5f54309
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md).
# Licensed under the Apache License, Version 2.0 (see LICENSE).
from __future__ import absolute_import
from pex.pip.log_analyzer import LogAnalyzer
from pex.typing import TYPE_CHECKING, Generic
if TYPE_CHECKING:
from typing import Iterable, Mapping, Optional, Text
import attr # vendor:skip
else:
from pex.third_party import attr
if TYPE_CHECKING:
from typing import TypeVar
_L = TypeVar("_L", bound=LogAnalyzer)
| 23.408163
| 66
| 0.646905
|
deaa58029f2b553b02dbaa81816ff5ce9e456f8a
| 3,424
|
py
|
Python
|
dispatchlib/types.py
|
ryxcommar/dispatchlib
|
bf3b6e5617af41579b240a7733cd9cc86a8a38ed
|
[
"MIT"
] | null | null | null |
dispatchlib/types.py
|
ryxcommar/dispatchlib
|
bf3b6e5617af41579b240a7733cd9cc86a8a38ed
|
[
"MIT"
] | null | null | null |
dispatchlib/types.py
|
ryxcommar/dispatchlib
|
bf3b6e5617af41579b240a7733cd9cc86a8a38ed
|
[
"MIT"
] | null | null | null |
from typing import Any
from typing import Callable
from typing import Iterable
class NextDispatch(Exception):
pass
class DispatcherType(type):
class Dispatcher(FunctionMixin, metaclass=DispatcherType):
dispatch: callable
register: callable
registry: Iterable
class MetaDispatcher(FunctionMixin, metaclass=DispatcherType):
dispatch: callable
register: callable
registry: Iterable
class DispatchedCallable(FunctionMixin, _PrioritySortable):
| 26.96063
| 79
| 0.651285
|
deabe0363fc1143c6a3fe5cc62b534d0a3e480ca
| 2,096
|
py
|
Python
|
pbpstats/data_loader/nba_possession_loader.py
|
pauldevos/pbpstats
|
71c0b5e2bd45d0ca031646c70cd1c1f30c6a7152
|
[
"MIT"
] | null | null | null |
pbpstats/data_loader/nba_possession_loader.py
|
pauldevos/pbpstats
|
71c0b5e2bd45d0ca031646c70cd1c1f30c6a7152
|
[
"MIT"
] | null | null | null |
pbpstats/data_loader/nba_possession_loader.py
|
pauldevos/pbpstats
|
71c0b5e2bd45d0ca031646c70cd1c1f30c6a7152
|
[
"MIT"
] | null | null | null |
from pbpstats.resources.enhanced_pbp import StartOfPeriod
| 39.54717
| 121
| 0.624046
|
dead01ec590550c2d98b328ed72222f137d3778b
| 7,033
|
py
|
Python
|
vmware_nsx_tempest/tests/nsxv/api/base_provider.py
|
gravity-tak/vmware-nsx-tempest
|
3a1007d401c471d989345bb5a3f9769f84bd4ac6
|
[
"Apache-2.0"
] | null | null | null |
vmware_nsx_tempest/tests/nsxv/api/base_provider.py
|
gravity-tak/vmware-nsx-tempest
|
3a1007d401c471d989345bb5a3f9769f84bd4ac6
|
[
"Apache-2.0"
] | null | null | null |
vmware_nsx_tempest/tests/nsxv/api/base_provider.py
|
gravity-tak/vmware-nsx-tempest
|
3a1007d401c471d989345bb5a3f9769f84bd4ac6
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2015 OpenStack Foundation
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import netaddr
from tempest_lib.common.utils import data_utils
from tempest_lib import exceptions
from tempest.api.network import base
from tempest import config
from tempest import test
CONF = config.CONF
def get_subnet_create_options(network_id, ip_version=4,
gateway='', cidr=None, mask_bits=None,
num_subnet=1, gateway_offset=1, cidr_offset=0,
**kwargs):
"""When cidr_offset>0 it request only one subnet-options:
subnet = get_subnet_create_options('abcdefg', 4, num_subnet=4)[3]
subnet = get_subnet_create_options('abcdefg', 4, cidr_offset=3)
"""
gateway_not_set = (gateway == '')
if ip_version == 4:
cidr = cidr or netaddr.IPNetwork(CONF.network.tenant_network_cidr)
mask_bits = mask_bits or CONF.network.tenant_network_mask_bits
elif ip_version == 6:
cidr = (
cidr or netaddr.IPNetwork(CONF.network.tenant_network_v6_cidr))
mask_bits = mask_bits or CONF.network.tenant_network_v6_mask_bits
# Find a cidr that is not in use yet and create a subnet with it
subnet_list = []
if cidr_offset > 0:
num_subnet = cidr_offset + 1
for subnet_cidr in cidr.subnet(mask_bits):
if gateway_not_set:
gateway_ip = gateway or (
str(netaddr.IPAddress(subnet_cidr) + gateway_offset))
else:
gateway_ip = gateway
try:
subnet_body = dict(
network_id=network_id,
cidr=str(subnet_cidr),
ip_version=ip_version,
gateway_ip=gateway_ip,
**kwargs)
if num_subnet <= 1:
return subnet_body
subnet_list.append(subnet_body)
if len(subnet_list) >= num_subnet:
if cidr_offset > 0:
# user request the 'cidr_offset'th of cidr
return subnet_list[cidr_offset]
# user request list of cidr
return subnet_list
except exceptions.BadRequest as e:
is_overlapping_cidr = 'overlaps with another subnet' in str(e)
if not is_overlapping_cidr:
raise
else:
message = 'Available CIDR for subnet creation could not be found'
raise exceptions.BuildErrorException(message)
return {}
| 39.072222
| 78
| 0.65278
|
deadc8ea87d0e57d203447ee89704b440dd4a622
| 3,650
|
py
|
Python
|
read_csv.py
|
BigTony666/football-manager
|
12a4c3dc2bb60f9634b419b7c230d6f78df8d650
|
[
"MIT"
] | 11
|
2019-04-23T23:15:43.000Z
|
2021-07-13T06:37:25.000Z
|
read_csv.py
|
BigTony666/football-manager
|
12a4c3dc2bb60f9634b419b7c230d6f78df8d650
|
[
"MIT"
] | null | null | null |
read_csv.py
|
BigTony666/football-manager
|
12a4c3dc2bb60f9634b419b7c230d6f78df8d650
|
[
"MIT"
] | 2
|
2019-03-07T21:07:34.000Z
|
2020-04-19T15:28:31.000Z
|
#!/usr/bin/env python
# coding: utf-8
# In[2]:
from collections import defaultdict
import csv
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# ## read data to numpy(not in use)
# In[385]:
# def readCsvToNumpy(file_name, feat_num):
# util_mat = []
# with open(file_name, newline='', encoding='utf-8') as csvfile:
# next(csvfile, None)
# rd = csv.reader(csvfile, delimiter=' ', quotechar='|')
# for idx, row in enumerate(rd):
# row = (' '.join(row))
# row = row.split(',')
# if len(row) == feat_num:
# util_mat.append(row)
# # convert 2d list to 2d numpy array
# for idx, row in enumerate(util_mat):
# util_mat[idx] = np.asarray(row)
# util_mat = np.asarray(util_mat)
# return util_mat
# def getPlayerMatrix(util_mat, left_idx, right_idx):
# player_mat = util_mat[:, left_idx:right_idx]
# player_mat = player_mat.astype(int)
# return player_mat
# def getTeamMatrix(util_mat, player_mat, team_idx):
# hashmap = defaultdict(list)
# for idx, item in enumerate(util_mat):
# hashmap[util_mat[idx, team_idx]].append(player_mat[idx, :])
# team_mat = []
# # print('Team number', len(hashmap))
# for key, value in hashmap.items():
# team_avr = [sum(x)/len(value) for x in zip(*value)]
# team_mat.append(team_avr)
# # team_mat.append((key, temp))
# # for idx, item in enumerate(team_mat):
# # if item[0] == 'Arsenal':
# # print(idx, item)
# # convert team feature matrix to numpy matrix
# for idx, row in enumerate(team_mat):
# team_mat[idx] = np.asarray(row, dtype=int)
# team_mat = np.asarray(team_mat, dtype=int);
# return team_mat
# if __name__ == "__main__":
# util_mat = readCsvToNumpy('data_clean.csv', 74)
# # print(util_mat.shape, util_mat)
# player_mat = getPlayerMatrix(util_mat, 44, 73)
# # print(player_mat.shape, player_mat)
# team_mat = getTeamMatrix(util_mat, player_mat, 6)
# # print(team_mat[0, :])
# res = np.dot(player_mat, np.transpose(team_mat))
# # # print(hashmap['FC Barcelona'])
# # print(res[0,:])
# ## read data to pandas Data frame
# In[3]:
util_df = pd.read_csv('data_clean.csv', na_filter=False)
# print(util_df)
player_df = util_df.iloc[:, 44:73]
# print(player_df)
team_df = util_df.groupby('Club', sort=False).mean()
# print(team_df)
team_df = team_df.iloc[:, 37:66]
# print(team_df)
res = np.dot(player_df, np.transpose(team_df))
# In[ ]:
util_df.iloc[:,1]
# In[54]:
# util_df.describe()
player_characteristics = ['Crossing','Finishing', 'HeadingAccuracy',
'ShortPassing', 'Volleys', 'Dribbling', 'Curve',
'FKAccuracy', 'LongPassing', 'BallControl',
'Acceleration', 'SprintSpeed', 'Agility', 'Reactions',
'Balance', 'ShotPower', 'Jumping', 'Stamina',
'Strength', 'LongShots', 'Aggression',
'Interceptions', 'Positioning', 'Vision',
'Penalties', 'Composure', 'Marking', 'StandingTackle',
'SlidingTackle']
plt.figure(figsize= (25, 16))
hm=sns.heatmap(util_df.loc[:, player_characteristics + ['Overall']].corr(), annot = True, linewidths=.5, cmap='Reds')
hm.set_title(label='Heatmap of dataset', fontsize=20)
hm;
# corr_matrix = util_df.corr()
# corr_matrix.loc[player_characteristics, 'LB'].sort_values(ascending=False).head()
| 27.037037
| 117
| 0.596164
|
deaf2eb47ddc3dd822c0c77690801b5b8b2a48b0
| 1,492
|
py
|
Python
|
layers/ternary_ops.py
|
victorjoos/QuantizedNeuralNetworks-Keras-Tensorflow
|
4080ddff9c9e9a6fd5c1dd90997c63968195bb7e
|
[
"BSD-3-Clause"
] | 1
|
2018-08-22T12:13:25.000Z
|
2018-08-22T12:13:25.000Z
|
layers/ternary_ops.py
|
victorjoos/QuantizedNeuralNetworks-Keras-Tensorflow
|
4080ddff9c9e9a6fd5c1dd90997c63968195bb7e
|
[
"BSD-3-Clause"
] | null | null | null |
layers/ternary_ops.py
|
victorjoos/QuantizedNeuralNetworks-Keras-Tensorflow
|
4080ddff9c9e9a6fd5c1dd90997c63968195bb7e
|
[
"BSD-3-Clause"
] | null | null | null |
# -*- coding: utf-8 -*-
from __future__ import absolute_import
import keras.backend as K
from time import sleep
def _ternarize(W, H=1):
'''The weights' ternarization function,
# References:
- [Recurrent Neural Networks with Limited Numerical Precision](http://arxiv.org/abs/1608.06902)
- [Ternary Weight Networks](http://arxiv.org/abs/1605.04711)
'''
W = W / H
cutoff = 0.7*K.mean(K.abs(W)) # # TODO: is this ok??
ones = K.ones_like(W)
zeros = K.zeros_like(W)
Wt = switch(W > cutoff, ones, switch(W <= -cutoff, -ones, zeros))
Wt *= H
return Wt
def ternarize(W, H=1):
'''The weights' ternarization function,
# References:
- [Recurrent Neural Networks with Limited Numerical Precision](http://arxiv.org/abs/1608.06902)
- [Ternary Weight Networks](http://arxiv.org/abs/1605.04711)
'''
Wt = _ternarize(W, H)
return W + K.stop_gradient(Wt - W)
def ternarize_dot(x, W):
'''For RNN (maybe Dense or Conv too).
