text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝¹ : One α inst✝ : TopologicalSpace X f : X → α ⊢ mulTSupport f = ∅ ↔ f = 1 [PROOFSTEP] rw [mulTSupport, closure_empty_iff, mulSupport_eq_empty_iff] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α ⊢ ¬x ∈ mulTSupport f ↔ f =ᶠ[𝓝 x] 1 [PROOFSTEP] simp_rw [mulTSupport, mem_closure_iff_nhds, not_forall, not_nonempty_iff_eq_empty, exists_prop, ← disjoint_iff_inter_eq_empty, disjoint_mulSupport_iff, eventuallyEq_iff_exists_mem] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α ⊢ HasCompactMulSupport f ↔ IsCompact (closure (mulSupport f)) [PROOFSTEP] rfl [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace α' inst✝³ : One β inst✝² : One γ inst✝¹ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α inst✝ : T2Space α ⊢ (∃ K, IsCompact K ∧ ∀ (x : α), ¬x ∈ K → f x = 1) ↔ HasCompactMulSupport f [PROOFSTEP] simp_rw [← nmem_mulSupport, ← mem_compl_iff, ← subset_def, compl_subset_compl, hasCompactMulSupport_def, exists_compact_superset_iff] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace α' inst✝³ : One β inst✝² : One γ inst✝¹ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α inst✝ : TopologicalSpace β h : HasCompactMulSupport f hf : Continuous f ⊢ IsCompact (range f) [PROOFSTEP] cases' range_eq_image_mulTSupport_or f with h2 h2 [GOAL] case inl X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace α' inst✝³ : One β inst✝² : One γ inst✝¹ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α inst✝ : TopologicalSpace β h : HasCompactMulSupport f hf : Continuous f h2 : range f = f '' mulTSupport f ⊢ IsCompact (range f) [PROOFSTEP] rw [h2] [GOAL] case inr X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace α' inst✝³ : One β inst✝² : One γ inst✝¹ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α inst✝ : TopologicalSpace β h : HasCompactMulSupport f hf : Continuous f h2 : range f = insert 1 (f '' mulTSupport f) ⊢ IsCompact (range f) [PROOFSTEP] rw [h2] [GOAL] case inl X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace α' inst✝³ : One β inst✝² : One γ inst✝¹ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α inst✝ : TopologicalSpace β h : HasCompactMulSupport f hf : Continuous f h2 : range f = f '' mulTSupport f ⊢ IsCompact (f '' mulTSupport f) case inr X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace α' inst✝³ : One β inst✝² : One γ inst✝¹ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α inst✝ : TopologicalSpace β h : HasCompactMulSupport f hf : Continuous f h2 : range f = insert 1 (f '' mulTSupport f) ⊢ IsCompact (insert 1 (f '' mulTSupport f)) [PROOFSTEP] exacts [h.image hf, (h.image hf).insert 1] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α hg : ∀ {x : β}, g x = 1 ↔ x = 1 ⊢ HasCompactMulSupport (g ∘ f) ↔ HasCompactMulSupport f [PROOFSTEP] simp_rw [hasCompactMulSupport_def, mulSupport_comp_eq g (@hg) f] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g✝ : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α hf : HasCompactMulSupport f g : α' → α hg : ClosedEmbedding g ⊢ HasCompactMulSupport (f ∘ g) [PROOFSTEP] rw [hasCompactMulSupport_def, Function.mulSupport_comp_eq_preimage] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g✝ : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α hf : HasCompactMulSupport f g : α' → α hg : ClosedEmbedding g ⊢ IsCompact (closure (g ⁻¹' mulSupport f)) [PROOFSTEP] refine' isCompact_of_isClosed_subset (hg.isCompact_preimage hf) isClosed_closure _ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g✝ : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α hf : HasCompactMulSupport f g : α' → α hg : ClosedEmbedding g ⊢ closure (g ⁻¹' mulSupport f) ⊆ g ⁻¹' mulTSupport f [PROOFSTEP] rw [hg.toEmbedding.closure_eq_preimage_closure_image] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g✝ : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α hf : HasCompactMulSupport f g : α' → α hg : ClosedEmbedding g ⊢ g ⁻¹' closure (g '' (g ⁻¹' mulSupport f)) ⊆ g ⁻¹' mulTSupport f [PROOFSTEP] exact preimage_mono (closure_mono <| image_preimage_subset _ _) [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α hf : HasCompactMulSupport f hf₂ : HasCompactMulSupport f₂ hm : m 1 1 = 1 ⊢ HasCompactMulSupport fun x => m (f x) (f₂ x) [PROOFSTEP] rw [hasCompactMulSupport_iff_eventuallyEq] at hf hf₂ ⊢ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x : α hf : f =ᶠ[coclosedCompact α] 1 hf₂ : f₂ =ᶠ[coclosedCompact α] 1 hm : m 1 1 = 1 ⊢ (fun x => m (f x) (f₂ x)) =ᶠ[coclosedCompact α] 1 [PROOFSTEP] filter_upwards [hf, hf₂] using fun x hx hx₂ => by simp_rw [hx, hx₂, Pi.one_apply, hm] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace α' inst✝² : One β inst✝¹ : One γ inst✝ : One δ g : β → γ f : α → β f₂ : α → γ m : β → γ → δ x✝ : α hf : f =ᶠ[coclosedCompact α] 1 hf₂ : f₂ =ᶠ[coclosedCompact α] 1 hm : m 1 1 = 1 x : α hx : f x = OfNat.ofNat 1 x hx₂ : f₂ x = OfNat.ofNat 1 x ⊢ m (f x) (f₂ x) = OfNat.ofNat 1 x [PROOFSTEP] simp_rw [hx, hx₂, Pi.one_apply, hm] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : MonoidWithZero R inst✝¹ : AddMonoid M inst✝ : DistribMulAction R M f : α → R f' : α → M x : α hf : HasCompactSupport f' ⊢ HasCompactSupport (f • f') [PROOFSTEP] rw [hasCompactSupport_iff_eventuallyEq] at hf ⊢ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : MonoidWithZero R inst✝¹ : AddMonoid M inst✝ : DistribMulAction R M f : α → R f' : α → M x : α hf : f' =ᶠ[coclosedCompact α] 0 ⊢ f • f' =ᶠ[coclosedCompact α] 0 [PROOFSTEP] exact hf.mono fun x hx => by simp_rw [Pi.smul_apply', hx, Pi.zero_apply, smul_zero] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : MonoidWithZero R inst✝¹ : AddMonoid M inst✝ : DistribMulAction R M f : α → R f' : α → M x✝ : α hf : f' =ᶠ[coclosedCompact α] 0 x : α hx : f' x = OfNat.ofNat 0 x ⊢ (f • f') x = OfNat.ofNat 0 x [PROOFSTEP] simp_rw [Pi.smul_apply', hx, Pi.zero_apply, smul_zero] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : Zero R inst✝¹ : Zero M inst✝ : SMulWithZero R M f : α → R f' : α → M x : α hf : HasCompactSupport f ⊢ HasCompactSupport (f • f') [PROOFSTEP] rw [hasCompactSupport_iff_eventuallyEq] at hf ⊢ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : Zero R inst✝¹ : Zero M inst✝ : SMulWithZero R M f : α → R f' : α → M x : α hf : f =ᶠ[coclosedCompact α] 0 ⊢ f • f' =ᶠ[coclosedCompact α] 0 [PROOFSTEP] exact hf.mono fun x hx => by simp_rw [Pi.smul_apply', hx, Pi.zero_apply, zero_smul] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : Zero R inst✝¹ : Zero M inst✝ : SMulWithZero R M f : α → R f' : α → M x✝ : α hf : f =ᶠ[coclosedCompact α] 0 x : α hx : f x = OfNat.ofNat 0 x ⊢ (f • f') x = OfNat.ofNat 0 x [PROOFSTEP] simp_rw [Pi.smul_apply', hx, Pi.zero_apply, zero_smul] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : Zero R inst✝¹ : Zero M inst✝ : SMulWithZero R M f : α → R f' : α → M x : α hf : HasCompactSupport f' ⊢ HasCompactSupport (f • f') [PROOFSTEP] rw [hasCompactSupport_iff_eventuallyEq] at hf ⊢ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : Zero R inst✝¹ : Zero M inst✝ : SMulWithZero R M f : α → R f' : α → M x : α hf : f' =ᶠ[coclosedCompact α] 0 ⊢ f • f' =ᶠ[coclosedCompact α] 0 [PROOFSTEP] refine' hf.mono fun x hx => by simp_rw [Pi.smul_apply', hx, Pi.zero_apply, smul_zero] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝³ : TopologicalSpace α inst✝² : Zero R inst✝¹ : Zero M inst✝ : SMulWithZero R M f : α → R f' : α → M x✝ : α hf : f' =ᶠ[coclosedCompact α] 0 x : α hx : f' x = OfNat.ofNat 0 x ⊢ (f • f') x = OfNat.ofNat 0 x [PROOFSTEP] simp_rw [Pi.smul_apply', hx, Pi.zero_apply, smul_zero] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝¹ : TopologicalSpace α inst✝ : MulZeroClass β f f' : α → β x : α hf : HasCompactSupport f ⊢ HasCompactSupport (f * f') [PROOFSTEP] rw [hasCompactSupport_iff_eventuallyEq] at hf ⊢ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝¹ : TopologicalSpace α inst✝ : MulZeroClass β f f' : α → β x : α hf : f =ᶠ[coclosedCompact α] 0 ⊢ f * f' =ᶠ[coclosedCompact α] 0 [PROOFSTEP] refine' hf.mono fun x hx => by simp_rw [Pi.mul_apply, hx, Pi.zero_apply, zero_mul] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝¹ : TopologicalSpace α inst✝ : MulZeroClass β f f' : α → β x✝ : α hf : f =ᶠ[coclosedCompact α] 0 x : α hx : f x = OfNat.ofNat 0 x ⊢ (f * f') x = OfNat.ofNat 0 x [PROOFSTEP] simp_rw [Pi.mul_apply, hx, Pi.zero_apply, zero_mul] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝¹ : TopologicalSpace α inst✝ : MulZeroClass β f f' : α → β x : α hf : HasCompactSupport f' ⊢ HasCompactSupport (f * f') [PROOFSTEP] rw [hasCompactSupport_iff_eventuallyEq] at hf ⊢ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝¹ : TopologicalSpace α inst✝ : MulZeroClass β f f' : α → β x : α hf : f' =ᶠ[coclosedCompact α] 0 ⊢ f * f' =ᶠ[coclosedCompact α] 0 [PROOFSTEP] refine' hf.mono fun x hx => by simp_rw [Pi.mul_apply, hx, Pi.zero_apply, mul_zero] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 inst✝¹ : TopologicalSpace α inst✝ : MulZeroClass β f f' : α → β x✝ : α hf : f' =ᶠ[coclosedCompact α] 0 x : α hx : f' x = OfNat.ofNat 0 x ⊢ (f * f') x = OfNat.ofNat 0 x [PROOFSTEP] simp_rw [Pi.mul_apply, hx, Pi.zero_apply, mul_zero] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X ⊢ ∃ is n, n ∈ 𝓝 x ∧ n ⊆ ⋂ (i : ι) (_ : i ∈ is), U i ∧ ∀ (z : X), z ∈ n → (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] obtain ⟨n, hn, hnf⟩ := hlf x [GOAL] case intro.intro X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} ⊢ ∃ is n, n ∈ 𝓝 x ∧ n ⊆ ⋂ (i : ι) (_ : i ∈ is), U i ∧ ∀ (z : X), z ∈ n → (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] classical let is := hnf.toFinset.filter fun i => x ∈ U i let js := hnf.toFinset.filter fun j => x ∉ U j refine' ⟨is, (n ∩ ⋂ j ∈ js, (mulTSupport (f j))ᶜ) ∩ ⋂ i ∈ is, U i, inter_mem (inter_mem hn _) _, inter_subset_right _ _, fun z hz => _⟩ · exact (biInter_finset_mem js).mpr fun j hj => IsClosed.compl_mem_nhds (isClosed_mulTSupport _) (Set.not_mem_subset (hso j) (Finset.mem_filter.mp hj).2) · exact (biInter_finset_mem is).mpr fun i hi => (ho i).mem_nhds (Finset.mem_filter.mp hi).2 · have hzn : z ∈ n := by rw [inter_assoc] at hz exact mem_of_mem_inter_left hz replace hz := mem_of_mem_inter_right (mem_of_mem_inter_left hz) simp only [Finset.mem_filter, Finite.mem_toFinset, mem_setOf_eq, mem_iInter, and_imp] at hz suffices (mulSupport fun i => f i z) ⊆ hnf.toFinset by refine' hnf.toFinset.subset_coe_filter_of_subset_forall _ this fun i hi => _ specialize hz i ⟨z, ⟨hi, hzn⟩⟩ contrapose hz simp [hz, subset_mulTSupport (f i) hi] intro i hi simp only [Finite.coe_toFinset, mem_setOf_eq] exact ⟨z, ⟨hi, hzn⟩⟩ [GOAL] case intro.intro X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} ⊢ ∃ is n, n ∈ 𝓝 x ∧ n ⊆ ⋂ (i : ι) (_ : i ∈ is), U i ∧ ∀ (z : X), z ∈ n → (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] let is := hnf.toFinset.filter fun i => x ∈ U i [GOAL] case intro.intro X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) ⊢ ∃ is n, n ∈ 𝓝 x ∧ n ⊆ ⋂ (i : ι) (_ : i ∈ is), U i ∧ ∀ (z : X), z ∈ n → (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] let js := hnf.toFinset.filter fun j => x ∉ U j [GOAL] case intro.intro X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) ⊢ ∃ is n, n ∈ 𝓝 x ∧ n ⊆ ⋂ (i : ι) (_ : i ∈ is), U i ∧ ∀ (z : X), z ∈ n → (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] refine' ⟨is, (n ∩ ⋂ j ∈ js, (mulTSupport (f j))ᶜ) ∩ ⋂ i ∈ is, U i, inter_mem (inter_mem hn _) _, inter_subset_right _ _, fun z hz => _⟩ [GOAL] case intro.intro.refine'_1 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) ⊢ ⋂ (j : ι) (_ : j ∈ js), (mulTSupport (f j))ᶜ ∈ 𝓝 x [PROOFSTEP] exact (biInter_finset_mem js).mpr fun j hj => IsClosed.compl_mem_nhds (isClosed_mulTSupport _) (Set.not_mem_subset (hso j) (Finset.mem_filter.mp hj).2) [GOAL] case intro.intro.refine'_2 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) ⊢ ⋂ (i : ι) (_ : i ∈ is), U i ∈ 𝓝 x [PROOFSTEP] exact (biInter_finset_mem is).mpr fun i hi => (ho i).mem_nhds (Finset.mem_filter.mp hi).2 [GOAL] case intro.intro.refine'_3 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hz : z ∈ (n ∩ ⋂ (j : ι) (_ : j ∈ js), (mulTSupport (f j))ᶜ) ∩ ⋂ (i : ι) (_ : i ∈ is), U i ⊢ (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] have hzn : z ∈ n := by rw [inter_assoc] at hz exact mem_of_mem_inter_left hz [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hz : z ∈ (n ∩ ⋂ (j : ι) (_ : j ∈ js), (mulTSupport (f j))ᶜ) ∩ ⋂ (i : ι) (_ : i ∈ is), U i ⊢ z ∈ n [PROOFSTEP] rw [inter_assoc] at hz [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hz : z ∈ n ∩ ((⋂ (j : ι) (_ : j ∈ js), (mulTSupport (f j))ᶜ) ∩ ⋂ (i : ι) (_ : i ∈ is), U i) ⊢ z ∈ n [PROOFSTEP] exact mem_of_mem_inter_left hz [GOAL] case intro.intro.refine'_3 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hz : z ∈ (n ∩ ⋂ (j : ι) (_ : j ∈ js), (mulTSupport (f j))ᶜ) ∩ ⋂ (i : ι) (_ : i ∈ is), U i hzn : z ∈ n ⊢ (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] replace hz := mem_of_mem_inter_right (mem_of_mem_inter_left hz) [GOAL] case intro.intro.refine'_3 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n hz : z ∈ ⋂ (j : ι) (_ : j ∈ js), (mulTSupport (f j))ᶜ ⊢ (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] simp only [Finset.mem_filter, Finite.mem_toFinset, mem_setOf_eq, mem_iInter, and_imp] at hz [GOAL] case intro.intro.refine'_3 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n hz : ∀ (i : ι), Set.Nonempty (mulSupport (f i) ∩ n) → ¬x ∈ U i → z ∈ (mulTSupport (f i))ᶜ ⊢ (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] suffices (mulSupport fun i => f i z) ⊆ hnf.toFinset by refine' hnf.toFinset.subset_coe_filter_of_subset_forall _ this fun i hi => _ specialize hz i ⟨z, ⟨hi, hzn⟩⟩ contrapose hz simp [hz, subset_mulTSupport (f i) hi] [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n hz : ∀ (i : ι), Set.Nonempty (mulSupport (f i) ∩ n) → ¬x ∈ U i → z ∈ (mulTSupport (f i))ᶜ this : (mulSupport fun i => f i z) ⊆ ↑(Finite.toFinset hnf) ⊢ (mulSupport fun i => f i z) ⊆ ↑is [PROOFSTEP] refine' hnf.toFinset.subset_coe_filter_of_subset_forall _ this fun i hi => _ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n hz : ∀ (i : ι), Set.Nonempty (mulSupport (f i) ∩ n) → ¬x ∈ U i → z ∈ (mulTSupport (f i))ᶜ this : (mulSupport fun i => f i z) ⊆ ↑(Finite.toFinset hnf) i : ι hi : i ∈ mulSupport fun i => f i z ⊢ x ∈ U i [PROOFSTEP] specialize hz i ⟨z, ⟨hi, hzn⟩⟩ [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n this : (mulSupport fun i => f i z) ⊆ ↑(Finite.toFinset hnf) i : ι hi : i ∈ mulSupport fun i => f i z hz : ¬x ∈ U i → z ∈ (mulTSupport (f i))ᶜ ⊢ x ∈ U i [PROOFSTEP] contrapose hz [GOAL] X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n this : (mulSupport fun i => f i z) ⊆ ↑(Finite.toFinset hnf) i : ι hi : i ∈ mulSupport fun i => f i z hz : ¬x ∈ U i ⊢ ¬(¬x ∈ U i → z ∈ (mulTSupport (f i))ᶜ) [PROOFSTEP] simp [hz, subset_mulTSupport (f i) hi] [GOAL] case intro.intro.refine'_3 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n hz : ∀ (i : ι), Set.Nonempty (mulSupport (f i) ∩ n) → ¬x ∈ U i → z ∈ (mulTSupport (f i))ᶜ ⊢ (mulSupport fun i => f i z) ⊆ ↑(Finite.toFinset hnf) [PROOFSTEP] intro i hi [GOAL] case intro.intro.refine'_3 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n hz : ∀ (i : ι), Set.Nonempty (mulSupport (f i) ∩ n) → ¬x ∈ U i → z ∈ (mulTSupport (f i))ᶜ i : ι hi : i ∈ mulSupport fun i => f i z ⊢ i ∈ ↑(Finite.toFinset hnf) [PROOFSTEP] simp only [Finite.coe_toFinset, mem_setOf_eq] [GOAL] case intro.intro.refine'_3 X : Type u_1 α : Type u_2 α' : Type u_3 β : Type u_4 γ : Type u_5 δ : Type u_6 M : Type u_7 E : Type u_8 R : Type u_9 ι : Type u_10 U : ι → Set X inst✝¹ : TopologicalSpace X inst✝ : One R f : ι → X → R hlf : LocallyFinite fun i => mulSupport (f i) hso : ∀ (i : ι), mulTSupport (f i) ⊆ U i ho : ∀ (i : ι), IsOpen (U i) x : X n : Set X hn : n ∈ 𝓝 x hnf : Set.Finite {i | Set.Nonempty ((fun i => mulSupport (f i)) i ∩ n)} is : Finset ι := Finset.filter (fun i => x ∈ U i) (Finite.toFinset hnf) js : Finset ι := Finset.filter (fun j => ¬x ∈ U j) (Finite.toFinset hnf) z : X hzn : z ∈ n hz : ∀ (i : ι), Set.Nonempty (mulSupport (f i) ∩ n) → ¬x ∈ U i → z ∈ (mulTSupport (f i))ᶜ i : ι hi : i ∈ mulSupport fun i => f i z ⊢ Set.Nonempty (mulSupport (f i) ∩ n) [PROOFSTEP] exact ⟨z, ⟨hi, hzn⟩⟩
{"mathlib_filename": "Mathlib.Topology.Support", "llama_tokens": 15331}
[GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ₁ γ₂ : Path x y h : (fun γ => ↑γ.toContinuousMap) γ₁ = (fun γ => ↑γ.toContinuousMap) γ₂ ⊢ γ₁ = γ₂ [PROOFSTEP] simp only [FunLike.coe_fn_eq] at h [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ₁ γ₂ : Path x y h : γ₁.toContinuousMap = γ₂.toContinuousMap ⊢ γ₁ = γ₂ [PROOFSTEP] cases γ₁ [GOAL] case mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ₂ : Path x y toContinuousMap✝ : C(↑I, X) source'✝ : ContinuousMap.toFun toContinuousMap✝ 0 = x target'✝ : ContinuousMap.toFun toContinuousMap✝ 1 = y h : { toContinuousMap := toContinuousMap✝, source' := source'✝, target' := target'✝ }.toContinuousMap = γ₂.toContinuousMap ⊢ { toContinuousMap := toContinuousMap✝, source' := source'✝, target' := target'✝ } = γ₂ [PROOFSTEP] cases γ₂ [GOAL] case mk.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 toContinuousMap✝¹ : C(↑I, X) source'✝¹ : ContinuousMap.toFun toContinuousMap✝¹ 0 = x target'✝¹ : ContinuousMap.toFun toContinuousMap✝¹ 1 = y toContinuousMap✝ : C(↑I, X) source'✝ : ContinuousMap.toFun toContinuousMap✝ 0 = x target'✝ : ContinuousMap.toFun toContinuousMap✝ 1 = y h : { toContinuousMap := toContinuousMap✝¹, source' := source'✝¹, target' := target'✝¹ }.toContinuousMap = { toContinuousMap := toContinuousMap✝, source' := source'✝, target' := target'✝ }.toContinuousMap ⊢ { toContinuousMap := toContinuousMap✝¹, source' := source'✝¹, target' := target'✝¹ } = { toContinuousMap := toContinuousMap✝, source' := source'✝, target' := target'✝ } [PROOFSTEP] congr [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y ⊢ Continuous ↑γ [PROOFSTEP] continuity -- porting note: not necessary in light of the instance above /- instance : CoeFun (Path x y) fun _ => I → X := ⟨fun p => p.toFun⟩ -/ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 ⊢ ∀ {γ₁ γ₂ : Path x y}, ↑γ₁ = ↑γ₂ → γ₁ = γ₂ [PROOFSTEP] rintro ⟨⟨x, h11⟩, h12, h13⟩ ⟨⟨x, h21⟩, h22, h23⟩ rfl [GOAL] case mk.mk.mk.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 x : ↑I → X h11 : Continuous x h12 : ContinuousMap.toFun (ContinuousMap.mk x) 0 = x✝ h13 : ContinuousMap.toFun (ContinuousMap.mk x) 1 = y h21 : Continuous ↑{ toContinuousMap := ContinuousMap.mk x, source' := h12, target' := h13 } h22 : ContinuousMap.toFun (ContinuousMap.mk ↑{ toContinuousMap := ContinuousMap.mk x, source' := h12, target' := h13 }) 0 = x✝ h23 : ContinuousMap.toFun (ContinuousMap.mk ↑{ toContinuousMap := ContinuousMap.mk x, source' := h12, target' := h13 }) 1 = y ⊢ { toContinuousMap := ContinuousMap.mk x, source' := h12, target' := h13 } = { toContinuousMap := ContinuousMap.mk ↑{ toContinuousMap := ContinuousMap.mk x, source' := h12, target' := h13 }, source' := h22, target' := h23 } [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a : X ⊢ range ↑(refl a) = {a} [PROOFSTEP] simp [Path.refl, CoeFun.coe] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y ⊢ Continuous (↑γ ∘ σ) [PROOFSTEP] continuity [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y ⊢ ContinuousMap.toFun (ContinuousMap.mk (↑γ ∘ σ)) 0 = y [PROOFSTEP] simpa [-Path.target] using γ.target [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y ⊢ ContinuousMap.toFun (ContinuousMap.mk (↑γ ∘ σ)) 1 = x [PROOFSTEP] simpa [-Path.source] using γ.source [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y ⊢ symm (symm γ) = γ [PROOFSTEP] ext t [GOAL] case a.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y t : ↑I ⊢ ↑(symm (symm γ)) t = ↑γ t [PROOFSTEP] show γ (σ (σ t)) = γ t [GOAL] case a.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y t : ↑I ⊢ ↑γ (σ (σ t)) = ↑γ t [PROOFSTEP] rw [unitInterval.symm_symm] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a : X ⊢ symm (refl a) = refl a [PROOFSTEP] ext [GOAL] case a.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a : X x✝ : ↑I ⊢ ↑(symm (refl a)) x✝ = ↑(refl a) x✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ : Path x y a b : X γ : Path a b ⊢ range ↑(symm γ) = range ↑γ [PROOFSTEP] ext x [GOAL] case h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 γ✝ : Path x✝ y a b : X γ : Path a b x : X ⊢ x ∈ range ↑(symm γ) ↔ x ∈ range ↑γ [PROOFSTEP] simp only [mem_range, Path.symm, FunLike.coe, unitInterval.symm, SetCoe.exists, comp_apply, Subtype.coe_mk] [GOAL] case h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 γ✝ : Path x✝ y a b : X γ : Path a b x : X ⊢ (∃ x_1 h, ContinuousMap.toFun γ.toContinuousMap { val := 1 - x_1, property := (_ : 1 - ↑{ val := x_1, property := (_ : x_1 ∈ I) } ∈ I) } = x) ↔ ∃ x_1 h, ContinuousMap.toFun γ.toContinuousMap { val := x_1, property := h } = x [PROOFSTEP] constructor [GOAL] case h.mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 γ✝ : Path x✝ y a b : X γ : Path a b x : X ⊢ (∃ x_1 h, ContinuousMap.toFun γ.toContinuousMap { val := 1 - x_1, property := (_ : 1 - ↑{ val := x_1, property := (_ : x_1 ∈ I) } ∈ I) } = x) → ∃ x_1 h, ContinuousMap.toFun γ.toContinuousMap { val := x_1, property := h } = x [PROOFSTEP] rintro ⟨y, hy, hxy⟩ [GOAL] case h.mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 γ✝ : Path x✝ y a b : X γ : Path a b x : X ⊢ (∃ x_1 h, ContinuousMap.toFun γ.toContinuousMap { val := x_1, property := h } = x) → ∃ x_1 h, ContinuousMap.toFun γ.toContinuousMap { val := 1 - x_1, property := (_ : 1 - ↑{ val := x_1, property := (_ : x_1 ∈ I) } ∈ I) } = x [PROOFSTEP] rintro ⟨y, hy, hxy⟩ [GOAL] case h.mp.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 γ✝ : Path x✝ y✝ a b : X γ : Path a b x : X y : ℝ hy : y ∈ I hxy : ContinuousMap.toFun γ.toContinuousMap { val := 1 - y, property := (_ : 1 - ↑{ val := y, property := (_ : y ∈ I) } ∈ I) } = x ⊢ ∃ x_1 h, ContinuousMap.toFun γ.toContinuousMap { val := x_1, property := h } = x [PROOFSTEP] refine' ⟨1 - y, mem_iff_one_sub_mem.mp hy, _⟩ [GOAL] case h.mpr.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 γ✝ : Path x✝ y✝ a b : X γ : Path a b x : X y : ℝ hy : y ∈ I hxy : ContinuousMap.toFun γ.toContinuousMap { val := y, property := hy } = x ⊢ ∃ x_1 h, ContinuousMap.toFun γ.toContinuousMap { val := 1 - x_1, property := (_ : 1 - ↑{ val := x_1, property := (_ : x_1 ∈ I) } ∈ I) } = x [PROOFSTEP] refine' ⟨1 - y, mem_iff_one_sub_mem.mp hy, _⟩ [GOAL] case h.mp.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 γ✝ : Path x✝ y✝ a b : X γ : Path a b x : X y : ℝ hy : y ∈ I hxy : ContinuousMap.toFun γ.toContinuousMap { val := 1 - y, property := (_ : 1 - ↑{ val := y, property := (_ : y ∈ I) } ∈ I) } = x ⊢ ContinuousMap.toFun γ.toContinuousMap { val := 1 - y, property := (_ : 1 - y ∈ I) } = x [PROOFSTEP] convert hxy [GOAL] case h.mpr.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 γ✝ : Path x✝ y✝ a b : X γ : Path a b x : X y : ℝ hy : y ∈ I hxy : ContinuousMap.toFun γ.toContinuousMap { val := y, property := hy } = x ⊢ ContinuousMap.toFun γ.toContinuousMap { val := 1 - (1 - y), property := (_ : 1 - ↑{ val := 1 - y, property := (_ : 1 - y ∈ I) } ∈ I) } = x [PROOFSTEP] convert hxy [GOAL] case h.e'_2.h.e'_6.h.e'_3 X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 γ✝ : Path x✝ y✝ a b : X γ : Path a b x : X y : ℝ hy : y ∈ I hxy : ContinuousMap.toFun γ.toContinuousMap { val := y, property := hy } = x ⊢ 1 - (1 - y) = y [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y ⊢ extend γ 0 = x [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y ⊢ extend γ 1 = y [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z ⊢ Continuous ((fun t => if t ≤ 1 / 2 then extend γ (2 * t) else extend γ' (2 * t - 1)) ∘ Subtype.val) [PROOFSTEP] refine' (Continuous.if_le _ _ continuous_id continuous_const (by norm_num)).comp continuous_subtype_val [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z ⊢ ∀ (x_1 : ℝ), id x_1 = 1 / 2 → extend γ (2 * x_1) = extend γ' (2 * x_1 - 1) [PROOFSTEP] norm_num [GOAL] case refine'_1 X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z ⊢ Continuous fun t => extend γ (2 * t) [PROOFSTEP] continuity [GOAL] case refine'_2 X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z ⊢ Continuous fun t => extend γ' (2 * t - 1) [PROOFSTEP] continuity [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z ⊢ ContinuousMap.toFun (ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ (2 * t) else extend γ' (2 * t - 1)) ∘ Subtype.val)) 0 = x [PROOFSTEP] norm_num [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z ⊢ ContinuousMap.toFun (ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ (2 * t) else extend γ' (2 * t - 1)) ∘ Subtype.val)) 1 = z [PROOFSTEP] norm_num [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I ⊢ (if ↑t ≤ 1 / 2 then extend γ (2 * ↑t) else extend γ' (2 * ↑t - 1)) = if h : ↑t ≤ 1 / 2 then ↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } else ↑γ' { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) } [PROOFSTEP] split_ifs [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ extend γ (2 * ↑t) = ↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } [PROOFSTEP] rw [extend_extends] [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ extend γ' (2 * ↑t - 1) = ↑γ' { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) } [PROOFSTEP] rw [extend_extends] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z ⊢ symm (trans γ γ') = trans (symm γ') (symm γ) [PROOFSTEP] ext t [GOAL] case a.