add loading script
Browse files- refer.py +345 -0
- referit.py +203 -0
refer.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__author__ = 'licheng'
|
2 |
+
"""
|
3 |
+
Modified to make it work with Python 3+.
|
4 |
+
|
5 |
+
This interface provides access to four datasets:
|
6 |
+
1) refclef
|
7 |
+
2) refcoco
|
8 |
+
3) refcoco+
|
9 |
+
4) refcocog
|
10 |
+
split by unc and google
|
11 |
+
The following API functions are defined:
|
12 |
+
REFER - REFER api class
|
13 |
+
getRefIds - get ref ids that satisfy given filter conditions.
|
14 |
+
getAnnIds - get ann ids that satisfy given filter conditions.
|
15 |
+
getImgIds - get image ids that satisfy given filter conditions.
|
16 |
+
getCatIds - get category ids that satisfy given filter conditions.
|
17 |
+
loadRefs - load refs with the specified ref ids.
|
18 |
+
loadAnns - load anns with the specified ann ids.
|
19 |
+
loadImgs - load images with the specified image ids.
|
20 |
+
loadCats - load category names with the specified category ids.
|
21 |
+
getRefBox - get ref's bounding box [x, y, w, h] given the ref_id
|
22 |
+
showRef - show image, segmentation or box of the referred object with the ref
|
23 |
+
getMask - get mask and area of the referred object given ref
|
24 |
+
showMask - show mask of the referred object given ref
|
25 |
+
"""
|
26 |
+
|
27 |
+
import itertools
|
28 |
+
import json
|
29 |
+
import os.path as osp
|
30 |
+
import pickle
|
31 |
+
import sys
|
32 |
+
import time
|
33 |
+
from pprint import pprint
|
34 |
+
|
35 |
+
import matplotlib.pyplot as plt
|
36 |
+
import numpy as np
|
37 |
+
import skimage.io as io
|
38 |
+
from matplotlib.collections import PatchCollection
|
39 |
+
from matplotlib.patches import Polygon, Rectangle
|
40 |
+
from pycocotools import mask
|
41 |
+
|
42 |
+
|
43 |
+
class REFER:
|
44 |
+
def __init__(self, data_root, dataset='refcoco', splitBy='unc'):
|
45 |
+
# provide data_root folder which contains refclef, refcoco, refcoco+
|
46 |
+
# and refcocog also provide dataset name and splitBy information
|
47 |
+
# e.g., dataset = 'refcoco', splitBy = 'unc'
|
48 |
+
print('loading dataset %s into memory...' % dataset)
|
49 |
+
self.ROOT_DIR = osp.abspath(osp.dirname(__file__))
|
50 |
+
self.DATA_DIR = osp.join(data_root, dataset)
|
51 |
+
if dataset in ['refcoco', 'refcoco+', 'refcocog']:
|
52 |
+
self.IMAGE_DIR = osp.join(data_root, 'images/train2014')
|
53 |
+
elif dataset == 'refclef':
|
54 |
+
self.IMAGE_DIR = osp.join(data_root, 'images/saiapr_tc-12')
|
55 |
+
else:
|
56 |
+
print('No refer dataset is called [%s]' % dataset)
|
57 |
+
sys.exit()
|
58 |
+
|
59 |
+
# load refs from data/dataset/refs(dataset).json
|
60 |
+
tic = time.time()
|
61 |
+
ref_file = osp.join(self.DATA_DIR, 'refs(' + splitBy + ').p')
|
62 |
+
self.data = {}
|
63 |
+
self.data['dataset'] = dataset
|
64 |
+
|
65 |
+
self.data['refs'] = pickle.load(open(ref_file, 'rb'), fix_imports=True)
|
66 |
+
|
67 |
+
# load annotations from data/dataset/instances.json
|
68 |
+
instances_file = osp.join(self.DATA_DIR, 'instances.json')
|
69 |
+
instances = json.load(open(instances_file, 'r'))
|
70 |
+
self.data['images'] = instances['images']
|
71 |
+
self.data['annotations'] = instances['annotations']
|
72 |
+
self.data['categories'] = instances['categories']
|
73 |
+
|
74 |
+
# create index
|
75 |
+
self.createIndex()
|
76 |
+
print('DONE (t=%.2fs)' % (time.time() - tic))
|
77 |
+
|
78 |
+
def createIndex(self):
|
79 |
+
# create sets of mapping
|
80 |
+
# 1) Refs: {ref_id: ref}
|
81 |
+
# 2) Anns: {ann_id: ann}
|
82 |
+
# 3) Imgs: {image_id: image}
|
83 |
+
# 4) Cats: {category_id: category_name}
|
84 |
+
# 5) Sents: {sent_id: sent}
|
85 |
+
# 6) imgToRefs: {image_id: refs}
|
86 |
+
# 7) imgToAnns: {image_id: anns}
|
87 |
+
# 8) refToAnn: {ref_id: ann}
|
88 |
+
# 9) annToRef: {ann_id: ref}
|
89 |
+
# 10) catToRefs: {category_id: refs}
|
90 |
+
# 11) sentToRef: {sent_id: ref}
|
91 |
+
# 12) sentToTokens: {sent_id: tokens}
|
92 |
+
print('creating index...')