Refer to 'Recurrent Neural Networks with Limited Numerical Precision' Section 3.1
'''
Wt = _ternarize(W)
return K.dot(x, W) + K.stop_gradient(K.dot(x, Wt - W))
| 27.127273
| 99
| 0.632038
|
deafcfc518bad5ab9572431f7de653f846580238
| 1,050
|
py
|
Python
|
python/5.concurrent/ZCoroutine/z_new_ipc/8.condition.py
|
lotapp/BaseCode
|
0255f498e1fe67ed2b3f66c84c96e44ef1f7d320
|
[
"Apache-2.0"
] | 25
|
2018-06-13T08:13:44.000Z
|
2020-11-19T14:02:11.000Z
|
python/5.concurrent/ZCoroutine/z_new_ipc/8.condition.py
|
lotapp/BaseCode
|
0255f498e1fe67ed2b3f66c84c96e44ef1f7d320
|
[
"Apache-2.0"
] | null | null | null |
python/5.concurrent/ZCoroutine/z_new_ipc/8.condition.py
|
lotapp/BaseCode
|
0255f498e1fe67ed2b3f66c84c96e44ef1f7d320
|
[
"Apache-2.0"
] | 13
|
2018-06-13T08:13:38.000Z
|
2022-01-06T06:45:07.000Z
|
import asyncio
cond = None
p_list = []
#
#
if __name__ == "__main__":
asyncio.run(main())
| 23.333333
| 75
| 0.526667
|
deb039b791ed71607787c0d4ffc9f5bb4edef521
| 930
|
py
|
Python
|
Q846_Hand-of-Straights.py
|
xiaosean/leetcode_python
|
844ece02d699bfc620519bd94828ed0e18597f3e
|
[
"MIT"
] | null | null | null |
Q846_Hand-of-Straights.py
|
xiaosean/leetcode_python
|
844ece02d699bfc620519bd94828ed0e18597f3e
|
[
"MIT"
] | null | null | null |
Q846_Hand-of-Straights.py
|
xiaosean/leetcode_python
|
844ece02d699bfc620519bd94828ed0e18597f3e
|
[
"MIT"
] | null | null | null |
from collections import Counter
| 31
| 63
| 0.410753
|
deb1c543d933d4026fb5899f87ff8c3384301fea
| 174
|
py
|
Python
|
hover/utils/misc.py
|
haochuanwei/hover
|
53eb38c718e44445b18a97e391b7f90270802b04
|
[
"MIT"
] | 1
|
2020-12-08T13:04:18.000Z
|
2020-12-08T13:04:18.000Z
|
hover/utils/misc.py
|
MaxCodeXTC/hover
|
feeb0e0c59295a3c883823ccef918dfe388b603c
|
[
"MIT"
] | null | null | null |
hover/utils/misc.py
|
MaxCodeXTC/hover
|
feeb0e0c59295a3c883823ccef918dfe388b603c
|
[
"MIT"
] | null | null | null |
"""Mini-functions that do not belong elsewhere."""
from datetime import datetime
| 24.857143
| 50
| 0.718391
|
deb28e42e8f7639fbbb2df4266120ee03fd2a028
| 193
|
py
|
Python
|
admin.py
|
sfchronicle/najee
|
0c66b05ba10616243d9828465da97dee7bfedc0d
|
[
"MIT",
"Unlicense"
] | null | null | null |
admin.py
|
sfchronicle/najee
|
0c66b05ba10616243d9828465da97dee7bfedc0d
|
[
"MIT",
"Unlicense"
] | null | null | null |
admin.py
|
sfchronicle/najee
|
0c66b05ba10616243d9828465da97dee7bfedc0d
|
[
"MIT",
"Unlicense"
] | null | null | null |
import flask_admin as admin
# from flask_admin.contrib.sqla import ModelView
from app import app
# from app import db
from models import *
# Admin
admin = admin.Admin(app)
# Add Admin Views
| 16.083333
| 48
| 0.766839
|
deb449183523148b00bdabf18e21714bbe3551c8
| 467
|
py
|
Python
|
src/courses/migrations/0006_auto_20200521_2038.py
|
GiomarOsorio/another-e-learning-platform
|
5cfc76420eb3466691f5187c915c179afb13199a
|
[
"MIT"
] | null | null | null |
src/courses/migrations/0006_auto_20200521_2038.py
|
GiomarOsorio/another-e-learning-platform
|
5cfc76420eb3466691f5187c915c179afb13199a
|
[
"MIT"
] | 8
|
2020-06-25T22:16:20.000Z
|
2022-03-12T00:39:27.000Z
|
src/courses/migrations/0006_auto_20200521_2038.py
|
GiomarOsorio/another-e-learning-platform
|
5cfc76420eb3466691f5187c915c179afb13199a
|
[
"MIT"
] | null | null | null |
# Generated by Django 3.0.6 on 2020-05-21 20:38
from django.db import migrations, models
| 24.578947
| 129
| 0.631692
|
deb684b2e0198456aadb77cab383b2b6c0c2748f
| 776
|
py
|
Python
|
mypi/settings.py
|
sujaymansingh/mypi
|
768bdda2ed43faba8a69c7985ee063e1016b9299
|
[
"BSD-2-Clause-FreeBSD"
] | 4
|
2016-08-22T17:13:43.000Z
|
2020-10-21T16:50:07.000Z
|
mypi/settings.py
|
sujaymansingh/mypi
|
768bdda2ed43faba8a69c7985ee063e1016b9299
|
[
"BSD-2-Clause-FreeBSD"
] | null | null | null |
mypi/settings.py
|
sujaymansingh/mypi
|
768bdda2ed43faba8a69c7985ee063e1016b9299
|
[
"BSD-2-Clause-FreeBSD"
] | 1
|
2016-08-22T17:13:47.000Z
|
2016-08-22T17:13:47.000Z
|
import os
# We should try to import any custom settings.
SETTINGS_MODULE_NAME = os.getenv("MYPI_SETTINGS_MODULE")
if SETTINGS_MODULE_NAME:
SETTINGS_MODULE = import_module(SETTINGS_MODULE_NAME)
else:
SETTINGS_MODULE = object()
# Try to get everything from the custom settings, but provide a default.
PACKAGES_DIR = getattr(SETTINGS_MODULE, "PACKAGES_DIR", "./packages")
SITE_TITLE = getattr(SETTINGS_MODULE, "SITE_TITLE", "Python Packages")
SITE_URL_BASE = getattr(SETTINGS_MODULE, "SITE_URL_BASE", "")
if SITE_URL_BASE.endswith("/"):
SITE_URL_BASE = SITE_URL_BASE[:-1]
| 29.846154
| 72
| 0.744845
|
deb7178741e12b76740cccb10cf2e3f8e186116d
| 1,866
|
py
|
Python
|
alipay/aop/api/domain/KbAdvertPreserveCommissionClause.py
|
articuly/alipay-sdk-python-all
|
0259cd28eca0f219b97dac7f41c2458441d5e7a6
|
[
"Apache-2.0"
] | null | null | null |
alipay/aop/api/domain/KbAdvertPreserveCommissionClause.py
|
articuly/alipay-sdk-python-all
|
0259cd28eca0f219b97dac7f41c2458441d5e7a6
|
[
"Apache-2.0"
] | null | null | null |
alipay/aop/api/domain/KbAdvertPreserveCommissionClause.py
|
articuly/alipay-sdk-python-all
|
0259cd28eca0f219b97dac7f41c2458441d5e7a6
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import simplejson as json
from alipay.aop.api.constant.ParamConstants import *
| 29.15625
| 81
| 0.587889
|
deba0ac91a90f7d9408ab094dc6d137f7476170c
| 4,495
|
py
|
Python
|
smart_contract/__init__.py
|
publicqi/CTFd-Fox
|
b1d0169db884cdf3cb665faa8987443e7630d108
|
[
"MIT"
] | 1
|
2021-01-09T15:20:14.000Z
|
2021-01-09T15:20:14.000Z
|
smart_contract/__init__.py
|
publicqi/CTFd-Fox
|
b1d0169db884cdf3cb665faa8987443e7630d108
|
[
"MIT"
] | null | null | null |
smart_contract/__init__.py
|
publicqi/CTFd-Fox
|
b1d0169db884cdf3cb665faa8987443e7630d108
|
[
"MIT"
] | null | null | null |
from __future__ import division # Use floating point for math calculations
from flask import Blueprint
from CTFd.models import (
ChallengeFiles,
Challenges,
Fails,
Flags,
Hints,
Solves,
Tags,
db,
)
from CTFd.plugins import register_plugin_assets_directory
from CTFd.plugins.challenges import CHALLENGE_CLASSES, BaseChallenge
from CTFd.plugins.flags import get_flag_class
from CTFd.utils.uploads import delete_file
from CTFd.utils.user import get_ip
| 32.338129
| 87
| 0.629588
|
deba5b19ee11e4b42757cf8302210ae77f1c6474
| 295
|
py
|
Python
|
01-data_types/d13.py
|
philiphinton/learn_python
|
6ddfe3c7818d6c919bfa49bd6302c75ee761b6a4
|
[
"MIT"
] | null | null | null |
01-data_types/d13.py
|
philiphinton/learn_python
|
6ddfe3c7818d6c919bfa49bd6302c75ee761b6a4
|
[
"MIT"
] | 3
|
2022-01-17T22:55:09.000Z
|
2022-01-26T07:26:13.000Z
|
01-data_types/d13.py
|
philiphinton/learn_python
|
6ddfe3c7818d6c919bfa49bd6302c75ee761b6a4
|
[
"MIT"
] | 1
|
2021-12-14T01:33:21.000Z
|
2021-12-14T01:33:21.000Z
|
shopping_list = {
'Tomatoes': 6,
'Bananas': 5,
'Crackers': 2,
'Sugar': 1,
'Icecream': 1,
'Bread': 3,
'Chocolate': 2
}
# Just the keys
print(shopping_list.keys())
# Just the values
# print(shopping_list.values())
# Both keys and values
# print(shopping_list.items())
| 17.352941
| 31
| 0.610169
|
debc22c03ed999e303334d1da3320e421b5bfacc
| 119
|
py
|
Python
|
applications/jupyter-extension/nteract_on_jupyter/notebooks/utils/cb/python/__init__.py
|
jjhenkel/nteract
|
088222484b59af14b1da22de4d0990d8925adf95
|
[
"BSD-3-Clause"
] | null | null | null |
applications/jupyter-extension/nteract_on_jupyter/notebooks/utils/cb/python/__init__.py
|
jjhenkel/nteract
|
088222484b59af14b1da22de4d0990d8925adf95
|
[
"BSD-3-Clause"
] | null | null | null |
applications/jupyter-extension/nteract_on_jupyter/notebooks/utils/cb/python/__init__.py
|
jjhenkel/nteract
|
088222484b59af14b1da22de4d0990d8925adf95
|
[
"BSD-3-Clause"
] | null | null | null |
from .surface import *
from .modifiers import *
from .evaluator import Evaluator
from .lowlevel import display_results
| 23.8
| 37
| 0.815126
|
debcd3fde3c56a4f5ccca0c23d8a57a7d2afd960
| 588
|
py
|
Python
|
Numbers/PrimeFac.py
|
Arjuna197/the100
|
2963b4fe1b1b8e673a23b2cf97f4bcb263af9781
|
[
"MIT"
] | 1
|
2022-02-20T18:49:49.000Z
|
2022-02-20T18:49:49.000Z
|
Numbers/PrimeFac.py
|
dan-garvey/the100
|
2963b4fe1b1b8e673a23b2cf97f4bcb263af9781
|
[
"MIT"
] | 13
|
2017-12-13T02:31:54.000Z
|
2017-12-13T02:37:45.000Z
|
Numbers/PrimeFac.py
|
dan-garvey/the100
|
2963b4fe1b1b8e673a23b2cf97f4bcb263af9781
|
[
"MIT"
] | null | null | null |
import math
from math import*
print('enter a positive integer')
FacMe=int(input())
primefacts=[1]
if not isPrime(FacMe):
if FacMe % 2==0:
primefacts.append(2)
if FacMe % 3==0:
primefacts.append(3)
for i in range(5,FacMe):
if FacMe%i==0:
if isPrime(i):
primefacts.append(i)
else:
primefacts.append(FacMe)
print(primefacts)
| 21.777778
| 40
| 0.547619
|
debd457fd6d2c1141a031eefaca5f163110cfa64
| 1,130
|
py
|
Python
|
src/wtfjson/validators/url.py
|
binary-butterfly/wtfjson
|
551ad07c895ce3c94ac3015b6b5ecc2102599b56
|
[
"MIT"
] | null | null | null |
src/wtfjson/validators/url.py
|
binary-butterfly/wtfjson
|
551ad07c895ce3c94ac3015b6b5ecc2102599b56
|
[
"MIT"
] | 1
|
2021-10-11T08:55:45.000Z
|
2021-10-11T08:55:45.000Z
|
src/wtfjson/validators/url.py
|
binary-butterfly/wtfjson
|
551ad07c895ce3c94ac3015b6b5ecc2102599b56
|
[
"MIT"
] | null | null | null |
# encoding: utf-8
"""
binary butterfly validator
Copyright (c) 2021, binary butterfly GmbH
Use of this source code is governed by an MIT-style license that can be found in the LICENSE.txt.