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I ⊢ ↑(symm (trans γ γ')) t = ↑(trans (symm γ') (symm γ)) t [PROOFSTEP] simp only [trans_apply, ← one_div, symm_apply, not_le, Function.comp_apply] [GOAL] case a.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I ⊢ (if h : ↑(σ t) ≤ 1 / 2 then ↑γ { val := 2 * ↑(σ t), property := (_ : 2 * ↑(σ t) ∈ I) } else ↑γ' { val := 2 * ↑(σ t) - 1, property := (_ : 2 * ↑(σ t) - 1 ∈ I) }) = if h : ↑t ≤ 1 / 2 then ↑γ' (σ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) }) else ↑γ (σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) }) [PROOFSTEP] split_ifs with h h₁ h₂ [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h : ↑(σ t) ≤ 1 / 2 h₁ : ↑t ≤ 1 / 2 ⊢ ↑γ { val := 2 * ↑(σ t), property := (_ : 2 * ↑(σ t) ∈ I) } = ↑γ' (σ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) }) [PROOFSTEP] rw [coe_symm_eq] at h [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h : ↑(σ t) ≤ 1 / 2 h₁ : ¬↑t ≤ 1 / 2 ⊢ ↑γ { val := 2 * ↑(σ t), property := (_ : 2 * ↑(σ t) ∈ I) } = ↑γ (σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) }) [PROOFSTEP] rw [coe_symm_eq] at h [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h : ¬↑(σ t) ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ ↑γ' { val := 2 * ↑(σ t) - 1, property := (_ : 2 * ↑(σ t) - 1 ∈ I) } = ↑γ' (σ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) }) [PROOFSTEP] rw [coe_symm_eq] at h [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h : ¬↑(σ t) ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ ↑γ' { val := 2 * ↑(σ t) - 1, property := (_ : 2 * ↑(σ t) - 1 ∈ I) } = ↑γ (σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) }) [PROOFSTEP] rw [coe_symm_eq] at h [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - ↑t ≤ 1 / 2 h₁ : ↑t ≤ 1 / 2 ⊢ ↑γ { val := 2 * ↑(σ t), property := (_ : 2 * ↑(σ t) ∈ I) } = ↑γ' (σ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) }) [PROOFSTEP] have ht : (t : ℝ) = 1 / 2 := by refine le_antisymm h₁ ?_ rw [sub_le_comm] at h norm_num at h exact h [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - ↑t ≤ 1 / 2 h₁ : ↑t ≤ 1 / 2 ⊢ ↑t = 1 / 2 [PROOFSTEP] refine le_antisymm h₁ ?_ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - ↑t ≤ 1 / 2 h₁ : ↑t ≤ 1 / 2 ⊢ 1 / 2 ≤ ↑t [PROOFSTEP] rw [sub_le_comm] at h [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - 1 / 2 ≤ ↑t h₁ : ↑t ≤ 1 / 2 ⊢ 1 / 2 ≤ ↑t [PROOFSTEP] norm_num at h [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h₁ : ↑t ≤ 1 / 2 h : 1 / 2 ≤ ↑t ⊢ 1 / 2 ≤ ↑t [PROOFSTEP] exact h [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - ↑t ≤ 1 / 2 h₁ : ↑t ≤ 1 / 2 ht : ↑t = 1 / 2 ⊢ ↑γ { val := 2 * ↑(σ t), property := (_ : 2 * ↑(σ t) ∈ I) } = ↑γ' (σ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) }) [PROOFSTEP] simp_rw [unitInterval.symm, ht] [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - ↑t ≤ 1 / 2 h₁ : ↑t ≤ 1 / 2 ht : ↑t = 1 / 2 ⊢ ↑γ { val := 2 * (1 - 1 / 2), property := (_ : (fun x => x ∈ I) (2 * (1 - 1 / 2))) } = ↑γ' { val := 1 - 2 * (1 / 2), property := (_ : (fun x => x ∈ I) (1 - 2 * (1 / 2))) } [PROOFSTEP] norm_num [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - ↑t ≤ 1 / 2 h₁ : ¬↑t ≤ 1 / 2 ⊢ ↑γ { val := 2 * ↑(σ t), property := (_ : 2 * ↑(σ t) ∈ I) } = ↑γ (σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) }) [PROOFSTEP] refine' congr_arg _ (Subtype.ext _) [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - ↑t ≤ 1 / 2 h₁ : ¬↑t ≤ 1 / 2 ⊢ ↑{ val := 2 * ↑(σ t), property := (_ : 2 * ↑(σ t) ∈ I) } = ↑(σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) }) [PROOFSTEP] norm_num [unitInterval.symm, sub_sub_eq_add_sub, mul_sub] [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ↑(σ t) ≤ 1 / 2 h : 1 - ↑t ≤ 1 / 2 h₁ : ¬↑t ≤ 1 / 2 ⊢ 2 * (1 - ↑t) = 1 - (2 * ↑t - 1) [PROOFSTEP] ring [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ¬↑(σ t) ≤ 1 / 2 h : ¬1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ ↑γ' { val := 2 * ↑(σ t) - 1, property := (_ : 2 * ↑(σ t) - 1 ∈ I) } = ↑γ' (σ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) }) [PROOFSTEP] refine' congr_arg _ (Subtype.ext _) [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ¬↑(σ t) ≤ 1 / 2 h : ¬1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ ↑{ val := 2 * ↑(σ t) - 1, property := (_ : 2 * ↑(σ t) - 1 ∈ I) } = ↑(σ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) }) [PROOFSTEP] norm_num [mul_sub, h] [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ¬↑(σ t) ≤ 1 / 2 h : ¬1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ 2 * (1 - ↑t) - 1 = 1 - 2 * ↑t [PROOFSTEP] ring [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ¬↑(σ t) ≤ 1 / 2 h : ¬1 - ↑t ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ ↑γ' { val := 2 * ↑(σ t) - 1, property := (_ : 2 * ↑(σ t) - 1 ∈ I) } = ↑γ (σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) }) [PROOFSTEP] exfalso [GOAL] case neg.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ¬↑(σ t) ≤ 1 / 2 h : ¬1 - ↑t ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ False [PROOFSTEP] rw [sub_le_comm] at h [GOAL] case neg.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ¬↑(σ t) ≤ 1 / 2 h : ¬1 - 1 / 2 ≤ ↑t h₂ : ¬↑t ≤ 1 / 2 ⊢ False [PROOFSTEP] norm_num at h h₂ [GOAL] case neg.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z t : ↑I h✝ : ¬↑(σ t) ≤ 1 / 2 h : ↑t < 1 / 2 h₂ : 1 / 2 < ↑t ⊢ False [PROOFSTEP] exact (h.trans h₂).ne rfl [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a : X ⊢ trans (refl a) (refl a) = refl a [PROOFSTEP] ext [GOAL] case a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a : X x✝ : ↑I ⊢ ↑(trans (refl a) (refl a)) x✝ = ↑(refl a) x✝ [PROOFSTEP] simp only [Path.trans, ite_self, one_div, Path.refl_extend] [GOAL] case a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a : X x✝ : ↑I ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => a) ∘ Subtype.val), source' := (_ : ContinuousMap.toFun (ContinuousMap.mk ((fun t => a) ∘ Subtype.val)) 0 = a), target' := (_ : ContinuousMap.toFun (ContinuousMap.mk ((fun t => a) ∘ Subtype.val)) 1 = a) } x✝ = ↑(refl a) x✝ [PROOFSTEP] rfl [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c ⊢ range ↑(trans γ₁ γ₂) = range ↑γ₁ ∪ range ↑γ₂ [PROOFSTEP] rw [Path.trans] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c ⊢ range ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } = range ↑γ₁ ∪ range ↑γ₂ [PROOFSTEP] apply eq_of_subset_of_subset [GOAL] case a X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c ⊢ range ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } ⊆ range ↑γ₁ ∪ range ↑γ₂ [PROOFSTEP] rintro x ⟨⟨t, ht0, ht1⟩, hxt⟩ [GOAL] case a.intro.mk.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x ⊢ x ∈ range ↑γ₁ ∪ range ↑γ₂ [PROOFSTEP] by_cases h : t ≤ 1 / 2 [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≤ 1 / 2 ⊢ x ∈ range ↑γ₁ ∪ range ↑γ₂ [PROOFSTEP] left [GOAL] case pos.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≤ 1 / 2 ⊢ x ∈ range ↑γ₁ [PROOFSTEP] use⟨2 * t, ⟨by linarith, by linarith⟩⟩ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≤ 1 / 2 ⊢ 0 ≤ 2 * t [PROOFSTEP] linarith [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≤ 1 / 2 ⊢ 2 * t ≤ 1 [PROOFSTEP] linarith [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≤ 1 / 2 ⊢ ↑γ₁ { val := 2 * t, property := (_ : 0 ≤ 2 * t ∧ 2 * t ≤ 1) } = x [PROOFSTEP] rw [← γ₁.extend_extends] [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≤ 1 / 2 ⊢ extend γ₁ (2 * t) = x [PROOFSTEP] rwa [coe_mk_mk, Function.comp_apply, if_pos h] at hxt [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t ≤ 1 / 2 ⊢ x ∈ range ↑γ₁ ∪ range ↑γ₂ [PROOFSTEP] right [GOAL] case neg.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t ≤ 1 / 2 ⊢ x ∈ range ↑γ₂ [PROOFSTEP] use⟨2 * t - 1, ⟨by linarith, by linarith⟩⟩ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t ≤ 1 / 2 ⊢ 0 ≤ 2 * t - 1 [PROOFSTEP] linarith [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t ≤ 1 / 2 ⊢ 2 * t - 1 ≤ 1 [PROOFSTEP] linarith [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t ≤ 1 / 2 ⊢ ↑γ₂ { val := 2 * t - 1, property := (_ : 0 ≤ 2 * t - 1 ∧ 2 * t - 1 ≤ 1) } = x [PROOFSTEP] rw [← γ₂.extend_extends] [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t ≤ 1 / 2 ⊢ extend γ₂ (2 * t - 1) = x [PROOFSTEP] rwa [coe_mk_mk, Function.comp_apply, if_neg h] at hxt [GOAL] case a X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c ⊢ range ↑γ₁ ∪ range ↑γ₂ ⊆ range ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } [PROOFSTEP] rintro x (⟨⟨t, ht0, ht1⟩, hxt⟩ | ⟨⟨t, ht0, ht1⟩, hxt⟩) [GOAL] case a.inl.intro.mk.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₁ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x ⊢ x ∈ range ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } [PROOFSTEP] use⟨t / 2, ⟨by linarith, by linarith⟩⟩ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₁ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x ⊢ 0 ≤ t / 2 [PROOFSTEP] linarith [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₁ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x ⊢ t / 2 ≤ 1 [PROOFSTEP] linarith [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₁ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t / 2, property := (_ : 0 ≤ t / 2 ∧ t / 2 ≤ 1) } = x [PROOFSTEP] have : t / 2 ≤ 1 / 2 := (div_le_div_right (zero_lt_two : (0 : ℝ) < 2)).mpr ht1 [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₁ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x this : t / 2 ≤ 1 / 2 ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := t / 2, property := (_ : 0 ≤ t / 2 ∧ t / 2 ≤ 1) } = x [PROOFSTEP] rw [coe_mk_mk, Function.comp_apply, if_pos this, Subtype.coe_mk] [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₁ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x this : t / 2 ≤ 1 / 2 ⊢ extend γ₁ (2 * (t / 2)) = x [PROOFSTEP] ring_nf [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₁ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x this : t / 2 ≤ 1 / 2 ⊢ extend γ₁ t = x [PROOFSTEP] rwa [γ₁.extend_extends] [GOAL] case a.inr.intro.mk.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x ⊢ x ∈ range ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } [PROOFSTEP] by_cases h : t = 0 [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t = 0 ⊢ x ∈ range ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } [PROOFSTEP] use⟨1 / 2, ⟨by linarith, by linarith⟩⟩ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t = 0 ⊢ 0 ≤ 1 / 2 [PROOFSTEP] linarith [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t = 0 ⊢ 1 / 2 ≤ 1 [PROOFSTEP] linarith [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t = 0 ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := 1 / 2, property := (_ : 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1) } = x [PROOFSTEP] rw [coe_mk_mk, Function.comp_apply, if_pos le_rfl, Subtype.coe_mk, mul_one_div_cancel (two_ne_zero' ℝ)] [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t = 0 ⊢ extend γ₁ 1 = x [PROOFSTEP] rw [γ₁.extend_one] [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t = 0 ⊢ b = x [PROOFSTEP] rwa [← γ₂.extend_extends, h, γ₂.extend_zero] at hxt [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t = 0 ⊢ x ∈ range ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } [PROOFSTEP] use⟨(t + 1) / 2, ⟨by linarith, by linarith⟩⟩ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t = 0 ⊢ 0 ≤ (t + 1) / 2 [PROOFSTEP] linarith [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t = 0 ⊢ (t + 1) / 2 ≤ 1 [PROOFSTEP] linarith [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : ¬t = 0 ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := (t + 1) / 2, property := (_ : 0 ≤ (t + 1) / 2 ∧ (t + 1) / 2 ≤ 1) } = x [PROOFSTEP] replace h : t ≠ 0 := h [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0 : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≠ 0 ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := (t + 1) / 2, property := (_ : 0 ≤ (t + 1) / 2 ∧ (t + 1) / 2 ≤ 1) } = x [PROOFSTEP] have ht0 := lt_of_le_of_ne ht0 h.symm [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0✝ : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≠ 0 ht0 : 0 < t ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := (t + 1) / 2, property := (_ : 0 ≤ (t + 1) / 2 ∧ (t + 1) / 2 ≤ 1) } = x [PROOFSTEP] have : ¬(t + 1) / 2 ≤ 1 / 2 := by rw [not_le] linarith [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0✝ : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≠ 0 ht0 : 0 < t ⊢ ¬(t + 1) / 2 ≤ 1 / 2 [PROOFSTEP] rw [not_le] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0✝ : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≠ 0 ht0 : 0 < t ⊢ 1 / 2 < (t + 1) / 2 [PROOFSTEP] linarith [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0✝ : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≠ 0 ht0 : 0 < t this : ¬(t + 1) / 2 ≤ 1 / 2 ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend γ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 0 = a), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend γ₂ (2 * x - 1)) ∘ Subtype.val) 1 = c) } { val := (t + 1) / 2, property := (_ : 0 ≤ (t + 1) / 2 ∧ (t + 1) / 2 ≤ 1) } = x [PROOFSTEP] rw [coe_mk_mk, Function.comp_apply, Subtype.coe_mk, if_neg this] [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0✝ : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≠ 0 ht0 : 0 < t this : ¬(t + 1) / 2 ≤ 1 / 2 ⊢ extend γ₂ (2 * ((t + 1) / 2) - 1) = x [PROOFSTEP] ring_nf [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b c : X γ₁ : Path a b γ₂ : Path b c x : X t : ℝ ht0✝ : 0 ≤ t ht1 : t ≤ 1 hxt : ↑γ₂ { val := t, property := (_ : 0 ≤ t ∧ t ≤ 1) } = x h : t ≠ 0 ht0 : 0 < t this : ¬(t + 1) / 2 ≤ 1 / 2 ⊢ extend γ₂ t = x [PROOFSTEP] rwa [γ₂.extend_extends] [GOAL] X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : ContinuousOn f (range ↑γ) ⊢ ContinuousMap.toFun (ContinuousMap.mk (f ∘ ↑γ)) 0 = f x [PROOFSTEP] simp [GOAL] X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : ContinuousOn f (range ↑γ) ⊢ ContinuousMap.toFun (ContinuousMap.mk (f ∘ ↑γ)) 1 = f y [PROOFSTEP] simp [GOAL] X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : Continuous f ⊢ ↑(map γ h) = f ∘ ↑γ [PROOFSTEP] ext t [GOAL] case h X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : Continuous f t : ↑I ⊢ ↑(map γ h) t = (f ∘ ↑γ) t [PROOFSTEP] rfl [GOAL] X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : Continuous f ⊢ map (trans γ γ') h = trans (map γ h) (map γ' h) [PROOFSTEP] ext t [GOAL] case a.h X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : Continuous f t : ↑I ⊢ ↑(map (trans γ γ') h) t = ↑(trans (map γ h) (map γ' h)) t [PROOFSTEP] rw [trans_apply, map_coe, Function.comp_apply, trans_apply] [GOAL] case a.h X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : Continuous f t : ↑I ⊢ f (if h : ↑t ≤ 1 / 2 then ↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } else ↑γ' { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) }) = if h_1 : ↑t ≤ 1 / 2 then ↑(map γ h) { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } else ↑(map γ' h) { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) } [PROOFSTEP] split_ifs [GOAL] case pos X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : Continuous f t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ f (↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) }) = ↑(map γ h) { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } [PROOFSTEP] rfl [GOAL] case neg X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y γ' : Path y z Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y h : Continuous f t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ f (↑γ' { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) }) = ↑(map γ' h) { val := 2 * ↑t - 1, property := (_ : 2 * ↑t - 1 ∈ I) } [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y ⊢ map γ (_ : Continuous id) = γ [PROOFSTEP] ext [GOAL] case a.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y x✝ : ↑I ⊢ ↑(map γ (_ : Continuous id)) x✝ = ↑γ x✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 Y✝ : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y Y : Type u_4 inst✝¹ : TopologicalSpace Y Z : Type u_5 inst✝ : TopologicalSpace Z f : X → Y hf : Continuous f g : Y → Z hg : Continuous g ⊢ map (map γ hf) hg = map γ (_ : Continuous (g ∘ f)) [PROOFSTEP] ext [GOAL] case a.h X : Type u_1 Y✝ : Type u_2 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y✝ x y z : X ι : Type u_3 γ✝ γ : Path x y Y : Type u_4 inst✝¹ : TopologicalSpace Y Z : Type u_5 inst✝ : TopologicalSpace Z f : X → Y hf : Continuous f g : Y → Z hg : Continuous g x✝ : ↑I ⊢ ↑(map (map γ hf) hg) x✝ = ↑(map γ (_ : Continuous (g ∘ f))) x✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y x' y' : X hx : x' = x hy : y' = y ⊢ ContinuousMap.toFun (ContinuousMap.mk ↑γ) 0 = x' [PROOFSTEP] simp [hx] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y x' y' : X hx : x' = x hy : y' = y ⊢ ContinuousMap.toFun (ContinuousMap.mk ↑γ) 1 = y' [PROOFSTEP] simp [hy] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ✝ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b : ι → X γ : (t : ι) → Path (a t) (b t) h : Continuous ↿γ ⊢ Continuous ↿fun t => extend (γ t) [PROOFSTEP] refine' h.comp (continuous_id.prod_map continuous_projIcc) [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ✝ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b : ι → X γ : (t : ι) → Path (a t) (b t) h : Continuous ↿γ ⊢ 0 ≤ 1 [PROOFSTEP] exact zero_le_one [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ ⊢ Continuous ↿fun t => trans (γ₁ t) (γ₂ t) [PROOFSTEP] have h₁' := Path.continuous_uncurry_extend_of_continuous_family γ₁ h₁ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) ⊢ Continuous ↿fun t => trans (γ₁ t) (γ₂ t) [PROOFSTEP] have h₂' := Path.continuous_uncurry_extend_of_continuous_family γ₂ h₂ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) h₂' : Continuous ↿fun t => extend (γ₂ t) ⊢ Continuous ↿fun t => trans (γ₁ t) (γ₂ t) [PROOFSTEP] simp only [HasUncurry.uncurry, CoeFun.coe, Path.trans, (· ∘ ·)] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) h₂' : Continuous ↿fun t => extend (γ₂ t) ⊢ Continuous fun p => ↑{ toContinuousMap := ContinuousMap.mk fun x => if ↑x ≤ 1 / 2 then extend (γ₁ p.fst) (2 * ↑x) else extend (γ₂ p.fst) (2 * ↑x - 1), source' := (_ : ContinuousMap.toFun (ContinuousMap.mk fun x => if ↑x ≤ 1 / 2 then extend (γ₁ p.fst) (2 * ↑x) else extend (γ₂ p.fst) (2 * ↑x - 1)) 0 = a p.fst), target' := (_ : ContinuousMap.toFun (ContinuousMap.mk fun x => if ↑x ≤ 1 / 2 then extend (γ₁ p.fst) (2 * ↑x) else extend (γ₂ p.fst) (2 * ↑x - 1)) 1 = c p.fst) } p.snd [PROOFSTEP] refine' Continuous.if_le _ _ (continuous_subtype_val.comp continuous_snd) continuous_const _ [GOAL] case refine'_1 X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) h₂' : Continuous ↿fun t => extend (γ₂ t) ⊢ Continuous fun p => extend (γ₁ p.fst) (2 * ↑p.snd) [PROOFSTEP] change Continuous ((fun p : ι × ℝ => (γ₁ p.1).extend p.2) ∘ Prod.map id (fun x => 2 * x : I → ℝ)) [GOAL] case refine'_1 X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) h₂' : Continuous ↿fun t => extend (γ₂ t) ⊢ Continuous ((fun p => extend (γ₁ p.fst) p.snd) ∘ Prod.map id fun x => 2 * ↑x) [PROOFSTEP] exact h₁'.comp (continuous_id.prod_map <| continuous_const.mul continuous_subtype_val) [GOAL] case refine'_2 X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) h₂' : Continuous ↿fun t => extend (γ₂ t) ⊢ Continuous fun p => extend (γ₂ p.fst) (2 * ↑p.snd - 1) [PROOFSTEP] change Continuous ((fun p : ι × ℝ => (γ₂ p.1).extend p.2) ∘ Prod.map id (fun x => 2 * x - 1 : I → ℝ)) [GOAL] case refine'_2 X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) h₂' : Continuous ↿fun t => extend (γ₂ t) ⊢ Continuous ((fun p => extend (γ₂ p.fst) p.snd) ∘ Prod.map id fun x => 2 * ↑x - 1) [PROOFSTEP] exact h₂'.comp (continuous_id.prod_map <| (continuous_const.mul continuous_subtype_val).sub continuous_const) [GOAL] case refine'_3 X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) h₂' : Continuous ↿fun t => extend (γ₂ t) ⊢ ∀ (x : ι × ↑I), ↑x.snd = 1 / 2 → extend (γ₁ x.fst) (2 * ↑x.snd) = extend (γ₂ x.fst) (2 * ↑x.snd - 1) [PROOFSTEP] rintro st hst [GOAL] case refine'_3 X✝ : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X✝ inst✝² : TopologicalSpace Y x y z : X✝ ι✝ : Type u_3 γ : Path x y X : Type u_4 ι : Type u_5 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace ι a b c : ι → X γ₁ : (t : ι) → Path (a t) (b t) h₁ : Continuous ↿γ₁ γ₂ : (t : ι) → Path (b t) (c t) h₂ : Continuous ↿γ₂ h₁' : Continuous ↿fun t => extend (γ₁ t) h₂' : Continuous ↿fun t => extend (γ₂ t) st : ι × ↑I hst : ↑st.snd = 1 / 2 ⊢ extend (γ₁ st.fst) (2 * ↑st.snd) = extend (γ₂ st.fst) (2 * ↑st.snd - 1) [PROOFSTEP] simp [hst, mul_inv_cancel (two_ne_zero' ℝ)] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y f : Y → Path x y g : Y → Path y z ⊢ Continuous f → Continuous g → Continuous fun t => trans (f t) (g t) [PROOFSTEP] intro hf hg [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y f : Y → Path x y g : Y → Path y z hf : Continuous f hg : Continuous g ⊢ Continuous fun t => trans (f t) (g t) [PROOFSTEP] apply continuous_uncurry_iff.mp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y f : Y → Path x y g : Y → Path y z hf : Continuous f hg : Continuous g ⊢ Continuous ↿fun t => trans (f t) (g t) [PROOFSTEP] exact trans_continuous_family _ (continuous_uncurry_iff.mpr hf) _ (continuous_uncurry_iff.mpr hg) [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ γ₂ : Path b₁ b₂ ⊢ ContinuousMap.toFun (prodMk γ₁.toContinuousMap γ₂.toContinuousMap) 0 = (a₁, b₁) [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ γ₂ : Path b₁ b₂ ⊢ ContinuousMap.toFun (prodMk γ₁.toContinuousMap γ₂.toContinuousMap) 1 = (a₂, b₂) [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ ⊢ trans (Path.prod γ₁ γ₂) (Path.prod δ₁ δ₂) = Path.prod (trans γ₁ δ₁) (trans γ₂ δ₂) [PROOFSTEP] ext t [GOAL] case a.h.h₁ X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I ⊢ (↑(trans (Path.prod γ₁ γ₂) (Path.prod δ₁ δ₂)) t).fst = (↑(Path.prod (trans γ₁ δ₁) (trans γ₂ δ₂)) t).fst [PROOFSTEP] unfold Path.trans [GOAL] case a.h.h₂ X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I ⊢ (↑(trans (Path.prod γ₁ γ₂) (Path.prod δ₁ δ₂)) t).snd = (↑(Path.prod (trans γ₁ δ₁) (trans γ₂ δ₂)) t).snd [PROOFSTEP] unfold Path.trans [GOAL] case a.h.h₁ X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I ⊢ (↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend (Path.prod γ₁ γ₂) (2 * t) else extend (Path.prod δ₁ δ₂) (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend (Path.prod γ₁ γ₂) (2 * x) else extend (Path.prod δ₁ δ₂) (2 * x - 1)) ∘ Subtype.val) 0 = (a₁, b₁)), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend (Path.prod γ₁ γ₂) (2 * x) else extend (Path.prod δ₁ δ₂) (2 * x - 1)) ∘ Subtype.val) 1 = (a₃, b₃)) } t).fst = (↑(Path.prod { toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend δ₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend δ₁ (2 * x - 1)) ∘ Subtype.val) 0 = a₁), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend δ₁ (2 * x - 1)) ∘ Subtype.val) 1 = a₃) } { toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₂ (2 * t) else extend δ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₂ (2 * x) else extend δ₂ (2 * x - 1)) ∘ Subtype.val) 0 = b₁), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₂ (2 * x) else extend δ₂ (2 * x - 1)) ∘ Subtype.val) 1 = b₃) }) t).fst [PROOFSTEP] simp only [Path.coe_mk_mk, Path.prod_coe, Function.comp_apply] [GOAL] case a.h.h₂ X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I ⊢ (↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend (Path.prod γ₁ γ₂) (2 * t) else extend (Path.prod δ₁ δ₂) (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend (Path.prod γ₁ γ₂) (2 * x) else extend (Path.prod δ₁ δ₂) (2 * x - 1)) ∘ Subtype.val) 0 = (a₁, b₁)), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend (Path.prod γ₁ γ₂) (2 * x) else