|
93 |
+
# fetch info from instances
|
94 |
+
Anns, Imgs, Cats, imgToAnns = {}, {}, {}, {}
|
95 |
+
for ann in self.data['annotations']:
|
96 |
+
Anns[ann['id']] = ann
|
97 |
+
imgToAnns[ann['image_id']] = imgToAnns.get(ann['image_id'],
|
98 |
+
[]) + [ann]
|
99 |
+
for img in self.data['images']:
|
100 |
+
Imgs[img['id']] = img
|
101 |
+
for cat in self.data['categories']:
|
102 |
+
Cats[cat['id']] = cat['name']
|
103 |
+
|
104 |
+
# fetch info from refs
|
105 |
+
Refs, imgToRefs, refToAnn, annToRef, catToRefs = {}, {}, {}, {}, {}
|
106 |
+
Sents, sentToRef, sentToTokens = {}, {}, {}
|
107 |
+
for ref in self.data['refs']:
|
108 |
+
# ids
|
109 |
+
ref_id = ref['ref_id']
|
110 |
+
ann_id = ref['ann_id']
|
111 |
+
category_id = ref['category_id']
|
112 |
+
image_id = ref['image_id']
|
113 |
+
|
114 |
+
# add mapping related to ref
|
115 |
+
Refs[ref_id] = ref
|
116 |
+
imgToRefs[image_id] = imgToRefs.get(image_id, []) + [ref]
|
117 |
+
catToRefs[category_id] = catToRefs.get(category_id, []) + [ref]
|
118 |
+
refToAnn[ref_id] = Anns[ann_id]
|
119 |
+
annToRef[ann_id] = ref
|
120 |
+
|
121 |
+
# add mapping of sent
|
122 |
+
for sent in ref['sentences']:
|
123 |
+
Sents[sent['sent_id']] = sent
|
124 |
+
sentToRef[sent['sent_id']] = ref
|
125 |
+
sentToTokens[sent['sent_id']] = sent['tokens']
|
126 |
+
|
127 |
+
# create class members
|
128 |
+
self.Refs = Refs
|
129 |
+
self.Anns = Anns
|
130 |
+
self.Imgs = Imgs
|
131 |
+
self.Cats = Cats
|
132 |
+
self.Sents = Sents
|
133 |
+
self.imgToRefs = imgToRefs
|
134 |
+
self.imgToAnns = imgToAnns
|
135 |
+
self.refToAnn = refToAnn
|
136 |
+
self.annToRef = annToRef
|
137 |
+
self.catToRefs = catToRefs
|
138 |
+
self.sentToRef = sentToRef
|
139 |
+
self.sentToTokens = sentToTokens
|
140 |
+
print('index created.')