"""
import re
from typing import Any, Optional
from ..abstract_input import AbstractInput
from ..fields import Field
from ..validators import Regexp
from ..exceptions import ValidationError
from ..external import HostnameValidation
| 30.540541
| 103
| 0.650442
|
debe6ce18f853e6b1e54abf97ade00987edf8450
| 1,270
|
py
|
Python
|
runner/run_descriptions/runs/curious_vs_vanilla.py
|
alex-petrenko/curious-rl
|
6cd0eb78ab409c68f8dad1a8542d625f0dd39114
|
[
"MIT"
] | 18
|
2018-12-29T01:52:25.000Z
|
2021-11-08T06:48:20.000Z
|
runner/run_descriptions/runs/curious_vs_vanilla.py
|
alex-petrenko/curious-rl
|
6cd0eb78ab409c68f8dad1a8542d625f0dd39114
|
[
"MIT"
] | 2
|
2019-06-13T12:52:55.000Z
|
2019-10-30T03:27:11.000Z
|
runner/run_descriptions/runs/curious_vs_vanilla.py
|
alex-petrenko/curious-rl
|
6cd0eb78ab409c68f8dad1a8542d625f0dd39114
|
[
"MIT"
] | 3
|
2019-05-11T07:50:53.000Z
|
2021-11-18T08:15:56.000Z
|
from runner.run_descriptions.run_description import RunDescription, Experiment, ParamGrid
_params = ParamGrid([
('prediction_bonus_coeff', [0.00, 0.05]),
])
_experiments = [
Experiment(
'doom_maze_very_sparse',
'python -m algorithms.curious_a2c.train_curious_a2c --env=doom_maze_very_sparse --gpu_mem_fraction=0.1 --train_for_env_steps=2000000000',
_params.generate_params(randomize=False),
),
# Experiment(
# 'doom_maze_sparse',
# 'python -m algorithms.curious_a2c.train_curious_a2c --env=doom_maze_sparse --gpu_mem_fraction=0.1 --train_for_env_steps=100000000',
# _params.generate_params(randomize=False),
# ),
# Experiment(
# 'doom_maze',
# 'python -m algorithms.curious_a2c.train_curious_a2c --env=doom_maze --gpu_mem_fraction=0.1 --train_for_env_steps=50000000',
# _params.generate_params(randomize=False),
# ),
# Experiment(
# 'doom_basic',
# 'python -m algorithms.curious_a2c.train_curious_a2c --env=doom_basic --gpu_mem_fraction=0.1 --train_for_env_steps=10000000',
# _params.generate_params(randomize=False),
# ),
]
DOOM_CURIOUS_VS_VANILLA = RunDescription('doom_curious_vs_vanilla', experiments=_experiments, max_parallel=5)
| 40.967742
| 145
| 0.711024
|
debed6abf0cd6d720ad9aac4713a4ef0c18b842a
| 383
|
py
|
Python
|
xappt_qt/__init__.py
|
cmontesano/xappt_qt
|
74f8c62e0104a67b4b4eb65382df851221bf0bab
|
[
"MIT"
] | null | null | null |
xappt_qt/__init__.py
|
cmontesano/xappt_qt
|
74f8c62e0104a67b4b4eb65382df851221bf0bab
|
[
"MIT"
] | 12
|
2020-10-11T22:42:12.000Z
|
2021-10-04T19:38:51.000Z
|
xappt_qt/__init__.py
|
cmontesano/xappt_qt
|
74f8c62e0104a67b4b4eb65382df851221bf0bab
|
[
"MIT"
] | 1
|
2021-09-29T23:53:34.000Z
|
2021-09-29T23:53:34.000Z
|
import os
from xappt_qt.__version__ import __version__, __build__
from xappt_qt.plugins.interfaces.qt import QtInterface
# suppress "qt.qpa.xcb: QXcbConnection: XCB error: 3 (BadWindow)"
os.environ['QT_LOGGING_RULES'] = '*.debug=false;qt.qpa.*=false'
version = tuple(map(int, __version__.split('.'))) + (__build__, )
version_str = f"{__version__}-{__build__}"
executable = None
| 27.357143
| 65
| 0.749347
|
dec0b14005ec6feafc62d8f18253556640fa35db
| 145,150
|
py
|
Python
|
py/countdowntourney.py
|
elocemearg/atropine
|
894010bcc89d4e6962cf3fc15ef526068c38898d
|
[
"CC-BY-4.0"
] | null | null | null |
py/countdowntourney.py
|
elocemearg/atropine
|
894010bcc89d4e6962cf3fc15ef526068c38898d
|
[
"CC-BY-4.0"
] | null | null | null |
py/countdowntourney.py
|
elocemearg/atropine
|
894010bcc89d4e6962cf3fc15ef526068c38898d
|
[
"CC-BY-4.0"
] | null | null | null |
#!/usr/bin/python3
import sys
import sqlite3;
import re;
import os;
import random
import qualification
from cttable import CandidateTable, TableVotingGroup, PhantomTableVotingGroup
import cttable
SW_VERSION_SPLIT = (1, 1, 4)
SW_VERSION = ".".join([str(x) for x in SW_VERSION_SPLIT])
EARLIEST_COMPATIBLE_DB_VERSION = (0, 7, 0)
RANK_WINS_POINTS = 0;
RANK_POINTS = 1;
RANK_WINS_SPREAD = 2;
RATINGS_MANUAL = 0
RATINGS_GRADUATED = 1
RATINGS_UNIFORM = 2
CONTROL_NUMBER = 1
CONTROL_CHECKBOX = 2
UPLOAD_FAIL_TYPE_HTTP = 1
UPLOAD_FAIL_TYPE_REJECTED = 2
LOG_TYPE_NEW_RESULT = 1
LOG_TYPE_CORRECTION = 2
LOG_TYPE_COMMENT = 96
LOG_TYPE_COMMENT_VIDEPRINTER_FLAG = 1
LOG_TYPE_COMMENT_WEB_FLAG = 4
teleost_modes = [
{
"id" : "TELEOST_MODE_AUTO",
"name" : "Auto",
"desc" : "Automatic control. This will show Fixtures at the start of a round, Standings/Videprinter during the round, and Standings/Table Results when all games in the round have been played.",
"menuorder" : 0,
"image" : "/images/screenthumbs/auto.png",
"fetch" : [ "all" ]
},
{
"id" : "TELEOST_MODE_STANDINGS",
"name" : "Standings",
"desc" : "The current standings table and nothing else.",
"image" : "/images/screenthumbs/standings_only.png",
"menuorder" : 5,
"fetch" : [ "standings" ]
},
{
"id" : "TELEOST_MODE_STANDINGS_VIDEPRINTER",
"name" : "Standings / Videprinter",
"desc" : "Standings table with latest results appearing in the lower third of the screen.",
"image" : "/images/screenthumbs/standings_videprinter.png",
"menuorder" : 1,
"fetch" : [ "standings", "logs" ]
},
{
"id" : "TELEOST_MODE_STANDINGS_RESULTS",
"name" : "Standings / Table Results",
"desc" : "Standings table with the current round's fixtures and results cycling on the lower third of the screen.",
"image" : "/images/screenthumbs/standings_results.png",
"menuorder" : 2,
"fetch" : [ "standings", "games" ]
},
{
"id" : "TELEOST_MODE_TECHNICAL_DIFFICULTIES",
"name" : "Technical Difficulties",
"desc" : "Ceci n'est pas un probleme technique.",
"image" : "/images/screenthumbs/technical_difficulties.png",
"menuorder" : 10,
"fetch" : []
},
{
"id" : "TELEOST_MODE_FIXTURES",
"name" : "Fixtures",
"desc" : "Table of all fixtures in the next or current round.",
"image" : "/images/screenthumbs/fixtures.png",
"menuorder" : 3,
"fetch" : [ "games" ]
},
{
"id" : "TELEOST_MODE_TABLE_NUMBER_INDEX",
"name" : "Table Number Index",
"desc" : "A list of all the player names and their table numbers, in alphabetical order of player name.",
"image" : "/images/screenthumbs/table_index.png",
"menuorder" : 4,
"fetch" : [ "games" ]
},
{
"id" : "TELEOST_MODE_OVERACHIEVERS",
"name" : "Overachievers",
"desc" : "Table of players ranked by how highly they finish above their seeding position. This is only relevant if the players have different ratings.",
"image" : "/images/screenthumbs/overachievers.png",
"menuorder" : 6,
"fetch" : [ "overachievers" ]
},
{
"id" : "TELEOST_MODE_TUFF_LUCK",
"name" : "Tuff Luck",
"desc" : "Players who have lost three or more games, ordered by the sum of their three lowest losing margins.",
"image" : "/images/screenthumbs/tuff_luck.png",
"menuorder" : 7,
"fetch" : [ "tuffluck" ]
},
{
"id" : "TELEOST_MODE_HIGH_SCORES",
"name" : "High scores",
"desc" : "Highest winning scores, losing scores and combined scores in all heat games.",
"image" : "/images/screenthumbs/high_scores.jpg",
"menuorder" : 8,
"fetch" : [ "highscores" ]
}
#{
# "id" : "TELEOST_MODE_FASTEST_FINISHERS",
# "name" : "Fastest Finishers",
# "desc" : "A cheeky way to highlight which tables are taking too long to finish their games.",
# "image" : "/images/screenthumbs/placeholder.png",
# "menuorder" : 9,
# "fetch" : []
#}
#,{
# "id" : "TELEOST_MODE_CLOCK",
# "name" : "Clock",
# "desc" : "For some reason.",
# "image" : "/images/screenthumbs/placeholder.png",
# "menuorder" : 10,
# "fetch" : []
#}
]
teleost_mode_id_to_num = dict()
for idx in range(len(teleost_modes)):
teleost_modes[idx]["num"] = idx
teleost_mode_id_to_num[teleost_modes[idx]["id"]] = idx
teleost_per_view_option_list = [
(teleost_mode_id_to_num["TELEOST_MODE_AUTO"], "autousetableindex", CONTROL_CHECKBOX, "$CONTROL Show name-to-table index at start of round", 0),
(teleost_mode_id_to_num["TELEOST_MODE_AUTO"], "autocurrentroundmusthavegamesinalldivisions", CONTROL_CHECKBOX, "$CONTROL Only switch to Fixtures display after fixtures are generated for all divisions", 1),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS"], "standings_only_lines", CONTROL_NUMBER, "Players per page", 12),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS"], "standings_only_scroll", CONTROL_NUMBER, "Page scroll interval $CONTROL seconds", 12),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_VIDEPRINTER"], "standings_videprinter_standings_lines", CONTROL_NUMBER, "Players per page", 8),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_VIDEPRINTER"], "standings_videprinter_standings_scroll", CONTROL_NUMBER, "Page scroll interval $CONTROL seconds", 10),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_VIDEPRINTER"], "standings_videprinter_spell_big_scores", CONTROL_CHECKBOX, "$CONTROL Videprinter: repeat unbelievably high scores in words", 0),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_VIDEPRINTER"], "standings_videprinter_big_score_min", CONTROL_NUMBER, "$INDENT An unbelievably high score is $CONTROL or more", 90),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_RESULTS"], "standings_results_standings_lines", CONTROL_NUMBER, "Players per standings page", 8),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_RESULTS"], "standings_results_standings_scroll", CONTROL_NUMBER, "Standings scroll interval $CONTROL seconds", 10),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_RESULTS"], "standings_results_results_lines", CONTROL_NUMBER, "Number of results per page", 3),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_RESULTS"], "standings_results_results_scroll", CONTROL_NUMBER, "Results scroll interval $CONTROL seconds", 5),
(teleost_mode_id_to_num["TELEOST_MODE_STANDINGS_RESULTS"], "standings_results_show_unstarted_round_if_single_game", CONTROL_CHECKBOX, "$CONTROL Show unstarted next round if it only has one game", 1),
(teleost_mode_id_to_num["TELEOST_MODE_FIXTURES"], "fixtures_lines", CONTROL_NUMBER, "Lines per page", 12),
(teleost_mode_id_to_num["TELEOST_MODE_FIXTURES"], "fixtures_scroll", CONTROL_NUMBER, "Page scroll interval $CONTROL seconds", 10),
(teleost_mode_id_to_num["TELEOST_MODE_TABLE_NUMBER_INDEX"], "table_index_rows", CONTROL_NUMBER, "Rows per page $CONTROL", 12),
(teleost_mode_id_to_num["TELEOST_MODE_TABLE_NUMBER_INDEX"], "table_index_columns", CONTROL_NUMBER, "Columns per page", 2),
(teleost_mode_id_to_num["TELEOST_MODE_TABLE_NUMBER_INDEX"], "table_index_scroll", CONTROL_NUMBER, "Page scroll interval $CONTROL seconds", 12)
]
create_tables_sql = """
begin transaction;
-- PLAYER table
create table if not exists player (
id integer primary key autoincrement,
name text,
rating float,
team_id int,
short_name text,
withdrawn int not null default 0,
division int not null default 0,
division_fixed int not null default 0,
avoid_prune int not null default 0,
require_accessible_table int not null default 0,
preferred_table int not null default -1,
unique(name), unique(short_name)
);
-- TEAM table
create table if not exists team (
id integer primary key autoincrement,
name text,
colour int,
unique(name)
);
insert into team(name, colour) values('White', 255 * 256 * 256 + 255 * 256 + 255);
insert into team(name, colour) values('Blue', 128 * 256 + 255);
-- GAME table, containing scheduled games and played games
create table if not exists game (
round_no int,
seq int,
table_no int,
division int,
game_type text,
p1 integer,
p1_score integer,
p2 integer,
p2_score integer,
tiebreak int,
unique(round_no, seq)
);
-- game log, never deleted from
create table if not exists game_log (
seq integer primary key autoincrement,
ts text,
round_no int,
round_seq int,
table_no int,
division int,
game_type text,
p1 integer,
p1_score int,
p2 integer,
p2_score int,
tiebreak int,
log_type int,
comment text default null
);
-- Games where we don't yet know who the players are going to be, but we
-- do know it's going to be "winner of this match versus winner of that match".