extend (Path.prod δ₁ δ₂) (2 * x - 1)) ∘ Subtype.val) 1 = (a₃, b₃)) } t).snd = (↑(Path.prod { toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₁ (2 * t) else extend δ₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend δ₁ (2 * x - 1)) ∘ Subtype.val) 0 = a₁), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₁ (2 * x) else extend δ₁ (2 * x - 1)) ∘ Subtype.val) 1 = a₃) } { toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend γ₂ (2 * t) else extend δ₂ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₂ (2 * x) else extend δ₂ (2 * x - 1)) ∘ Subtype.val) 0 = b₁), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend γ₂ (2 * x) else extend δ₂ (2 * x - 1)) ∘ Subtype.val) 1 = b₃) }) t).snd [PROOFSTEP] simp only [Path.coe_mk_mk, Path.prod_coe, Function.comp_apply] [GOAL] case a.h.h₁ X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I ⊢ (if ↑t ≤ 1 / 2 then extend (Path.prod γ₁ γ₂) (2 * ↑t) else extend (Path.prod δ₁ δ₂) (2 * ↑t - 1)).fst = if ↑t ≤ 1 / 2 then extend γ₁ (2 * ↑t) else extend δ₁ (2 * ↑t - 1) [PROOFSTEP] split_ifs [GOAL] case a.h.h₂ X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I ⊢ (if ↑t ≤ 1 / 2 then extend (Path.prod γ₁ γ₂) (2 * ↑t) else extend (Path.prod δ₁ δ₂) (2 * ↑t - 1)).snd = if ↑t ≤ 1 / 2 then extend γ₂ (2 * ↑t) else extend δ₂ (2 * ↑t - 1) [PROOFSTEP] split_ifs [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ (extend (Path.prod γ₁ γ₂) (2 * ↑t)).fst = extend γ₁ (2 * ↑t) [PROOFSTEP] rfl [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ (extend (Path.prod δ₁ δ₂) (2 * ↑t - 1)).fst = extend δ₁ (2 * ↑t - 1) [PROOFSTEP] rfl [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ (extend (Path.prod γ₁ γ₂) (2 * ↑t)).snd = extend γ₂ (2 * ↑t) [PROOFSTEP] rfl [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y a₁ a₂ a₃ : X b₁ b₂ b₃ : Y γ₁ : Path a₁ a₂ δ₁ : Path a₂ a₃ γ₂ : Path b₁ b₂ δ₂ : Path b₂ b₃ t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ (extend (Path.prod δ₁ δ₂) (2 * ↑t - 1)).snd = extend δ₂ (2 * ↑t - 1) [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ : Path x y χ : ι → Type u_4 inst✝ : (i : ι) → TopologicalSpace (χ i) as bs cs : (i : ι) → χ i γ : (i : ι) → Path (as i) (bs i) ⊢ ContinuousMap.toFun (ContinuousMap.pi fun i => (γ i).toContinuousMap) 0 = as [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ : Path x y χ : ι → Type u_4 inst✝ : (i : ι) → TopologicalSpace (χ i) as bs cs : (i : ι) → χ i γ : (i : ι) → Path (as i) (bs i) ⊢ ContinuousMap.toFun (ContinuousMap.pi fun i => (γ i).toContinuousMap) 1 = bs [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y χ : ι → Type u_4 inst✝ : (i : ι) → TopologicalSpace (χ i) as bs cs : (i : ι) → χ i γ₀ : (i : ι) → Path (as i) (bs i) γ₁ : (i : ι) → Path (bs i) (cs i) ⊢ trans (Path.pi γ₀) (Path.pi γ₁) = Path.pi fun i => trans (γ₀ i) (γ₁ i) [PROOFSTEP] ext t i [GOAL] case a.h.h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y χ : ι → Type u_4 inst✝ : (i : ι) → TopologicalSpace (χ i) as bs cs : (i : ι) → χ i γ₀ : (i : ι) → Path (as i) (bs i) γ₁ : (i : ι) → Path (bs i) (cs i) t : ↑I i : ι ⊢ ↑(trans (Path.pi γ₀) (Path.pi γ₁)) t i = ↑(Path.pi fun i => trans (γ₀ i) (γ₁ i)) t i [PROOFSTEP] unfold Path.trans [GOAL] case a.h.h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y χ : ι → Type u_4 inst✝ : (i : ι) → TopologicalSpace (χ i) as bs cs : (i : ι) → χ i γ₀ : (i : ι) → Path (as i) (bs i) γ₁ : (i : ι) → Path (bs i) (cs i) t : ↑I i : ι ⊢ ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend (Path.pi γ₀) (2 * t) else extend (Path.pi γ₁) (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend (Path.pi γ₀) (2 * x) else extend (Path.pi γ₁) (2 * x - 1)) ∘ Subtype.val) 0 = fun i => as i), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend (Path.pi γ₀) (2 * x) else extend (Path.pi γ₁) (2 * x - 1)) ∘ Subtype.val) 1 = fun i => cs i) } t i = ↑(Path.pi fun i => { toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend (γ₀ i) (2 * t) else extend (γ₁ i) (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend (γ₀ i) (2 * x) else extend (γ₁ i) (2 * x - 1)) ∘ Subtype.val) 0 = as i), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend (γ₀ i) (2 * x) else extend (γ₁ i) (2 * x - 1)) ∘ Subtype.val) 1 = cs i) }) t i [PROOFSTEP] simp only [Path.coe_mk_mk, Function.comp_apply, pi_coe] [GOAL] case a.h.h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y χ : ι → Type u_4 inst✝ : (i : ι) → TopologicalSpace (χ i) as bs cs : (i : ι) → χ i γ₀ : (i : ι) → Path (as i) (bs i) γ₁ : (i : ι) → Path (bs i) (cs i) t : ↑I i : ι ⊢ ite (↑t ≤ 1 / 2) (extend (Path.pi γ₀) (2 * ↑t)) (extend (Path.pi γ₁) (2 * ↑t - 1)) i = if ↑t ≤ 1 / 2 then extend (γ₀ i) (2 * ↑t) else extend (γ₁ i) (2 * ↑t - 1) [PROOFSTEP] split_ifs [GOAL] case pos X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y χ : ι → Type u_4 inst✝ : (i : ι) → TopologicalSpace (χ i) as bs cs : (i : ι) → χ i γ₀ : (i : ι) → Path (as i) (bs i) γ₁ : (i : ι) → Path (bs i) (cs i) t : ↑I i : ι h✝ : ↑t ≤ 1 / 2 ⊢ extend (Path.pi γ₀) (2 * ↑t) i = extend (γ₀ i) (2 * ↑t) [PROOFSTEP] rfl [GOAL] case neg X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y χ : ι → Type u_4 inst✝ : (i : ι) → TopologicalSpace (χ i) as bs cs : (i : ι) → χ i γ₀ : (i : ι) → Path (as i) (bs i) γ₁ : (i : ι) → Path (bs i) (cs i) t : ↑I i : ι h✝ : ¬↑t ≤ 1 / 2 ⊢ extend (Path.pi γ₁) (2 * ↑t - 1) i = extend (γ₁ i) (2 * ↑t - 1) [PROOFSTEP] rfl [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ ContinuousMap.toFun (ContinuousMap.mk fun s => extend γ (min (max (↑s) t₀) t₁)) 0 = extend γ (min t₀ t₁) [PROOFSTEP] simp only [min_def, max_def'] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ extend γ (if (if t₀ ≤ ↑0 then ↑0 else t₀) ≤ t₁ then if t₀ ≤ ↑0 then ↑0 else t₀ else t₁) = extend γ (if t₀ ≤ t₁ then t₀ else t₁) [PROOFSTEP] norm_cast [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ extend γ (if (if t₀ ≤ 0 then 0 else t₀) ≤ t₁ then if t₀ ≤ 0 then 0 else t₀ else t₁) = extend γ (if t₀ ≤ t₁ then t₀ else t₁) [PROOFSTEP] split_ifs with h₁ h₂ h₃ h₄ [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 0 h₂ : 0 ≤ t₁ h₃ : t₀ ≤ t₁ ⊢ extend γ 0 = extend γ t₀ [PROOFSTEP] simp [γ.extend_of_le_zero h₁] [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 0 h₂ : 0 ≤ t₁ h₃ : ¬t₀ ≤ t₁ ⊢ extend γ 0 = extend γ t₁ [PROOFSTEP] congr [GOAL] case neg.e_a X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 0 h₂ : 0 ≤ t₁ h₃ : ¬t₀ ≤ t₁ ⊢ 0 = t₁ [PROOFSTEP] linarith [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 0 h₂ : ¬0 ≤ t₁ h₄ : t₀ ≤ t₁ ⊢ extend γ t₁ = extend γ t₀ [PROOFSTEP] have h₄ : t₁ ≤ 0 := le_of_lt (by simpa using h₂) [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 0 h₂ : ¬0 ≤ t₁ h₄ : t₀ ≤ t₁ ⊢ t₁ < 0 [PROOFSTEP] simpa using h₂ [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 0 h₂ : ¬0 ≤ t₁ h₄✝ : t₀ ≤ t₁ h₄ : t₁ ≤ 0 ⊢ extend γ t₁ = extend γ t₀ [PROOFSTEP] simp [γ.extend_of_le_zero h₄, γ.extend_of_le_zero h₁] [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 0 h₂ : ¬0 ≤ t₁ h₄ : ¬t₀ ≤ t₁ ⊢ extend γ t₁ = extend γ t₁ case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : ¬t₀ ≤ 0 h✝ : t₀ ≤ t₁ ⊢ extend γ t₀ = extend γ t₀ case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : ¬t₀ ≤ 0 h✝ : ¬t₀ ≤ t₁ ⊢ extend γ t₁ = extend γ t₁ [PROOFSTEP] all_goals rfl [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 0 h₂ : ¬0 ≤ t₁ h₄ : ¬t₀ ≤ t₁ ⊢ extend γ t₁ = extend γ t₁ [PROOFSTEP] rfl [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : ¬t₀ ≤ 0 h✝ : t₀ ≤ t₁ ⊢ extend γ t₀ = extend γ t₀ [PROOFSTEP] rfl [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : ¬t₀ ≤ 0 h✝ : ¬t₀ ≤ t₁ ⊢ extend γ t₁ = extend γ t₁ [PROOFSTEP] rfl [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ ContinuousMap.toFun (ContinuousMap.mk fun s => extend γ (min (max (↑s) t₀) t₁)) 1 = extend γ t₁ [PROOFSTEP] simp only [min_def, max_def'] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ extend γ (if (if t₀ ≤ ↑1 then ↑1 else t₀) ≤ t₁ then if t₀ ≤ ↑1 then ↑1 else t₀ else t₁) = extend γ t₁ [PROOFSTEP] norm_cast [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ extend γ (if (if t₀ ≤ 1 then 1 else t₀) ≤ t₁ then if t₀ ≤ 1 then 1 else t₀ else t₁) = extend γ t₁ [PROOFSTEP] split_ifs with h₁ h₂ h₃ [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 1 h₂ : 1 ≤ t₁ ⊢ extend γ 1 = extend γ t₁ [PROOFSTEP] simp [γ.extend_of_one_le h₂] [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : t₀ ≤ 1 h₂ : ¬1 ≤ t₁ ⊢ extend γ t₁ = extend γ t₁ [PROOFSTEP] rfl [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : ¬t₀ ≤ 1 h₃ : t₀ ≤ t₁ ⊢ extend γ t₀ = extend γ t₁ [PROOFSTEP] have h₄ : 1 ≤ t₀ := le_of_lt (by simpa using h₁) [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : ¬t₀ ≤ 1 h₃ : t₀ ≤ t₁ ⊢ 1 < t₀ [PROOFSTEP] simpa using h₁ [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : ¬t₀ ≤ 1 h₃ : t₀ ≤ t₁ h₄ : 1 ≤ t₀ ⊢ extend γ t₀ = extend γ t₁ [PROOFSTEP] simp [γ.extend_of_one_le h₄, γ.extend_of_one_le (h₄.trans h₃)] [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h₁ : ¬t₀ ≤ 1 h₃ : ¬t₀ ≤ t₁ ⊢ extend γ t₁ = extend γ t₁ [PROOFSTEP] rfl [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ h : t₀ ≤ t₁ ⊢ extend γ t₀ = extend γ (min t₀ t₁) [PROOFSTEP] rw [min_eq_left h] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ range ↑(truncate γ t₀ t₁) ⊆ range ↑γ [PROOFSTEP] rw [← γ.extend_range] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ range ↑(truncate γ t₀ t₁) ⊆ range (extend γ) [PROOFSTEP] simp only [range_subset_iff, SetCoe.exists, SetCoe.forall] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ : ℝ ⊢ ∀ (x : ℝ) (h : x ∈ I), ↑(truncate γ t₀ t₁) { val := x, property := h } ∈ range (extend γ) [PROOFSTEP] intro x _hx [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t₀ t₁ x : ℝ _hx : x ∈ I ⊢ ↑(truncate γ t₀ t₁) { val := x, property := _hx } ∈ range (extend γ) [PROOFSTEP] simp only [FunLike.coe, Path.truncate, mem_range_self] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ ⊢ Continuous ↿(truncate γ t) [PROOFSTEP] have key : Continuous (fun x => (t, x) : ℝ × I → ℝ × ℝ × I) := by continuity [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ ⊢ Continuous fun x => (t, x) [PROOFSTEP] continuity [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ key : Continuous fun x => (t, x) ⊢ Continuous ↿(truncate γ t) [PROOFSTEP] exact γ.truncate_continuous_family.comp key [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ ⊢ extend γ (min t t) = extend γ t [PROOFSTEP] rw [min_self] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ ⊢ truncate γ t t = cast (refl (extend γ t)) (_ : extend γ (min t t) = extend γ t) (_ : extend γ t = extend γ t) [PROOFSTEP] ext x [GOAL] case a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ x : ↑I ⊢ ↑(truncate γ t t) x = ↑(cast (refl (extend γ t)) (_ : extend γ (min t t) = extend γ t) (_ : extend γ t = extend γ t)) x [PROOFSTEP] rw [cast_coe] [GOAL] case a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ x : ↑I ⊢ ↑(truncate γ t t) x = ↑(refl (extend γ t)) x [PROOFSTEP] simp only [truncate, FunLike.coe, refl, min_def, max_def] [GOAL] case a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ x : ↑I ⊢ extend γ (if (if ↑x ≤ t then t else ↑x) ≤ t then if ↑x ≤ t then t else ↑x else t) = extend γ t [PROOFSTEP] split_ifs with h₁ h₂ [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ x : ↑I h₁ : ↑x ≤ t h₂ : t ≤ t ⊢ extend γ t = extend γ t [PROOFSTEP] congr [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ x : ↑I h₁ : ↑x ≤ t h₂ : ¬t ≤ t ⊢ extend γ t = extend γ t [PROOFSTEP] congr [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b t : ℝ x : ↑I h₁ : ¬↑x ≤ t ⊢ extend γ t = extend γ t [PROOFSTEP] congr [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b ⊢ extend γ (min 0 0) = a [PROOFSTEP] rw [min_self, γ.extend_zero] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b ⊢ truncate γ 0 0 = cast (refl a) (_ : extend γ (min 0 0) = a) (_ : extend γ 0 = a) [PROOFSTEP] convert γ.truncate_self 0 [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b ⊢ extend γ (min 1 1) = b [PROOFSTEP] rw [min_self, γ.extend_one] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b ⊢ truncate γ 1 1 = cast (refl b) (_ : extend γ (min 1 1) = b) (_ : extend γ 1 = b) [PROOFSTEP] convert γ.truncate_self 1 [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b ⊢ extend γ (min 0 1) = a [PROOFSTEP] simp [zero_le_one, extend_zero] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b ⊢ extend γ 1 = b [PROOFSTEP] simp [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 γ✝ : Path x y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b ⊢ truncate γ 0 1 = cast γ (_ : extend γ (min 0 1) = a) (_ : extend γ 1 = b) [PROOFSTEP] ext x [GOAL] case a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b x : ↑I ⊢ ↑(truncate γ 0 1) x = ↑(cast γ (_ : extend γ (min 0 1) = a) (_ : extend γ 1 = b)) x [PROOFSTEP] rw [cast_coe] [GOAL] case a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b x : ↑I ⊢ ↑(truncate γ 0 1) x = ↑γ x [PROOFSTEP] have : ↑x ∈ (Icc 0 1 : Set ℝ) := x.2 [GOAL] case a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x✝ y z : X✝ ι : Type u_3 γ✝ : Path x✝ y X : Type u_4 inst✝ : TopologicalSpace X a b : X γ : Path a b x : ↑I this : ↑x ∈ Icc 0 1 ⊢ ↑(truncate γ 0 1) x = ↑γ x [PROOFSTEP] rw [truncate, coe_mk_mk, max_eq_left this.1, min_eq_left this.2, extend_extends'] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous (↑γ ∘ f) [PROOFSTEP] continuity [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ ContinuousMap.toFun (ContinuousMap.mk (↑γ ∘ f)) 0 = x [PROOFSTEP] simp [hf₀] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ ContinuousMap.toFun (ContinuousMap.mk (↑γ ∘ f)) 1 = y [PROOFSTEP] simp [hf₁] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y ⊢ reparam γ id (_ : Continuous id) (_ : id 0 = id 0) (_ : id 1 = id 1) = γ [PROOFSTEP] ext [GOAL] case a.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y x✝ : ↑I ⊢ ↑(reparam γ id (_ : Continuous id) (_ : id 0 = id 0) (_ : id 1 = id 1)) x✝ = ↑γ x✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ range ↑(reparam γ f hfcont hf₀ hf₁) = range ↑γ [PROOFSTEP] change range (γ ∘ f) = range γ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ range (↑γ ∘ f) = range ↑γ [PROOFSTEP] have : range f = univ := by rw [range_iff_surjective] intro t have h₁ : Continuous (Set.IccExtend (zero_le_one' ℝ) f) := by continuity have := intermediate_value_Icc (zero_le_one' ℝ) h₁.continuousOn · rw [IccExtend_left, IccExtend_right, Icc.mk_zero, Icc.mk_one, hf₀, hf₁] at this rcases this t.2 with ⟨w, hw₁, hw₂⟩ rw [IccExtend_of_mem _ _ hw₁] at hw₂ exact ⟨_, hw₂⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ range f = univ [PROOFSTEP] rw [range_iff_surjective] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Surjective f [PROOFSTEP] intro t [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t : ↑I ⊢ ∃ a, f a = t [PROOFSTEP] have h₁ : Continuous (Set.IccExtend (zero_le_one' ℝ) f) := by continuity [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t : ↑I ⊢ Continuous (IccExtend (_ : 0 ≤ 1) f) [PROOFSTEP] continuity [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t : ↑I h₁ : Continuous (IccExtend (_ : 0 ≤ 1) f) ⊢ ∃ a, f a = t [PROOFSTEP] have := intermediate_value_Icc (zero_le_one' ℝ) h₁.continuousOn [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t : ↑I h₁ : Continuous (IccExtend (_ : 0 ≤ 1) f) this : Icc (IccExtend (_ : 0 ≤ 1) f 0) (IccExtend (_ : 0 ≤ 1) f 1) ⊆ IccExtend (_ : 0 ≤ 1) f '' Icc 0 1 ⊢ ∃ a, f a = t [PROOFSTEP] rw [IccExtend_left, IccExtend_right, Icc.mk_zero, Icc.mk_one, hf₀, hf₁] at this [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t : ↑I h₁ : Continuous (IccExtend (_ : 0 ≤ 1) f) this : Icc 0 1 ⊆ IccExtend (_ : 0 ≤ 1) f '' Icc 0 1 ⊢ ∃ a, f a = t [PROOFSTEP] rcases this t.2 with ⟨w, hw₁, hw₂⟩ [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t : ↑I h₁ : Continuous (IccExtend (_ : 0 ≤ 1) f) this : Icc 0 1 ⊆ IccExtend (_ : 0 ≤ 1) f '' Icc 0 1 w : ℝ hw₁ : w ∈ Icc 0 1 hw₂ : IccExtend (_ : 0 ≤ 1) f w = t ⊢ ∃ a, f a = t [PROOFSTEP] rw [IccExtend_of_mem _ _ hw₁] at hw₂ [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t : ↑I h₁ : Continuous (IccExtend (_ : 0 ≤ 1) f) this : Icc 0 1 ⊆ IccExtend (_ : 0 ≤ 1) f '' Icc 0 1 w : ℝ hw₁ : w ∈ Icc 0 1 hw₂ : f { val := w, property := hw₁ } = t ⊢ ∃ a, f a = t [PROOFSTEP] exact ⟨_, hw₂⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ✝ γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 this : range f = univ ⊢ range (↑γ ∘ f) = range ↑γ [PROOFSTEP] rw [range_comp, this, image_univ] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ reparam (refl x) f hfcont hf₀ hf₁ = refl x [PROOFSTEP] ext [GOAL] case a.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 γ : Path x y f : ↑I → ↑I hfcont : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 x✝ : ↑I ⊢ ↑(reparam (refl x) f hfcont hf₀ hf₁) x✝ = ↑(refl x) x✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : JoinedIn F x y ⊢ x ∈ F ∧ y ∈ F [PROOFSTEP] rcases h with ⟨γ, γ_in⟩ [GOAL] case intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X γ : Path x y γ_in : ∀ (t : ↑I), ↑γ t ∈ F ⊢ x ∈ F ∧ y ∈ F [PROOFSTEP] have : γ 0 ∈ F ∧ γ 1 ∈ F := by constructor <;> apply γ_in [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X γ : Path x y γ_in : ∀ (t : ↑I), ↑γ t ∈ F ⊢ ↑γ 0 ∈ F ∧ ↑γ 1 ∈ F [PROOFSTEP] constructor [GOAL] case left X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X γ : Path x y γ_in : ∀ (t : ↑I), ↑γ t ∈ F ⊢ ↑γ 0 ∈ F [PROOFSTEP] apply γ_in [GOAL] case right X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X γ : Path x y γ_in : ∀ (t : ↑I), ↑γ t ∈ F ⊢ ↑γ 1 ∈ F [PROOFSTEP] apply γ_in [GOAL] case intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X γ : Path x y γ_in : ∀ (t : ↑I), ↑γ t ∈ F this : ↑γ 0 ∈ F ∧ ↑γ 1 ∈ F ⊢ x ∈ F ∧ y ∈ F [PROOFSTEP] simpa using this [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : JoinedIn F x y ⊢ Continuous fun t => { val := ↑(somePath h) t, property := (_ : ↑(somePath h) t ∈ F) } [PROOFSTEP] continuity [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : JoinedIn F x y ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(somePath h) t, property := (_ : ↑(somePath h) t ∈ F) }) 0 = { val := x, property := (_ : x ∈ F) } [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : JoinedIn F x y ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(somePath h) t, property := (_ : ↑(somePath h) t ∈ F) }) 1 = { val := y, property := (_ : y ∈ F) } [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X x_in : x ∈ F y_in : y ∈ F h : Joined { val := x, property := x_in } { val := y, property := y_in } ⊢ ∀ (t : ↑I), ↑(Path.map (Joined.somePath h) (_ : Continuous Subtype.val)) t ∈ F [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ JoinedIn univ x y ↔ Joined x y [PROOFSTEP] simp [JoinedIn, Joined, exists_true_iff_nonempty] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : JoinedIn F x y ⊢ JoinedIn F y x [PROOFSTEP] cases' h.mem with hx hy [GOAL] case intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : JoinedIn F x y hx : x ∈ F hy : y ∈ F ⊢ JoinedIn F y x [PROOFSTEP] simp_all [joinedIn_iff_joined] [GOAL] case intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X hx✝ : x ∈ F hy✝ : y ∈ F h : Joined { val := x, property := (_ : x ∈ F) } { val := y, property := (_ : y ∈ F) } hx : x ∈ F hy : y ∈ F ⊢ Joined { val := y, property := (_ : y ∈ F) } { val := x, property := (_ : x ∈ F) } [PROOFSTEP] exact h.symm [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X hxy : JoinedIn F x y hyz : JoinedIn F y z ⊢ JoinedIn F x z [PROOFSTEP] cases' hxy.mem with hx hy [GOAL] case intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X hxy : JoinedIn F x y hyz : JoinedIn F y z hx : x ∈ F hy : y ∈ F ⊢ JoinedIn F x z [PROOFSTEP] cases' hyz.mem with hx hy [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X hxy : JoinedIn F x y hyz : JoinedIn F y z hx✝ : x ∈ F hy✝ hx : y ∈ F hy : z ∈ F ⊢ JoinedIn F x z [PROOFSTEP] simp_all [joinedIn_iff_joined] [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X hx✝¹ : x ∈ F hy✝¹ : y ∈ F hy✝ : z ∈ F hxy : Joined { val := x, property := (_ : x ∈ F) } { val := y, property := (_ : y ∈ F) } hyz : Joined { val := y, property := (_ : y ∈ F) } { val := z, property := (_ : z ∈ F) } hx✝ : x ∈ F hx : y ∈ F hy : z ∈ F ⊢ Joined { val := x, property := (_ : x ∈ F) } { val := z, property := (_ : z ∈ F) } [PROOFSTEP] exact hxy.trans hyz [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : x ∈ pathComponent y ⊢ pathComponent x = pathComponent y [PROOFSTEP] ext z [GOAL] case h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z✝ : X ι : Type u_3 F : Set X h : x ∈ pathComponent y z : X ⊢ z ∈ pathComponent x ↔ z ∈ pathComponent y [PROOFSTEP] constructor [GOAL] case h.mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z✝ : X ι : Type u_3 F : Set X h : x ∈ pathComponent y z : X ⊢ z ∈ pathComponent x → z ∈ pathComponent y [PROOFSTEP] intro h' [GOAL] case h.mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z✝ : X ι : Type u_3 F : Set X h : x ∈ pathComponent y z : X h' : z ∈ pathComponent x ⊢ z ∈ pathComponent y [PROOFSTEP] rw [pathComponent_symm] [GOAL] case h.mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z✝ : X ι : Type u_3 F : Set X h : x ∈ pathComponent y z : X h' : z ∈ pathComponent x ⊢ y ∈ pathComponent z [PROOFSTEP] exact (h.trans h').symm [GOAL] case h.mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z✝ : X ι : Type u_3 F : Set X h : x ∈ pathComponent y z : X ⊢ z ∈ pathComponent y → z ∈ pathComponent x [PROOFSTEP] intro h' [GOAL] case h.mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z✝ : X ι : Type u_3 F : Set X h : x ∈ pathComponent y z : X h' : z ∈ pathComponent y ⊢ z ∈ pathComponent x [PROOFSTEP] rw [pathComponent_symm] at h' ⊢ [GOAL] case h.mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z✝ : X ι : Type u_3 F : Set X h : x ∈ pathComponent y z : X h' : y ∈ pathComponent z ⊢ x ∈ pathComponent z [PROOFSTEP] exact h'.trans h [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F : Set X x y : X h : y ∈ pathComponent x ⊢ ↑(Joined.somePath h) 0 = x [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F : Set X x y : X h : y ∈ pathComponent x ⊢ ↑(Joined.somePath h) 1 = y [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X x : X ⊢ pathComponentIn x univ = pathComponent x [PROOFSTEP] simp [pathComponentIn, pathComponent, JoinedIn, Joined, exists_true_iff_nonempty] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ IsPathConnected F ↔ ∃ x, x ∈ F ∧ pathComponentIn x F = F [PROOFSTEP] constructor [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ IsPathConnected F → ∃ x, x ∈ F ∧ pathComponentIn x F = F [PROOFSTEP] rintro ⟨x, x_in, h⟩ [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ (∃ x, x ∈ F ∧ pathComponentIn x F = F) → IsPathConnected F [PROOFSTEP] rintro ⟨x, x_in, h⟩ [GOAL] case mp.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X x : X x_in : x ∈ F h : ∀ {y : X}, y ∈ F → JoinedIn F x y ⊢ ∃ x, x ∈ F ∧ pathComponentIn x F = F [PROOFSTEP] use x, x_in [GOAL] case mpr.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X x : X x_in : x ∈ F h : pathComponentIn x F = F ⊢ IsPathConnected F [PROOFSTEP] use x, x_in [GOAL] case right X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X x : X x_in : x ∈ F h : ∀ {y : X}, y ∈ F → JoinedIn F x y ⊢ pathComponentIn x F = F [PROOFSTEP] ext y [GOAL] case right.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F : Set X x : X x_in : x ∈ F h : ∀ {y : X}, y ∈ F → JoinedIn F x y y : X ⊢ y ∈ pathComponentIn x F ↔ y ∈ F [PROOFSTEP] exact ⟨fun hy => hy.mem.2, h⟩ [GOAL] case right X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X x : X x_in : x ∈ F h : pathComponentIn x F = F ⊢ ∀ {y : X}, y ∈ F → JoinedIn F x y [PROOFSTEP] intro y y_in [GOAL] case right X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F : Set X x : X x_in : x ∈ F h : pathComponentIn x F = F y : X y_in : y ∈ F ⊢ JoinedIn F x y [PROOFSTEP] rwa [← h] at y_in [GOAL] X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x y z : X ι : Type u_3 F : Set X Y : Type u_4 inst✝ : TopologicalSpace Y hF : IsPathConnected F f : X → Y hf : ContinuousOn f F ⊢ IsPathConnected (f '' F) [PROOFSTEP] rcases hF with ⟨x, x_in, hx⟩ [GOAL] case intro.intro X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x✝ y z : X ι : Type u_3 F : Set X Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y hf : ContinuousOn f F x : X x_in : x ∈ F hx : ∀ {y : X}, y ∈ F → JoinedIn F x y ⊢ IsPathConnected (f '' F) [PROOFSTEP] use f x, mem_image_of_mem f x_in [GOAL] case right X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x✝ y z : X ι : Type u_3 F : Set X Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y hf : ContinuousOn f F x : X x_in : x ∈ F hx : ∀ {y : X}, y ∈ F → JoinedIn F x y ⊢ ∀ {y : Y}, y ∈ f '' F → JoinedIn (f '' F) (f x) y [PROOFSTEP] rintro _ ⟨y, y_in, rfl⟩ [GOAL] case right.intro.intro X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x✝ y✝ z : X ι : Type u_3 F : Set X Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y hf : ContinuousOn f F x : X x_in : x ∈ F hx : ∀ {y : X}, y ∈ F → JoinedIn F x y y : X y_in : y ∈ F ⊢ JoinedIn (f '' F) (f x) (f y) [PROOFSTEP] refine ⟨(hx y_in).somePath.map' ?