referit / referit.py
yiqun's picture
Remove invalid testA and testB from refcocog.
2626114 verified
raw
history blame
8.07 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset
# script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import os.path as osp
import datasets
from .refer import REFER
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This RefCOCO dataset is designed to load refcoco, refcoco+, and refcocog.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points
# to the original files.
# This can be an arbitrary nested dict/list of URLs
# (see below in `_split_generators` method)
_URLS = {}
VALID_SPLIT_NAMES = ("train", "val", "testA", "testB")
class ReferitBuilderConfig(datasets.BuilderConfig):
def __init__(self, name: str, split_by: str, **kwargs):
super().__init__(name, **kwargs)
self.split_by = split_by
# TODO: Name of the dataset usually matches the script name with CamelCase
# instead of snake_case
class ReferitDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.1")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable
# options
# You can create your own builder configuration class to store attribute,
# inheriting from datasets.BuilderConfig
BUILDER_CONFIG_CLASS = ReferitBuilderConfig
# You will be able to load one or the other configurations
# in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
# refcoco
ReferitBuilderConfig(
name="refcoco", split_by="unc",
version=VERSION, description="refcoco."),
# refcoco+
ReferitBuilderConfig(
name="refcoco+", split_by="unc",
version=VERSION, description="refcoco+"),
# refcocog
ReferitBuilderConfig(
name="refcocog", split_by="umd",
version=VERSION, description="refcocog"),
]
# It's not mandatory to have a default configuration.
# Just use one if it make sense.
DEFAULT_CONFIG_NAME = "refcoco"
def _info(self):
self.config: ReferitBuilderConfig
features = datasets.Features(
{
"ref_id": datasets.Value("int32"),
"img_id": datasets.Value("int32"),
"ann_id": datasets.Value("int32"),
"file_name": datasets.Value("string"),
"image_path": datasets.Value("string"),
"height": datasets.Value("int32"),
"width": datasets.Value("int32"),
"coco_url": datasets.Value("string"),
"sentences": [datasets.Value("string")],
"segmentation": [[[datasets.Value("float")]]],
"bbox": [[datasets.Value("float")]],
"area": datasets.Value("float"),
"iscrowd": datasets.Value("int32"),
"category_id": datasets.Value("int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# If there's a common (input, target) tuple from the features,
# uncomment supervised_keys line below and specify them.
# They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and
# defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS),
# the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used
# to download and extract URLS. It can accept any type
# or nested list/dict and will give back the same structure with
# the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached
# folder where they are extracted is returned instead of the archive
# urls = _URLS[self.config.name]
# data_dir = dl_manager.download_and_extract(urls)
splits = []
split_names = ("train", "val", "test")
if self.config.name in ("refcoco", "refcoco+"):
split_names += ("testA", "testB")
for split in split_names:
splits.append(datasets.SplitGenerator(
name=datasets.NamedSplit(split),
gen_kwargs={
"split": split,
},
))
return splits
# method parameters are unpacked from `gen_kwargs` as given in
# `_split_generators`
def _generate_examples(self, split: str):
# TODO: This method handles input defined in _split_generators to
# yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important
# in itself, but must be unique for each example.
refer = REFER(data_root=self.config.data_dir,
dataset=self.config.name,
splitBy=self.config.split_by)
ref_ids = refer.getRefIds(split=split)
for ref_id in ref_ids:
ref = refer.loadRefs(ref_id)[0]
ann_id = ref['ann_id']
ann = refer.loadAnns(ann_id)[0]
img_id = ann['image_id']
img = refer.loadImgs(img_id)[0]
file_name = img['file_name']
image_path = osp.join(
self.config.data_dir, "images", "train2014", file_name)
descriptions = [r['raw'] for r in ref['sentences']]
yield ref_id, {
"ref_id": ref_id,
"img_id": img_id,
"ann_id": ann_id,
"file_name": file_name,
"image_path": image_path,
"height": img['height'],
"width": img['width'],
"coco_url": img['coco_url'],
"sentences": descriptions,
"segmentation": [ann['segmentation']],
"bbox": [ann['bbox']],
"area": ann['area'],
"iscrowd": ann['iscrowd'],
"category_id": ann['category_id'],
}