create table if not exists game_pending (
round_no int,
seq int,
seat int,
winner int,
from_round_no int,
from_seq int,
unique(round_no, seq, seat)
);
-- options, such as what to sort players by, how to decide fixtures, etc
create table if not exists options (
name text primary key,
value text
);
-- metadata for per-view options in teleost (values stored in "options" above)
create table if not exists teleost_options (
mode int,
seq int,
name text primary key,
control_type int,
desc text,
default_value text,
unique(mode, seq)
);
-- Table in which we persist the HTML form settings given to a fixture
-- generator
create table if not exists fixgen_settings (
fixgen text,
name text,
value text
);
-- Round names. When a fixture generator generates some fixtures, it will
-- probably create a new round. This is always given a number, but it can
-- also be given a name, e.g. "Quarter-finals". The "round type" column is
-- no longer used.
create table if not exists rounds (
id integer primary key,
type text,
name text
);
create view if not exists rounds_derived as
select r.id,
case when r.name is not null and r.name != '' then r.name
when gc.qf = gc.total then 'Quarter-finals'
when gc.sf = gc.total then 'Semi-finals'
when gc.f = gc.total then 'Final'
when gc.tp = gc.total then 'Third Place'
when gc.f + gc.tp = gc.total then 'Final & Third Place'
else 'Round ' || cast(r.id as text) end as name
from rounds r,
(select g.round_no,
sum(case when g.game_type = 'QF' then 1 else 0 end) qf,
sum(case when g.game_type = 'SF' then 1 else 0 end) sf,
sum(case when g.game_type = '3P' then 1 else 0 end) tp,
sum(case when g.game_type = 'F' then 1 else 0 end) f,
sum(case when g.game_type = 'N' then 1 else 0 end) n,
sum(case when g.game_type = 'P' then 1 else 0 end) p,
count(*) total
from game g
group by g.round_no) gc
where gc.round_no = r.id;
create view if not exists completed_game as
select * from game
where p1_score is not null and p2_score is not null;
create view if not exists completed_heat_game as
select * from game
where p1_score is not null and p2_score is not null and game_type = 'P';
create view if not exists game_divided as
select round_no, seq, table_no, game_type, p1 p_id, p1_score p_score,
p2 opp_id, p2_score opp_score, tiebreak
from game
union all
select round_no, seq, table_no, game_type, p2 p_id, p2_score p_score,
p1 opp_id, p1_score opp_score, tiebreak
from game;
create view if not exists heat_game_divided as
select * from game_divided where game_type = 'P';
create view if not exists player_wins as
select p.id, sum(case when g.p_id is null then 0
when g.p_score is null or g.opp_score is null then 0
when g.p_score == 0 and g.opp_score == 0 and g.tiebreak then 0
when g.p_score > g.opp_score then 1
else 0 end) wins
from player p left outer join heat_game_divided g on p.id = g.p_id
group by p.id;
create view if not exists player_draws as
select p.id, sum(case when g.p_id is null then 0
when g.p_score is null or g.opp_score is null then 0
when g.p_score == 0 and g.opp_score == 0 and g.tiebreak then 0
when g.p_score == g.opp_score then 1
else 0 end) draws
from player p left outer join heat_game_divided g on p.id = g.p_id
group by p.id;
create view if not exists player_points as
select p.id, sum(case when g.p_score is null then 0
when g.tiebreak and g.p_score > g.opp_score
then g.opp_score
else g.p_score end) points
from player p left outer join heat_game_divided g on p.id = g.p_id
group by p.id;
create view if not exists player_points_against as
select p.id, sum(case when g.opp_score is null then 0
when g.tiebreak and g.opp_score > g.p_score
then g.p_score
else g.opp_score end) points_against
from player p left outer join heat_game_divided g on p.id = g.p_id
group by p.id;
create view if not exists player_played as
select p.id, sum(case when g.p_score is not null and g.opp_score is not null then 1 else 0 end) played
from player p left outer join heat_game_divided g on p.id = g.p_id
group by p.id;
create view if not exists player_played_first as
select p.id, count(g.p1) played_first
from player p left outer join completed_heat_game g on p.id = g.p1
group by p.id;
create table final_game_types(game_type text, power int);
insert into final_game_types values ('QF', 2), ('SF', 1), ('F', 0);
create view if not exists player_finals_results as
select p.id, coalesce(gd.game_type, gt.game_type) game_type,
case when gd.p_score is null then '-'
when gd.p_score > gd.opp_score then 'W'
when gd.p_score = gd.opp_score then 'D'
else 'L'
end result
from player p, final_game_types gt
left outer join game_divided gd on p.id = gd.p_id
and (gd.game_type = gt.game_type or (gt.game_type = 'F' and gd.game_type = '3P'));
create view if not exists player_finals_form as
select p.id, coalesce(pfr_qf.result, '-') qf,
coalesce(pfr_sf.result, '-') sf,
case when pfr_f.result is null then '-'
when pfr_f.game_type = '3P' then lower(pfr_f.result)
else pfr_f.result end f
from player p
left outer join player_finals_results pfr_qf on p.id = pfr_qf.id and pfr_qf.game_type = 'QF'
left outer join player_finals_results pfr_sf on p.id = pfr_sf.id and pfr_sf.game_type = 'SF'
left outer join player_finals_results pfr_f on p.id = pfr_f.id and pfr_f.game_type in ('3P', 'F')
group by p.id;
create view if not exists player_standings as
select p.id, p.name, p.division, played.played, wins.wins, draws.draws,
points.points, points_against.points_against, ppf.played_first,
pff.qf || pff.sf || upper(pff.f) finals_form,
case when pff.f = '-' then 0
else
case when pff.qf = 'W' then 48
when pff.qf = 'D' then 32
when pff.qf = 'L' then 16
else case when pff.sf != '-' or pff.f != '-' then 48 else 0 end
end +
case when pff.sf = 'W' then 12
when pff.sf = 'D' then 8
when pff.sf = 'L' then 4
-- If you're playing in a third place match then you're considered
-- to have lost the nonexistent semi-final. If you're playing in a
-- final then you're considered to have won the semi-final.
else case when pff.f in ('w', 'd', 'l') then 4
when pff.f in ('W', 'D', 'L') then 12
else 0 end
end +
case when pff.f = 'W' then 3
when pff.f = 'D' then 2
when pff.f = 'L' then 1
else 0
end
end finals_points
from player p, player_wins wins, player_draws draws, player_played played,
player_points points, player_points_against points_against,
player_played_first ppf, player_finals_form pff
where p.id = wins.id
and p.id = played.id
and p.id = points.id
and p.id = draws.id
and p.id = points_against.id
and p.id = ppf.id
and p.id = pff.id;
-- Tables for controlling the display system Teleost
create table if not exists teleost(current_mode int);
delete from teleost;
insert into teleost values(0);
create table if not exists teleost_modes(num int, name text, desc text);
create table if not exists tr_opts (
bonus float,
rating_diff_cap float
);
delete from tr_opts;
insert into tr_opts (bonus, rating_diff_cap) values (50, 40);
-- View for working out tournament ratings
-- For each game, you get 50 + your opponent's rating if you win,
-- your opponent's rating if you draw, and your opponent's rating - 50 if
-- you lost. For the purpose of this calculation, your opponent's rating
-- is your opponent's rating at the start of the tourney, except where that
-- is more than 40 away from your own, in which case it's your rating +40 or
-- -40 as appropriate.
-- The 50 and 40 are configurable, in the tr_opts table.
create view tournament_rating as
select p.id, p.name,
avg(case when hgd.p_score > hgd.opp_score then rel_ratings.opp_rating + tr_opts.bonus
when hgd.p_score = hgd.opp_score then rel_ratings.opp_rating
else rel_ratings.opp_rating - tr_opts.bonus end) tournament_rating
from player p, heat_game_divided hgd on p.id = hgd.p_id,
(select me.id p_id, you.id opp_id,
case when you.rating < me.rating - tr_opts.rating_diff_cap
then me.rating - tr_opts.rating_diff_cap
when you.rating > me.rating + tr_opts.rating_diff_cap
then me.rating + tr_opts.rating_diff_cap
else you.rating end opp_rating
from player me, player you, tr_opts) rel_ratings
on rel_ratings.p_id = p.id and hgd.opp_id = rel_ratings.opp_id,
tr_opts
where hgd.p_score is not null and hgd.opp_score is not null
group by p.id, p.name;
-- Table for information about tables (boards). The special table_no -1 means
-- the default settings for tables. So if table -1 is marked as accessible
-- that means every table not listed is considered to be accessible.
create table board (
table_no integer primary key,
accessible integer not null
);
-- By default, if a board isn't listed in this table then it isn't accessible.
insert into board (table_no, accessible) values (-1, 0);
-- Log any failures to upload updates
create table if not exists upload_error_log (
ts text,
failure_type int,
message text
);
-- Time of last successful upload
create table if not exists upload_success (
ts text
);
insert into upload_success values (null);
commit;
""";
def get_teleost_mode_services_to_fetch(mode):
if mode < 0 or mode >= len(teleost_modes):
return [ "all" ]
else:
return teleost_modes[mode]["fetch"]
# When we submit a player list to a new tournament, set_players() takes a list
# of these objects.
# This object can be on one side and/or other of a Game, just like a Player.
# However, it does not represent a player. It represents the winner or loser
# of another specific game yet to be played.
# COLIN Hangover 2015: each player is assigned a team
def get_general_division_name(num):
if num < 0:
return "Invalid division number %d" % (num)
elif num > 25:
return "Division %d" % (num + 1)
else:
return "Division %s" % (chr(ord('A') + num))
def get_general_short_division_name(num):
if num < 0:
return ""
elif num > 25:
return int(num + 1)
else:
return chr(ord('A') + num)
def get_5_3_table_sizes(num_players):
if num_players < 8:
return []
table_sizes = []
players_left = num_players
while players_left % 5 != 0:
table_sizes.append(3)
players_left -= 3
while players_left > 0:
table_sizes = [5] + table_sizes
players_left -= 5
return table_sizes
def get_game_types():
return [
{ "code" : "P", "name" : "Standard heat game" },
{ "code" : "QF", "name" : "Quarter-final" },
{ "code" : "SF", "name" : "Semi-final" },
{ "code" : "3P", "name" : "Third-place play-off" },
{ "code" : "F", "name" : "Final" } ,
{ "code" : "N", "name" : "Other game not counted in standings" }
]
unique_id_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
| 39.691004
| 388
| 0.586035
|
dec0da50ce4a56fc78832aa67c6d71d1a1a1c437
| 995
|
py
|
Python
|
t/plugin/plugin_020deploy_test.py
|
jrmsdev/pysadm
|
0d6b3f0c8d870d83ab499c8d9487ec8e3a89fc37
|
[
"BSD-3-Clause"
] | 1
|
2019-10-15T08:37:56.000Z
|
2019-10-15T08:37:56.000Z
|
t/plugin/plugin_020deploy_test.py
|
jrmsdev/pysadm
|
0d6b3f0c8d870d83ab499c8d9487ec8e3a89fc37
|
[
"BSD-3-Clause"
] | null | null | null |
t/plugin/plugin_020deploy_test.py
|
jrmsdev/pysadm
|
0d6b3f0c8d870d83ab499c8d9487ec8e3a89fc37
|
[
"BSD-3-Clause"
] | null | null | null |
# Copyright (c) Jeremas Casteglione <jrmsdev@gmail.com>
# See LICENSE file.
from glob import glob
from os import path, makedirs
| 36.851852
| 80
| 0.676382
|
dec30d56b6d0887d305f33e490a67d25b3dd39cd
| 4,189
|
py
|
Python
|
jsonReadWrite.py
|
nsobczak/ActivityWatchToCSV
|
cefb67e9f1c834008f2b39c0baf6c7c506327a4d
|
[
"Apache-2.0"
] | null | null | null |
jsonReadWrite.py
|
nsobczak/ActivityWatchToCSV
|
cefb67e9f1c834008f2b39c0baf6c7c506327a4d
|
[
"Apache-2.0"
] | null | null | null |
jsonReadWrite.py
|
nsobczak/ActivityWatchToCSV
|
cefb67e9f1c834008f2b39c0baf6c7c506327a4d
|
[
"Apache-2.0"
] | null | null | null |
"""
##############
# jsonReader #
##############
"""
# Import
import json
from platform import system
from enum import Enum
from datetime import timedelta
# %% ____________________________________________________________________________________________________
# ____________________________________________________________________________________________________
# Functions
def jsonReadWrite(pathToJson, pathWhereToCreateFile, watcher, printJsonFile=False):
"""
Write csv formatted data into file
:param path: path where to create file
:type path: str
:param watcher: watcher type of the file
:type watcher: Watcher
:param printJsonFile: ???