_, fun t ↦ ⟨_, (hx y_in).somePath_mem t, rfl⟩⟩ [GOAL] case right.intro.intro X : Type u_1 Y✝ : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y✝ x✝ y✝ z : X ι : Type u_3 F : Set X Y : Type u_4 inst✝ : TopologicalSpace Y f : X → Y hf : ContinuousOn f F x : X x_in : x ∈ F hx : ∀ {y : X}, y ∈ F → JoinedIn F x y y : X y_in : y ∈ F ⊢ ContinuousOn f (range ↑(JoinedIn.somePath (_ : JoinedIn F x y))) [PROOFSTEP] exact hf.mono (range_subset_iff.2 (hx y_in).somePath_mem) [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X x : X ⊢ IsPathConnected {x} [PROOFSTEP] refine ⟨x, rfl, ?_⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X x : X ⊢ ∀ {y : X}, y ∈ {x} → JoinedIn {x} x y [PROOFSTEP] rintro y rfl [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y✝ z : X ι : Type u_3 F : Set X y : X ⊢ JoinedIn {y} y y [PROOFSTEP] exact JoinedIn.refl rfl [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F U V : Set X hU : IsPathConnected U hV : IsPathConnected V hUV : Set.Nonempty (U ∩ V) ⊢ IsPathConnected (U ∪ V) [PROOFSTEP] rcases hUV with ⟨x, xU, xV⟩ [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F U V : Set X hU : IsPathConnected U hV : IsPathConnected V x : X xU : x ∈ U xV : x ∈ V ⊢ IsPathConnected (U ∪ V) [PROOFSTEP] use x, Or.inl xU [GOAL] case right X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F U V : Set X hU : IsPathConnected U hV : IsPathConnected V x : X xU : x ∈ U xV : x ∈ V ⊢ ∀ {y : X}, y ∈ U ∪ V → JoinedIn (U ∪ V) x y [PROOFSTEP] rintro y (yU | yV) [GOAL] case right.inl X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F U V : Set X hU : IsPathConnected U hV : IsPathConnected V x : X xU : x ∈ U xV : x ∈ V y : X yU : y ∈ U ⊢ JoinedIn (U ∪ V) x y [PROOFSTEP] exact (hU.joinedIn x xU y yU).mono (subset_union_left U V) [GOAL] case right.inr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F U V : Set X hU : IsPathConnected U hV : IsPathConnected V x : X xU : x ∈ U xV : x ∈ V y : X yV : y ∈ V ⊢ JoinedIn (U ∪ V) x y [PROOFSTEP] exact (hV.joinedIn x xV y yV).mono (subset_union_right U V) [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F U W : Set X hW : IsPathConnected W hWU : W ⊆ U ⊢ IsPathConnected (Subtype.val ⁻¹' W) [PROOFSTEP] rcases hW with ⟨x, x_in, hx⟩ [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F U W : Set X hWU : W ⊆ U x : X x_in : x ∈ W hx : ∀ {y : X}, y ∈ W → JoinedIn W x y ⊢ IsPathConnected (Subtype.val ⁻¹' W) [PROOFSTEP] use⟨x, hWU x_in⟩, by simp [x_in] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F U W : Set X hWU : W ⊆ U x : X x_in : x ∈ W hx : ∀ {y : X}, y ∈ W → JoinedIn W x y ⊢ { val := x, property := (_ : x ∈ U) } ∈ Subtype.val ⁻¹' W [PROOFSTEP] simp [x_in] [GOAL] case right X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F U W : Set X hWU : W ⊆ U x : X x_in : x ∈ W hx : ∀ {y : X}, y ∈ W → JoinedIn W x y ⊢ ∀ {y : { x // x ∈ U }}, y ∈ Subtype.val ⁻¹' W → JoinedIn (Subtype.val ⁻¹' W) { val := x, property := (_ : x ∈ U) } y [PROOFSTEP] rintro ⟨y, hyU⟩ hyW [GOAL] case right.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F U W : Set X hWU : W ⊆ U x : X x_in : x ∈ W hx : ∀ {y : X}, y ∈ W → JoinedIn W x y y : X hyU : y ∈ U hyW : { val := y, property := hyU } ∈ Subtype.val ⁻¹' W ⊢ JoinedIn (Subtype.val ⁻¹' W) { val := x, property := (_ : x ∈ U) } { val := y, property := hyU } [PROOFSTEP] exact ⟨(hx hyW).joined_subtype.somePath.map (continuous_inclusion hWU), by simp⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F U W : Set X hWU : W ⊆ U x : X x_in : x ∈ W hx : ∀ {y : X}, y ∈ W → JoinedIn W x y y : X hyU : y ∈ U hyW : { val := y, property := hyU } ∈ Subtype.val ⁻¹' W ⊢ ∀ (t : ↑I), ↑(Path.map (Joined.somePath (_ : Joined { val := x, property := (_ : x ∈ W) } { val := ↑{ val := y, property := hyU }, property := (_ : ↑{ val := y, property := hyU } ∈ W) })) (_ : Continuous (inclusion hWU))) t ∈ Subtype.val ⁻¹' W [PROOFSTEP] simp [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s ⊢ ∃ γ, range ↑γ ⊆ s ∧ ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] let p' : ℕ → X := fun k => if h : k < n + 1 then p ⟨k, h⟩ else p ⟨0, n.zero_lt_succ⟩ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } ⊢ ∃ γ, range ↑γ ⊆ s ∧ ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] obtain ⟨γ, hγ⟩ : ∃ γ : Path (p' 0) (p' n), (∀ i ≤ n, p' i ∈ range γ) ∧ range γ ⊆ s := by have hp' : ∀ i ≤ n, p' i ∈ s := by intro i hi simp [Nat.lt_succ_of_le hi, hp] clear_value p' clear hp p induction' n with n hn · use Path.refl (p' 0) · constructor · rintro i hi rw [le_zero_iff.mp hi] exact ⟨0, rfl⟩ · rw [range_subset_iff] rintro _x exact hp' 0 le_rfl · rcases hn fun i hi => hp' i <| Nat.le_succ_of_le hi with ⟨γ₀, hγ₀⟩ rcases h.joinedIn (p' n) (hp' n n.le_succ) (p' <| n + 1) (hp' (n + 1) <| le_rfl) with ⟨γ₁, hγ₁⟩ let γ : Path (p' 0) (p' <| n + 1) := γ₀.trans γ₁ use γ have range_eq : range γ = range γ₀ ∪ range γ₁ := γ₀.trans_range γ₁ constructor · rintro i hi by_cases hi' : i ≤ n · rw [range_eq] left exact hγ₀.1 i hi' · rw [not_le, ← Nat.succ_le_iff] at hi' have : i = n.succ := le_antisymm hi hi' rw [this] use 1 exact γ.target · rw [range_eq] apply union_subset hγ₀.2 rw [range_subset_iff] exact hγ₁ [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } ⊢ ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] have hp' : ∀ i ≤ n, p' i ∈ s := by intro i hi simp [Nat.lt_succ_of_le hi, hp] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } ⊢ ∀ (i : ℕ), i ≤ n → p' i ∈ s [PROOFSTEP] intro i hi [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } i : ℕ hi : i ≤ n ⊢ p' i ∈ s [PROOFSTEP] simp [Nat.lt_succ_of_le hi, hp] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } hp' : ∀ (i : ℕ), i ≤ n → p' i ∈ s ⊢ ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] clear_value p' [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X hp' : ∀ (i : ℕ), i ≤ n → p' i ∈ s ⊢ ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] clear hp p [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp' : ∀ (i : ℕ), i ≤ n → p' i ∈ s ⊢ ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] induction' n with n hn [GOAL] case zero X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n → p' i ∈ s hp' : ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ s ⊢ ∃ γ, (∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] use Path.refl (p' 0) [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n → p' i ∈ s hp' : ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ s ⊢ (∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ range ↑(Path.refl (p' 0))) ∧ range ↑(Path.refl (p' 0)) ⊆ s [PROOFSTEP] constructor [GOAL] case h.left X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n → p' i ∈ s hp' : ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ s ⊢ ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ range ↑(Path.refl (p' 0)) [PROOFSTEP] rintro i hi [GOAL] case h.left X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n → p' i ∈ s hp' : ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ s i : ℕ hi : i ≤ Nat.zero ⊢ p' i ∈ range ↑(Path.refl (p' 0)) [PROOFSTEP] rw [le_zero_iff.mp hi] [GOAL] case h.left X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n → p' i ∈ s hp' : ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ s i : ℕ hi : i ≤ Nat.zero ⊢ p' 0 ∈ range ↑(Path.refl (p' 0)) [PROOFSTEP] exact ⟨0, rfl⟩ [GOAL] case h.right X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n → p' i ∈ s hp' : ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ s ⊢ range ↑(Path.refl (p' 0)) ⊆ s [PROOFSTEP] rw [range_subset_iff] [GOAL] case h.right X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n → p' i ∈ s hp' : ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ s ⊢ ∀ (y : ↑I), ↑(Path.refl (p' 0)) y ∈ s [PROOFSTEP] rintro _x [GOAL] case h.right X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n → p' i ∈ s hp' : ∀ (i : ℕ), i ≤ Nat.zero → p' i ∈ s _x : ↑I ⊢ ↑(Path.refl (p' 0)) _x ∈ s [PROOFSTEP] exact hp' 0 le_rfl [GOAL] case succ X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s ⊢ ∃ γ, (∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] rcases hn fun i hi => hp' i <| Nat.le_succ_of_le hi with ⟨γ₀, hγ₀⟩ [GOAL] case succ.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s ⊢ ∃ γ, (∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] rcases h.joinedIn (p' n) (hp' n n.le_succ) (p' <| n + 1) (hp' (n + 1) <| le_rfl) with ⟨γ₁, hγ₁⟩ [GOAL] case succ.intro.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s ⊢ ∃ γ, (∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] let γ : Path (p' 0) (p' <| n + 1) := γ₀.trans γ₁ [GOAL] case succ.intro.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ ⊢ ∃ γ, (∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] use γ [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ ⊢ (∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] have range_eq : range γ = range γ₀ ∪ range γ₁ := γ₀.trans_range γ₁ [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ ⊢ (∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s [PROOFSTEP] constructor [GOAL] case h.left X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ ⊢ ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ range ↑γ [PROOFSTEP] rintro i hi [GOAL] case h.left X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n ⊢ p' i ∈ range ↑γ [PROOFSTEP] by_cases hi' : i ≤ n [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n hi' : i ≤ n ⊢ p' i ∈ range ↑γ [PROOFSTEP] rw [range_eq] [GOAL] case pos X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n hi' : i ≤ n ⊢ p' i ∈ range ↑γ₀ ∪ range ↑γ₁ [PROOFSTEP] left [GOAL] case pos.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n hi' : i ≤ n ⊢ p' i ∈ range ↑γ₀ [PROOFSTEP] exact hγ₀.1 i hi' [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n hi' : ¬i ≤ n ⊢ p' i ∈ range ↑γ [PROOFSTEP] rw [not_le, ← Nat.succ_le_iff] at hi' [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n hi' : Nat.succ n ≤ i ⊢ p' i ∈ range ↑γ [PROOFSTEP] have : i = n.succ := le_antisymm hi hi' [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n hi' : Nat.succ n ≤ i this : i = Nat.succ n ⊢ p' i ∈ range ↑γ [PROOFSTEP] rw [this] [GOAL] case neg X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n hi' : Nat.succ n ≤ i this : i = Nat.succ n ⊢ p' (Nat.succ n) ∈ range ↑γ [PROOFSTEP] use 1 [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ i : ℕ hi : i ≤ Nat.succ n hi' : Nat.succ n ≤ i this : i = Nat.succ n ⊢ ↑γ 1 = p' (Nat.succ n) [PROOFSTEP] exact γ.target [GOAL] case h.right X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ ⊢ range ↑γ ⊆ s [PROOFSTEP] rw [range_eq] [GOAL] case h.right X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ ⊢ range ↑γ₀ ∪ range ↑γ₁ ⊆ s [PROOFSTEP] apply union_subset hγ₀.2 [GOAL] case h.right X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ ⊢ range ↑γ₁ ⊆ s [PROOFSTEP] rw [range_subset_iff] [GOAL] case h.right X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n✝ : ℕ s : Set X h : IsPathConnected s p' : ℕ → X hp'✝ : ∀ (i : ℕ), i ≤ n✝ → p' i ∈ s n : ℕ hn : (∀ (i : ℕ), i ≤ n → p' i ∈ s) → ∃ γ, (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hp' : ∀ (i : ℕ), i ≤ Nat.succ n → p' i ∈ s γ₀ : Path (p' 0) (p' n) hγ₀ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ₀) ∧ range ↑γ₀ ⊆ s γ₁ : Path (p' n) (p' (n + 1)) hγ₁ : ∀ (t : ↑I), ↑γ₁ t ∈ s γ : Path (p' 0) (p' (n + 1)) := Path.trans γ₀ γ₁ range_eq : range ↑γ = range ↑γ₀ ∪ range ↑γ₁ ⊢ ∀ (y : ↑I), ↑γ₁ y ∈ s [PROOFSTEP] exact hγ₁ [GOAL] case intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s ⊢ ∃ γ, range ↑γ ⊆ s ∧ ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] have hpp' : ∀ k < n + 1, p k = p' k := by intro k hk simp only [hk, dif_pos] congr ext rw [Fin.val_cast_of_lt hk] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s ⊢ ∀ (k : ℕ), k < n + 1 → p ↑k = p' k [PROOFSTEP] intro k hk [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s k : ℕ hk : k < n + 1 ⊢ p ↑k = p' k [PROOFSTEP] simp only [hk, dif_pos] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s k : ℕ hk : k < n + 1 ⊢ p ↑k = p { val := k, isLt := (_ : k < n + 1) } [PROOFSTEP] congr [GOAL] case e_a X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s k : ℕ hk : k < n + 1 ⊢ ↑k = { val := k, isLt := (_ : k < n + 1) } [PROOFSTEP] ext [GOAL] case e_a.h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s k : ℕ hk : k < n + 1 ⊢ ↑↑k = ↑{ val := k, isLt := (_ : k < n + 1) } [PROOFSTEP] rw [Fin.val_cast_of_lt hk] [GOAL] case intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k ⊢ ∃ γ, range ↑γ ⊆ s ∧ ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] use γ.cast (hpp' 0 n.zero_lt_succ) (hpp' n n.lt_succ_self) [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k ⊢ range ↑(Path.cast γ (_ : p ↑0 = p' 0) (_ : p ↑n = p' n)) ⊆ s ∧ ∀ (i : Fin (n + 1)), p i ∈ range ↑(Path.cast γ (_ : p ↑0 = p' 0) (_ : p ↑n = p' n)) [PROOFSTEP] simp only [γ.cast_coe] [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k ⊢ range ↑γ ⊆ s ∧ ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] refine' And.intro hγ.2 _ [GOAL] case h X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k ⊢ ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case h.mk X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k i : ℕ hi : i < n + 1 ⊢ p { val := i, isLt := hi } ∈ range ↑γ [PROOFSTEP] suffices p ⟨i, hi⟩ = p' i by convert hγ.1 i (Nat.le_of_lt_succ hi) [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k i : ℕ hi : i < n + 1 this : p { val := i, isLt := hi } = p' i ⊢ p { val := i, isLt := hi } ∈ range ↑γ [PROOFSTEP] convert hγ.1 i (Nat.le_of_lt_succ hi) [GOAL] case h.mk X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k i : ℕ hi : i < n + 1 ⊢ p { val := i, isLt := hi } = p' i [PROOFSTEP] rw [← hpp' i hi] [GOAL] case h.mk X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k i : ℕ hi : i < n + 1 ⊢ p { val := i, isLt := hi } = p ↑i [PROOFSTEP] suffices i = i % n.succ by congr [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k i : ℕ hi : i < n + 1 this : i = i % Nat.succ n ⊢ p { val := i, isLt := hi } = p ↑i [PROOFSTEP] congr [GOAL] case h.mk X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s p' : ℕ → X := fun k => if h : k < n + 1 then p { val := k, isLt := h } else p { val := 0, isLt := (_ : 0 < Nat.succ n) } γ : Path (p' 0) (p' n) hγ : (∀ (i : ℕ), i ≤ n → p' i ∈ range ↑γ) ∧ range ↑γ ⊆ s hpp' : ∀ (k : ℕ), k < n + 1 → p ↑k = p' k i : ℕ hi : i < n + 1 ⊢ i = i % Nat.succ n [PROOFSTEP] rw [Nat.mod_eq_of_lt hi] [GOAL] X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s ⊢ ∃ γ t, (∀ (t : ↑I), ↑γ t ∈ s) ∧ ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] rcases h.exists_path_through_family p hp with ⟨γ, hγ⟩ [GOAL] case intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s γ : Path (p 0) (p ↑n) hγ : range ↑γ ⊆ s ∧ ∀ (i : Fin (n + 1)), p i ∈ range ↑γ ⊢ ∃ γ t, (∀ (t : ↑I), ↑γ t ∈ s) ∧ ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] rcases hγ with ⟨h₁, h₂⟩ [GOAL] case intro.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s γ : Path (p 0) (p ↑n) h₁ : range ↑γ ⊆ s h₂ : ∀ (i : Fin (n + 1)), p i ∈ range ↑γ ⊢ ∃ γ t, (∀ (t : ↑I), ↑γ t ∈ s) ∧ ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] simp only [range, mem_setOf_eq] at h₂ [GOAL] case intro.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s γ : Path (p 0) (p ↑n) h₁ : range ↑γ ⊆ s h₂ : ∀ (i : Fin (n + 1)), ∃ y, ↑γ y = p i ⊢ ∃ γ t, (∀ (t : ↑I), ↑γ t ∈ s) ∧ ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] rw [range_subset_iff] at h₁ [GOAL] case intro.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s γ : Path (p 0) (p ↑n) h₁ : ∀ (y : ↑I), ↑γ y ∈ s h₂ : ∀ (i : Fin (n + 1)), ∃ y, ↑γ y = p i ⊢ ∃ γ t, (∀ (t : ↑I), ↑γ t ∈ s) ∧ ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] choose! t ht using h₂ [GOAL] case intro.intro X✝ : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X✝ inst✝¹ : TopologicalSpace Y x y z : X✝ ι : Type u_3 F : Set X✝ X : Type u_4 inst✝ : TopologicalSpace X n : ℕ s : Set X h : IsPathConnected s p : Fin (n + 1) → X hp : ∀ (i : Fin (n + 1)), p i ∈ s γ : Path (p 0) (p ↑n) h₁ : ∀ (y : ↑I), ↑γ y ∈ s t : Fin (n + 1) → ↑I ht : ∀ (i : Fin (n + 1)), ↑γ (t i) = p i ⊢ ∃ γ t, (∀ (t : ↑I), ↑γ t ∈ s) ∧ ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] exact ⟨γ, t, h₁, ht⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ PathConnectedSpace X ↔ Nonempty (ZerothHomotopy X) ∧ Subsingleton (ZerothHomotopy X) [PROOFSTEP] letI := pathSetoid X [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X ⊢ PathConnectedSpace X ↔ Nonempty (ZerothHomotopy X) ∧ Subsingleton (ZerothHomotopy X) [PROOFSTEP] constructor [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X ⊢ PathConnectedSpace X → Nonempty (ZerothHomotopy X) ∧ Subsingleton (ZerothHomotopy X) [PROOFSTEP] intro h [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X h : PathConnectedSpace X ⊢ Nonempty (ZerothHomotopy X) ∧ Subsingleton (ZerothHomotopy X) [PROOFSTEP] refine' ⟨(nonempty_quotient_iff _).mpr h.1, ⟨_⟩⟩ [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X h : PathConnectedSpace X ⊢ ∀ (a b : ZerothHomotopy X), a = b [PROOFSTEP] rintro ⟨x⟩ ⟨y⟩ [GOAL] case mp.mk.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X h : PathConnectedSpace X a✝ : ZerothHomotopy X x : X b✝ : ZerothHomotopy X y : X ⊢ Quot.mk Setoid.r x = Quot.mk Setoid.r y [PROOFSTEP] exact Quotient.sound (PathConnectedSpace.Joined x y) [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X ⊢ Nonempty (ZerothHomotopy X) ∧ Subsingleton (ZerothHomotopy X) → PathConnectedSpace X [PROOFSTEP] unfold ZerothHomotopy [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X ⊢ Nonempty (Quotient (pathSetoid X)) ∧ Subsingleton (Quotient (pathSetoid X)) → PathConnectedSpace X [PROOFSTEP] rintro ⟨h, h'⟩ [GOAL] case mpr.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X h : Nonempty (Quotient (pathSetoid X)) h' : Subsingleton (Quotient (pathSetoid X)) ⊢ PathConnectedSpace X [PROOFSTEP] skip [GOAL] case mpr.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X this : Setoid X := pathSetoid X h : Nonempty (Quotient (pathSetoid X)) h' : Subsingleton (Quotient (pathSetoid X)) ⊢ PathConnectedSpace X [PROOFSTEP] exact ⟨(nonempty_quotient_iff _).mp h, fun x y => Quotient.exact <| Subsingleton.elim ⟦x⟧ ⟦y⟧⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ IsPathConnected F ↔ PathConnectedSpace ↑F [PROOFSTEP] rw [isPathConnected_iff] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ (Set.Nonempty F ∧ ∀ (x : X), x ∈ F → ∀ (y : X), y ∈ F → JoinedIn F x y) ↔ PathConnectedSpace ↑F [PROOFSTEP] constructor [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ (Set.Nonempty F ∧ ∀ (x : X), x ∈ F → ∀ (y : X), y ∈ F → JoinedIn F x y) → PathConnectedSpace ↑F [PROOFSTEP] rintro ⟨⟨x, x_in⟩, h⟩ [GOAL] case mp.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X h : ∀ (x : X), x ∈ F → ∀ (y : X), y ∈ F → JoinedIn F x y x : X x_in : x ∈ F ⊢ PathConnectedSpace ↑F [PROOFSTEP] refine' ⟨⟨⟨x, x_in⟩⟩, _⟩ [GOAL] case mp.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X h : ∀ (x : X), x ∈ F → ∀ (y : X), y ∈ F → JoinedIn F x y x : X x_in : x ∈ F ⊢ ∀ (x y : ↑F), Joined x y [PROOFSTEP] rintro ⟨y, y_in⟩ ⟨z, z_in⟩ [GOAL] case mp.intro.intro.mk.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z✝ : X ι : Type u_3 F : Set X h : ∀ (x : X), x ∈ F → ∀ (y : X), y ∈ F → JoinedIn F x y x : X x_in : x ∈ F y : X y_in : y ∈ F z : X z_in : z ∈ F ⊢ Joined { val := y, property := y_in } { val := z, property := z_in } [PROOFSTEP] have H := h y y_in z z_in [GOAL] case mp.intro.intro.mk.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z✝ : X ι : Type u_3 F : Set X h : ∀ (x : X), x ∈ F → ∀ (y : X), y ∈ F → JoinedIn F x y x : X x_in : x ∈ F y : X y_in : y ∈ F z : X z_in : z ∈ F H : JoinedIn F y z ⊢ Joined { val := y, property := y_in } { val := z, property := z_in } [PROOFSTEP] rwa [joinedIn_iff_joined y_in z_in] at H [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ PathConnectedSpace ↑F → Set.Nonempty F ∧ ∀ (x : X), x ∈ F → ∀ (y : X), y ∈ F → JoinedIn F x y [PROOFSTEP] rintro ⟨⟨x, x_in⟩, H⟩ [GOAL] case mpr.mk.intro.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X H : ∀ (x y : ↑F), Joined x y x : X x_in : x ∈ F ⊢ Set.Nonempty F ∧ ∀ (x : X), x ∈ F → ∀ (y : X), y ∈ F → JoinedIn F x y [PROOFSTEP] refine' ⟨⟨x, x_in⟩, fun y y_in z z_in => _⟩ [GOAL] case mpr.mk.intro.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z✝ : X ι : Type u_3 F : Set X H : ∀ (x y : ↑F), Joined x y x : X x_in : x ∈ F y : X y_in : y ∈ F z : X z_in : z ∈ F ⊢ JoinedIn F y z [PROOFSTEP] rw [joinedIn_iff_joined y_in z_in] [GOAL] case mpr.mk.intro.mk X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z✝ : X ι : Type u_3 F : Set X H : ∀ (x y : ↑F), Joined x y x : X x_in : x ∈ F y : X y_in : y ∈ F z : X z_in : z ∈ F ⊢ Joined { val := y, property := y_in } { val := z, property := z_in } [PROOFSTEP] apply H [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ PathConnectedSpace X ↔ IsPathConnected univ [PROOFSTEP] constructor [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ PathConnectedSpace X → IsPathConnected univ [PROOFSTEP] intro h [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : PathConnectedSpace X ⊢ IsPathConnected univ [PROOFSTEP] haveI := @PathConnectedSpace.Nonempty X _ _ [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : PathConnectedSpace X this : Nonempty X ⊢ IsPathConnected univ [PROOFSTEP] inhabit X [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : PathConnectedSpace X this : Nonempty X inhabited_h : Inhabited X ⊢ IsPathConnected univ [PROOFSTEP] refine' ⟨default, mem_univ _, _⟩ [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : PathConnectedSpace X this : Nonempty X inhabited_h : Inhabited X ⊢ ∀ {y : X}, y ∈ univ → JoinedIn univ default y [PROOFSTEP] intros y _hy [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y✝ z : X ι : Type u_3 F : Set X h : PathConnectedSpace X this : Nonempty X inhabited_h : Inhabited X y : X _hy : y ∈ univ ⊢ JoinedIn univ default y [PROOFSTEP] simpa using PathConnectedSpace.Joined default y [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ IsPathConnected univ → PathConnectedSpace X [PROOFSTEP] intro h [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : IsPathConnected univ ⊢ PathConnectedSpace X [PROOFSTEP] have h' := h.joinedIn [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X h : IsPathConnected univ h' : ∀ (x : X), x ∈ univ → ∀ (y : X), y ∈ univ → JoinedIn univ x y ⊢ PathConnectedSpace X [PROOFSTEP] cases' h with x h [GOAL] case mpr.