|
141 |
+
|
142 |
+
def getRefIds(self, image_ids=[], cat_ids=[], ref_ids=[], split=''):
|
143 |
+
image_ids = image_ids if isinstance(image_ids, list) else [image_ids]
|
144 |
+
cat_ids = cat_ids if isinstance(cat_ids, list) else [cat_ids]
|
145 |
+
ref_ids = ref_ids if isinstance(ref_ids, list) else [ref_ids]
|
146 |
+
|
147 |
+
if len(image_ids) == len(cat_ids) == len(ref_ids) == len(split) == 0:
|
148 |
+
refs = self.data['refs']
|
149 |
+
else:
|
150 |
+
if not len(image_ids) == 0:
|
151 |
+
refs = [self.imgToRefs[image_id] for image_id in image_ids]
|
152 |
+
refs = list(itertools.chain.from_iterable(refs))
|
153 |
+
else:
|
154 |
+
refs = self.data['refs']
|
155 |
+
if not len(cat_ids) == 0:
|
156 |
+
refs = [ref for ref in refs if ref['category_id'] in cat_ids]
|
157 |
+
if not len(ref_ids) == 0:
|
158 |
+
refs = [ref for ref in refs if ref['ref_id'] in ref_ids]
|
159 |
+
if not len(split) == 0:
|
160 |
+
if split in ['testA', 'testB', 'testC']:
|
161 |
+
refs = [ref for ref in refs if split[-1] in ref['split']
|
162 |
+
] # we also consider testAB, testBC, ...
|
163 |
+
elif split in ['testAB', 'testBC', 'testAC']:
|
164 |
+
refs = [ref for ref in refs
|
165 |
+
if ref['split'] == split] # rarely used I guess...
|
166 |
+
elif split == 'test':
|
167 |
+
refs = [ref for ref in refs if 'test' in ref['split']]
|
168 |
+
elif split == 'train' or split == 'val':
|
169 |
+
refs = [ref for ref in refs if ref['split'] == split]
|
170 |
+
else:
|
171 |
+
print('No such split [%s]' % split)
|
172 |
+
sys.exit()
|
173 |
+
ref_ids = [ref['ref_id'] for ref in refs]
|
174 |
+
return ref_ids
|
175 |
+
|
176 |
+
def getAnnIds(self, image_ids=[], cat_ids=[], ref_ids=[]):
|
177 |
+
image_ids = image_ids if isinstance(image_ids, list) else [image_ids]
|
178 |
+
cat_ids = cat_ids if isinstance(cat_ids, list) else [cat_ids]
|
179 |
+
ref_ids = ref_ids if isinstance(ref_ids, list) else [ref_ids]
|
180 |
+
|
181 |
+
if len(image_ids) == len(cat_ids) == len(ref_ids) == 0:
|
182 |
+
ann_ids = [ann['id'] for ann in self.data['annotations']]
|
183 |
+
else:
|
184 |
+
if not len(image_ids) == 0:
|
185 |
+
lists = [
|
186 |
+
self.imgToAnns[image_id] for image_id in image_ids
|
187 |
+
if image_id in self.imgToAnns
|
188 |
+
] # list of [anns]
|
189 |
+
anns = list(itertools.chain.from_iterable(lists))
|
190 |
+
else:
|
191 |
+
anns = self.data['annotations']
|
192 |
+
if not len(cat_ids) == 0:
|
193 |
+
anns = [ann for ann in anns if ann['category_id'] in cat_ids]
|
194 |
+
ann_ids = [ann['id'] for ann in anns]
|
195 |
+
if not len(ref_ids) == 0:
|
196 |
+
ids = set(ann_ids).intersection( # noqa
|
197 |
+
set([self.Refs[ref_id]['ann_id'] for ref_id in ref_ids]))
|
198 |
+
return ann_ids
|
199 |
+
|
200 |
+
def getImgIds(self, ref_ids=[]):
|
201 |
+
ref_ids = ref_ids if isinstance(ref_ids, list) else [ref_ids]
|
202 |
+
|
203 |
+
if not len(ref_ids) == 0:
|
204 |
+
image_ids = list(
|
205 |
+