:type printJsonFile: bool
:return: return csv formatted string
:rtype: str
"""
res = "file generated"
with open(pathToJson) as json_file:
dataDict = json.load(json_file)
if (system() != 'Linux' and system() != 'Windows'):
print("{} operating system not supported".format(system()))
else:
print("{} operating system detected".format(system()))
if printJsonFile:
print(json.dumps(dataDict, indent=4))
csvFile = open(pathWhereToCreateFile, "w") # "w" to write strings to the file
if watcher == Watcher.AFK:
print("watcher == Watcher.AFK")
# duration: 956.016
# id: 316
# timestamp: 2019 - 01 - 28
# T10: 28:13.770000 + 00: 00
# data: {'status': 'not-afk'}
res = "Watcher.AFK detected => does nothing"
elif watcher == Watcher.WEB:
print("watcher == Watcher.WEB")
# duration: 1.518
# id: 3210
# timestamp: 2019 - 01 - 31
# T18: 01:45.794000 + 00: 00
# data: {'title': 'New Tab', 'url': 'about:blank', 'audible': False, 'tabCount': 3, 'incognito': False}
res = "Watcher.WEB detected => does nothing"
elif watcher == Watcher.WINDOW:
print("watcher == Watcher.WINDOW")
# duration: 4.017 # <= in seconds
# id: 17
# timestamp: 2019 - 01 - 28
# T01: 11:55.570000 + 00: 00
# data: {'title': 'Terminal - arch@ArchDesktop:~', 'app': 'Xfce4-terminal'} # <= app is the interesting thing
# if printJsonFile:
# # check
# for d in dataDict:
# print('duration: ' + str(d['duration']))
# print('id: ' + str(d['id']))
# print('timestamp: ' + str(d['timestamp']))
# print('data: ' + str(d['data']))
# print(' title: ' + str(d['data']['title']))
# print(' app: ' + str(d['data']['app']))
# print('')
handleWindowWatcher(csvFile, dataDict)
else:
res = "failed to identify watcher type"
print(res)
return res
| 30.136691
| 121
| 0.545476
|
dec3721fd14d0e108bf21ac443dd1b7796946011
| 286
|
py
|
Python
|
pythons/reTesting.py
|
whats2000/coding-stuff-I-make-from-learning
|
d82809ba12f9d74bdb41eca5ba8f12f4cd96929e
|
[
"MIT"
] | null | null | null |
pythons/reTesting.py
|
whats2000/coding-stuff-I-make-from-learning
|
d82809ba12f9d74bdb41eca5ba8f12f4cd96929e
|
[
"MIT"
] | null | null | null |
pythons/reTesting.py
|
whats2000/coding-stuff-I-make-from-learning
|
d82809ba12f9d74bdb41eca5ba8f12f4cd96929e
|
[
"MIT"
] | null | null | null |
import re
test = input(" : ")
test.encode('unicode-escape').decode().replace('\\\\', '\\')
print(" : "+test)
if re.match(test, "a"):
print(test + " Match 1")
if re.match(test, "aa"):
print(test + " Match 2")
if re.match(test, "aaaa"):
print(test + " Match 3")
| 16.823529
| 60
| 0.562937
|
dec3efd877d3ce87cbe9fc53530bf43be70d8149
| 306
|
py
|
Python
|
2021-12-23/1.py
|
xiaozhiyuqwq/seniorschool
|
7375038b00a6d2deaec5d70bfac25ddbf4d2558e
|
[
"Apache-2.0"
] | null | null | null |
2021-12-23/1.py
|
xiaozhiyuqwq/seniorschool
|
7375038b00a6d2deaec5d70bfac25ddbf4d2558e
|
[
"Apache-2.0"
] | null | null | null |
2021-12-23/1.py
|
xiaozhiyuqwq/seniorschool
|
7375038b00a6d2deaec5d70bfac25ddbf4d2558e
|
[
"Apache-2.0"
] | null | null | null |
#
t=0
#
for x in range(1,9):
for y in range(1,11):
for z in range(1,13):
if 6*x+5*y+4*z==50:
print("x ",x," y ",y," z ",z," ")
t=t+1
print(" {} ".format(t))
#by xiaozhiyuqwq
#https://www.rainyat.work
#2021-12-23
| 21.857143
| 60
| 0.46732
|
dec6337c650811d4d0bda0d9fb32eb5e333b7344
| 15,088
|
py
|
Python
|
Project-2/Ishan Pandey/job_compare.py
|
Mercury1508/IEEE-LEAD-2.0
|
91d24ccf2f24c62f92f0d23bcfcb3988e6d5acd8
|
[
"MIT"
] | 1
|
2021-06-03T16:08:33.000Z
|
2021-06-03T16:08:33.000Z
|
Project-2/Ishan Pandey/job_compare.py
|
Mercury1508/IEEE-LEAD-2.0
|
91d24ccf2f24c62f92f0d23bcfcb3988e6d5acd8
|
[
"MIT"
] | 16
|
2021-04-27T12:58:03.000Z
|
2021-05-28T14:02:14.000Z
|
Project-2/Ishan Pandey/job_compare.py
|
Mercury1508/IEEE-LEAD-2.0
|
91d24ccf2f24c62f92f0d23bcfcb3988e6d5acd8
|
[
"MIT"
] | 70
|
2021-04-26T13:48:35.000Z
|
2021-05-28T21:04:34.000Z
|
# from job_scrapper_gui import naukri_gui
from tkinter import *
from PIL import ImageTk
import PIL.Image
import naukri_scrapper
import linkedin_scrapper
import indeed
import simply_hired_scrapper
from selenium import webdriver
root = Tk()
root.title("Compare Jobs")
root.geometry("1000x670")
root.configure(background='white')
# ----------------Header GUI----------------
# -------Creating All labels--------
logo = ImageTk.PhotoImage(PIL.Image.open("./Images\compare.png"))
header_frame = LabelFrame(bg="#135EC2",borderwidth=0,highlightthickness=0)
# logo
logo_label = Label(header_frame,image=logo,bg='#135EC2')
# job title container
job_title_frame = LabelFrame(header_frame,bg='#135EC2',borderwidth=0,highlightthickness=0)
job_label = Label(job_title_frame,text="JOB TITLE",bg='#135EC2',fg="white",font=('Bahnschrift Light', 13, 'normal'))
job_profile_box = Entry(job_title_frame, width=30, font=('Bahnschrift Light', 13, 'normal'))
# location container
location_frame = LabelFrame(header_frame,bg='#135EC2',borderwidth=0,highlightthickness=0)
location_label = Label(location_frame,text="LOCATION",bg='#135EC2',fg="white",font=('Bahnschrift Light', 13, 'normal'))
location_box = Entry(location_frame, width=30, font=('Bahnschrift Light', 13, 'normal'))
# compare button container
compare_button_frame = LabelFrame(header_frame,padx=50,pady=10,bg='#135EC2',borderwidth=0,highlightthickness=0)
# ------labels created-------
# ------packing labels-------
header_frame.pack(fill=X)
logo_label.grid(row=0,column=0,pady=3,padx=10)
job_title_frame.grid(row=0,column=1,pady=10,padx=20)
job_profile_box.pack()
job_label.pack(side=LEFT)
location_frame.grid(row=0,column=2,pady=10,padx=20)
location_box.pack()
location_label.pack(side=LEFT)
compare_button_frame.grid(row=1,column=1,columnspan=2)
# ------------Header GUI ends--------------
# ------------Compare JOBS GUI--------------
card_container = LabelFrame(root,bg="white",pady=20,borderwidth=0,highlightthickness=0)
card_container.pack(fill=X)
# ----Naukri.com GUI----
# ----Naukir.com GUI completed----
# --------indeed GUI--------------
# ----indeed GUI completed----
# -------Linkedin GUI---------
# --------Linkedin GUI completed------------
# ---------SimplyHired GUI------------------
# ----------SimplyHired GUI-------------
is_both_empty = False
compare_button = Button(compare_button_frame,text="Comapre",padx=15,pady=7,font=('Bahnschrift Light', 12, 'bold'),bg="white",fg="#135EC2",command=compare)
compare_button.pack()
root.mainloop()
| 57.808429
| 176
| 0.696911
|
dec771d07fef05c3b6f9bec75d34bca56cffa1b5
| 3,648
|
py
|
Python
|
data_augmentor/multidimension.py
|
ZhiangChen/tornado_ML
|
d8bded61a6a234ca67e31776bc8576c6c18f5621
|
[
"MIT"
] | 2
|
2018-12-09T20:08:51.000Z
|
2021-02-01T17:49:14.000Z
|
data_augmentor/multidimension.py
|
ZhiangChen/tornado_ML
|
d8bded61a6a234ca67e31776bc8576c6c18f5621
|
[
"MIT"
] | 1
|
2019-11-15T06:15:03.000Z
|
2019-11-15T06:15:03.000Z
|
multidimension.py
|
DREAMS-lab/data_augmentor
|
f204ee3af805b17d9946d3d5c6e7ca62398f09e5
|
[
"MIT"
] | null | null | null |
"""
multispectrum
Zhiang Chen,
Feb, 2020
"""
import gdal
import cv2
import numpy as np
import math
import os
if __name__ == '__main__':
st = MultDim()
# split tiles
"""
st.readTiff("./datasets/C3/Orth5.tif", channel=5)
R = st.readImage("./datasets/Rock/R.png", channel=1)
G = st.readImage("./datasets/Rock/G.png", channel=1)
B = st.readImage("./datasets/Rock/B.png", channel=1)
RE = st.readImage("./datasets/Rock/RE.png", channel=1)
NIR = st.readImage("./datasets/Rock/NIR.png", channel=1)
DEM = st.readImage("./datasets/Rock/DEM3.png", channel=3)
data = st.cat(R, G)
data = st.cat(data, B)
data = st.cat(data, RE)
data = st.cat(data, NIR)
data = st.cat(data, DEM)
st.split(data, 400, "./datasets/Rock/mult_10", overlap=10)
"""
# add annotations
# st.addAnnotation("./datasets/Rock/mult/", "./datasets/Rock_test/npy/", "./datasets/Rock_test/mult")
#"""
RGB = st.readImage("./datasets/C3/C3.png", channel=3)
DEM = st.readImage("./datasets/C3/C3_dem.png", channel=3)
data = st.cat(RGB, DEM)
st.split(data, 400, './datasets/C3/rgbd', overlap=10)
#"""
#st.addAnnotation("./datasets/C3/rgbd/", "./datasets/C3_test/npy/", "./datasets/C3_test/rocks")
| 35.076923
| 105
| 0.569353
|
dec7a039bcd25fbdc90d163100b8870f23f0424a
| 399
|
py
|
Python
|
tests/serializers/test_template_data_serializers.py
|
banillie/bcompiler-engine
|
26b63b6e630e2925175ffff6b48b42d70f7ba544
|
[
"MIT"
] | 2
|
2019-09-23T08:51:48.000Z
|
2019-10-14T08:44:28.000Z
|
tests/serializers/test_template_data_serializers.py
|
banillie/bcompiler-engine
|
26b63b6e630e2925175ffff6b48b42d70f7ba544
|
[
"MIT"
] | 27
|
2019-07-08T11:15:03.000Z
|
2020-06-22T15:47:25.000Z
|
tests/serializers/test_template_data_serializers.py
|
yulqen/bcompiler-engine
|
40eff19e04eabacac991bb34d31a7e7a7d6b729a
|
[
"MIT"
] | 1
|
2019-09-07T14:05:16.000Z
|
2019-09-07T14:05:16.000Z
|
import json
from engine.serializers.template import TemplateCellSerializer
| 30.692308
| 75
| 0.802005
|
deca8e26bb6a2a9ae53903a22809984f7a74b454
| 26,490
|
py
|
Python
|
project.py
|
PetruSicoe/Python101-GameProject
|
82121a8e110ee484acdf85843725882d60957b25
|
[
"CC-BY-4.0"
] | null | null | null |
project.py
|
PetruSicoe/Python101-GameProject
|
82121a8e110ee484acdf85843725882d60957b25
|
[
"CC-BY-4.0"
] | null | null | null |
project.py
|
PetruSicoe/Python101-GameProject
|
82121a8e110ee484acdf85843725882d60957b25
|
[
"CC-BY-4.0"
] | null | null | null |
#!/usr/bin/env python3
from random import randrange
import random
import pygame, sys
from pygame.locals import *
import string
pygame.font.init()
MENU_WIDTH = 1000
MENU_HEIGHT = 1000
GUESS_WIDTH = 1000
GUESS_HEIGHT = 650
HANGMAN_WIDTH = 1300
HANGMAN_HEIGHT = 720
BLACK = (0,0,0)
WHITE = (255,255,255)
RED = (255,0,0)
GREEN = (0,255,0)
LIGHT_YELLOW = (255, 255, 102)
frame_rate = pygame.time.Clock()
back_ground = pygame.image.load("image_kids.jpg")
back_ground_guess = pygame.image.load("schoolboard.jpg")
if __name__ == "__main__":
menu = Menu()
menu.run()
| 40.197269
| 177
| 0.555795
|
decaa14b52fa5524baf2d5d190931296e44de823
| 2,018
|
py
|
Python
|
Modules/CrossMapLRN.py
|
EmilPi/PuzzleLib
|
31aa0fab3b5e9472b9b9871ca52e4d94ea683fa9
|
[
"Apache-2.0"
] | 52
|
2020-02-28T20:40:15.000Z
|
2021-08-25T05:35:17.000Z
|
Modules/CrossMapLRN.py
|
EmilPi/PuzzleLib
|
31aa0fab3b5e9472b9b9871ca52e4d94ea683fa9
|
[
"Apache-2.0"
] | 2
|
2021-02-14T15:57:03.000Z
|
2021-10-05T12:21:34.000Z
|
Modules/CrossMapLRN.py
|
EmilPi/PuzzleLib
|
31aa0fab3b5e9472b9b9871ca52e4d94ea683fa9
|
[
"Apache-2.0"
] | 8
|
2020-02-28T20:40:11.000Z
|
2020-07-09T13:27:23.000Z
|
import numpy as np
from PuzzleLib.Backend import gpuarray
from PuzzleLib.Backend.Dnn import crossMapLRN, crossMapLRNBackward
from PuzzleLib.Modules.LRN import LRN
if __name__ == "__main__":
unittest()
| 32.031746
| 101
| 0.700198
|
decc19f50e9a41be1bc95cb6e0bf5f4f77162b78
| 4,802
|
py
|
Python
|
src/metrics.py
|
enryH/specpride
|
1bedd87dc8f31a6b86426c6e03dc0c27706bc9aa
|
[
"Apache-2.0"
] | 2
|
2020-01-14T12:02:52.000Z
|
2020-01-14T14:03:30.000Z
|
src/metrics.py
|
enryH/specpride
|
1bedd87dc8f31a6b86426c6e03dc0c27706bc9aa
|
[
"Apache-2.0"
] | 5
|
2019-12-09T10:59:10.000Z
|
2020-01-16T14:32:00.000Z
|
src/metrics.py
|
enryH/specpride
|
1bedd87dc8f31a6b86426c6e03dc0c27706bc9aa
|
[
"Apache-2.0"
] | 9
|
2020-01-14T12:26:54.000Z
|
2020-01-16T08:26:06.000Z
|
import copy
from typing import Iterable
import numba as nb
import numpy as np
import spectrum_utils.spectrum as sus
def dot(spectrum1: sus.MsmsSpectrum, spectrum2: sus.MsmsSpectrum,
fragment_mz_tolerance: float) -> float:
"""
Compute the dot product between the given spectra.
