ysn-rfd's picture
Upload 31 files
1be8a56 verified
import cv2
import numpy as np
from collections import deque, defaultdict
import time
# پارامترها
trace_len = 20
min_area = 500
# حافظه
object_traces = defaultdict(lambda: deque(maxlen=trace_len))
long_term_memory = defaultdict(list)
next_object_id = 1
object_centroids = {}
def count_direction_changes(trace):
count = 0
for i in range(2, len(trace)):
v1 = np.array(trace[i - 1]) - np.array(trace[i - 2])
v2 = np.array(trace[i]) - np.array(trace[i - 1])
if np.dot(v1, v2) < 0:
count += 1
return count
def extract_features(trace):
if len(trace) < 2:
return [0, 0, 0, 0]
dx = trace[-1][0] - trace[0][0]
dy = trace[-1][1] - trace[0][1]
total_distance = sum(np.linalg.norm(np.array(trace[i]) - np.array(trace[i-1])) for i in range(1, len(trace)))
avg_speed = total_distance / (len(trace) + 1e-6)
direction_changes = count_direction_changes(trace)
return [dx, dy, avg_speed, direction_changes]
def ai_brain(trace, memory):
if len(trace) < 3:
return "Unknown"
dx, dy, speed, changes = extract_features(trace)
if len(memory) >= 5 and memory.count("Erratic") > 3:
return "Suspicious"
if speed > 150 and changes > 4:
return "Erratic"
if speed < 5 and changes == 0:
return "Idle"
return "Normal"
def get_color(i):
np.random.seed(i)
return tuple(int(x) for x in np.random.randint(100, 255, 3))
# آماده‌سازی دوربین
cap = cv2.VideoCapture(0)
ret, prev = cap.read()
prev_gray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY)
prev_gray = cv2.GaussianBlur(prev_gray, (21, 21), 0)
while True:
ret, frame = cap.read()
if not ret:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray_blur = cv2.GaussianBlur(gray, (21, 21), 0)
# محاسبه اختلاف فریم‌ها
delta = cv2.absdiff(prev_gray, gray_blur)
thresh = cv2.threshold(delta, 25, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
current_centroids = []
for cnt in contours:
if cv2.contourArea(cnt) < min_area:
continue
(x, y, w, h) = cv2.boundingRect(cnt)
cx, cy = x + w // 2, y + h // 2
current_centroids.append((cx, cy))
matched_id = None
# تطبیق با شیء قبلی
for object_id, last_centroid in object_centroids.items():
if np.linalg.norm(np.array([cx, cy]) - np.array(last_centroid)) < 50:
matched_id = object_id
break
if matched_id is None:
matched_id = next_object_id
next_object_id += 1
object_centroids[matched_id] = (cx, cy)
object_traces[matched_id].append((cx, cy))
trace = object_traces[matched_id]
behavior = ai_brain(trace, [m['status'] for m in long_term_memory[matched_id]])
long_term_memory[matched_id].append({'status': behavior, 'timestamp': time.time()})
color = get_color(matched_id)
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, f"ID {matched_id}", (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
cv2.putText(frame, f"Behavior: {behavior}", (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1)
# پاکسازی اشیاء غیرفعال
inactive_ids = [obj_id for obj_id in object_centroids if obj_id not in [id for id, _ in object_centroids.items()]]
for iid in inactive_ids:
object_centroids.pop(iid, None)
prev_gray = gray_blur.copy()
cv2.imshow("Motion AI", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()