set([self.Refs[ref_id]['image_id'] for ref_id in ref_ids]))
|
206 |
+
else:
|
207 |
+
image_ids = self.Imgs.keys()
|
208 |
+
return image_ids
|
209 |
+
|
210 |
+
def getCatIds(self):
|
211 |
+
return self.Cats.keys()
|
212 |
+
|
213 |
+
def loadRefs(self, ref_ids=[]):
|
214 |
+
if isinstance(ref_ids, list):
|
215 |
+
return [self.Refs[ref_id] for ref_id in ref_ids]
|
216 |
+
elif isinstance(ref_ids, int):
|
217 |
+
return [self.Refs[ref_ids]]
|
218 |
+
|
219 |
+
def loadAnns(self, ann_ids=[]):
|
220 |
+
if isinstance(ann_ids, list):
|
221 |
+
return [self.Anns[ann_id] for ann_id in ann_ids]
|
222 |
+
elif isinstance(ann_ids, int) or isinstance(ann_ids, str):
|
223 |
+
return [self.Anns[ann_ids]]
|
224 |
+
|
225 |
+
def loadImgs(self, image_ids=[]):
|
226 |
+
if isinstance(image_ids, list):
|
227 |
+
return [self.Imgs[image_id] for image_id in image_ids]
|
228 |
+
elif isinstance(image_ids, int):
|
229 |
+
return [self.Imgs[image_ids]]
|
230 |
+
|
231 |
+
def loadCats(self, cat_ids=[]):
|
232 |
+
if isinstance(cat_ids, list):
|
233 |
+
return [self.Cats[cat_id] for cat_id in cat_ids]
|
234 |
+
elif isinstance(cat_ids, int):
|
235 |
+
return [self.Cats[cat_ids]]
|
236 |
+
|
237 |
+
def getRefBox(self, ref_id):
|
238 |
+
ref = self.Refs[ref_id] # noqa
|
239 |
+
ann = self.refToAnn[ref_id]
|
240 |
+
return ann['bbox'] # [x, y, w, h]
|
241 |
+
|
242 |
+
def showRef(self, ref, seg_box='seg'):
|
243 |
+
ax = plt.gca()
|
244 |
+
# show image
|
245 |
+
image = self.Imgs[ref['image_id']]
|
246 |
+
_img = io.imread(osp.join(self.IMAGE_DIR, image['file_name']))
|
247 |
+
ax.imshow(_img)
|
248 |
+
# show refer expression
|
249 |
+
for sid, sent in enumerate(ref['sentences']):
|
250 |
+
print('%s. %s' % (sid + 1, sent['sent']))
|
251 |
+
# show segmentations
|
252 |
+
if seg_box == 'seg':
|
253 |
+
ann_id = ref['ann_id']
|
254 |
+
ann = self.Anns[ann_id]
|
255 |
+
polygons = []
|
256 |
+
color = []
|
257 |
+
c = 'none'
|
258 |
+
if isinstance(ann['segmentation'][0], list):
|
259 |
+
# polygon used for refcoco*
|
260 |
+
for seg in ann['segmentation']:
|
261 |
+
poly = np.array(seg).reshape((len(seg) / 2, 2))
|
262 |
+
polygons.append(Polygon(poly, True, alpha=0.4))
|
263 |
+
color.append(c)
|
264 |
+
p = PatchCollection(polygons,
|
265 |
+
facecolors=color,
|
266 |
+
edgecolors=(1, 1, 0, 0),
|
267 |
+
linewidths=3,
|
268 |
+
alpha=1)
|
269 |
+
ax.add_collection(p) # thick yellow polygon
|
270 |
+
p = PatchCollection(polygons,
|
271 |
+
facecolors=color,
|
272 |
+
edgecolors=(1, 0, 0, 0),
|
273 |
+
linewidths=1,
|
274 |
+
alpha=1)
|
275 |
+
ax.add_collection(p) # thin red polygon
|
276 |
+
else:
|
277 |
+
# mask used for refclef
|
278 |
+
rle = ann['segmentation']
|
279 |
+
m = mask.decode(rle)
|
280 |
+
img = np.ones((m.shape[0], m.shape[1], 3))
|
281 |
+
color_mask = np.array([2.0, 166.0, 101.0]) / 255
|
282 |
+
for i in range(3):
|
283 |
+
img[:, :, i] = color_mask[i]
|
284 |
+
ax.imshow(np.dstack((img, m * 0.5)))