Parameters
----------
spectrum1 : sus.MsmsSpectrum
The first spectrum.
spectrum2 : sus.MsmsSpectrum
The second spectrum.
fragment_mz_tolerance : float
The fragment m/z tolerance used to match peaks.
Returns
-------
float
The dot product similarity between the given spectra.
"""
return _dot(spectrum1.mz, _norm_intensity(np.copy(spectrum1.intensity)),
spectrum2.mz, _norm_intensity(np.copy(spectrum2.intensity)),
fragment_mz_tolerance)
def avg_dot(representative: sus.MsmsSpectrum,
cluster_spectra: Iterable[sus.MsmsSpectrum],
fragment_mz_tolerance: float) -> float:
"""
Compute the average dot product between the cluster representative and all
cluster members.
Parameters
----------
representative : sus.MsmsSpectrum
The cluster representative spectrum.
cluster_spectra : Iterable[sus.MsmsSpectrum]
The cluster member spectra.
fragment_mz_tolerance : float
Fragment m/z tolerance used during spectrum comparison.
Returns
-------
float
The average dot product between the cluster representative and all
cluster members.
"""
return np.mean([dot(representative, spectrum, fragment_mz_tolerance)
for spectrum in cluster_spectra])
def fraction_by(representative: sus.MsmsSpectrum,
cluster_spectra: Iterable[sus.MsmsSpectrum],
fragment_mz_tolerance: float) -> float:
"""
Compute the fraction of intensity that is explained by the b and y-ions of
the representative spectrum.
This will be 0 if no peptide sequence is associated with the representative
spectrum.
Parameters
----------
representative : sus.MsmsSpectrum
The cluster representative spectrum.
cluster_spectra : Iterable[sus.MsmsSpectrum]
The cluster member spectra. Ignored.
fragment_mz_tolerance : float
Fragment m/z tolerance used to annotate the peaks of the representative
spectrum.
Returns
-------
float
The fraction of intensity that is explained by the b and y-ions of the
representative spectrum.
"""
if representative.peptide is None:
return 0
representative = (copy.copy(representative)
.remove_precursor_peak(fragment_mz_tolerance, 'Da')
.annotate_peptide_fragments(fragment_mz_tolerance, 'Da'))
annotated_peaks = [i for i, annot in enumerate(representative.annotation)
if annot is not None]
return (representative.intensity[annotated_peaks].sum()
/ representative.intensity.sum())
| 31.592105
| 79
| 0.660975
|
deccbee42c5be781692fc226272ac89e27a4e7a6
| 797
|
py
|
Python
|
examples/multi-class_neural_network.py
|
sun1638650145/classicML
|
7e0c2155bccb6e491a150ee689d3786526b74565
|
[
"Apache-2.0"
] | 12
|
2020-05-10T12:11:06.000Z
|
2021-10-31T13:23:55.000Z
|
examples/multi-class_neural_network.py
|
sun1638650145/classicML
|
7e0c2155bccb6e491a150ee689d3786526b74565
|
[
"Apache-2.0"
] | null | null | null |
examples/multi-class_neural_network.py
|
sun1638650145/classicML
|
7e0c2155bccb6e491a150ee689d3786526b74565
|
[
"Apache-2.0"
] | 2
|
2021-01-17T06:22:05.000Z
|
2021-01-18T14:32:51.000Z
|
"""
BP.
"""
import sys
import classicML as cml
DATASET_PATH = './datasets/iris_dataset.csv'
CALLBACKS = [cml.callbacks.History(loss_name='categorical_crossentropy',
metric_name='accuracy')]
#
ds = cml.data.Dataset(label_mode='one-hot',
standardization=True,
name='iris')
ds.from_csv(DATASET_PATH)
#
model = cml.BPNN(seed=2021)
model.compile(network_structure=[4, 2, 3],
optimizer='sgd',
loss='categorical_crossentropy',
metric='accuracy')
#
model.fit(ds.x, ds.y, epochs=1000, verbose=True, callbacks=CALLBACKS)
# (MacOS, , CI.)
if sys.platform != 'darwin':
cml.plots.plot_history(CALLBACKS[0])
| 28.464286
| 72
| 0.644918
|
decdd56ee9283490fb231ea62e1de89aa2fa1fee
| 2,596
|
py
|
Python
|
pool/serializer/PoolSerializer.py
|
salran40/POAP
|
9ff2ab68b55aeffe104d127c4beb8b1372b2c8de
|
[
"Apache-2.0"
] | null | null | null |
pool/serializer/PoolSerializer.py
|
salran40/POAP
|
9ff2ab68b55aeffe104d127c4beb8b1372b2c8de
|
[
"Apache-2.0"
] | null | null | null |
pool/serializer/PoolSerializer.py
|
salran40/POAP
|
9ff2ab68b55aeffe104d127c4beb8b1372b2c8de
|
[
"Apache-2.0"
] | null | null | null |
__author__ = "arunrajms"
from rest_framework import serializers
from pool.models import Pool
from rest_framework.validators import UniqueValidator
import re
TYPE_CHOICES = ['Integer','IP','IPv6','AutoGenerate','Vlan','MgmtIP']
PUT_TYPE_CHOICES = ['Integer','IP','IPv6','Vlan','MgmtIP']
SCOPE_CHOICES = ['global','fabric','switch']
| 36.56338
| 91
| 0.724961
|
dece77460bb0515a4dff433a0f6f8e80d7adc76c
| 3,735
|
py
|
Python
|
yiffscraper/downloader.py
|
ScraperT/yiffscraper
|
49482a544fc7f11e6ea5db2626dbc2404529d656
|
[
"MIT"
] | 42
|
2019-12-23T23:55:12.000Z
|
2022-02-07T04:12:59.000Z
|
yiffscraper/downloader.py
|
arin17bishwa/yiffscraper
|
49482a544fc7f11e6ea5db2626dbc2404529d656
|
[
"MIT"
] | 7
|
2020-01-12T13:04:56.000Z
|
2020-05-18T07:11:51.000Z
|
yiffscraper/downloader.py
|
arin17bishwa/yiffscraper
|
49482a544fc7f11e6ea5db2626dbc2404529d656
|
[
"MIT"
] | 7
|
2020-03-12T03:47:53.000Z
|
2020-07-26T08:05:55.000Z
|
import os
import platform
from datetime import datetime
import time
from pathlib import Path
import asyncio
from dateutil.parser import parse as parsedate
from dateutil import tz
import aiohttp
| 31.923077
| 122
| 0.626774
|
ded08df80894e1241c99188254ecd7f7c259352b
| 380
|
py
|
Python
|
linked_lists/find_loop.py
|
maanavshah/coding-interview
|
4c842cdbc6870da79684635f379966d1caec2162
|
[
"MIT"
] | null | null | null |
linked_lists/find_loop.py
|
maanavshah/coding-interview
|
4c842cdbc6870da79684635f379966d1caec2162
|
[
"MIT"
] | null | null | null |
linked_lists/find_loop.py
|
maanavshah/coding-interview
|
4c842cdbc6870da79684635f379966d1caec2162
|
[
"MIT"
] | null | null | null |
# O(n) time | O(1) space
| 20
| 30
| 0.560526
|
ded4491d8cef57cccb094e0f83641638968be15a
| 3,066
|
py
|
Python
|
src/tests/attention_test.py
|
feperessim/attention_keras
|
322a16ee147122026b63305aaa5e899d9e5de883
|
[
"MIT"
] | 422
|
2019-03-17T13:08:59.000Z
|
2022-03-31T12:08:29.000Z
|
src/tests/attention_test.py
|
JKhodadadi/attention_keras
|
322a16ee147122026b63305aaa5e899d9e5de883
|
[
"MIT"
] | 51
|
2019-03-17T20:08:11.000Z
|
2022-03-18T03:51:42.000Z
|
src/tests/attention_test.py
|
JKhodadadi/attention_keras
|
322a16ee147122026b63305aaa5e899d9e5de883
|
[
"MIT"
] | 285
|
2019-03-17T19:06:22.000Z
|
2022-03-31T02:29:17.000Z
|
import pytest
from layers.attention import AttentionLayer
from tensorflow.keras.layers import Input, GRU, Dense, Concatenate, TimeDistributed
from tensorflow.keras.models import Model
import tensorflow as tf
def test_attention_layer_standalone_fixed_b_fixed_t():
"""
Tests fixed batch size and time steps
Encoder and decoder has variable seq length and latent dim
"""
inp1 = Input(batch_shape=(5,10,15))
inp2 = Input(batch_shape=(5,15,25))
out, e_out = AttentionLayer()([inp1, inp2])
assert out.shape == tf.TensorShape([inp2.shape[0], inp2.shape[1], inp1.shape[2]])
assert e_out.shape == tf.TensorShape([inp1.shape[0], inp2.shape[1], inp1.shape[1]])
'''def test_attention_layer_nmt_none_b_fixed_t():
encoder_inputs = Input(shape=(12, 75), name='encoder_inputs')
decoder_inputs = Input(shape=(16 - 1, 80), name='decoder_inputs')
# Encoder GRU
encoder_gru = GRU(32, return_sequences=True, return_state=True, name='encoder_gru')
encoder_out, encoder_state = encoder_gru(encoder_inputs)
# Set up the decoder GRU, using `encoder_states` as initial state.
decoder_gru = GRU(32, return_sequences=True, return_state=True, name='decoder_gru')
decoder_out, decoder_state = decoder_gru(decoder_inputs, initial_state=encoder_state)
# Attention layer
attn_layer = AttentionLayer(name='attention_layer')
attn_out, attn_states = attn_layer([encoder_out, decoder_out])
# Concat attention input and decoder GRU output
decoder_concat_input = Concatenate(axis=-1, name='concat_layer')([decoder_out, attn_out])
# Dense layer
dense = Dense(80, activation='softmax', name='softmax_layer')
dense_time = TimeDistributed(dense, name='time_distributed_layer')
decoder_pred = dense_time(decoder_concat_input)
# Full model
full_model = Model(inputs=[encoder_inputs, decoder_inputs], outputs=decoder_pred)
full_model.compile(optimizer='adam', loss='categorical_crossentropy')
assert decoder_pred.shape == tf.TensorShape([])
def test_attention_layer_nmt_none_b_none_t():
pass'''
| 37.390244
| 101
| 0.7182
|
ded5e7681d684ad45f836b0b523b89035ed45f16
| 1,572
|
py
|
Python
|
Python/9248_Suffix_Array/9248_suffix_array_lcp_array.py
|
ire4564/Baekjoon_Solutions
|
3e6689efa30d6b850cdc29570c76408a1e1b2b49
|
[
"Apache-2.0"
] | 4
|
2020-11-17T09:52:29.000Z
|
2020-12-13T11:36:14.000Z
|
Python/9248_Suffix_Array/9248_suffix_array_lcp_array.py
|
ire4564/Baekjoon_Solutions
|
3e6689efa30d6b850cdc29570c76408a1e1b2b49
|
[
"Apache-2.0"
] | 2
|
2020-11-19T11:21:02.000Z
|
2020-11-19T22:07:15.000Z
|
Python/9248_Suffix_Array/9248_suffix_array_lcp_array.py
|
ire4564/Baekjoon_Solutions
|
3e6689efa30d6b850cdc29570c76408a1e1b2b49
|
[
"Apache-2.0"
] | 12
|
2020-11-17T06:55:13.000Z
|
2021-05-16T14:39:37.000Z
|
from itertools import zip_longest, islice
if __name__ == '__main__':
L = input()
inverse_suffix_array = suffix_array_best(L)
suffix_array = inverse_array(inverse_suffix_array)
for item in suffix_array:
print(item + 1, end=' ')
LCP = lcp_array(L, suffix_array)
LCP.pop()
LCP.insert(0, 'x')
print()
for item in LCP:
print(item, end=' ')
| 20.684211
| 64
| 0.448473
|
ded667020b68f181edc8b21f22dbb71557c2c7cc
| 1,329
|
py
|
Python
|
lgr/tools/compare/utils.py
|
ron813c/lgr-core
|
68ba730bf7f9e61cb97c9c08f61bc58b8ea24e7b
|
[
"BSD-3-Clause"
] | 7
|
2017-07-10T22:39:52.000Z
|
2021-06-25T20:19:28.000Z
|
lgr/tools/compare/utils.py
|
ron813c/lgr-core
|
68ba730bf7f9e61cb97c9c08f61bc58b8ea24e7b
|
[
"BSD-3-Clause"
] | 13
|
2016-10-26T19:42:00.000Z
|
2021-12-13T19:43:42.000Z
|
lgr/tools/compare/utils.py
|
ron813c/lgr-core
|
68ba730bf7f9e61cb97c9c08f61bc58b8ea24e7b
|
[
"BSD-3-Clause"
] | 8
|
2016-11-07T15:40:27.000Z
|
2020-09-22T13:48:52.000Z
|
# -*- coding: utf-8 -*-
"""
utils.py - Definition of utility functions.