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X h' : ∀ (x : X), x ∈ univ → ∀ (y : X), y ∈ univ → JoinedIn univ x y x : X h : x ∈ univ ∧ ∀ {y : X}, y ∈ univ → JoinedIn univ x y ⊢ PathConnectedSpace X [PROOFSTEP] exact ⟨⟨x⟩, by simpa using h'⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X h' : ∀ (x : X), x ∈ univ → ∀ (y : X), y ∈ univ → JoinedIn univ x y x : X h : x ∈ univ ∧ ∀ {y : X}, y ∈ univ → JoinedIn univ x y ⊢ ∀ (x y : X), Joined x y [PROOFSTEP] simpa using h' [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X f : X → Y hf : Continuous f ⊢ IsPathConnected (range f) [PROOFSTEP] rw [← image_univ] [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X f : X → Y hf : Continuous f ⊢ IsPathConnected (f '' univ) [PROOFSTEP] exact isPathConnected_univ.image hf [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X f : X → Y hf : Surjective f hf' : Continuous f ⊢ PathConnectedSpace Y [PROOFSTEP] rw [pathConnectedSpace_iff_univ, ← hf.range_eq] [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X f : X → Y hf : Surjective f hf' : Continuous f ⊢ IsPathConnected (range f) [PROOFSTEP] exact isPathConnected_range hf' [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F : Set X x y : ℝ ⊢ Continuous fun t => (1 - ↑t) * x + ↑t * y [PROOFSTEP] continuity [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F : Set X x y : ℝ ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => (1 - ↑t) * x + ↑t * y) 0 = x [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y✝ z : X ι : Type u_3 F : Set X x y : ℝ ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => (1 - ↑t) * x + ↑t * y) 1 = y [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X ⊢ PathConnectedSpace X ↔ ∃ x, pathComponent x = univ [PROOFSTEP] simp [pathConnectedSpace_iff_univ, isPathConnected_iff_eq] [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X ⊢ ConnectedSpace X [PROOFSTEP] rw [connectedSpace_iff_connectedComponent] [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X ⊢ ∃ x, connectedComponent x = univ [PROOFSTEP] rcases isPathConnected_iff_eq.mp (pathConnectedSpace_iff_univ.mp ‹_›) with ⟨x, _x_in, hx⟩ [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X x : X _x_in : x ∈ univ hx : pathComponentIn x univ = univ ⊢ ∃ x, connectedComponent x = univ [PROOFSTEP] use x [GOAL] case h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X x : X _x_in : x ∈ univ hx : pathComponentIn x univ = univ ⊢ connectedComponent x = univ [PROOFSTEP] rw [← univ_subset_iff] [GOAL] case h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X x : X _x_in : x ∈ univ hx : pathComponentIn x univ = univ ⊢ univ ⊆ connectedComponent x [PROOFSTEP] exact (by simpa using hx : pathComponent x = univ) ▸ pathComponent_subset_component x [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X x : X _x_in : x ∈ univ hx : pathComponentIn x univ = univ ⊢ pathComponent x = univ [PROOFSTEP] simpa using hx [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X hF : IsPathConnected F ⊢ IsConnected F [PROOFSTEP] rw [isConnected_iff_connectedSpace] [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X hF : IsPathConnected F ⊢ ConnectedSpace ↑F [PROOFSTEP] rw [isPathConnected_iff_pathConnectedSpace] at hF [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X hF : PathConnectedSpace ↑F ⊢ ConnectedSpace ↑F [PROOFSTEP] exact @PathConnectedSpace.connectedSpace _ _ hF [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X n : ℕ p : Fin (n + 1) → X ⊢ ∃ γ, ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] have : IsPathConnected (univ : Set X) := pathConnectedSpace_iff_univ.mp (by infer_instance) [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X n : ℕ p : Fin (n + 1) → X ⊢ PathConnectedSpace X [PROOFSTEP] infer_instance [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X n : ℕ p : Fin (n + 1) → X this : IsPathConnected univ ⊢ ∃ γ, ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] rcases this.exists_path_through_family p fun _i => True.intro with ⟨γ, -, h⟩ [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X n : ℕ p : Fin (n + 1) → X this : IsPathConnected univ γ : Path (p 0) (p ↑n) h : ∀ (i : Fin (n + 1)), p i ∈ range ↑γ ⊢ ∃ γ, ∀ (i : Fin (n + 1)), p i ∈ range ↑γ [PROOFSTEP] exact ⟨γ, h⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X n : ℕ p : Fin (n + 1) → X ⊢ ∃ γ t, ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] have : IsPathConnected (univ : Set X) := pathConnectedSpace_iff_univ.mp (by infer_instance) [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X n : ℕ p : Fin (n + 1) → X ⊢ PathConnectedSpace X [PROOFSTEP] infer_instance [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X n : ℕ p : Fin (n + 1) → X this : IsPathConnected univ ⊢ ∃ γ t, ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] rcases this.exists_path_through_family' p fun _i => True.intro with ⟨γ, t, -, h⟩ [GOAL] case intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : PathConnectedSpace X n : ℕ p : Fin (n + 1) → X this : IsPathConnected univ γ : Path (p 0) (p ↑n) t : Fin (n + 1) → ↑I h : ∀ (i : Fin (n + 1)), ↑γ (t i) = p i ⊢ ∃ γ t, ∀ (i : Fin (n + 1)), ↑γ (t i) = p i [PROOFSTEP] exact ⟨γ, t, h⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) ⊢ LocPathConnectedSpace X [PROOFSTEP] constructor [GOAL] case path_connected_basis X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) ⊢ ∀ (x : X), HasBasis (𝓝 x) (fun s => s ∈ 𝓝 x ∧ IsPathConnected s) id [PROOFSTEP] intro x [GOAL] case path_connected_basis X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) x : X ⊢ HasBasis (𝓝 x) (fun s => s ∈ 𝓝 x ∧ IsPathConnected s) id [PROOFSTEP] apply (h x).to_hasBasis [GOAL] case path_connected_basis.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) x : X ⊢ ∀ (i : ι), p i → ∃ i', (i' ∈ 𝓝 x ∧ IsPathConnected i') ∧ id i' ⊆ s x i [PROOFSTEP] intro i pi [GOAL] case path_connected_basis.h X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) x : X i : ι pi : p i ⊢ ∃ i', (i' ∈ 𝓝 x ∧ IsPathConnected i') ∧ id i' ⊆ s x i [PROOFSTEP] exact ⟨s x i, ⟨(h x).mem_of_mem pi, h' x i pi⟩, by rfl⟩ [GOAL] X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) x : X i : ι pi : p i ⊢ id (s x i) ⊆ s x i [PROOFSTEP] rfl [GOAL] case path_connected_basis.h' X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) x : X ⊢ ∀ (i' : Set X), i' ∈ 𝓝 x ∧ IsPathConnected i' → ∃ i, p i ∧ s x i ⊆ id i' [PROOFSTEP] rintro U ⟨U_in, _hU⟩ [GOAL] case path_connected_basis.h'.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) x : X U : Set X U_in : U ∈ 𝓝 x _hU : IsPathConnected U ⊢ ∃ i, p i ∧ s x i ⊆ id U [PROOFSTEP] rcases(h x).mem_iff.mp U_in with ⟨i, pi, hi⟩ [GOAL] case path_connected_basis.h'.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X p : ι → Prop s : X → ι → Set X h : ∀ (x : X), HasBasis (𝓝 x) p (s x) h' : ∀ (x : X) (i : ι), p i → IsPathConnected (s x i) x : X U : Set X U_in : U ∈ 𝓝 x _hU : IsPathConnected U i : ι pi : p i hi : s x i ⊆ U ⊢ ∃ i, p i ∧ s x i ⊆ id U [PROOFSTEP] tauto [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X ⊢ PathConnectedSpace X ↔ ConnectedSpace X [PROOFSTEP] constructor [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X ⊢ PathConnectedSpace X → ConnectedSpace X [PROOFSTEP] intro h [GOAL] case mp X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X h : PathConnectedSpace X ⊢ ConnectedSpace X [PROOFSTEP] infer_instance [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X ⊢ ConnectedSpace X → PathConnectedSpace X [PROOFSTEP] intro hX [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X ⊢ PathConnectedSpace X [PROOFSTEP] rw [pathConnectedSpace_iff_eq] [GOAL] case mpr X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X ⊢ ∃ x, pathComponent x = univ [PROOFSTEP] use Classical.arbitrary X [GOAL] case h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X ⊢ pathComponent (Classical.arbitrary X) = univ [PROOFSTEP] refine' IsClopen.eq_univ ⟨_, _⟩ (by simp) [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X ⊢ Set.Nonempty (pathComponent (Classical.arbitrary X)) [PROOFSTEP] simp [GOAL] case h.refine'_1 X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X ⊢ IsOpen (pathComponent (Classical.arbitrary X)) [PROOFSTEP] rw [isOpen_iff_mem_nhds] [GOAL] case h.refine'_1 X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X ⊢ ∀ (a : X), a ∈ pathComponent (Classical.arbitrary X) → pathComponent (Classical.arbitrary X) ∈ 𝓝 a [PROOFSTEP] intro y y_in [GOAL] case h.refine'_1 X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y✝ z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X y : X y_in : y ∈ pathComponent (Classical.arbitrary X) ⊢ pathComponent (Classical.arbitrary X) ∈ 𝓝 y [PROOFSTEP] rcases(path_connected_basis y).ex_mem with ⟨U, ⟨U_in, hU⟩⟩ [GOAL] case h.refine'_1.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y✝ z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X y : X y_in : y ∈ pathComponent (Classical.arbitrary X) U : Set X U_in : U ∈ 𝓝 y hU : IsPathConnected U ⊢ pathComponent (Classical.arbitrary X) ∈ 𝓝 y [PROOFSTEP] apply mem_of_superset U_in [GOAL] case h.refine'_1.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y✝ z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X y : X y_in : y ∈ pathComponent (Classical.arbitrary X) U : Set X U_in : U ∈ 𝓝 y hU : IsPathConnected U ⊢ U ⊆ pathComponent (Classical.arbitrary X) [PROOFSTEP] rw [← pathComponent_congr y_in] [GOAL] case h.refine'_1.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y✝ z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X y : X y_in : y ∈ pathComponent (Classical.arbitrary X) U : Set X U_in : U ∈ 𝓝 y hU : IsPathConnected U ⊢ U ⊆ pathComponent y [PROOFSTEP] exact hU.subset_pathComponent (mem_of_mem_nhds U_in) [GOAL] case h.refine'_2 X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X ⊢ IsClosed (pathComponent (Classical.arbitrary X)) [PROOFSTEP] rw [isClosed_iff_nhds] [GOAL] case h.refine'_2 X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X ⊢ ∀ (x : X), (∀ (U : Set X), U ∈ 𝓝 x → Set.Nonempty (U ∩ pathComponent (Classical.arbitrary X))) → x ∈ pathComponent (Classical.arbitrary X) [PROOFSTEP] intro y H [GOAL] case h.refine'_2 X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y✝ z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X y : X H : ∀ (U : Set X), U ∈ 𝓝 y → Set.Nonempty (U ∩ pathComponent (Classical.arbitrary X)) ⊢ y ∈ pathComponent (Classical.arbitrary X) [PROOFSTEP] rcases(path_connected_basis y).ex_mem with ⟨U, ⟨U_in, hU⟩⟩ [GOAL] case h.refine'_2.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y✝ z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X y : X H : ∀ (U : Set X), U ∈ 𝓝 y → Set.Nonempty (U ∩ pathComponent (Classical.arbitrary X)) U : Set X U_in : U ∈ 𝓝 y hU : IsPathConnected U ⊢ y ∈ pathComponent (Classical.arbitrary X) [PROOFSTEP] rcases H U U_in with ⟨z, hz, hz'⟩ [GOAL] case h.refine'_2.intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y✝ z✝ : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X hX : ConnectedSpace X y : X H : ∀ (U : Set X), U ∈ 𝓝 y → Set.Nonempty (U ∩ pathComponent (Classical.arbitrary X)) U : Set X U_in : U ∈ 𝓝 y hU : IsPathConnected U z : X hz : z ∈ U hz' : z ∈ pathComponent (Classical.arbitrary X) ⊢ y ∈ pathComponent (Classical.arbitrary X) [PROOFSTEP] exact (hU.joinedIn z hz y <| mem_of_mem_nhds U_in).joined.mem_pathComponent hz' [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U ⊢ ∀ (x : ↑U), HasBasis (𝓝 x) (fun s => s ∈ 𝓝 x ∧ IsPathConnected s) id [PROOFSTEP] rintro ⟨x, x_in⟩ [GOAL] case mk X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U ⊢ HasBasis (𝓝 { val := x, property := x_in }) (fun s => s ∈ 𝓝 { val := x, property := x_in } ∧ IsPathConnected s) id [PROOFSTEP] rw [nhds_subtype_eq_comap] [GOAL] case mk X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U ⊢ HasBasis (comap Subtype.val (𝓝 x)) (fun s => s ∈ comap Subtype.val (𝓝 x) ∧ IsPathConnected s) id [PROOFSTEP] constructor [GOAL] case mk.mem_iff' X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U ⊢ ∀ (t : Set ↑U), t ∈ comap Subtype.val (𝓝 x) ↔ ∃ i, (i ∈ comap Subtype.val (𝓝 x) ∧ IsPathConnected i) ∧ id i ⊆ t [PROOFSTEP] intro V [GOAL] case mk.mem_iff' X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U V : Set ↑U ⊢ V ∈ comap Subtype.val (𝓝 x) ↔ ∃ i, (i ∈ comap Subtype.val (𝓝 x) ∧ IsPathConnected i) ∧ id i ⊆ V [PROOFSTEP] rw [(HasBasis.comap ((↑) : U → X) (pathConnected_subset_basis h x_in)).mem_iff] [GOAL] case mk.mem_iff' X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U V : Set ↑U ⊢ (∃ i, (i ∈ 𝓝 x ∧ IsPathConnected i ∧ i ⊆ U) ∧ Subtype.val ⁻¹' id i ⊆ V) ↔ ∃ i, (i ∈ comap Subtype.val (𝓝 x) ∧ IsPathConnected i) ∧ id i ⊆ V [PROOFSTEP] constructor [GOAL] case mk.mem_iff'.mp X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U V : Set ↑U ⊢ (∃ i, (i ∈ 𝓝 x ∧ IsPathConnected i ∧ i ⊆ U) ∧ Subtype.val ⁻¹' id i ⊆ V) → ∃ i, (i ∈ comap Subtype.val (𝓝 x) ∧ IsPathConnected i) ∧ id i ⊆ V [PROOFSTEP] rintro ⟨W, ⟨W_in, hW, hWU⟩, hWV⟩ [GOAL] case mk.mem_iff'.mp.intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U V : Set ↑U W : Set X hWV : Subtype.val ⁻¹' id W ⊆ V W_in : W ∈ 𝓝 x hW : IsPathConnected W hWU : W ⊆ U ⊢ ∃ i, (i ∈ comap Subtype.val (𝓝 x) ∧ IsPathConnected i) ∧ id i ⊆ V [PROOFSTEP] exact ⟨Subtype.val ⁻¹' W, ⟨⟨preimage_mem_comap W_in, hW.preimage_coe hWU⟩, hWV⟩⟩ [GOAL] case mk.mem_iff'.mpr X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U V : Set ↑U ⊢ (∃ i, (i ∈ comap Subtype.val (𝓝 x) ∧ IsPathConnected i) ∧ id i ⊆ V) → ∃ i, (i ∈ 𝓝 x ∧ IsPathConnected i ∧ i ⊆ U) ∧ Subtype.val ⁻¹' id i ⊆ V [PROOFSTEP] rintro ⟨W, ⟨W_in, hW⟩, hWV⟩ [GOAL] case mk.mem_iff'.mpr.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U V W : Set ↑U hWV : id W ⊆ V W_in : W ∈ comap Subtype.val (𝓝 x) hW : IsPathConnected W ⊢ ∃ i, (i ∈ 𝓝 x ∧ IsPathConnected i ∧ i ⊆ U) ∧ Subtype.val ⁻¹' id i ⊆ V [PROOFSTEP] refine' ⟨(↑) '' W, ⟨Filter.image_coe_mem_of_mem_comap (IsOpen.mem_nhds h x_in) W_in, hW.image continuous_subtype_val, Subtype.coe_image_subset U W⟩, _⟩ [GOAL] case mk.mem_iff'.mpr.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝ y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x : X x_in : x ∈ U V W : Set ↑U hWV : id W ⊆ V W_in : W ∈ comap Subtype.val (𝓝 x) hW : IsPathConnected W ⊢ Subtype.val ⁻¹' id (Subtype.val '' W) ⊆ V [PROOFSTEP] rintro x ⟨y, ⟨y_in, hy⟩⟩ [GOAL] case mk.mem_iff'.mpr.intro.intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝¹ y✝ z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x✝ : X x_in : x✝ ∈ U V W : Set ↑U hWV : id W ⊆ V W_in : W ∈ comap Subtype.val (𝓝 x✝) hW : IsPathConnected W x : { x // x ∈ U } y : ↑U y_in : y ∈ W hy : ↑y = ↑x ⊢ x ∈ V [PROOFSTEP] rw [← Subtype.coe_injective hy] [GOAL] case mk.mem_iff'.mpr.intro.intro.intro.intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x✝¹ y✝ z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X h : IsOpen U x✝ : X x_in : x✝ ∈ U V W : Set ↑U hWV : id W ⊆ V W_in : W ∈ comap Subtype.val (𝓝 x✝) hW : IsPathConnected W x : { x // x ∈ U } y : ↑U y_in : y ∈ W hy : ↑y = ↑x ⊢ y ∈ V [PROOFSTEP] tauto [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X U_op : IsOpen U ⊢ IsPathConnected U ↔ IsConnected U [PROOFSTEP] rw [isConnected_iff_connectedSpace, isPathConnected_iff_pathConnectedSpace] [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X U_op : IsOpen U ⊢ PathConnectedSpace ↑U ↔ ConnectedSpace ↑U [PROOFSTEP] haveI := locPathConnected_of_isOpen U_op [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x y z : X ι : Type u_3 F : Set X inst✝ : LocPathConnectedSpace X U : Set X U_op : IsOpen U this : LocPathConnectedSpace ↑U ⊢ PathConnectedSpace ↑U ↔ ConnectedSpace ↑U [PROOFSTEP] exact pathConnectedSpace_iff_connectedSpace
{"mathlib_filename": "Mathlib.Topology.PathConnected", "llama_tokens": 91450}
[GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z y : Y ⊢ Homotopic (const X y) (const X y) [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : C(X, Y) hf : Nullhomotopic f g : C(Y, Z) ⊢ Nullhomotopic (comp g f) [PROOFSTEP] cases' hf with y hy [GOAL] case intro X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : C(X, Y) g : C(Y, Z) y : Y hy : Homotopic f (const X y) ⊢ Nullhomotopic (comp g f) [PROOFSTEP] use g y [GOAL] case h X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : C(X, Y) g : C(Y, Z) y : Y hy : Homotopic f (const X y) ⊢ Homotopic (comp g f) (const X (↑g y)) [PROOFSTEP] exact Homotopic.hcomp hy (Homotopic.refl g) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : C(Y, Z) hf : Nullhomotopic f g : C(X, Y) ⊢ Nullhomotopic (comp f g) [PROOFSTEP] cases' hf with y hy [GOAL] case intro X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : C(Y, Z) g : C(X, Y) y : Z hy : Homotopic f (const Y y) ⊢ Nullhomotopic (comp f g) [PROOFSTEP] use y [GOAL] case h X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : C(Y, Z) g : C(X, Y) y : Z hy : Homotopic f (const Y y) ⊢ Homotopic (comp f g) (const X y) [PROOFSTEP] exact Homotopic.hcomp (Homotopic.refl g) hy [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : ContractibleSpace X ⊢ Nullhomotopic (ContinuousMap.id X) [PROOFSTEP] obtain ⟨hv⟩ := ContractibleSpace.hequiv_unit X [GOAL] case intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : ContractibleSpace X hv : X ≃ₕ Unit ⊢ Nullhomotopic (ContinuousMap.id X) [PROOFSTEP] use hv.invFun () [GOAL] case h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : ContractibleSpace X hv : X ≃ₕ Unit ⊢ Homotopic (ContinuousMap.id X) (const X (↑hv.invFun ())) [PROOFSTEP] convert hv.left_inv.symm [GOAL] Y : Type u_1 inst✝ : TopologicalSpace Y ⊢ ContractibleSpace Y ↔ Nullhomotopic (ContinuousMap.id Y) [PROOFSTEP] constructor [GOAL] case mp Y : Type u_1 inst✝ : TopologicalSpace Y ⊢ ContractibleSpace Y → Nullhomotopic (ContinuousMap.id Y) [PROOFSTEP] intro [GOAL] case mp Y : Type u_1 inst✝ : TopologicalSpace Y a✝ : ContractibleSpace Y ⊢ Nullhomotopic (ContinuousMap.id Y) [PROOFSTEP] apply id_nullhomotopic [GOAL] case mpr Y : Type u_1 inst✝ : TopologicalSpace Y ⊢ Nullhomotopic (ContinuousMap.id Y) → ContractibleSpace Y [PROOFSTEP] rintro ⟨p, h⟩ [GOAL] case mpr.intro Y : Type u_1 inst✝ : TopologicalSpace Y p : Y h : Homotopic (ContinuousMap.id Y) (const Y p) ⊢ ContractibleSpace Y [PROOFSTEP] refine { hequiv_unit' := ⟨{ toFun := ContinuousMap.const _ () invFun := ContinuousMap.const _ p left_inv := ?_ right_inv := ?_ }⟩ } [GOAL] case mpr.intro.refine_1 Y : Type u_1 inst✝ : TopologicalSpace Y p : Y h : Homotopic (ContinuousMap.id Y) (const Y p) ⊢ Homotopic (comp (const Unit p) (const Y ())) (ContinuousMap.id Y) [PROOFSTEP] exact h.symm [GOAL] case mpr.intro.refine_2 Y : Type u_1 inst✝ : TopologicalSpace Y p : Y h : Homotopic (ContinuousMap.id Y) (const Y p) ⊢ Homotopic (comp (const Y ()) (const Unit p)) (ContinuousMap.id Unit) [PROOFSTEP] convert Homotopic.refl (ContinuousMap.id Unit) [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : ContractibleSpace X ⊢ PathConnectedSpace X [PROOFSTEP] obtain ⟨p, ⟨h⟩⟩ := id_nullhomotopic X [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : ContractibleSpace X p : X h : Homotopy (ContinuousMap.id X) (const X p) ⊢ PathConnectedSpace X [PROOFSTEP] have : ∀ x, Joined p x := fun x => ⟨(h.evalAt x).symm⟩ [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : ContractibleSpace X p : X h : Homotopy (ContinuousMap.id X) (const X p) this : ∀ (x : X), Joined p x ⊢ PathConnectedSpace X [PROOFSTEP] rw [pathConnectedSpace_iff_eq] [GOAL] case intro.intro X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : ContractibleSpace X p : X h : Homotopy (ContinuousMap.id X) (const X p) this : ∀ (x : X), Joined p x ⊢ ∃ x, pathComponent x = Set.univ [PROOFSTEP] use p [GOAL] case h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : ContractibleSpace X p : X h : Homotopy (ContinuousMap.id X) (const X p) this : ∀ (x : X), Joined p x ⊢ pathComponent p = Set.univ [PROOFSTEP] ext [GOAL] case h.h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : ContractibleSpace X p : X h : Homotopy (ContinuousMap.id X) (const X p) this : ∀ (x : X), Joined p x x✝ : X ⊢ x✝ ∈ pathComponent p ↔ x✝ ∈ Set.univ [PROOFSTEP] tauto
{"mathlib_filename": "Mathlib.Topology.Homotopy.Contractible", "llama_tokens": 2360}
[GOAL] X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' h : X ≃ₜ Y ⊢ Homotopic (comp (toContinuousMap (Homeomorph.symm h)) (toContinuousMap h)) (ContinuousMap.id X) [PROOFSTEP] rw [symm_comp_toContinuousMap] [GOAL] X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' h : X ≃ₜ Y ⊢ Homotopic (comp (toContinuousMap h) (toContinuousMap (Homeomorph.symm h))) (ContinuousMap.id Y) [PROOFSTEP] rw [toContinuousMap_comp_symm] [GOAL] X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' h₁ : X ≃ₕ Y h₂ : Y ≃ₕ Z ⊢ Homotopic (comp (comp h₁.invFun h₂.invFun) (comp h₂.toFun h₁.toFun)) (ContinuousMap.id X) [PROOFSTEP] refine Homotopic.trans ?_ h₁.left_inv [GOAL] X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' h₁ : X ≃ₕ Y h₂ : Y ≃ₕ Z ⊢ Homotopic (comp (comp h₁.invFun h₂.invFun) (comp h₂.toFun h₁.toFun)) (comp h₁.invFun h₁.toFun) [PROOFSTEP] exact ((Homotopic.refl _).hcomp h₂.left_inv).hcomp (Homotopic.refl _) [GOAL] X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' h₁ : X ≃ₕ Y h₂ : Y ≃ₕ Z ⊢ Homotopic (comp (comp h₂.toFun h₁.toFun) (comp h₁.invFun h₂.invFun)) (ContinuousMap.id Z) [PROOFSTEP] refine Homotopic.trans ?_ h₂.right_inv [GOAL] X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' h₁ : X ≃ₕ Y h₂ : Y ≃ₕ Z ⊢ Homotopic (comp (comp h₂.toFun h₁.toFun) (comp h₁.invFun h₂.invFun)) (comp h₂.toFun h₂.invFun) [PROOFSTEP] exact ((Homotopic.refl _).hcomp h₁.right_inv).hcomp (Homotopic.refl _)
{"mathlib_filename": "Mathlib.Topology.Homotopy.Equiv", "llama_tokens": 956}
[GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M v : M x fx : CliffordAlgebra Q ⊢ ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx [PROOFSTEP] simp only [contractLeftAux_apply_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M v : M x fx : CliffordAlgebra Q ⊢ ↑d v • (↑(ι Q) v * x) - ↑(ι Q) v * (↑d v • x - ↑(ι Q) v * fx) = ↑Q v • fx [PROOFSTEP] rw [mul_sub, ← mul_assoc, ι_sq_scalar, ← Algebra.smul_def, ← sub_add, mul_smul_comm, sub_self, zero_add] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' d₁ d₂ : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑((fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) (d₁ + d₂)) x = ↑((fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) d₁ + (fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) d₂) x [PROOFSTEP] dsimp only [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' d₁ d₂ : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) x = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0 + foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) x [PROOFSTEP] rw [LinearMap.add_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' d₁ d₂ : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) x = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) x + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) x [PROOFSTEP] induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx [GOAL] case hr R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' d₁ d₂ : Module.Dual R M r : R ⊢ ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) (↑(algebraMap R (CliffordAlgebra Q)) r) = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) (↑(algebraMap R (CliffordAlgebra Q)) r) + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) (↑(algebraMap R (CliffordAlgebra Q)) r) [PROOFSTEP] simp_rw [foldr'_algebraMap, smul_zero, zero_add] [GOAL] case h_add R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' d₁ d₂ : Module.Dual R M x y : CliffordAlgebra Q hx : ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) x = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) x + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) x hy : ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) y = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) y + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) y ⊢ ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) (x + y) = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) (x + y) + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) (x + y) [PROOFSTEP] rw [map_add, map_add, map_add, add_add_add_comm, hx, hy] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' d₁ d₂ : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) m = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) m + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) m ⊢ ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) (↑(ι Q) x * m) = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) (↑(ι Q) x * m) + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) (↑(ι Q) x * m) [PROOFSTEP] rw [foldr'_ι_mul, foldr'_ι_mul, foldr'_ι_mul, hx] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' d₁ d₂ : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) m = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) m + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) m ⊢ ↑(↑(contractLeftAux Q (d₁ + d₂)) x) (m, ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) m + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) m) = ↑(↑(contractLeftAux Q d₁) x) (m, ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) m) + ↑(↑(contractLeftAux Q d₂) x) (m, ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) m) [PROOFSTEP] dsimp only [contractLeftAux_apply_apply] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' d₁ d₂ : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(foldr' Q (contractLeftAux Q (d₁ + d₂)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (d₁ + d₂)) v) (x, fx)) = ↑Q v • fx) 0) m = ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) m + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) m ⊢ ↑(d₁ + d₂) x • m - ↑(ι Q) x * (↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) m + ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) m) = ↑d₁ x • m - ↑(ι Q) x * ↑(foldr' Q (contractLeftAux Q d₁) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₁) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₁) v) (x, fx)) = ↑Q v • fx) 0) m + (↑d₂ x • m - ↑(ι Q) x * ↑(foldr' Q (contractLeftAux Q d₂) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d₂) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d₂) v) (x, fx)) = ↑Q v • fx) 0) m) [PROOFSTEP] rw [sub_add_sub_comm, mul_add, LinearMap.add_apply, add_smul] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d✝ d' : Module.Dual R M c : R d : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(AddHom.toFun { toFun := fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0, map_add' := (_ : ∀ (d₁ d₂ : Module.Dual R M), (fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) (d₁ + d₂) = (fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) d₁ + (fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) d₂) } (c • d)) x = ↑(↑(RingHom.id R) c • AddHom.toFun { toFun := fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0, map_add' := (_ : ∀ (d₁ d₂ : Module.Dual R M), (fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) (d₁ + d₂) = (fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) d₁ + (fun d => foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) d₂) } d) x [PROOFSTEP] dsimp only [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d✝ d' : Module.Dual R M c : R d : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) x = ↑(↑(RingHom.id R) c • foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) x [PROOFSTEP] rw [LinearMap.smul_apply, RingHom.id_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d✝ d' : Module.Dual R M c : R d : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) x = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) x [PROOFSTEP] induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx [GOAL] case hr R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d✝ d' : Module.Dual R M c : R d : Module.Dual R M r : R ⊢ ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) (↑(algebraMap R (CliffordAlgebra Q)) r) = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) (↑(algebraMap R (CliffordAlgebra Q)) r) [PROOFSTEP] simp_rw [foldr'_algebraMap, smul_zero] [GOAL] case h_add R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d✝ d' : Module.Dual R M c : R d : Module.Dual R M x y : CliffordAlgebra Q hx : ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) x = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) x hy : ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) y = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) y ⊢ ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) (x + y) = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) (x + y) [PROOFSTEP] rw [map_add, map_add, smul_add, hx, hy] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d✝ d' : Module.Dual R M c : R d : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) m = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) m ⊢ ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) (↑(ι Q) x * m) = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) (↑(ι Q) x * m) [PROOFSTEP] rw [foldr'_ι_mul, foldr'_ι_mul, hx] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d✝ d' : Module.Dual R M c : R d : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) m = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) m ⊢ ↑(↑(contractLeftAux Q (c • d)) x) (m, c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) m) = c • ↑(↑(contractLeftAux Q d) x) (m, ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) m) [PROOFSTEP] dsimp only [contractLeftAux_apply_apply] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d✝ d' : Module.Dual R M c : R d : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(foldr' Q (contractLeftAux Q (c • d)) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q (c • d)) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q (c • d)) v) (x, fx)) = ↑Q v • fx) 0) m = c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) m ⊢ ↑(c • d) x • m - ↑(ι Q) x * c • ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) m = c • (↑d x • m - ↑(ι Q) x * ↑(foldr' Q (contractLeftAux Q d) (_ : ∀ (v : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) v) (↑(ι Q) v * x, ↑(↑(contractLeftAux Q d) v) (x, fx)) = ↑Q v • fx) 0) m) [PROOFSTEP] rw [LinearMap.smul_apply, smul_assoc, mul_smul_comm, smul_sub] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M a : M b : CliffordAlgebra Q ⊢ ↑(↑contractLeft d) (↑(ι Q) a * b) = ↑d a • b - ↑(ι Q) a * ↑(↑contractLeft d) b [PROOFSTEP] refine foldr'_ι_mul _ _ ?_ _ _ _ [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M a : M b : CliffordAlgebra Q ⊢ ∀ (m : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) m) (↑(ι Q) m * x, ↑(↑(contractLeftAux Q d) m) (x, fx)) = ↑Q m • fx [PROOFSTEP] exact fun m x fx ↦ contractLeftAux_contractLeftAux Q d m x fx [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M a : M b : CliffordAlgebra Q ⊢ ↑(↑contractRight (b * ↑(ι Q) a)) d = ↑d a • b - ↑(↑contractRight b) d * ↑(ι Q) a [PROOFSTEP] rw [contractRight_eq, reverse.map_mul, reverse_ι, contractLeft_ι_mul, map_sub, map_smul, reverse_reverse, reverse.map_mul, reverse_ι, contractRight_eq] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M r : R b : CliffordAlgebra Q ⊢ ↑(↑contractLeft d) (↑(algebraMap R (CliffordAlgebra Q)) r * b) = ↑(algebraMap R (CliffordAlgebra Q)) r * ↑(↑contractLeft d) b [PROOFSTEP] rw [← Algebra.smul_def, map_smul, Algebra.smul_def, Algebra.smul_def] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M a : CliffordAlgebra Q r : R ⊢ ↑(↑contractLeft d) (a * ↑(algebraMap R (CliffordAlgebra Q)) r) = ↑(↑contractLeft d) a * ↑(algebraMap R (CliffordAlgebra Q)) r [PROOFSTEP] rw [← Algebra.commutes, contractLeft_algebraMap_mul, Algebra.commutes, Algebra.commutes] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M r : R b : CliffordAlgebra Q ⊢ ↑(↑contractRight (↑(algebraMap R (CliffordAlgebra Q)) r * b)) d = ↑(algebraMap R (CliffordAlgebra Q)) r * ↑(↑contractRight b) d [PROOFSTEP] rw [← Algebra.smul_def, LinearMap.map_smul₂, Algebra.smul_def] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M a : CliffordAlgebra Q r : R ⊢ ↑(↑contractRight (a * ↑(algebraMap R (CliffordAlgebra Q)) r)) d = ↑(↑contractRight a) d * ↑(algebraMap R (CliffordAlgebra Q)) r [PROOFSTEP] rw [← Algebra.commutes, contractRight_algebraMap_mul, Algebra.commutes] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x : M ⊢ ↑(↑contractLeft d) (↑(ι Q) x) = ↑(algebraMap R (CliffordAlgebra Q)) (↑d x) [PROOFSTEP] refine (foldr'_ι _ _ ?_ _ _).trans <| by simp_rw [contractLeftAux_apply_apply, mul_zero, sub_zero, Algebra.algebraMap_eq_smul_one] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x : M ⊢ ↑(↑(contractLeftAux Q d) x) (1, 0) = ↑(algebraMap R (CliffordAlgebra Q)) (↑d x) [PROOFSTEP] simp_rw [contractLeftAux_apply_apply, mul_zero, sub_zero, Algebra.algebraMap_eq_smul_one] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x : M ⊢ ∀ (m : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) m) (↑(ι Q) m * x, ↑(↑(contractLeftAux Q d) m) (x, fx)) = ↑Q m • fx [PROOFSTEP] exact fun m x fx ↦ contractLeftAux_contractLeftAux Q d m x fx [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x : M ⊢ ↑(↑contractRight (↑(ι Q) x)) d = ↑(algebraMap R (CliffordAlgebra Q)) (↑d x) [PROOFSTEP] rw [contractRight_eq, reverse_ι, contractLeft_ι, reverse.commutes] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M r : R ⊢ ↑(↑contractLeft d) (↑(algebraMap R (CliffordAlgebra Q)) r) = 0 [PROOFSTEP] refine (foldr'_algebraMap _ _ ?_ _ _).trans <| smul_zero _ [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M r : R ⊢ ∀ (m : M) (x fx : CliffordAlgebra Q), ↑(↑(contractLeftAux Q d) m) (↑(ι Q) m * x, ↑(↑(contractLeftAux Q d) m) (x, fx)) = ↑Q m • fx [PROOFSTEP] exact fun m x fx ↦ contractLeftAux_contractLeftAux Q d m x fx [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M r : R ⊢ ↑(↑contractRight (↑(algebraMap R (CliffordAlgebra Q)) r)) d = 0 [PROOFSTEP] rw [contractRight_eq, reverse.commutes, contractLeft_algebraMap, map_zero] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M ⊢ ↑(↑contractLeft d) 1 = 0 [PROOFSTEP] simpa only [map_one] using contractLeft_algebraMap Q d 1 [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M ⊢ ↑(↑contractRight 1) d = 0 [PROOFSTEP] simpa only [map_one] using contractRight_algebraMap Q d 1 [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(↑contractLeft d) (↑(↑contractLeft d) x) = 0 [PROOFSTEP] induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx [GOAL] case hr R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M r : R ⊢ ↑(↑contractLeft d) (↑(↑contractLeft d) (↑(algebraMap R (CliffordAlgebra Q)) r)) = 0 [PROOFSTEP] simp_rw [contractLeft_algebraMap, map_zero] [GOAL] case h_add R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x y : CliffordAlgebra Q hx : ↑(↑contractLeft d) (↑(↑contractLeft d) x) = 0 hy : ↑(↑contractLeft d) (↑(↑contractLeft d) y) = 0 ⊢ ↑(↑contractLeft d) (↑(↑contractLeft d) (x + y)) = 0 [PROOFSTEP] rw [map_add, map_add, hx, hy, add_zero] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(↑contractLeft d) (↑(↑contractLeft d) m) = 0 ⊢ ↑(↑contractLeft d) (↑(↑contractLeft d) (↑(ι Q) x * m)) = 0 [PROOFSTEP] rw [contractLeft_ι_mul, map_sub, contractLeft_ι_mul, hx, LinearMap.map_smul, mul_zero, sub_zero, sub_self] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(↑contractRight (↑(↑contractRight x) d)) d = 0 [PROOFSTEP] rw [contractRight_eq, contractRight_eq, reverse_reverse, contractLeft_contractLeft, map_zero] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(↑contractLeft d) (↑(↑contractLeft d') x) = -↑(↑contractLeft d') (↑(↑contractLeft d) x) [PROOFSTEP] induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx [GOAL] case hr R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M r : R ⊢ ↑(↑contractLeft d) (↑(↑contractLeft d') (↑(algebraMap R (CliffordAlgebra Q)) r)) = -↑(↑contractLeft d') (↑(↑contractLeft d) (↑(algebraMap R (CliffordAlgebra Q)) r)) [PROOFSTEP] simp_rw [contractLeft_algebraMap, map_zero, neg_zero] [GOAL] case h_add R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x y : CliffordAlgebra Q hx : ↑(↑contractLeft d) (↑(↑contractLeft d') x) = -↑(↑contractLeft d') (↑(↑contractLeft d) x) hy : ↑(↑contractLeft d) (↑(↑contractLeft d') y) = -↑(↑contractLeft d') (↑(↑contractLeft d) y) ⊢ ↑(↑contractLeft d) (↑(↑contractLeft d') (x + y)) = -↑(↑contractLeft d') (↑(↑contractLeft d) (x + y)) [PROOFSTEP] rw [map_add, map_add, map_add, map_add, hx, hy, neg_add] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(↑contractLeft d) (↑(↑contractLeft d') m) = -↑(↑contractLeft d') (↑(↑contractLeft d) m) ⊢ ↑(↑contractLeft d) (↑(↑contractLeft d') (↑(ι Q) x * m)) = -↑(↑contractLeft d') (↑(↑contractLeft d) (↑(ι Q) x * m)) [PROOFSTEP] simp only [contractLeft_ι_mul, map_sub, LinearMap.map_smul] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(↑contractLeft d) (↑(↑contractLeft d') m) = -↑(↑contractLeft d') (↑(↑contractLeft d) m) ⊢ ↑d' x • ↑(↑contractLeft d) m - (↑d x • ↑(↑contractLeft d') m - ↑(ι Q) x * ↑(↑contractLeft d) (↑(↑contractLeft d') m)) = -(↑d x • ↑(↑contractLeft d') m - (↑d' x • ↑(↑contractLeft d) m - ↑(ι Q) x * ↑(↑contractLeft d') (↑(↑contractLeft d) m))) [PROOFSTEP] rw [neg_sub, sub_sub_eq_add_sub, hx, mul_neg, ← sub_eq_add_neg] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M d d' : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(↑contractRight (↑(↑contractRight x) d)) d' = -↑(↑contractRight (↑(↑contractRight x) d')) d [PROOFSTEP] rw [contractRight_eq, contractRight_eq, contractRight_eq, contractRight_eq, reverse_reverse, reverse_reverse, contractLeft_comm, map_neg] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M B : BilinForm R M v : M x : CliffordAlgebra Q ⊢ ↑(↑(changeFormAux Q B) v) (↑(↑(changeFormAux Q B) v) x) = (↑Q v - BilinForm.bilin B v v) • x [PROOFSTEP] simp only [changeFormAux_apply_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q : QuadraticForm R M B : BilinForm R M v : M x : CliffordAlgebra Q ⊢ ↑(ι Q) v * (↑(ι Q) v * x - ↑(↑contractLeft (↑(↑BilinForm.toLin B) v)) x) - ↑(↑contractLeft (↑(↑BilinForm.toLin B) v)) (↑(ι Q) v * x - ↑(↑contractLeft (↑(↑BilinForm.toLin B) v)) x) = (↑Q v - BilinForm.bilin B v v) • x [PROOFSTEP] rw [mul_sub, ← mul_assoc, ι_sq_scalar, map_sub, contractLeft_ι_mul, ← sub_add, sub_sub_sub_comm, ← Algebra.smul_def, BilinForm.toLin_apply, sub_self, sub_zero, contractLeft_contractLeft, add_zero, sub_smul] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h✝ : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' h : BilinForm.toQuadraticForm B = Q' - Q m : M x : CliffordAlgebra Q' ⊢ (↑Q' m - BilinForm.bilin B m m) • x = ↑Q m • x [PROOFSTEP] dsimp only [← BilinForm.toQuadraticForm_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h✝ : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' h : BilinForm.toQuadraticForm B = Q' - Q m : M x : CliffordAlgebra Q' ⊢ (↑Q' m - ↑(BilinForm.toQuadraticForm B) m) • x = ↑Q m • x [PROOFSTEP] rw [h, QuadraticForm.sub_apply, sub_sub_cancel] [GOAL] R : Type u1 inst✝³ : CommRing R M : Type u2 inst✝² : AddCommGroup M inst✝¹ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' inst✝ : Invertible 2 ⊢ BilinForm.toQuadraticForm (↑QuadraticForm.associated (-Q)) = 0 - Q [PROOFSTEP] simp [QuadraticForm.toQuadraticForm_associated] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' ⊢ ↑(changeForm h) 1 = 1 [PROOFSTEP] simpa using changeForm_algebraMap h (1 : R) [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' m : M ⊢ ↑(ι Q') m = ↑(↑(changeFormAux Q' B) m) 1 [PROOFSTEP] rw [changeFormAux_apply_apply, mul_one, contractLeft_one, sub_zero] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' m : M x : CliffordAlgebra Q ⊢ ↑(↑(foldr Q (changeFormAux Q' B) (_ : ∀ (m : M) (x : CliffordAlgebra Q'), ↑(↑(changeFormAux Q' B) m) (↑(↑(changeFormAux Q' B) m) x) = ↑Q m • x)) (↑(↑(foldr Q (changeFormAux Q' B) (_ : ∀ (m : M) (x : CliffordAlgebra Q'), ↑(↑(changeFormAux Q' B) m) (↑(↑(changeFormAux Q' B) m) x) = ↑Q m • x)) 1) x)) (↑(ι Q) m) = ↑(ι Q') m * ↑(changeForm h) x - ↑(↑contractLeft (↑(↑BilinForm.toLin B) m)) (↑(changeForm h) x) [PROOFSTEP] rw [foldr_ι] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' m : M x : CliffordAlgebra Q ⊢ ↑(↑(changeFormAux Q' B) m) (↑(↑(foldr Q (changeFormAux Q' B) (_ : ∀ (m : M) (x : CliffordAlgebra Q'), ↑(↑(changeFormAux Q' B) m) (↑(↑(changeFormAux Q' B) m) x) = ↑Q m • x)) 1) x) = ↑(ι Q') m * ↑(changeForm h) x - ↑(↑contractLeft (↑(↑BilinForm.toLin B) m)) (↑(changeForm h) x) [PROOFSTEP] rfl [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' m₁ m₂ : M ⊢ ↑(changeForm h) (↑(ι Q) m₁ * ↑(ι Q) m₂) = ↑(ι Q') m₁ * ↑(ι Q') m₂ - ↑(algebraMap R (CliffordAlgebra Q')) (BilinForm.bilin B m₁ m₂) [PROOFSTEP] rw [changeForm_ι_mul, changeForm_ι, contractLeft_ι, BilinForm.toLin_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' d : Module.Dual R M x : CliffordAlgebra Q ⊢ ↑(changeForm h) (↑(↑contractLeft d) x) = ↑(↑contractLeft d) (↑(changeForm h) x) [PROOFSTEP] induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx [GOAL] case hr R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' d : Module.Dual R M r : R ⊢ ↑(changeForm h) (↑(↑contractLeft d) (↑(algebraMap R (CliffordAlgebra Q)) r)) = ↑(↑contractLeft d) (↑(changeForm h) (↑(algebraMap R (CliffordAlgebra Q)) r)) [PROOFSTEP] simp only [contractLeft_algebraMap, changeForm_algebraMap, map_zero] [GOAL] case h_add R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' d : Module.Dual R M x y : CliffordAlgebra Q hx : ↑(changeForm h) (↑(↑contractLeft d) x) = ↑(↑contractLeft d) (↑(changeForm h) x) hy : ↑(changeForm h) (↑(↑contractLeft d) y) = ↑(↑contractLeft d) (↑(changeForm h) y) ⊢ ↑(changeForm h) (↑(↑contractLeft d) (x + y)) = ↑(↑contractLeft d) (↑(changeForm h) (x + y)) [PROOFSTEP] rw [map_add, map_add, map_add, map_add, hx, hy] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' d : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(changeForm h) (↑(↑contractLeft d) m) = ↑(↑contractLeft d) (↑(changeForm h) m) ⊢ ↑(changeForm h) (↑(↑contractLeft d) (↑(ι Q) x * m)) = ↑(↑contractLeft d) (↑(changeForm h) (↑(ι Q) x * m)) [PROOFSTEP] simp only [contractLeft_ι_mul, changeForm_ι_mul, map_sub, LinearMap.map_smul] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' d : Module.Dual R M m : CliffordAlgebra Q x : M hx : ↑(changeForm h) (↑(↑contractLeft d) m) = ↑(↑contractLeft d) (↑(changeForm h) m) ⊢ ↑d x • ↑(changeForm h) m - (↑(ι Q') x * ↑(changeForm h) (↑(↑contractLeft d) m) - ↑(↑contractLeft (↑(↑BilinForm.toLin B) x)) (↑(changeForm h) (↑(↑contractLeft d) m))) = ↑d x • ↑(changeForm h) m - ↑(ι Q') x * ↑(↑contractLeft d) (↑(changeForm h) m) - ↑(↑contractLeft d) (↑(↑contractLeft (↑(↑BilinForm.toLin B) x)) (↑(changeForm h) m)) [PROOFSTEP] rw [← hx, contractLeft_comm, ← sub_add, sub_neg_eq_add, ← hx] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' x : CliffordAlgebra Q ⊢ ↑(changeForm (_ : BilinForm.toQuadraticForm 0 = Q - Q)) x = x [PROOFSTEP] induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx [GOAL] case hr R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' r : R ⊢ ↑(changeForm (_ : BilinForm.toQuadraticForm 0 = Q - Q)) (↑(algebraMap R (CliffordAlgebra Q)) r) = ↑(algebraMap R (CliffordAlgebra Q)) r [PROOFSTEP] simp_rw [changeForm_algebraMap] [GOAL] case h_add R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' x y : CliffordAlgebra Q hx : ↑(changeForm (_ : BilinForm.toQuadraticForm 0 = Q - Q)) x = x hy : ↑(changeForm (_ : BilinForm.toQuadraticForm 0 = Q - Q)) y = y ⊢ ↑(changeForm (_ : BilinForm.toQuadraticForm 0 = Q - Q)) (x + y) = x + y [PROOFSTEP] rw [map_add, hx, hy] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' m : CliffordAlgebra Q x : M hx : ↑(changeForm (_ : BilinForm.toQuadraticForm 0 = Q - Q)) m = m ⊢ ↑(changeForm (_ : BilinForm.toQuadraticForm 0 = Q - Q)) (↑(ι Q) x * m) = ↑(ι Q) x * m [PROOFSTEP] rw [changeForm_ι_mul, hx, map_zero, LinearMap.zero_apply, map_zero, LinearMap.zero_apply, sub_zero] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' x : CliffordAlgebra Q ⊢ ↑(changeForm h') (↑(changeForm h) x) = ↑(changeForm (_ : BilinForm.toQuadraticForm (B + B') = Q'' - Q)) x [PROOFSTEP] induction' x using CliffordAlgebra.left_induction with r x y hx hy m x hx [GOAL] case hr R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' r : R ⊢ ↑(changeForm h') (↑(changeForm h) (↑(algebraMap R (CliffordAlgebra Q)) r)) = ↑(changeForm (_ : BilinForm.toQuadraticForm (B + B') = Q'' - Q)) (↑(algebraMap R (CliffordAlgebra Q)) r) [PROOFSTEP] simp_rw [changeForm_algebraMap] [GOAL] case h_add R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' x y : CliffordAlgebra Q hx : ↑(changeForm h') (↑(changeForm h) x) = ↑(changeForm (_ : BilinForm.toQuadraticForm (B + B') = Q'' - Q)) x hy : ↑(changeForm h') (↑(changeForm h) y) = ↑(changeForm (_ : BilinForm.toQuadraticForm (B + B') = Q'' - Q)) y ⊢ ↑(changeForm h') (↑(changeForm h) (x + y)) = ↑(changeForm (_ : BilinForm.toQuadraticForm (B + B') = Q'' - Q)) (x + y) [PROOFSTEP] rw [map_add, map_add, map_add, hx, hy] [GOAL] case h_mul_ι R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' m : CliffordAlgebra Q x : M hx : ↑(changeForm h') (↑(changeForm h) m) = ↑(changeForm (_ : BilinForm.toQuadraticForm (B + B') = Q'' - Q)) m ⊢ ↑(changeForm h') (↑(changeForm h) (↑(ι Q) x * m)) = ↑(changeForm (_ : BilinForm.toQuadraticForm (B + B') = Q'' - Q)) (↑(ι Q) x * m) [PROOFSTEP] rw [changeForm_ι_mul, map_sub, changeForm_ι_mul, changeForm_ι_mul, hx, sub_sub, map_add, LinearMap.add_apply, map_add, LinearMap.add_apply, changeForm_contractLeft, hx, add_comm (_ : CliffordAlgebra Q'')] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' src✝ : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q' := changeForm h x : CliffordAlgebra Q ⊢ ↑(changeForm (_ : BilinForm.toQuadraticForm (-B) = Q - Q')) (AddHom.toFun { toAddHom := { toFun := ↑(changeForm h), map_add' := (_ : ∀ (x y : CliffordAlgebra Q), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : CliffordAlgebra Q), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x) = x [PROOFSTEP] dsimp only [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' src✝ : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q' := changeForm h x : CliffordAlgebra Q ⊢ ↑(changeForm (_ : BilinForm.toQuadraticForm (-B) = Q - Q')) (↑(changeForm h) x) = x [PROOFSTEP] exact (changeForm_changeForm _ _ x).trans <| by simp_rw [add_right_neg, changeForm_self_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' src✝ : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q' := changeForm h x : CliffordAlgebra Q ⊢ ↑(changeForm (_ : BilinForm.toQuadraticForm (B + -B) = Q - Q)) x = x [PROOFSTEP] simp_rw [add_right_neg, changeForm_self_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' src✝ : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q' := changeForm h x : CliffordAlgebra Q' ⊢ AddHom.toFun { toAddHom := { toFun := ↑(changeForm h), map_add' := (_ : ∀ (x y : CliffordAlgebra Q), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : CliffordAlgebra Q), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (↑(changeForm (_ : BilinForm.toQuadraticForm (-B) = Q - Q')) x) = x [PROOFSTEP] dsimp only [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' src✝ : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q' := changeForm h x : CliffordAlgebra Q' ⊢ ↑(changeForm h) (↑(changeForm (_ : BilinForm.toQuadraticForm (-B) = Q - Q')) x) = x [PROOFSTEP] exact (changeForm_changeForm _ _ x).trans <| by simp_rw [add_left_neg, changeForm_self_apply] [GOAL] R : Type u1 inst✝² : CommRing R M : Type u2 inst✝¹ : AddCommGroup M inst✝ : Module R M Q Q' Q'' : QuadraticForm R M B B' : BilinForm R M h : BilinForm.toQuadraticForm B = Q' - Q h' : BilinForm.toQuadraticForm B' = Q'' - Q' src✝ : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q' := changeForm h x : CliffordAlgebra Q' ⊢ ↑(changeForm (_ : BilinForm.toQuadraticForm (-B + B) = Q' - Q')) x = x [PROOFSTEP] simp_rw [add_left_neg, changeForm_self_apply]
{"mathlib_filename": "Mathlib.LinearAlgebra.CliffordAlgebra.Contraction", "llama_tokens": 22761}
[GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : DiscreteTopology α ⊢ ∀ (a : α), IsCountablyGenerated (nhds a) [PROOFSTEP] rw [nhds_discrete] [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : DiscreteTopology α ⊢ ∀ (a : α), IsCountablyGenerated (pure a) [PROOFSTEP] exact isCountablyGenerated_pure [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α hd : DiscreteTopology α inst✝ : Encodable α i : α ⊢ instTopologicalSpaceSubtype = generateFrom {univ} [PROOFSTEP] simp only [eq_iff_true_of_subsingleton] [GOAL] α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α ⊢ ⊥ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] refine' (eq_bot_of_singletons_open fun a => _).symm [GOAL] α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α ⊢ IsOpen {a} [PROOFSTEP] have h_singleton_eq_inter : { a } = Iio (succ a) ∩ Ioi (pred a) := by suffices h_singleton_eq_inter' : { a } = Iic a ∩ Ici a · rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] rw [inter_comm, Ici_inter_Iic, Icc_self a] [GOAL] α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α ⊢ {a} = Iio (succ a) ∩ Ioi (pred a) [PROOFSTEP] suffices h_singleton_eq_inter' : { a } = Iic a ∩ Ici a [GOAL] α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter' : {a} = Iic a ∩ Ici a ⊢ {a} = Iio (succ a) ∩ Ioi (pred a) [PROOFSTEP] rw [h_singleton_eq_inter', ← Ioi_pred, ← Iio_succ] [GOAL] case h_singleton_eq_inter' α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α ⊢ {a} = Iic a ∩ Ici a [PROOFSTEP] rw [inter_comm, Ici_inter_Iic, Icc_self a] [GOAL] α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ⊢ IsOpen {a} [PROOFSTEP] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. [GOAL] α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ⊢ IsOpen (Iio (succ a) ∩ Ioi (pred a)) [PROOFSTEP] apply @IsOpen.inter _ _ _ (generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a}) [GOAL] case h₁ α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ⊢ IsOpen (Iio (succ a)) [PROOFSTEP] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ [GOAL] case h₂ α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ⊢ IsOpen (Ioi (pred a)) [PROOFSTEP] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ [GOAL] α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α ⊢ DiscreteTopology α ↔ OrderTopology α [PROOFSTEP] refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ [GOAL] case refine'_1 α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α h : DiscreteTopology α ⊢ inst✝⁵ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] rw [h.eq_bot] [GOAL] case refine'_1 α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α h : DiscreteTopology α ⊢ ⊥ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder [GOAL] case refine'_2 α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α h : OrderTopology α ⊢ inst✝⁵ = ⊥ [PROOFSTEP] rw [h.topology_eq_generate_intervals] [GOAL] case refine'_2 α : Type u_1 inst✝⁵ : TopologicalSpace α inst✝⁴ : PartialOrder α inst✝³ : PredOrder α inst✝² : SuccOrder α inst✝¹ : NoMinOrder α inst✝ : NoMaxOrder α h : OrderTopology α ⊢ generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} = ⊥ [PROOFSTEP] exact bot_topologicalSpace_eq_generateFrom_of_pred_succOrder.symm [GOAL] α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α ⊢ ⊥ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] refine' (eq_bot_of_singletons_open fun a => _).symm [GOAL] α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α ⊢ IsOpen {a} [PROOFSTEP] have h_singleton_eq_inter : { a } = Iic a ∩ Ici a := by rw [inter_comm, Ici_inter_Iic, Icc_self a] [GOAL] α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α ⊢ {a} = Iic a ∩ Ici a [PROOFSTEP] rw [inter_comm, Ici_inter_Iic, Icc_self a] [GOAL] α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iic a ∩ Ici a ⊢ IsOpen {a} [PROOFSTEP] by_cases ha_top : IsTop a [GOAL] case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iic a ∩ Ici a ha_top : IsTop a ⊢ IsOpen {a} [PROOFSTEP] rw [ha_top.Iic_eq, inter_comm, inter_univ] at h_singleton_eq_inter [GOAL] case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ici a ha_top : IsTop a ⊢ IsOpen {a} [PROOFSTEP] by_cases ha_bot : IsBot a [GOAL] case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ici a ha_top : IsTop a ha_bot : IsBot a ⊢ IsOpen {a} [PROOFSTEP] rw [ha_bot.Ici_eq] at h_singleton_eq_inter [GOAL] case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = univ ha_top : IsTop a ha_bot : IsBot a ⊢ IsOpen {a} [PROOFSTEP] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `isOpen_univ` explicitly to fix an error. [GOAL] case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = univ ha_top : IsTop a ha_bot : IsBot a ⊢ IsOpen univ [PROOFSTEP] apply @isOpen_univ _ (generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a}) [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ici a ha_top : IsTop a ha_bot : ¬IsBot a ⊢ IsOpen {a} [PROOFSTEP] rw [isBot_iff_isMin] at ha_bot [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ici a ha_top : IsTop a ha_bot : ¬IsMin a ⊢ IsOpen {a} [PROOFSTEP] rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ioi (pred a) ha_top : IsTop a ha_bot : ¬IsMin a ⊢ IsOpen {a} [PROOFSTEP] rw [h_singleton_eq_inter] [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Ioi (pred a) ha_top : IsTop a ha_bot : ¬IsMin a ⊢ IsOpen (Ioi (pred a)) [PROOFSTEP] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iic a ∩ Ici a ha_top : ¬IsTop a ⊢ IsOpen {a} [PROOFSTEP] rw [isTop_iff_isMax] at ha_top [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iic a ∩ Ici a ha_top : ¬IsMax a ⊢ IsOpen {a} [PROOFSTEP] rw [← Iio_succ_of_not_isMax ha_top] at h_singleton_eq_inter [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ici a ha_top : ¬IsMax a ⊢ IsOpen {a} [PROOFSTEP] by_cases ha_bot : IsBot a [GOAL] case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ici a ha_top : ¬IsMax a ha_bot : IsBot a ⊢ IsOpen {a} [PROOFSTEP] rw [ha_bot.Ici_eq, inter_univ] at h_singleton_eq_inter [GOAL] case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ha_top : ¬IsMax a ha_bot : IsBot a ⊢ IsOpen {a} [PROOFSTEP] rw [h_singleton_eq_inter] [GOAL] case pos α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ha_top : ¬IsMax a ha_bot : IsBot a ⊢ IsOpen (Iio (succ a)) [PROOFSTEP] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ici a ha_top : ¬IsMax a ha_bot : ¬IsBot a ⊢ IsOpen {a} [PROOFSTEP] rw [isBot_iff_isMin] at ha_bot [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ici a ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen {a} [PROOFSTEP] rw [← Ioi_pred_of_not_isMin ha_bot] at h_singleton_eq_inter [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen {a} [PROOFSTEP] rw [h_singleton_eq_inter] -- Porting note: Specified instance for `IsOpen.inter` explicitly to fix an error. [GOAL] case neg α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen (Iio (succ a) ∩ Ioi (pred a)) [PROOFSTEP] apply @IsOpen.inter _ _ _ (generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a}) [GOAL] case neg.h₁ α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen (Iio (succ a)) [PROOFSTEP] exact isOpen_generateFrom_of_mem ⟨succ a, Or.inr rfl⟩ [GOAL] case neg.h₂ α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α a : α h_singleton_eq_inter : {a} = Iio (succ a) ∩ Ioi (pred a) ha_top : ¬IsMax a ha_bot : ¬IsMin a ⊢ IsOpen (Ioi (pred a)) [PROOFSTEP] exact isOpen_generateFrom_of_mem ⟨pred a, Or.inl rfl⟩ [GOAL] α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α ⊢ DiscreteTopology α ↔ OrderTopology α [PROOFSTEP] refine' ⟨fun h => ⟨_⟩, fun h => ⟨_⟩⟩ [GOAL] case refine'_1 α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α h : DiscreteTopology α ⊢ inst✝³ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] rw [h.eq_bot] [GOAL] case refine'_1 α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α h : DiscreteTopology α ⊢ ⊥ = generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} [PROOFSTEP] exact LinearOrder.bot_topologicalSpace_eq_generateFrom [GOAL] case refine'_2 α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α h : OrderTopology α ⊢ inst✝³ = ⊥ [PROOFSTEP] rw [h.topology_eq_generate_intervals] [GOAL] case refine'_2 α : Type u_1 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : PredOrder α inst✝ : SuccOrder α h : OrderTopology α ⊢ generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} = ⊥ [PROOFSTEP] exact LinearOrder.bot_topologicalSpace_eq_generateFrom.symm [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : DiscreteTopology α ⊢ MetrizableSpace α [PROOFSTEP] obtain rfl := DiscreteTopology.eq_bot (α := α) [GOAL] α : Type u_1 inst✝ : DiscreteTopology α ⊢ MetrizableSpace α [PROOFSTEP] exact @UniformSpace.metrizableSpace α ⊥ (isCountablyGenerated_principal _) _
{"mathlib_filename": "Mathlib.Topology.Instances.Discrete", "llama_tokens": 6300}
[GOAL] p q : ℚ s t : Set ℚ ⊢ NeBot (cocompact ℚ ⊓ 𝓝 p) [PROOFSTEP] refine' (hasBasis_cocompact.inf (nhds_basis_opens _)).neBot_iff.2 _ [GOAL] p q : ℚ s t : Set ℚ ⊢ ∀ {i : Set ℚ × Set ℚ}, IsCompact i.fst ∧ p ∈ i.snd ∧ IsOpen i.snd → Set.Nonempty (i.fstᶜ ∩ i.snd) [PROOFSTEP] rintro ⟨s, o⟩ ⟨hs, hpo, ho⟩ [GOAL] case mk.intro.intro p q : ℚ s✝ t s o : Set ℚ hs : IsCompact (s, o).fst hpo : p ∈ (s, o).snd ho : IsOpen (s, o).snd ⊢ Set.Nonempty ((s, o).fstᶜ ∩ (s, o).snd) [PROOFSTEP] rw [inter_comm] [GOAL] case mk.intro.intro p q : ℚ s✝ t s o : Set ℚ hs : IsCompact (s, o).fst hpo : p ∈ (s, o).snd ho : IsOpen (s, o).snd ⊢ Set.Nonempty ((s, o).snd ∩ (s, o).fstᶜ) [PROOFSTEP] exact (dense_compl_compact hs).inter_open_nonempty _ ho ⟨p, hpo⟩ [GOAL] p q : ℚ s t : Set ℚ ⊢ ¬IsCountablyGenerated (cocompact ℚ) [PROOFSTEP] intro H [GOAL] p q : ℚ s t : Set ℚ H : IsCountablyGenerated (cocompact ℚ) ⊢ False [PROOFSTEP] rcases exists_seq_tendsto (cocompact ℚ ⊓ 𝓝 0) with ⟨x, hx⟩ [GOAL] case intro p q : ℚ s t : Set ℚ H : IsCountablyGenerated (cocompact ℚ) x : ℕ → ℚ hx : Tendsto x atTop (cocompact ℚ ⊓ 𝓝 0) ⊢ False [PROOFSTEP] rw [tendsto_inf] at hx [GOAL] case intro p q : ℚ s t : Set ℚ H : IsCountablyGenerated (cocompact ℚ) x : ℕ → ℚ hx : Tendsto x atTop (cocompact ℚ) ∧ Tendsto x atTop (𝓝 0) ⊢ False [PROOFSTEP] rcases hx with ⟨hxc, hx0⟩ [GOAL] case intro.intro p q : ℚ s t : Set ℚ H : IsCountablyGenerated (cocompact ℚ) x : ℕ → ℚ hxc : Tendsto x atTop (cocompact ℚ) hx0 : Tendsto x atTop (𝓝 0) ⊢ False [PROOFSTEP] obtain ⟨n, hn⟩ : ∃ n : ℕ, x n ∉ insert (0 : ℚ) (range x) [GOAL] p q : ℚ s t : Set ℚ H : IsCountablyGenerated (cocompact ℚ) x : ℕ → ℚ hxc : Tendsto x atTop (cocompact ℚ) hx0 : Tendsto x atTop (𝓝 0) ⊢ ∃ n, ¬x n ∈ insert 0 (range x) case intro.intro.intro p q : ℚ s t : Set ℚ H : IsCountablyGenerated (cocompact ℚ) x : ℕ → ℚ hxc : Tendsto x atTop (cocompact ℚ) hx0 : Tendsto x atTop (𝓝 0) n : ℕ hn : ¬x n ∈ insert 0 (range x) ⊢ False [PROOFSTEP] exact (hxc.eventually hx0.isCompact_insert_range.compl_mem_cocompact).exists [GOAL] case intro.intro.intro p q : ℚ s t : Set ℚ H : IsCountablyGenerated (cocompact ℚ) x : ℕ → ℚ hxc : Tendsto x atTop (cocompact ℚ) hx0 : Tendsto x atTop (𝓝 0) n : ℕ hn : ¬x n ∈ insert 0 (range x) ⊢ False [PROOFSTEP] exact hn (Or.inr ⟨n, rfl⟩) [GOAL] p q : ℚ s t : Set ℚ ⊢ ¬IsCountablyGenerated (𝓝 ∞) [PROOFSTEP] intro [GOAL] p q : ℚ s t : Set ℚ a✝ : IsCountablyGenerated (𝓝 ∞) ⊢ False [PROOFSTEP] have : IsCountablyGenerated (comap (OnePoint.some : ℚ → ℚ∞) (𝓝 ∞)) := by infer_instance [GOAL] p q : ℚ s t : Set ℚ a✝ : IsCountablyGenerated (𝓝 ∞) ⊢ IsCountablyGenerated (comap OnePoint.some (𝓝 ∞)) [PROOFSTEP] infer_instance [GOAL] p q : ℚ s t : Set ℚ a✝ : IsCountablyGenerated (𝓝 ∞) this : IsCountablyGenerated (comap OnePoint.some (𝓝 ∞)) ⊢ False [PROOFSTEP] rw [OnePoint.comap_coe_nhds_infty, coclosedCompact_eq_cocompact] at this [GOAL] p q : ℚ s t : Set ℚ a✝ : IsCountablyGenerated (𝓝 ∞) this : IsCountablyGenerated (cocompact ℚ) ⊢ False [PROOFSTEP] exact not_countably_generated_cocompact this [GOAL] p q : ℚ s t : Set ℚ ⊢ ¬FirstCountableTopology ℚ∞ [PROOFSTEP] intro [GOAL] p q : ℚ s t : Set ℚ a✝ : FirstCountableTopology ℚ∞ ⊢ False [PROOFSTEP] exact not_countably_generated_nhds_infty_opc inferInstance [GOAL] p q : ℚ s t : Set ℚ ⊢ ¬SecondCountableTopology ℚ∞ [PROOFSTEP] intro [GOAL] p q : ℚ s t : Set ℚ a✝ : SecondCountableTopology ℚ∞ ⊢ False [PROOFSTEP] exact not_firstCountableTopology_opc inferInstance [GOAL] p q : ℚ s t : Set ℚ ⊢ TotallyDisconnectedSpace ℚ [PROOFSTEP] refine' ⟨fun s hsu hs x hx y hy => _⟩ [GOAL] p q : ℚ s✝ t s : Set ℚ hsu : s ⊆ univ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s ⊢ x = y [PROOFSTEP] clear hsu [GOAL] p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s ⊢ x = y [PROOFSTEP] by_contra' H : x ≠ y [GOAL] p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y ⊢ False [PROOFSTEP] wlog hlt : x < y [GOAL] case inr p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y this : ∀ {p q : ℚ} {s t : Set ℚ} (s : Set ℚ), IsPreconnected s → ∀ (x : ℚ), x ∈ s → ∀ (y : ℚ), y ∈ s → x ≠ y → x < y → False hlt : ¬x < y ⊢ False [PROOFSTEP] refine' this s hs y hy x hx H.symm <| H.lt_or_lt.resolve_left hlt [GOAL] case inr.refine'_1 p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y this : ∀ {p q : ℚ} {s t : Set ℚ} (s : Set ℚ), IsPreconnected s → ∀ (x : ℚ), x ∈ s → ∀ (y : ℚ), y ∈ s → x ≠ y → x < y → False hlt : ¬x < y ⊢ ℚ [PROOFSTEP] assumption [GOAL] case inr.refine'_2 p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y this : ∀ {p q : ℚ} {s t : Set ℚ} (s : Set ℚ), IsPreconnected s → ∀ (x : ℚ), x ∈ s → ∀ (y : ℚ), y ∈ s → x ≠ y → x < y → False hlt : ¬x < y ⊢ ℚ [PROOFSTEP] assumption [GOAL] case inr.refine'_3 p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y this : ∀ {p q : ℚ} {s t : Set ℚ} (s : Set ℚ), IsPreconnected s → ∀ (x : ℚ), x ∈ s → ∀ (y : ℚ), y ∈ s → x ≠ y → x < y → False hlt : ¬x < y ⊢ Set ℚ [PROOFSTEP] assumption [GOAL] case inr.refine'_4 p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y this : ∀ {p q : ℚ} {s t : Set ℚ} (s : Set ℚ), IsPreconnected s → ∀ (x : ℚ), x ∈ s → ∀ (y : ℚ), y ∈ s → x ≠ y → x < y → False hlt : ¬x < y ⊢ Set ℚ [PROOFSTEP] assumption [GOAL] p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y hlt : x < y ⊢ False [PROOFSTEP] rcases exists_irrational_btwn (Rat.cast_lt.2 hlt) with ⟨z, hz, hxz, hzy⟩ [GOAL] case intro.intro.intro p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y hlt : x < y z : ℝ hz : Irrational z hxz : ↑x < z hzy : z < ↑y ⊢ False [PROOFSTEP] have := hs.image _ continuous_coe_real.continuousOn [GOAL] case intro.intro.intro p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y hlt : x < y z : ℝ hz : Irrational z hxz : ↑x < z hzy : z < ↑y this : IsPreconnected (Rat.cast '' s) ⊢ False [PROOFSTEP] rw [isPreconnected_iff_ordConnected] at this [GOAL] case intro.intro.intro p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y hlt : x < y z : ℝ hz : Irrational z hxz : ↑x < z hzy : z < ↑y this✝ : IsPreconnected (Rat.cast '' s) this : OrdConnected (Rat.cast '' s) ⊢ False [PROOFSTEP] have : z ∈ Rat.cast '' s := this.out (mem_image_of_mem _ hx) (mem_image_of_mem _ hy) ⟨hxz.le, hzy.le⟩ [GOAL] case intro.intro.intro p q : ℚ s✝ t s : Set ℚ hs : IsPreconnected s x : ℚ hx : x ∈ s y : ℚ hy : y ∈ s H : x ≠ y hlt : x < y z : ℝ hz : Irrational z hxz : ↑x < z hzy : z < ↑y this✝¹ : IsPreconnected (Rat.cast '' s) this✝ : OrdConnected (Rat.cast '' s) this : z ∈ Rat.cast '' s ⊢ False [PROOFSTEP] exact hz (image_subset_range _ _ this)
{"mathlib_filename": "Mathlib.Topology.Instances.RatLemmas", "llama_tokens": 3649}
[GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] tfae_have 1 → 4 [GOAL] case tfae_1_to_4 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y ⊢ IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] exact fun h y => h { y } [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] tfae_have 4 → 3 [GOAL] case tfae_4_to_3 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) ⊢ (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] exact fun h x => h (f x) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] tfae_have 3 → 2 [GOAL] case tfae_3_to_2 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} ⊢ (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] exact fun h x => IsOpen.mem_nhds (h x) rfl [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] tfae_have 2 → 5 [GOAL] case tfae_2_to_5 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x ⊢ (∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x) → ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x [PROOFSTEP] intro h x [GOAL] case tfae_2_to_5 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x h : ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x x : X ⊢ ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x [PROOFSTEP] rcases mem_nhds_iff.1 (h x) with ⟨U, eq, hU, hx⟩ [GOAL] case tfae_2_to_5.intro.intro.intro X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x h : ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x x : X U : Set X eq : U ⊆ {x_1 | (fun x' => f x' = f x) x_1} hU : IsOpen U hx : x ∈ U ⊢ ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x [PROOFSTEP] exact ⟨U, hU, hx, eq⟩ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x tfae_2_to_5 : (∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x) → ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] tfae_have 5 → 1 [GOAL] case tfae_5_to_1 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x tfae_2_to_5 : (∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x) → ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x ⊢ (∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x) → IsLocallyConstant f [PROOFSTEP] intro h s [GOAL] case tfae_5_to_1 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x tfae_2_to_5 : (∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x) → ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x h : ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x s : Set Y ⊢ IsOpen (f ⁻¹' s) [PROOFSTEP] refine' isOpen_iff_forall_mem_open.2 fun x hx => _ [GOAL] case tfae_5_to_1 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x tfae_2_to_5 : (∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x) → ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x h : ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x s : Set Y x : X hx : x ∈ f ⁻¹' s ⊢ ∃ t, t ⊆ f ⁻¹' s ∧ IsOpen t ∧ x ∈ t [PROOFSTEP] rcases h x with ⟨U, hU, hxU, eq⟩ [GOAL] case tfae_5_to_1.intro.intro.intro X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x tfae_2_to_5 : (∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x) → ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x h : ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x s : Set Y x : X hx : x ∈ f ⁻¹' s U : Set X hU : IsOpen U hxU : x ∈ U eq : ∀ (x' : X), x' ∈ U → f x' = f x ⊢ ∃ t, t ⊆ f ⁻¹' s ∧ IsOpen t ∧ x ∈ t [PROOFSTEP] exact ⟨U, fun x' hx' => mem_preimage.2 <| (eq x' hx').symm ▸ hx, hU, hxU⟩ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y tfae_1_to_4 : IsLocallyConstant f → ∀ (y : Y), IsOpen (f ⁻¹' {y}) tfae_4_to_3 : (∀ (y : Y), IsOpen (f ⁻¹' {y})) → ∀ (x : X), IsOpen {x' | f x' = f x} tfae_3_to_2 : (∀ (x : X), IsOpen {x' | f x' = f x}) → ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x tfae_2_to_5 : (∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x) → ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x tfae_5_to_1 : (∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x) → IsLocallyConstant f ⊢ TFAE [IsLocallyConstant f, ∀ (x : X), ∀ᶠ (x' : X) in 𝓝 x, f x' = f x, ∀ (x : X), IsOpen {x' | f x' = f x}, ∀ (y : Y), IsOpen (f ⁻¹' {y}), ∀ (x : X), ∃ U, IsOpen U ∧ x ∈ U ∧ ∀ (x' : X), x' ∈ U → f x' = f x] [PROOFSTEP] tfae_finish [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f g : Y → Z s : Set Z ⊢ IsOpen (g ∘ f ⁻¹' s) [PROOFSTEP] rw [Set.preimage_comp] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f g : Y → Z s : Set Z ⊢ IsOpen (f ⁻¹' (g ⁻¹' s)) [PROOFSTEP] exact hf _ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y g : Y → Z f : X → Y hg : IsLocallyConstant g hf : Continuous f s : Set Z ⊢ IsOpen (g ∘ f ⁻¹' s) [PROOFSTEP] rw [Set.preimage_comp] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y g : Y → Z f : X → Y hg : IsLocallyConstant g hf : Continuous f s : Set Z ⊢ IsOpen (f ⁻¹' (g ⁻¹' s)) [PROOFSTEP] exact hf.isOpen_preimage _ (hg _) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s ⊢ f x = f y [PROOFSTEP] let U := f ⁻¹' {f y} [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s U : Set X := f ⁻¹' {f y} ⊢ f x = f y [PROOFSTEP] suffices : x ∉ Uᶜ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s U : Set X := f ⁻¹' {f y} this : ¬x ∈ Uᶜ ⊢ f x = f y case this X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s U : Set X := f ⁻¹' {f y} ⊢ ¬x ∈ Uᶜ [PROOFSTEP] exact Classical.not_not.1 this [GOAL] case this X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s U : Set X := f ⁻¹' {f y} ⊢ ¬x ∈ Uᶜ [PROOFSTEP] intro hxV [GOAL] case this X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s U : Set X := f ⁻¹' {f y} hxV : x ∈ Uᶜ ⊢ False [PROOFSTEP] specialize hs U Uᶜ (hf {f y}) (hf {f y}ᶜ) _ ⟨y, ⟨hy, rfl⟩⟩ ⟨x, ⟨hx, hxV⟩⟩ [GOAL] case this X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X hs : IsPreconnected s x y : X hx : x ∈ s hy : y ∈ s U : Set X := f ⁻¹' {f y} hxV : x ∈ Uᶜ ⊢ s ⊆ U ∪ Uᶜ [PROOFSTEP] simp only [union_compl_self, subset_univ] [GOAL] case this X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X f : X → Y hf : IsLocallyConstant f s : Set X x y : X hx : x ∈ s hy : y ∈ s U : Set X := f ⁻¹' {f y} hxV : x ∈ Uᶜ hs : Set.Nonempty (s ∩ (U ∩ Uᶜ)) ⊢ False [PROOFSTEP] simp only [inter_empty, Set.not_nonempty_empty, inter_compl_self] at hs [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : PreconnectedSpace X inst✝ : Nonempty Y f : X → Y hf : IsLocallyConstant f ⊢ ∃ y, f = Function.const X y [PROOFSTEP] cases' isEmpty_or_nonempty X with h h [GOAL] case inl X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : PreconnectedSpace X inst✝ : Nonempty Y f : X → Y hf : IsLocallyConstant f h : IsEmpty X ⊢ ∃ y, f = Function.const X y [PROOFSTEP] exact ⟨Classical.arbitrary Y, funext <| h.elim⟩ [GOAL] case inr X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : PreconnectedSpace X inst✝ : Nonempty Y f : X → Y hf : IsLocallyConstant f h : Nonempty X ⊢ ∃ y, f = Function.const X y [PROOFSTEP] exact ⟨f (Classical.arbitrary X), hf.eq_const _⟩ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X f : X → Y hf : IsLocallyConstant f ⊢ Set.Finite (range f) [PROOFSTEP] letI : TopologicalSpace Y := ⊥ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X f : X → Y hf : IsLocallyConstant f this : TopologicalSpace Y := ⊥ ⊢ Set.Finite (range f) [PROOFSTEP] haveI := discreteTopology_bot Y [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X f : X → Y hf : IsLocallyConstant f this✝ : TopologicalSpace Y := ⊥ this : DiscreteTopology Y ⊢ Set.Finite (range f) [PROOFSTEP] exact (isCompact_range hf.continuous).finite_of_discrete [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α✝ : Type u_4 inst✝ : TopologicalSpace X α : Type u_5 β : Type u_6 f : X → α g : α → β h : IsLocallyConstant (g ∘ f) inj : Function.Injective g s : Set α ⊢ IsOpen (f ⁻¹' s) [PROOFSTEP] rw [← preimage_image_eq s inj, preimage_preimage] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α✝ : Type u_4 inst✝ : TopologicalSpace X α : Type u_5 β : Type u_6 f : X → α g : α → β h : IsLocallyConstant (g ∘ f) inj : Function.Injective g s : Set α ⊢ IsOpen ((fun x => g (f x)) ⁻¹' (g '' s)) [PROOFSTEP] exact h (g '' s) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X ⊢ Function.Injective LocallyConstant.toFun [PROOFSTEP] rintro ⟨_, _⟩ ⟨_, _⟩ _ [GOAL] case mk.mk X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝ : TopologicalSpace X toFun✝¹ : X → Y isLocallyConstant✝¹ : IsLocallyConstant toFun✝¹ toFun✝ : X → Y isLocallyConstant✝ : IsLocallyConstant toFun✝ a✝ : { toFun := toFun✝¹, isLocallyConstant := isLocallyConstant✝¹ }.toFun = { toFun := toFun✝, isLocallyConstant := isLocallyConstant✝ }.toFun ⊢ { toFun := toFun✝¹, isLocallyConstant := isLocallyConstant✝¹ } = { toFun := toFun✝, isLocallyConstant := isLocallyConstant✝ } [PROOFSTEP] congr [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U ⊢ IsLocallyConstant fun x => if x ∈ U then 0 else 1 [PROOFSTEP] refine IsLocallyConstant.iff_isOpen_fiber.2 <| Fin.forall_fin_two.2 ⟨?_, ?_⟩ [GOAL] case refine_1 X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U ⊢ IsOpen ((fun x => if x ∈ U then 0 else 1) ⁻¹' {0}) [PROOFSTEP] convert hU.1 using 1 [GOAL] case h.e'_3 X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U ⊢ (fun x => if x ∈ U then 0 else 1) ⁻¹' {0} = U [PROOFSTEP] ext [GOAL] case h.e'_3.h X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U x✝ : X ⊢ x✝ ∈ (fun x => if x ∈ U then 0 else 1) ⁻¹' {0} ↔ x✝ ∈ U [PROOFSTEP] simp only [mem_singleton_iff, Fin.one_eq_zero_iff, mem_preimage, ite_eq_left_iff, Nat.succ_succ_ne_one] [GOAL] case h.e'_3.h X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U x✝ : X ⊢ ¬x✝ ∈ U → False ↔ x✝ ∈ U [PROOFSTEP] tauto [GOAL] case refine_2 X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U ⊢ IsOpen ((fun x => if x ∈ U then 0 else 1) ⁻¹' {1}) [PROOFSTEP] rw [← isClosed_compl_iff] [GOAL] case refine_2 X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U ⊢ IsClosed ((fun x => if x ∈ U then 0 else 1) ⁻¹' {1})ᶜ [PROOFSTEP] convert hU.2 [GOAL] case h.e'_3 X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U ⊢ ((fun x => if x ∈ U then 0 else 1) ⁻¹' {1})ᶜ = U [PROOFSTEP] ext [GOAL] case h.e'_3.h X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U x✝ : X ⊢ x✝ ∈ ((fun x => if x ∈ U then 0 else 1) ⁻¹' {1})ᶜ ↔ x✝ ∈ U [PROOFSTEP] simp [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U ⊢ ↑(ofClopen hU) ⁻¹' {0} = U [PROOFSTEP] ext [GOAL] case h X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U x✝ : X ⊢ x✝ ∈ ↑(ofClopen hU) ⁻¹' {0} ↔ x✝ ∈ U [PROOFSTEP] simp only [ofClopen, mem_singleton_iff, Fin.one_eq_zero_iff, coe_mk, mem_preimage, ite_eq_left_iff, Nat.succ_succ_ne_one] [GOAL] case h X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U x✝ : X ⊢ ¬x✝ ∈ U → False ↔ x✝ ∈ U [PROOFSTEP] tauto [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U ⊢ ↑(ofClopen hU) ⁻¹' {1} = Uᶜ [PROOFSTEP] ext [GOAL] case h X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 inst✝¹ : TopologicalSpace X U : Set X inst✝ : (x : X) → Decidable (x ∈ U) hU : IsClopen U x✝ : X ⊢ x✝ ∈ ↑(ofClopen hU) ⁻¹' {1} ↔ x✝ ∈ Uᶜ [PROOFSTEP] simp only [ofClopen, mem_singleton_iff, coe_mk, Fin.zero_eq_one_iff, mem_preimage, ite_eq_right_iff, mem_compl_iff, Nat.succ_succ_ne_one] [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X✝ X : Type u_5 inst✝ : TopologicalSpace X f g : LocallyConstant X (Fin 2) h : ↑f ⁻¹' {0} = ↑g ⁻¹' {0} ⊢ f = g [PROOFSTEP] simp only [Set.ext_iff, mem_singleton_iff, mem_preimage] at h [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X✝ X : Type u_5 inst✝ : TopologicalSpace X f g : LocallyConstant X (Fin 2) h : ∀ (x : X), ↑f x = 0 ↔ ↑g x = 0 ⊢ f = g [PROOFSTEP] ext1 x [GOAL] case h X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X✝ X : Type u_5 inst✝ : TopologicalSpace X f g : LocallyConstant X (Fin 2) h : ∀ (x : X), ↑f x = 0 ↔ ↑g x = 0 x : X ⊢ ↑f x = ↑g x [PROOFSTEP] exact Fin.fin_two_eq_of_eq_zero_iff (h x) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : PreconnectedSpace X inst✝ : Nonempty Y f : LocallyConstant X Y ⊢ ∃ y, f = const X y [PROOFSTEP] rcases Classical.em (Nonempty X) with (⟨⟨x⟩⟩ | hX) [GOAL] case inl.intro X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : PreconnectedSpace X inst✝ : Nonempty Y f : LocallyConstant X Y x : X ⊢ ∃ y, f = const X y [PROOFSTEP] exact ⟨f x, f.eq_const x⟩ [GOAL] case inr X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : PreconnectedSpace X inst✝ : Nonempty Y f : LocallyConstant X Y hX : ¬Nonempty X ⊢ ∃ y, f = const X y [PROOFSTEP] exact ⟨Classical.arbitrary Y, ext fun x => (hX ⟨x⟩).elim⟩ [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α✝ : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 α : Type u_6 β : Type u_7 inst✝¹ : Finite α inst✝ : TopologicalSpace X f : α → LocallyConstant X β g : α → β ⊢ IsOpen ((fun x a => ↑(f a) x) ⁻¹' {g}) [PROOFSTEP] have : (fun (x : X) (a : α) => f a x) ⁻¹' { g } = ⋂ a : α, f a ⁻¹' {g a} := by ext; simp [Function.funext_iff] [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α✝ : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 α : Type u_6 β : Type u_7 inst✝¹ : Finite α inst✝ : TopologicalSpace X f : α → LocallyConstant X β g : α → β ⊢ (fun x a => ↑(f a) x) ⁻¹' {g} = ⋂ (a : α), ↑(f a) ⁻¹' {g a} [PROOFSTEP] ext [GOAL] case h X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α✝ : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 α : Type u_6 β : Type u_7 inst✝¹ : Finite α inst✝ : TopologicalSpace X f : α → LocallyConstant X β g : α → β x✝ : X ⊢ x✝ ∈ (fun x a => ↑(f a) x) ⁻¹' {g} ↔ x✝ ∈ ⋂ (a : α), ↑(f a) ⁻¹' {g a} [PROOFSTEP] simp [Function.funext_iff] [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α✝ : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 α : Type u_6 β : Type u_7 inst✝¹ : Finite α inst✝ : TopologicalSpace X f : α → LocallyConstant X β g : α → β this : (fun x a => ↑(f a) x) ⁻¹' {g} = ⋂ (a : α), ↑(f a) ⁻¹' {g a} ⊢ IsOpen ((fun x a => ↑(f a) x) ⁻¹' {g}) [PROOFSTEP] rw [this] [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 α✝ : Type u_4 inst✝² : TopologicalSpace X✝ X : Type u_5 α : Type u_6 β : Type u_7 inst✝¹ : Finite α inst✝ : TopologicalSpace X f : α → LocallyConstant X β g : α → β this : (fun x a => ↑(f a) x) ⁻¹' {g} = ⋂ (a : α), ↑(f a) ⁻¹' {g a} ⊢ IsOpen (⋂ (a : α), ↑(f a) ⁻¹' {g a}) [PROOFSTEP] exact isOpen_iInter fun a => (f a).isLocallyConstant _ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : ¬Continuous f ⊢ LocallyConstant Y Z → LocallyConstant X Z [PROOFSTEP] by_cases H : Nonempty X [GOAL] case pos X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : ¬Continuous f H : Nonempty X ⊢ LocallyConstant Y Z → LocallyConstant X Z [PROOFSTEP] intro g [GOAL] case pos X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : ¬Continuous f H : Nonempty X g : LocallyConstant Y Z ⊢ LocallyConstant X Z [PROOFSTEP] exact const X (g <| f <| Classical.arbitrary X) [GOAL] case neg X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : ¬Continuous f H : ¬Nonempty X ⊢ LocallyConstant Y Z → LocallyConstant X Z [PROOFSTEP] refine fun _ => ⟨fun x => (H ⟨x⟩).elim, fun s => ?