|
285 |
+
# show bounding-box
|
286 |
+
elif seg_box == 'box':
|
287 |
+
ann_id = ref['ann_id']
|
288 |
+
ann = self.Anns[ann_id]
|
289 |
+
bbox = self.getRefBox(ref['ref_id'])
|
290 |
+
box_plot = Rectangle((bbox[0], bbox[1]),
|
291 |
+
bbox[2],
|
292 |
+
bbox[3],
|
293 |
+
fill=False,
|
294 |
+
edgecolor='green',
|
295 |
+
linewidth=3)
|
296 |
+
ax.add_patch(box_plot)
|
297 |
+
|
298 |
+
def getMask(self, ref):
|
299 |
+
# return mask, area and mask-center
|
300 |
+
ann = self.refToAnn[ref['ref_id']]
|
301 |
+
image = self.Imgs[ref['image_id']]
|
302 |
+
if isinstance(ann['segmentation'][0], list): # polygon
|
303 |
+
rle = mask.frPyObjects(ann['segmentation'], image['height'],
|
304 |
+
image['width'])
|
305 |
+
else:
|
306 |
+
rle = ann['segmentation']
|
307 |
+
|
308 |
+
# for i in range(len(rle['counts'])):
|
309 |
+
# print(rle)
|
310 |
+
m = mask.decode(rle)
|
311 |
+
# sometimes there are multiple binary map (multiple segs)
|
312 |
+
m = np.sum(m, axis=2)
|
313 |
+
m = m.astype(np.uint8) # convert to np.uint8
|
314 |
+
# compute area
|
315 |
+
area = sum(mask.area(rle)) # should be close to ann['area']
|
316 |
+
return {'mask': m, 'area': area}
|
317 |
+
|
318 |
+
def showMask(self, ref):
|
319 |
+
M = self.getMask(ref)
|
320 |
+
msk = M['mask']
|
321 |
+
ax = plt.gca()
|
322 |
+
ax.imshow(msk)
|
323 |
+
|
324 |
+
|
325 |
+
if __name__ == '__main__':
|
326 |
+
refer = REFER(dataset='refcocog', splitBy='google')
|
327 |
+
ref_ids = refer.getRefIds()
|
328 |
+
print(len(ref_ids))
|
329 |
+
|
330 |
+
print(len(refer.Imgs))
|
331 |
+
print(len(refer.imgToRefs))
|
332 |
+
|
333 |
+
ref_ids = refer.getRefIds(split='train')
|
334 |
+
print('There are %s training referred objects.' % len(ref_ids))
|
335 |
+
|
336 |
+
for ref_id in ref_ids:
|
337 |
+
ref = refer.loadRefs(ref_id)[0]
|
338 |
+
if len(ref['sentences']) < 2:
|
339 |
+
continue
|
340 |
+
|
341 |
+
pprint(ref)
|
342 |
+
print('The label is %s.' % refer.Cats[ref['category_id']])
|
343 |
+
plt.figure()
|
344 |
+
refer.showRef(ref, seg_box='box')
|
345 |
+
plt.show()
|
referit.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset
|
2 |
+
# script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
16 |
+
"""TODO: Add a description here."""
|
17 |
+
|
18 |
+
|
19 |
+
import os.path as osp
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
from .refer import REFER
|
23 |
+
|
24 |
+
|
25 |
+
# TODO: Add BibTeX citation
|
26 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
+
_CITATION = """\
|
28 |
+
@InProceedings{huggingface:dataset,
|
29 |
+
title = {A great new dataset},
|
30 |
+
author={huggingface, Inc.
|
31 |
+
},
|
32 |
+
year={2020}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
# TODO: Add description of the dataset here
|
37 |
+
# You can copy an official description
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
This RefCOCO dataset is designed to load refcoco, refcoco+, and refcocog.