"""
from collections import namedtuple
from lgr.utils import format_cp
VariantProperties = namedtuple('VariantProperties', ['cp', 'type',
'when', 'not_when',
'comment'])
def display_variant(variant):
"""
Nicely display a variant.
:param variant: The variant to display.
"""
return "Variant {}: type={} - when={} - not-when={} - comment={}".format(
format_cp(variant.cp), variant.type,
variant.when, variant.not_when,
variant.comment)
def compare_objects(first, second, cmp_fct):
"""
Compare two objects, possibly None.
:param first: First object.
:param second: Second object.
:param cmp_fct: A comparison function.
:return: The "greatest" object according to `cmp_fct`,
None if both values are None.
>>> compare_objects(1, 2, max)
2
>>> compare_objects(1, 2, min)
1
>>> compare_objects(None, None, max) is None
True
>>> compare_objects(1, None, min)
1
>>> compare_objects(None, 1, min)
1
"""
if first is None:
return second
if second is None:
return first
return cmp_fct(first, second)
| 24.611111
| 77
| 0.574116
|
ded78378f0da72d7d6e0a021bbb1b4a6004db8f0
| 2,386
|
py
|
Python
|
tests/test__file_object.py
|
StateArchivesOfNorthCarolina/tomes_metadata
|
8b73096c1b16e0db2895a6c01d4fc4fd9621cf55
|
[
"MIT"
] | null | null | null |
tests/test__file_object.py
|
StateArchivesOfNorthCarolina/tomes_metadata
|
8b73096c1b16e0db2895a6c01d4fc4fd9621cf55
|
[
"MIT"
] | 2
|
2018-09-12T20:36:22.000Z
|
2018-09-13T20:14:50.000Z
|
tests/test__file_object.py
|
StateArchivesOfNorthCarolina/tomes-packager
|
8b73096c1b16e0db2895a6c01d4fc4fd9621cf55
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python3
# import modules.
import sys; sys.path.append("..")
import hashlib
import json
import logging
import os
import plac
import unittest
import warnings
from tomes_packager.lib.directory_object import *
from tomes_packager.lib.file_object import *
# enable logging.
logging.basicConfig(level=logging.DEBUG)
# CLI.
def main(filepath:("file path")):
"Converts a file to a FolderObject and prints its attributes to screen as JSON.\
\nexample: `python3 test__file_object.py sample_files/sample_rdf.xlsx`"
# convert @filepath to a FileObject.
dir_obj = DirectoryObject(os.path.dirname(filepath))
file_obj = FileObject(filepath, dir_obj, dir_obj, 0)
# collect @file_obj attributes.
fdict = {}
for att in file_obj.__dict__:
if att[0] == "_":
continue
try:
val = getattr(file_obj, att)()
except TypeError:
val = getattr(file_obj, att)
fdict[att] = str(val)
# convert @fdict to JSON.
js = json.dumps(fdict, indent=2)
print(js)
if __name__ == "__main__":
plac.call(main)
| 27.744186
| 84
| 0.642079
|
ded98a6b09e99064104171c0327f9f5f8f68c1fa
| 244
|
py
|
Python
|
tests/test_helpers.py
|
c137digital/unv_web
|
52bea090c630b4e2a393c70907d35c9558d259fa
|
[
"MIT"
] | null | null | null |
tests/test_helpers.py
|
c137digital/unv_web
|
52bea090c630b4e2a393c70907d35c9558d259fa
|
[
"MIT"
] | null | null | null |
tests/test_helpers.py
|
c137digital/unv_web
|
52bea090c630b4e2a393c70907d35c9558d259fa
|
[
"MIT"
] | null | null | null |
from unv.web.helpers import url_with_domain, url_for_static
| 24.4
| 63
| 0.737705
|
deda4206dc73f8dbe4b33d7d756e79510962b4d8
| 10,829
|
py
|
Python
|
game.py
|
IliketoTranslate/Pickaxe-clicker
|
e74ebd66842bd47c4ed1c4460e9f45e30a2ad1d7
|
[
"MIT"
] | null | null | null |
game.py
|
IliketoTranslate/Pickaxe-clicker
|
e74ebd66842bd47c4ed1c4460e9f45e30a2ad1d7
|
[
"MIT"
] | null | null | null |
game.py
|
IliketoTranslate/Pickaxe-clicker
|
e74ebd66842bd47c4ed1c4460e9f45e30a2ad1d7
|
[
"MIT"
] | null | null | null |
import pygame
icon = pygame.image.load("diamond_pickaxe.png")
screen_weight = 1750
screen_height = 980
pygame.init()
window = pygame.display.set_mode((screen_weight, screen_height))
pygame.display.set_caption('Pickaxe clicker')
pygame.display.set_icon(icon)
# zmienne
wytrzymao_kilofa = 50
max_wytrzymao_kilofa = 50
dodaj2 = 1
record = 0
game_version = "0.2.2"
last_update = "28.01.2022"
x_for_kilof = 400
y_for_kilof = 400
x_for_button1 = 1030
y_for_button1 = 80
x_for_button2 = 1030
y_for_button2 = 800
boost = 1
doswiadczenie = 0
dodaj = 1
max_dodaj = 1
kilof_upgrade = 100
choosed_kilof = 1
# obiekty
kilof = pygame.image.load("Drewniany_kilof.png")
kilof2 = pygame.image.load("Kamienny_kilof.png")
kilof3 = pygame.image.load("Zelazny_kilof.png")
kilof4 = pygame.image.load("Zloty_kilof.png")
kilof5 = pygame.image.load("Diamentowy_kilof.png")
button_upgrade = pygame.image.load("Button_upgrade.png")
button_upgrade_clicked = pygame.image.load("Button_upgrade_clicked.png")
button_upgrade2 = pygame.image.load("Button_upgrade2.png")
button_upgrade2_clicked = pygame.image.load("Button_upgrade2_clicked.png")
button_restart = pygame.image.load("Button_restart.png")
tlo = pygame.image.load("tlo.png")
tlo = pygame.transform.scale(tlo, (screen_weight, screen_height)) # skalowanie
# hitboxy
kilof_hitbox = pygame.rect.Rect(x_for_kilof, y_for_kilof, 160, 160) # tworzy hitbox do kilofa
button_upgrade_hitbox = pygame.rect.Rect(x_for_button1, y_for_button1, 650, 100) # tworzy hitbox do przycisku
button_upgrade2_hitbox = pygame.rect.Rect(x_for_button2, y_for_button2, 650, 100)
# funkcje
run = True
while run:
pygame.time.Clock().tick(100) # maksymalnie 100 fps
for event in pygame.event.get():
if event.type == pygame.QUIT: # jeli gracz zamknie okienko
run = False
keys = pygame.key.get_pressed()
if keys[pygame.K_ESCAPE] :
run = False
# napisy
kilof_upgrade2 = kilof_upgrade - 1
text_wersja = pygame.font.Font.render(pygame.font.SysFont("Freemono", 50), f"Version : {game_version} | Last update : {last_update}", True, (255, 200, 100)) # generowanie tekstu
text_doswiadczenie = pygame.font.Font.render(pygame.font.SysFont("Dyuthi", 72), f"Doswiadczenie : {doswiadczenie}", True, (100, 100, 100)) # generowanie tekstu
text_kilof = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Kup kilof | Koszt : {kilof_upgrade}", True, (255, 255, 255)) # generowanie tekstu
text_WIP = pygame.font.Font.render(pygame.font.SysFont("Waree", 25), f"W I P (WORK IN PROGRESS)", True, (255, 255, 255)) # generowanie tekstu 2
text_wytrzymao_kilofa = pygame.font.Font.render(pygame.font.SysFont("Dyuthi", 50), f"Wytrzymalosc kilofa : {wytrzymao_kilofa}", True, (255, 255, 255)) # generowanie tekstu 2
text_record = pygame.font.Font.render(pygame.font.SysFont("Liberation Serif", 50), f"Record : {record}", True, (150, 150, 150))
if choosed_kilof > 0 and choosed_kilof < 5 :
if doswiadczenie > kilof_upgrade2 :
text_kilof = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Kup kilof | Koszt : {kilof_upgrade}, Dostepne", True, (255, 255, 255)) # generowanie tekstu 2
else :
text_kilof = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Kup kilof | Koszt : {kilof_upgrade}, Niedostepne", True, (255, 255, 255)) # generowanie tekstu 2
elif choosed_kilof == 5 :
text_kilof = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Nie ma wiecej dostepnych kilofow", True, (255, 255, 255)) # generowanie tekstu 2
boost2 = boost - 1
if doswiadczenie > boost2 :
text_ulepszenie = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Ulepszenie kilofa | Koszt : {boost}, Dostepne", True, (255, 255, 255)) # generowanie tekstu
else :
text_ulepszenie = pygame.font.Font.render(pygame.font.SysFont("Sawasdee", 25), f"Ulepszenie kilofa | Koszt : {boost}, Niedostepne", True, (255, 255, 255)) # generowanie tekstu
window.blit(tlo, (0, 0)) # rysowanie ta
# rysowanie hitboxw
draw_hitbox(kilof_hitbox) # rysowanie hitboxu do kilofa
draw_hitbox(button_upgrade_hitbox) # rysowanie hitboxu do przycisku upgrade
draw_hitbox(button_upgrade2_hitbox) # rysowanie hitboxu do przycisku upgrade2
# rysowanie obiektw
if choosed_kilof == 1 : draw_object(kilof, x_for_kilof, y_for_kilof) # rysowanie kilofu
elif choosed_kilof == 2 : draw_object(kilof2, x_for_kilof, y_for_kilof)
elif choosed_kilof == 3 : draw_object(kilof3, x_for_kilof, y_for_kilof)
elif choosed_kilof == 4 : draw_object(kilof4, x_for_kilof, y_for_kilof)
elif choosed_kilof == 5 or choosed_kilof > 5 : draw_object(kilof5, x_for_kilof, y_for_kilof)
draw_object(button_upgrade, x_for_button1, y_for_button1) # rysowanie przycisku
draw_object(button_upgrade2, x_for_button2, y_for_button2) # rysowanie przycisku 2
draw_object(button_restart, 0, 0)
draw_object(text_doswiadczenie, 224, 100) # rysowanie tekstu
draw_object(text_ulepszenie, 1040, 110) # rysowanie tekstu 2
draw_object(text_wersja, 10, 5) # rysowanie tekstu 3
draw_object(text_kilof, 1040, 840)
draw_object(text_WIP, 1170, 750)
draw_object(text_wytrzymao_kilofa, 250, 300)
draw_object(text_record, 1280, 0)
# sprawdzanie zdarze z myszk
zdarzenia_z_myszk()
# sprawdzanie
if doswiadczenie > record :
record = doswiadczenie
#if x_for_button1 > 80 :
#if x_for_button2 > 800 :
# wydrukuj
pygame.display.update()
| 49.447489
| 296
| 0.576138
|
dedba85b4c2428f8778fd3f7f0d4d19fee14a759
| 4,383
|
py
|
Python
|
tests/test_predictor.py
|
WeijieChen2017/pytorch-3dunet
|
15c782481cb7bc3e2083a80bcc8b114cc8697c20
|
[
"MIT"
] | 1
|
2021-08-04T04:03:37.000Z
|
2021-08-04T04:03:37.000Z
|
tests/test_predictor.py
|
LalithShiyam/pytorch-3dunet
|
f6b6c13cb0bb6194e95976b0245b76aaa9e9a496
|
[
"MIT"
] | null | null | null |
tests/test_predictor.py
|
LalithShiyam/pytorch-3dunet
|
f6b6c13cb0bb6194e95976b0245b76aaa9e9a496
|
[
"MIT"
] | 1
|
2022-03-14T04:43:24.000Z
|
2022-03-14T04:43:24.000Z
|
import os
from tempfile import NamedTemporaryFile
import h5py
import numpy as np
import torch
from skimage.metrics import adapted_rand_error
from torch.utils.data import DataLoader
from pytorch3dunet.datasets.hdf5 import StandardHDF5Dataset
from pytorch3dunet.datasets.utils import prediction_collate, get_test_loaders
from pytorch3dunet.predict import _get_output_file, _get_predictor
from pytorch3dunet.unet3d.model import get_model
from pytorch3dunet.unet3d.predictor import EmbeddingsPredictor
from pytorch3dunet.unet3d.utils import remove_halo
| 35.346774
| 114
| 0.62423
|
dedbd6180bc5f6b44a69dd4d23b7983f144a3239
| 2,560
|
py
|
Python
|
catalog/views.py
|
DigimundoTesca/Tv-Mundo
|
09904759d1f4f9bf2d5c7c31b97af82c3c963bfd
|
[
"MIT"
] | null | null | null |
catalog/views.py
|
DigimundoTesca/Tv-Mundo
|
09904759d1f4f9bf2d5c7c31b97af82c3c963bfd
|
[
"MIT"
] | 6
|
2017-09-19T07:26:14.000Z
|
2017-09-27T10:06:49.000Z
|
catalog/views.py
|
DigimundoTesca/Tv-Mundo
|
09904759d1f4f9bf2d5c7c31b97af82c3c963bfd
|
[
"MIT"
] | null | null | null |
from django.shortcuts import render, get_object_or_404
from django.contrib.auth.decorators import login_required
from catalog.models import Videos, Category, Docs, Subscriber
from django.contrib.auth.decorators import login_required
| 24.380952
| 76
| 0.622656
|
dedc38f09d494832d839db3e999852609e6a45ac
| 519
|
py
|
Python
|
python/database/get_twitter_predict_by_order.py
|
visdata/DeepClue
|
8d80ecd783919c97ba225db67664a0dfe5f3fb37
|
[
"Apache-2.0"
] | 1
|
2020-12-06T08:04:32.000Z
|
2020-12-06T08:04:32.000Z
|
python/database/get_twitter_predict_by_order.py
|
visdata/DeepClue
|
8d80ecd783919c97ba225db67664a0dfe5f3fb37
|
[
"Apache-2.0"
] | null | null | null |
python/database/get_twitter_predict_by_order.py
|
visdata/DeepClue
|
8d80ecd783919c97ba225db67664a0dfe5f3fb37
|
[
"Apache-2.0"
] | null | null | null |
import MySQLdb
db = MySQLdb.connect('localhost', 'root', 'vis_2014', 'FinanceVis')
cursor = db.cursor()
sql = 'select predict_news_word from all_twitter where symbol=%s order by predict_news_word+0 desc'
cursor.execute(sql, ('AAPL', ))
results = cursor.fetchall()
file_twitter_predict = open('twitter_predict_AAPL.csv', 'wb')
for row in results:
predict = row[0]
if row[0] is None:
predict = 'NULL'
file_twitter_predict.write(predict+'\n')
file_twitter_predict.close()
cursor.close()
db.close()
| 25.95
| 99
| 0.714836
|
dedd33f5b7d0869e4ad454abba7866e56edaacbb
| 301
|
py
|
Python
|
examples/matplotlib/mpl_plot_dot.py
|
sudojarvis/arviz
|
73531be4f23df7d764b2e3bec8c5ef5cb882590d
|
[
"Apache-2.0"
] | 1,159
|
2018-04-03T08:50:54.000Z
|
2022-03-31T18:03:52.000Z
|
examples/matplotlib/mpl_plot_dot.py
|
sudojarvis/arviz
|
73531be4f23df7d764b2e3bec8c5ef5cb882590d
|
[
"Apache-2.0"
] | 1,656
|
2018-03-23T14:15:05.000Z
|
2022-03-31T14:00:28.000Z
|
examples/matplotlib/mpl_plot_dot.py
|
sudojarvis/arviz
|
73531be4f23df7d764b2e3bec8c5ef5cb882590d
|
[
"Apache-2.0"
] | 316
|
2018-04-03T14:25:52.000Z
|
2022-03-25T10:41:29.000Z
|
"""
Dot Plot
=========
_thumb: .2, .8
_example_title: Plot distribution.