|
40 |
+
"""
|
41 |
+
|
42 |
+
# TODO: Add a link to an official homepage for the dataset here
|
43 |
+
_HOMEPAGE = ""
|
44 |
+
|
45 |
+
# TODO: Add the licence for the dataset here if you can find it
|
46 |
+
_LICENSE = ""
|
47 |
+
|
48 |
+
# TODO: Add link to the official dataset URLs here
|
49 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points
|
50 |
+
# to the original files.
|
51 |
+
# This can be an arbitrary nested dict/list of URLs
|
52 |
+
# (see below in `_split_generators` method)
|
53 |
+
_URLS = {}
|
54 |
+
|
55 |
+
|
56 |
+
VALID_SPLIT_NAMES = ("train", "val", "testA", "testB")
|
57 |
+
|
58 |
+
|
59 |
+
class ReferitBuilderConfig(datasets.BuilderConfig):
|
60 |
+
|
61 |
+
def __init__(self, name: str, split_by: str, **kwargs):
|
62 |
+
super().__init__(name, **kwargs)
|
63 |
+
self.split_by = split_by
|
64 |
+
|
65 |
+
|
66 |
+
# TODO: Name of the dataset usually matches the script name with CamelCase
|
67 |
+
# instead of snake_case
|
68 |
+
class ReferitDataset(datasets.GeneratorBasedBuilder):
|
69 |
+
"""TODO: Short description of my dataset."""
|
70 |
+
|
71 |
+
VERSION = datasets.Version("0.0.1")
|
72 |
+
|
73 |
+
# This is an example of a dataset with multiple configurations.
|
74 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
75 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
76 |
+
|
77 |
+
# If you need to make complex sub-parts in the datasets with configurable
|
78 |
+
# options
|
79 |
+
# You can create your own builder configuration class to store attribute,
|
80 |
+
# inheriting from datasets.BuilderConfig
|
81 |
+
BUILDER_CONFIG_CLASS = ReferitBuilderConfig
|
82 |
+
|
83 |
+
# You will be able to load one or the other configurations
|
84 |
+
# in the following list with
|
85 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
86 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
87 |
+
BUILDER_CONFIGS = [
|
88 |
+
# refcoco
|
89 |
+
ReferitBuilderConfig(
|
90 |
+
name="refcoco", split_by="unc",
|
91 |
+
version=VERSION, description="refcoco."),
|
92 |
+
# refcoco+
|
93 |
+
ReferitBuilderConfig(
|
94 |
+
name="refcoco+", split_by="unc",
|
95 |
+
version=VERSION, description="refcoco+"),
|
96 |
+
# refcocog
|
97 |
+
ReferitBuilderConfig(
|
98 |
+
name="refcocog", split_by="umd",
|
99 |
+
version=VERSION, description="refcocog"),
|
100 |
+
]
|
101 |
+
|
102 |
+
# It's not mandatory to have a default configuration.
|
103 |
+
# Just use one if it make sense.
|
104 |
+
DEFAULT_CONFIG_NAME = "refcoco"
|
105 |
+
|
106 |
+
def _info(self):
|
107 |
+
self.config: ReferitBuilderConfig
|
108 |
+
features = datasets.Features(
|
109 |
+
{
|
110 |
+
"ref_id": datasets.Value("int32"),
|
111 |
+
"img_id": datasets.Value("int32"),
|
112 |
+
"ann_id": datasets.Value("int32"),
|
113 |
+
"file_name": datasets.Value("string"),
|
114 |
+
"image_path": datasets.Value("string"),
|
115 |
+
"height": datasets.Value("int32"),
|
116 |
+
"width": datasets.Value("int32"),
|
117 |
+
"coco_url": datasets.Value("string"),
|
118 |
+
"sentences": [datasets.Value("string")],
|
119 |
+
"segmentation": [[[datasets.Value("float")]]],
|
120 |
+
"bbox": [[datasets.Value("float")]],
|
121 |
+
"area": datasets.Value("float"),
|
122 |
+
"iscrowd": datasets.Value("int32"),
|
123 |
+
"category_id": datasets.Value("int32"),
|
124 |
+
}
|
125 |
+
)
|
126 |
+
return datasets.DatasetInfo(
|
127 |
+
# This is the description that will appear on the datasets page.
|
128 |
+
description=_DESCRIPTION,
|
129 |
+
# This defines the different columns of the dataset and their types
|
130 |
+
features=features,
|
131 |
+
# If there's a common (input, target) tuple from the features,
|
132 |
+
# uncomment supervised_keys line below and specify them.
|
133 |
+
# They'll be used if as_supervised=True in builder.as_dataset.
|
134 |
+
# supervised_keys=("sentence", "label"),
|
135 |
+
# Homepage of the dataset for documentation
|
136 |
+
homepage=_HOMEPAGE,
|
137 |
+
# License for the dataset if available
|
138 |
+
license=_LICENSE,
|
139 |
+
# Citation for the dataset
|
140 |
+
citation=_CITATION,
|
141 |
+
)
|
142 |
+
|
143 |
+
def _split_generators(self, dl_manager):
|
144 |
+
# TODO: This method is tasked with downloading/extracting the data and
|
145 |
+
# defining the splits depending on the configuration
|
146 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS),
|
147 |
+
# the configuration selected by the user is in self.config.name
|
148 |
+
|
149 |
+
# dl_manager is a datasets.download.DownloadManager that can be used
|
150 |
+
# to download and extract URLS. It can accept any type
|
151 |
+
# or nested list/dict and will give back the same structure with
|
152 |
+
# the url replaced with path to local files.
|
153 |
+
# By default the archives will be extracted and a path to a cached
|
154 |
+
# folder where they are extracted is returned instead of the archive
|
155 |
+
# urls = _URLS[self.config.name]
|
156 |
+
# data_dir = dl_manager.download_and_extract(urls)
|
157 |
+
splits = []
|
158 |
+
for split in ("train", "val", "test", "testA", "testB"):
|
159 |
+
splits.append(datasets.SplitGenerator(
|
160 |
+
name=datasets.NamedSplit(split),
|
161 |
+
gen_kwargs={
|
162 |
+
"split": split,
|
163 |
+
},
|
164 |
+
))
|
165 |
+
return splits
|
166 |
+
|
167 |
+
# method parameters are unpacked from `gen_kwargs` as given in
|
168 |
+
# `_split_generators`
|
169 |
+
def _generate_examples(self, split: str):
|
170 |
+
# TODO: This method handles input defined in _split_generators to
|
171 |
+
# yield (key, example) tuples from the dataset.
|
172 |
+
# The `key` is for legacy reasons (tfds) and is not important
|
173 |
+
# in itself, but must be unique for each example.
|
174 |
+
refer = REFER(data_root=self.config.data_dir,
|
175 |
+
dataset=self.config.name,
|
176 |
+
splitBy=self.config.split_by)
|
177 |
+
ref_ids = refer.getRefIds(split=split)
|
178 |
+
for ref_id in ref_ids:
|
179 |
+
ref = refer.loadRefs(ref_id)[0]
|
180 |
+
ann_id = ref['ann_id']
|
181 |
+
ann = refer.loadAnns(ann_id)[0]
|
182 |
+
img_id = ann['image_id']
|
183 |
+
img = refer.loadImgs(img_id)[0]
|
184 |
+
file_name = img['file_name']
|
185 |
+
image_path = osp.join(
|
186 |
+
self.config.data_dir, "images", "train2014", file_name)
|
187 |
+
descriptions = [r['raw'] for r in ref['sentences']]
|
188 |
+
yield ref_id, {
|
189 |
+
"ref_id": ref_id,
|
190 |
+
"img_id": img_id,
|
191 |
+
"ann_id": ann_id,
|
192 |
+
"file_name": file_name,
|
193 |
+
"image_path": image_path,
|
194 |
+
"height": img['height'],
|
195 |
+
"width": img['width'],
|
196 |
+
"coco_url": img['coco_url'],
|
197 |
+
"sentences": descriptions,
|
198 |
+
"segmentation": [ann['segmentation']],
|
199 |
+
"bbox": [ann['bbox']],
|
200 |
+
"area": ann['area'],
|
201 |
+
"iscrowd": ann['iscrowd'],
|
202 |
+
"category_id": ann['category_id'],
|
203 |
+
}
|