"""
import matplotlib.pyplot as plt
import numpy as np
import arviz as az
az.style.use("arviz-darkgrid")
data = np.random.normal(0, 1, 1000)
az.plot_dot(data, dotcolor="C1", point_interval=True, figsize=(12, 6))
plt.show()
| 15.842105
| 70
| 0.69103
|
dedeaccf1b8d4bb294ba8b9e2278d86179d43f0e
| 405
|
py
|
Python
|
kattis/solutions/alphabetspam.py
|
yifeng-pan/competitive_programming
|
c59edb1e08aa2db2158a814e3d34f4302658d98e
|
[
"Unlicense"
] | null | null | null |
kattis/solutions/alphabetspam.py
|
yifeng-pan/competitive_programming
|
c59edb1e08aa2db2158a814e3d34f4302658d98e
|
[
"Unlicense"
] | null | null | null |
kattis/solutions/alphabetspam.py
|
yifeng-pan/competitive_programming
|
c59edb1e08aa2db2158a814e3d34f4302658d98e
|
[
"Unlicense"
] | null | null | null |
# https://open.kattis.com/problems/alphabetspam
import sys
import math
xs = input()
white = 0
lower = 0
higher =0
other = 0
for i in xs:
if i == '_':
white += 1
elif ('a' <= i) & (i <= 'z'):
lower += 1
elif ('A' <= i) & (i <= "Z"):
higher += 1
else:
other += 1
print(white / len(xs))
print(lower / len(xs))
print(higher /len(xs))
print(other / len(xs))
| 15.576923
| 47
| 0.511111
|
dee0061d48e6e49cac68657f95ed5ac4927eaa8e
| 3,813
|
py
|
Python
|
src/chain_orientation_three_vars_symbolic.py
|
Scriddie/Varsortability
|
357213d5ceefb6362060c56e12c18b41dc689306
|
[
"MIT"
] | 4
|
2021-12-08T07:54:00.000Z
|
2022-03-09T07:55:21.000Z
|
src/chain_orientation_three_vars_symbolic.py
|
Scriddie/Varsortability
|
357213d5ceefb6362060c56e12c18b41dc689306
|
[
"MIT"
] | null | null | null |
src/chain_orientation_three_vars_symbolic.py
|
Scriddie/Varsortability
|
357213d5ceefb6362060c56e12c18b41dc689306
|
[
"MIT"
] | 1
|
2022-03-09T07:55:43.000Z
|
2022-03-09T07:55:43.000Z
|
import numpy as np
from sympy import simplify, sqrt, symbols
from sympy.stats import Normal, covariance as cov, variance as var
if __name__ == "__main__":
ab, bc, a, b, c = symbols([
"beta_{A_to_B}",
"beta_{B_to_C}",
"sigma_A",
"sigma_B",
"sigma_C"])
Na = Normal('Na', 0, 1)
Nb = Normal('Nb', 0, 1)
Nc = Normal('Nc', 0, 1)
# SEM
# A -> B -> C
# raw
A = a * Na
B = ab * A + b * Nb
C = bc * B + c * Nc
# standardized
As = A / sqrt(var(A))
Bs = B / sqrt(var(B))
Cs = C / sqrt(var(C))
# scale-harmonized
Am = a * Na
Bm = (ab / (ab**2 + 1)**(1/2)) * Am + b * Nb
Cm = (bc / (bc**2 + 1)**(1/2)) * Bm + c * Nc
# forward/backward coefficients in raw setting
f1, f2, b1, b2 = regcoeffs(A, B, C)
# forward/backward coefficients in standardized setting
f1s, f2s, b1s, b2s = regcoeffs(As, Bs, Cs)
# forward/backward coefficients in scale-harmonized setting
f1m, f2m, b1m, b2m = regcoeffs(Am, Bm, Cm)
for weight_range in [(0.5, 2),
(0.5, .9),
(.1, .9)]:
raw = {
'f1<f2,b1>b2': 0,
'f1>f2,b1<b2': 0,
'other': 0
}
std = {
'f1<f2,b1>b2': 0,
'f1>f2,b1<b2': 0,
'other': 0
}
moj = {
'f1<f2,b1>b2': 0,
'f1>f2,b1<b2': 0,
'other': 0
}
for _ in range(100000):
# draw model parameters
a_to_b, b_to_c = np.random.uniform(*weight_range, size=2)
sA, sB, sC = np.random.uniform(0.5, 2, size=3)
a_to_b *= np.random.choice([-1, 1])
b_to_c *= np.random.choice([-1, 1])
subs = {
ab: a_to_b,
bc: b_to_c,
a: sA,
b: sB,
c: sC,
}
# raw
if (abs(f1.subs(subs)) < abs(f2.subs(subs))
and abs(b1.subs(subs)) > abs(b2.subs(subs))):
raw['f1<f2,b1>b2'] += 1
elif (abs(f1.subs(subs)) > abs(f2.subs(subs))
and abs(b1.subs(subs)) < abs(b2.subs(subs))):
raw['f1>f2,b1<b2'] += 1
else:
raw['other'] += 1
# standardized
if (abs(f1s.subs(subs)) < abs(f2s.subs(subs))
and abs(b1s.subs(subs)) > abs(b2s.subs(subs))):
std['f1<f2,b1>b2'] += 1
elif (abs(f1s.subs(subs)) > abs(f2s.subs(subs))
and abs(b1s.subs(subs)) < abs(b2s.subs(subs))):
std['f1>f2,b1<b2'] += 1
else:
std['other'] += 1
# scale-harmonized
if (abs(f1m.subs(subs)) < abs(f2m.subs(subs))
and abs(b1m.subs(subs)) > abs(b2m.subs(subs))):
moj['f1<f2,b1>b2'] += 1
elif (abs(f1m.subs(subs)) > abs(f2m.subs(subs))
and abs(b1m.subs(subs)) < abs(b2m.subs(subs))):
moj['f1>f2,b1<b2'] += 1
else:
moj['other'] += 1
print('weight_range', weight_range)
raw['correct'] = raw['f1<f2,b1>b2'] + raw['other'] / 2
print('raw\t\t', raw)
std['correct'] = std['f1<f2,b1>b2'] + std['other'] / 2
print('standardized\t', std)
moj['correct'] = moj['f1<f2,b1>b2'] + moj['other'] / 2
print('Mooij-scaled\t', moj)
print()
| 28.455224
| 69
| 0.441385
|
dee00922a67f6dff4732cf526028648896d0fc92
| 2,290
|
py
|
Python
|
Phototweet.py
|
sbamueller/RasperryPi_BildFeinstaub
|
3666db384ead64893b3c548065aa31cef6c126af
|
[
"Apache-2.0"
] | null | null | null |
Phototweet.py
|
sbamueller/RasperryPi_BildFeinstaub
|
3666db384ead64893b3c548065aa31cef6c126af
|
[
"Apache-2.0"
] | null | null | null |
Phototweet.py
|
sbamueller/RasperryPi_BildFeinstaub
|
3666db384ead64893b3c548065aa31cef6c126af
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/env python2.7
# coding=<UTF-8>
# tweetpic.py take a photo with the Pi camera and tweet it
# by Alex Eames http://raspi.tv/?p=5918
import tweepy
from subprocess import call
from datetime import datetime
import requests
import json
i = datetime.now() #take time and date for filename
now = i.strftime('%Y%m%d-%H%M%S')
photo_name = now + '.jpg'
cmd = 'raspistill -t 500 -w 1024 -h 768 -o /home/pi/Pictures' + photo_name
call ([cmd], shell=True) #shoot the photo
# Freiburger Sensor von sbamueller
url = 'http://api.luftdaten.info/static/v1/sensor/534/'
tweet = pick_values(url)
url = 'http://api.luftdaten.info/static/v1/sensor/533/'
tweet = tweet + " " + pick_values(url)
# Texte 140 Zeichen Tweets
tweet = tweet.replace('temperature: ','| Temp C:')
tweet = tweet.replace('P1:','| PM10:')
tweet = tweet.replace('P2:','PM2.5:')
#print(tweet)
# Consumer keys and access tokens, used for OAuth
CONSUMER_KEY = 'ihrKey'
CONSUMER_SECRET = 'ihrKey'
ACCESS_KEY = 'ihrKey'
ACCESS_SECRET = 'ihrKey'
# OAuth process, using the keys and tokens
auth = tweepy.OAuthHandler(CONSUMER_KEY , CONSUMER_SECRET)
auth.set_access_token(ACCESS_KEY , ACCESS_SECRET)
# Creation of the actual interface, using authentication
api = tweepy.API(auth)
# Send the tweet with photo
photo_path = '/home/pi/Pictures' + photo_name
status = 'Blick auf Freiburg mit Feinstaubwerten, Temp & Luftfeuchte ' + i.strf$
status = status + tweet
api.update_with_media(photo_path, status=status)
| 31.369863
| 80
| 0.691266
|
dee0dfeab71167aee2a17e14945c71c0e31e66be
| 1,762
|
py
|
Python
|
jaffalearn/logging.py
|
tqbl/jaffalearn
|
a5bb79fcb3e84fd6e17b6356429e5885386a5a58
|
[
"0BSD"
] | null | null | null |
jaffalearn/logging.py
|
tqbl/jaffalearn
|
a5bb79fcb3e84fd6e17b6356429e5885386a5a58
|
[
"0BSD"
] | null | null | null |
jaffalearn/logging.py
|
tqbl/jaffalearn
|
a5bb79fcb3e84fd6e17b6356429e5885386a5a58
|
[
"0BSD"
] | null | null | null |
from pathlib import Path
import pandas as pd
from torch.utils.tensorboard import SummaryWriter
| 30.37931
| 70
| 0.605562
|