_⟩ [GOAL] case neg X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : ¬Continuous f H : ¬Nonempty X x✝ : LocallyConstant Y Z s : Set Z ⊢ IsOpen ((fun x => False.elim (_ : False)) ⁻¹' s) [PROOFSTEP] rw [isOpen_iff_nhds] [GOAL] case neg X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : ¬Continuous f H : ¬Nonempty X x✝ : LocallyConstant Y Z s : Set Z ⊢ ∀ (a : X), a ∈ (fun x => False.elim (_ : False)) ⁻¹' s → 𝓝 a ≤ 𝓟 ((fun x => False.elim (_ : False)) ⁻¹' s) [PROOFSTEP] intro x [GOAL] case neg X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : ¬Continuous f H : ¬Nonempty X x✝ : LocallyConstant Y Z s : Set Z x : X ⊢ x ∈ (fun x => False.elim (_ : False)) ⁻¹' s → 𝓝 x ≤ 𝓟 ((fun x => False.elim (_ : False)) ⁻¹' s) [PROOFSTEP] exact (H ⟨x⟩).elim [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y g : LocallyConstant Y Z hf : Continuous f ⊢ ↑(comap f g) = ↑g ∘ f [PROOFSTEP] rw [comap, dif_pos hf] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y g : LocallyConstant Y Z hf : Continuous f ⊢ ↑{ toFun := ↑g ∘ f, isLocallyConstant := (_ : IsLocallyConstant (g.toFun ∘ f)) } = ↑g ∘ f [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y g : LocallyConstant Y Z hf : Continuous f x : X ⊢ ↑(comap f g) x = ↑g (f x) [PROOFSTEP] simp only [hf, coe_comap, Function.comp_apply] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y ⊢ comap id = id [PROOFSTEP] ext [GOAL] case h.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x✝¹ : LocallyConstant X Z x✝ : X ⊢ ↑(comap id x✝¹) x✝ = ↑(id x✝¹) x✝ [PROOFSTEP] simp only [continuous_id, id.def, Function.comp.right_id, coe_comap] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : X → Y g : Y → Z hf : Continuous f hg : Continuous g ⊢ comap f ∘ comap g = comap (g ∘ f) [PROOFSTEP] ext [GOAL] case h.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : X → Y g : Y → Z hf : Continuous f hg : Continuous g x✝¹ : LocallyConstant Z α x✝ : X ⊢ ↑((comap f ∘ comap g) x✝¹) x✝ = ↑(comap (g ∘ f) x✝¹) x✝ [PROOFSTEP] rw [Function.comp_apply] [GOAL] case h.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : X → Y g : Y → Z hf : Continuous f hg : Continuous g x✝¹ : LocallyConstant Z α x✝ : X ⊢ ↑(comap f (comap g x✝¹)) x✝ = ↑(comap (g ∘ f) x✝¹) x✝ [PROOFSTEP] simp only [hf, hg, hg.comp hf, coe_comap] [GOAL] case h.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : X → Y g : Y → Z hf : Continuous f hg : Continuous g x✝¹ : LocallyConstant Z α x✝ : X ⊢ ((↑x✝¹ ∘ g) ∘ f) x✝ = (↑x✝¹ ∘ g ∘ f) x✝ [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : X → Y g : Y → Z hf : Continuous f hg : Continuous g x : LocallyConstant Z α ⊢ comap f (comap g x) = comap (g ∘ f) x [PROOFSTEP] rw [← comap_comp f g hf hg] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : TopologicalSpace Z f : X → Y g : Y → Z hf : Continuous f hg : Continuous g x : LocallyConstant Z α ⊢ comap f (comap g x) = (comap f ∘ comap g) x [PROOFSTEP] rfl [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y y : Y h : ∀ (x : X), f x = y ⊢ comap f = fun g => const X (↑g y) [PROOFSTEP] ext [GOAL] case h.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y y : Y h : ∀ (x : X), f x = y x✝¹ : LocallyConstant Y Z x✝ : X ⊢ ↑(comap f x✝¹) x✝ = ↑(const X (↑x✝¹ y)) x✝ [PROOFSTEP] rw [coe_comap] [GOAL] case h.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y y : Y h : ∀ (x : X), f x = y x✝¹ : LocallyConstant Y Z x✝ : X ⊢ (↑x✝¹ ∘ f) x✝ = ↑(const X (↑x✝¹ y)) x✝ [PROOFSTEP] simp only [Function.comp_apply, h, coe_const, Function.const_apply] [GOAL] case h.h.hf X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y y : Y h : ∀ (x : X), f x = y x✝¹ : LocallyConstant Y Z x✝ : X ⊢ Continuous f [PROOFSTEP] rw [show f = fun _ => y by ext; apply h] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y y : Y h : ∀ (x : X), f x = y x✝¹ : LocallyConstant Y Z x✝ : X ⊢ f = fun x => y [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y y : Y h : ∀ (x : X), f x = y x✝² : LocallyConstant Y Z x✝¹ x✝ : X ⊢ f x✝ = y [PROOFSTEP] apply h [GOAL] case h.h.hf X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y y : Y h : ∀ (x : X), f x = y x✝¹ : LocallyConstant Y Z x✝ : X ⊢ Continuous fun x => y [PROOFSTEP] exact continuous_const [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : Continuous f hfs : Function.Surjective f ⊢ Function.Injective (comap f) [PROOFSTEP] intro a b h [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : Continuous f hfs : Function.Surjective f a b : LocallyConstant Y Z h : comap f a = comap f b ⊢ a = b [PROOFSTEP] rw [LocallyConstant.ext_iff] at h [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : Continuous f hfs : Function.Surjective f a b : LocallyConstant Y Z h : ∀ (x : X), ↑(comap f a) x = ↑(comap f b) x ⊢ a = b [PROOFSTEP] ext y [GOAL] case h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : Continuous f hfs : Function.Surjective f a b : LocallyConstant Y Z h : ∀ (x : X), ↑(comap f a) x = ↑(comap f b) x y : Y ⊢ ↑a y = ↑b y [PROOFSTEP] obtain ⟨x, hx⟩ := hfs y [GOAL] case h.intro X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : Continuous f hfs : Function.Surjective f a b : LocallyConstant Y Z h : ∀ (x : X), ↑(comap f a) x = ↑(comap f b) x y : Y x : X hx : f x = y ⊢ ↑a y = ↑b y [PROOFSTEP] specialize h x [GOAL] case h.intro X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y f : X → Y hf : Continuous f hfs : Function.Surjective f a b : LocallyConstant Y Z y : Y x : X hx : f x = y h : ↑(comap f a) x = ↑(comap f b) x ⊢ ↑a y = ↑b y [PROOFSTEP] rwa [coe_comap_apply _ _ hf, coe_comap_apply _ _ hf, hx] at h [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X R : Type u_5 inst✝ : One R U : Set X f : LocallyConstant X R hU : IsClopen U s : Set R ⊢ IsOpen (Set.mulIndicator U ↑f ⁻¹' s) [PROOFSTEP] rw [mulIndicator_preimage, Set.ite, Set.diff_eq] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X R : Type u_5 inst✝ : One R U : Set X f : LocallyConstant X R hU : IsClopen U s : Set R ⊢ IsOpen (↑f ⁻¹' s ∩ U ∪ 1 ⁻¹' s ∩ Uᶜ) [PROOFSTEP] exact ((f.2 s).inter hU.isOpen).union ((IsLocallyConstant.const 1 s).inter hU.compl.isOpen) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : X ≃ₜ Y ⊢ Function.LeftInverse (comap ↑e) (comap ↑(Homeomorph.symm e)) [PROOFSTEP] intro [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : X ≃ₜ Y x✝ : LocallyConstant X Z ⊢ comap (↑e) (comap (↑(Homeomorph.symm e)) x✝) = x✝ [PROOFSTEP] rw [comap_comap _ _ e.continuous e.symm.continuous] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : X ≃ₜ Y x✝ : LocallyConstant X Z ⊢ comap (↑(Homeomorph.symm e) ∘ ↑e) x✝ = x✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : X ≃ₜ Y ⊢ Function.RightInverse (comap ↑e) (comap ↑(Homeomorph.symm e)) [PROOFSTEP] intro [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : X ≃ₜ Y x✝ : LocallyConstant Y Z ⊢ comap (↑(Homeomorph.symm e)) (comap (↑e) x✝) = x✝ [PROOFSTEP] rw [comap_comap _ _ e.symm.continuous e.continuous] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y e : X ≃ₜ Y x✝ : LocallyConstant Y Z ⊢ comap (↑e ∘ ↑(Homeomorph.symm e)) x✝ = x✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h : C₁ ∪ C₂ = univ f : LocallyConstant (↑C₁) Z g : LocallyConstant (↑C₂) Z hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun f { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun g { val := x, property := (_ : x ∈ C₂) } inst✝ : (j : X) → Decidable (j ∈ C₁) ⊢ IsLocallyConstant fun i => if hi : i ∈ C₁ then ↑f { val := i, property := hi } else ↑g { val := i, property := (_ : i ∈ C₂) } [PROOFSTEP] let dZ : TopologicalSpace Z := ⊥ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h : C₁ ∪ C₂ = univ f : LocallyConstant (↑C₁) Z g : LocallyConstant (↑C₂) Z hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun f { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun g { val := x, property := (_ : x ∈ C₂) } inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ ⊢ IsLocallyConstant fun i => if hi : i ∈ C₁ then ↑f { val := i, property := hi } else ↑g { val := i, property := (_ : i ∈ C₂) } [PROOFSTEP] haveI : DiscreteTopology Z := discreteTopology_bot Z [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h : C₁ ∪ C₂ = univ f : LocallyConstant (↑C₁) Z g : LocallyConstant (↑C₂) Z hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun f { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun g { val := x, property := (_ : x ∈ C₂) } inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z ⊢ IsLocallyConstant fun i => if hi : i ∈ C₁ then ↑f { val := i, property := hi } else ↑g { val := i, property := (_ : i ∈ C₂) } [PROOFSTEP] obtain ⟨f, hf⟩ := f [GOAL] case mk X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h : C₁ ∪ C₂ = univ g : LocallyConstant (↑C₂) Z inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf : IsLocallyConstant f hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun g { val := x, property := (_ : x ∈ C₂) } ⊢ IsLocallyConstant fun i => if hi : i ∈ C₁ then ↑{ toFun := f, isLocallyConstant := hf } { val := i, property := hi } else ↑g { val := i, property := (_ : i ∈ C₂) } [PROOFSTEP] obtain ⟨g, hg⟩ := g [GOAL] case mk.mk X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h : C₁ ∪ C₂ = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf : IsLocallyConstant f g : ↑C₂ → Z hg : IsLocallyConstant g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg } { val := x, property := (_ : x ∈ C₂) } ⊢ IsLocallyConstant fun i => if hi : i ∈ C₁ then ↑{ toFun := f, isLocallyConstant := hf } { val := i, property := hi } else ↑{ toFun := g, isLocallyConstant := hg } { val := i, property := (_ : i ∈ C₂) } [PROOFSTEP] rw [IsLocallyConstant.iff_continuous] at hf hg ⊢ [GOAL] case mk.mk X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h : C₁ ∪ C₂ = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ Continuous fun i => if hi : i ∈ C₁ then ↑{ toFun := f, isLocallyConstant := hf✝ } { val := i, property := hi } else ↑{ toFun := g, isLocallyConstant := hg✝ } { val := i, property := (_ : i ∈ C₂) } [PROOFSTEP] dsimp only [coe_mk] [GOAL] case mk.mk X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h : C₁ ∪ C₂ = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ Continuous fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) } [PROOFSTEP] rw [Set.union_eq_iUnion] at h [GOAL] case mk.mk X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ Continuous fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) } [PROOFSTEP] refine' (locallyFinite_of_finite _).continuous h (fun i ↦ _) (fun i ↦ _) [GOAL] case mk.mk.refine'_1 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } i : Bool ⊢ IsClosed (bif i then C₁ else C₂) [PROOFSTEP] cases i <;> [exact h₂; exact h₁] [GOAL] case mk.mk.refine'_1 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } i : Bool ⊢ IsClosed (bif i then C₁ else C₂) [PROOFSTEP] cases i [GOAL] case mk.mk.refine'_1.false X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ IsClosed (bif false then C₁ else C₂) [PROOFSTEP] exact h₂ [GOAL] case mk.mk.refine'_1.true X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ IsClosed (bif true then C₁ else C₂) [PROOFSTEP] exact h₁ [GOAL] case mk.mk.refine'_2 X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } i : Bool ⊢ ContinuousOn (fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) }) (bif i then C₁ else C₂) [PROOFSTEP] cases i [GOAL] case mk.mk.refine'_2.false X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ ContinuousOn (fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) }) (bif false then C₁ else C₂) [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] [GOAL] case mk.mk.refine'_2.true X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ ContinuousOn (fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) }) (bif true then C₁ else C₂) [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] [GOAL] case mk.mk.refine'_2.false X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ Continuous (restrict (bif false then C₁ else C₂) fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) }) [PROOFSTEP] convert hg [GOAL] case h.e'_5.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } e_1✝ : ↑(bif false then C₁ else C₂) = ↑C₂ ⊢ (restrict (bif false then C₁ else C₂) fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) }) = g [PROOFSTEP] ext x [GOAL] case h.e'_5.h.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } e_1✝ : ↑(bif false then C₁ else C₂) = ↑C₂ x : ↑(bif false then C₁ else C₂) ⊢ restrict (bif false then C₁ else C₂) (fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) }) x = g x [PROOFSTEP] simp only [cond_false, restrict_apply, Subtype.coe_eta, dite_eq_right_iff] [GOAL] case h.e'_5.h.h X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } e_1✝ : ↑(bif false then C₁ else C₂) = ↑C₂ x : ↑(bif false then C₁ else C₂) ⊢ ∀ (h : ↑x ∈ C₁), f { val := ↑x, property := (_ : ↑x ∈ C₁) } = g x [PROOFSTEP] exact fun hx ↦ hfg x ⟨hx, x.prop⟩ [GOAL] case mk.mk.refine'_2.true X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ Continuous (restrict (bif true then C₁ else C₂) fun i => if hi : i ∈ C₁ then f { val := i, property := hi } else g { val := i, property := (_ : i ∈ C₂) }) [PROOFSTEP] simp only [cond_true, restrict_dite, Subtype.coe_eta] [GOAL] case mk.mk.refine'_2.true X : Type u_1 Y : Type u_2 Z : Type u_3 α : Type u_4 inst✝¹ : TopologicalSpace X C₁ C₂ : Set X h₁ : IsClosed C₁ h₂ : IsClosed C₂ h✝ : C₁ ∪ C₂ = univ h : (⋃ (b : Bool), bif b then C₁ else C₂) = univ inst✝ : (j : X) → Decidable (j ∈ C₁) dZ : TopologicalSpace Z := ⊥ this : DiscreteTopology Z f : ↑C₁ → Z hf✝ : IsLocallyConstant f hf : Continuous f g : ↑C₂ → Z hg✝ : IsLocallyConstant g hg : Continuous g hfg : ∀ (x : X) (hx : x ∈ C₁ ∩ C₂), LocallyConstant.toFun { toFun := f, isLocallyConstant := hf✝ } { val := x, property := (_ : x ∈ C₁) } = LocallyConstant.toFun { toFun := g, isLocallyConstant := hg✝ } { val := x, property := (_ : x ∈ C₂) } ⊢ Continuous fun a => f a [PROOFSTEP] exact hf
{"mathlib_filename": "Mathlib.Topology.LocallyConstant.Basic", "llama_tokens": 26053}
[GOAL] m n : ℤ ⊢ dist m n = ↑|m - n| [PROOFSTEP] rw [dist_eq] [GOAL] m n : ℤ ⊢ |↑m - ↑n| = ↑|m - n| [PROOFSTEP] norm_cast [GOAL] ⊢ Pairwise fun m n => 1 ≤ dist m n [PROOFSTEP] intro m n hne [GOAL] m n : ℤ hne : m ≠ n ⊢ 1 ≤ dist m n [PROOFSTEP] rw [dist_eq] [GOAL] m n : ℤ hne : m ≠ n ⊢ 1 ≤ |↑m - ↑n| [PROOFSTEP] norm_cast [GOAL] m n : ℤ hne : m ≠ n ⊢ 1 ≤ |m - n| [PROOFSTEP] rwa [← zero_add (1 : ℤ), Int.add_one_le_iff, abs_pos, sub_ne_zero] [GOAL] x : ℤ r : ℝ ⊢ ball x r = Ioo ⌊↑x - r⌋ ⌈↑x + r⌉ [PROOFSTEP] rw [← preimage_ball, Real.ball_eq_Ioo, preimage_Ioo] [GOAL] x : ℤ r : ℝ ⊢ closedBall x r = Icc ⌈↑x - r⌉ ⌊↑x + r⌋ [PROOFSTEP] rw [← preimage_closedBall, Real.closedBall_eq_Icc, preimage_Icc] [GOAL] x : ℤ r : ℝ ⊢ IsCompact (closedBall x r) [PROOFSTEP] rw [closedBall_eq_Icc] [GOAL] x : ℤ r : ℝ ⊢ IsCompact (Icc ⌈↑x - r⌉ ⌊↑x + r⌋) [PROOFSTEP] exact (Set.finite_Icc _ _).isCompact [GOAL] ⊢ cocompact ℤ = atBot ⊔ atTop [PROOFSTEP] simp_rw [← comap_dist_right_atTop_eq_cocompact (0 : ℤ), dist_eq', sub_zero, ← comap_abs_atTop, ← @Int.comap_cast_atTop ℝ, comap_comap] [GOAL] ⊢ comap (fun y => ↑|y|) atTop = comap (Int.cast ∘ abs) atTop [PROOFSTEP] rfl [GOAL] ⊢ cofinite = atBot ⊔ atTop [PROOFSTEP] rw [← cocompact_eq_cofinite, cocompact_eq]
{"mathlib_filename": "Mathlib.Topology.Instances.Int", "llama_tokens": 732}
[GOAL] I : Type u_1 A : Type u_2 X : I → Type u_3 inst✝¹ : (i : I) → TopologicalSpace (X i) inst✝ : TopologicalSpace A f g : (i : I) → C(A, X i) S : Set A homotopies : (i : I) → HomotopyRel (f i) (g i) S src✝ : Homotopy (ContinuousMap.pi fun i => f i) (ContinuousMap.pi fun i => g i) := Homotopy.pi fun i => (homotopies i).toHomotopy ⊢ ∀ (t : ↑unitInterval) (x : A), x ∈ S → ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(ContinuousMap.pi fun i => f i) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(ContinuousMap.pi fun i => g i) x) }.toContinuousMap (t, x)) x = ↑(ContinuousMap.pi f) x ∧ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(ContinuousMap.pi fun i => f i) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(ContinuousMap.pi fun i => g i) x) }.toContinuousMap (t, x)) x = ↑(ContinuousMap.pi g) x [PROOFSTEP] intro t x hx [GOAL] I : Type u_1 A : Type u_2 X : I → Type u_3 inst✝¹ : (i : I) → TopologicalSpace (X i) inst✝ : TopologicalSpace A f g : (i : I) → C(A, X i) S : Set A homotopies : (i : I) → HomotopyRel (f i) (g i) S src✝ : Homotopy (ContinuousMap.pi fun i => f i) (ContinuousMap.pi fun i => g i) := Homotopy.pi fun i => (homotopies i).toHomotopy t : ↑unitInterval x : A hx : x ∈ S ⊢ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(ContinuousMap.pi fun i => f i) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(ContinuousMap.pi fun i => g i) x) }.toContinuousMap (t, x)) x = ↑(ContinuousMap.pi f) x ∧ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(ContinuousMap.pi fun i => f i) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(ContinuousMap.pi fun i => g i) x) }.toContinuousMap (t, x)) x = ↑(ContinuousMap.pi g) x [PROOFSTEP] dsimp only [coe_mk, pi_eval, toFun_eq_coe, HomotopyWith.coe_toContinuousMap] [GOAL] I : Type u_1 A : Type u_2 X : I → Type u_3 inst✝¹ : (i : I) → TopologicalSpace (X i) inst✝ : TopologicalSpace A f g : (i : I) → C(A, X i) S : Set A homotopies : (i : I) → HomotopyRel (f i) (g i) S src✝ : Homotopy (ContinuousMap.pi fun i => f i) (ContinuousMap.pi fun i => g i) := Homotopy.pi fun i => (homotopies i).toHomotopy t : ↑unitInterval x : A hx : x ∈ S ⊢ (↑(Homotopy.pi fun i => (homotopies i).toHomotopy).toContinuousMap (t, x) = fun i => ↑(f i) x) ∧ ↑(Homotopy.pi fun i => (homotopies i).toHomotopy).toContinuousMap (t, x) = fun i => ↑(g i) x [PROOFSTEP] simp only [Function.funext_iff, ← forall_and] [GOAL] I : Type u_1 A : Type u_2 X : I → Type u_3 inst✝¹ : (i : I) → TopologicalSpace (X i) inst✝ : TopologicalSpace A f g : (i : I) → C(A, X i) S : Set A homotopies : (i : I) → HomotopyRel (f i) (g i) S src✝ : Homotopy (ContinuousMap.pi fun i => f i) (ContinuousMap.pi fun i => g i) := Homotopy.pi fun i => (homotopies i).toHomotopy t : ↑unitInterval x : A hx : x ∈ S ⊢ ∀ (x_1 : I), ↑(Homotopy.pi fun i => (homotopies i).toHomotopy).toContinuousMap (t, x) x_1 = ↑(f x_1) x ∧ ↑(Homotopy.pi fun i => (homotopies i).toHomotopy).toContinuousMap (t, x) x_1 = ↑(g x_1) x [PROOFSTEP] intro i [GOAL] I : Type u_1 A : Type u_2 X : I → Type u_3 inst✝¹ : (i : I) → TopologicalSpace (X i) inst✝ : TopologicalSpace A f g : (i : I) → C(A, X i) S : Set A homotopies : (i : I) → HomotopyRel (f i) (g i) S src✝ : Homotopy (ContinuousMap.pi fun i => f i) (ContinuousMap.pi fun i => g i) := Homotopy.pi fun i => (homotopies i).toHomotopy t : ↑unitInterval x : A hx : x ∈ S i : I ⊢ ↑(Homotopy.pi fun i => (homotopies i).toHomotopy).toContinuousMap (t, x) i = ↑(f i) x ∧ ↑(Homotopy.pi fun i => (homotopies i).toHomotopy).toContinuousMap (t, x) i = ↑(g i) x [PROOFSTEP] exact (homotopies i).prop' t x hx [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β A : Type u_3 inst✝ : TopologicalSpace A f₀ f₁ : C(A, α) g₀ g₁ : C(A, β) S : Set A F : Homotopy f₀ f₁ G : Homotopy g₀ g₁ x : A ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => (↑F t, ↑G t)) (0, x) = ↑(ContinuousMap.prodMk f₀ g₀) x [PROOFSTEP] simp only [prod_eval, Homotopy.apply_zero] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β A : Type u_3 inst✝ : TopologicalSpace A f₀ f₁ : C(A, α) g₀ g₁ : C(A, β) S : Set A F : Homotopy f₀ f₁ G : Homotopy g₀ g₁ x : A ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => (↑F t, ↑G t)) (1, x) = ↑(ContinuousMap.prodMk f₁ g₁) x [PROOFSTEP] simp only [prod_eval, Homotopy.apply_one] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β A : Type u_3 inst✝ : TopologicalSpace A f₀ f₁ : C(A, α) g₀ g₁ : C(A, β) S : Set A F : HomotopyRel f₀ f₁ S G : HomotopyRel g₀ g₁ S src✝ : Homotopy (prodMk f₀ g₀) (prodMk f₁ g₁) := Homotopy.prod F.toHomotopy G.toHomotopy ⊢ ∀ (t : ↑unitInterval) (x : A), x ∈ S → ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(prodMk f₀ g₀) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(prodMk f₁ g₁) x) }.toContinuousMap (t, x)) x = ↑(prodMk f₀ g₀) x ∧ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(prodMk f₀ g₀) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(prodMk f₁ g₁) x) }.toContinuousMap (t, x)) x = ↑(prodMk f₁ g₁) x [PROOFSTEP] intro t x hx [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β A : Type u_3 inst✝ : TopologicalSpace A f₀ f₁ : C(A, α) g₀ g₁ : C(A, β) S : Set A F : HomotopyRel f₀ f₁ S G : HomotopyRel g₀ g₁ S src✝ : Homotopy (prodMk f₀ g₀) (prodMk f₁ g₁) := Homotopy.prod F.toHomotopy G.toHomotopy t : ↑unitInterval x : A hx : x ∈ S ⊢ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(prodMk f₀ g₀) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(prodMk f₁ g₁) x) }.toContinuousMap (t, x)) x = ↑(prodMk f₀ g₀) x ∧ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(prodMk f₀ g₀) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(prodMk f₁ g₁) x) }.toContinuousMap (t, x)) x = ↑(prodMk f₁ g₁) x [PROOFSTEP] have hF := F.prop' t x hx [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β A : Type u_3 inst✝ : TopologicalSpace A f₀ f₁ : C(A, α) g₀ g₁ : C(A, β) S : Set A F : HomotopyRel f₀ f₁ S G : HomotopyRel g₀ g₁ S src✝ : Homotopy (prodMk f₀ g₀) (prodMk f₁ g₁) := Homotopy.prod F.toHomotopy G.toHomotopy t : ↑unitInterval x : A hx : x ∈ S hF : ↑(mk fun x => ContinuousMap.toFun F.toContinuousMap (t, x)) x = ↑f₀ x ∧ ↑(mk fun x => ContinuousMap.toFun F.toContinuousMap (t, x)) x = ↑f₁ x ⊢ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(prodMk f₀ g₀) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(prodMk f₁ g₁) x) }.toContinuousMap (t, x)) x = ↑(prodMk f₀ g₀) x ∧ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(prodMk f₀ g₀) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(prodMk f₁ g₁) x) }.toContinuousMap (t, x)) x = ↑(prodMk f₁ g₁) x [PROOFSTEP] have hG := G.prop' t x hx [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β A : Type u_3 inst✝ : TopologicalSpace A f₀ f₁ : C(A, α) g₀ g₁ : C(A, β) S : Set A F : HomotopyRel f₀ f₁ S G : HomotopyRel g₀ g₁ S src✝ : Homotopy (prodMk f₀ g₀) (prodMk f₁ g₁) := Homotopy.prod F.toHomotopy G.toHomotopy t : ↑unitInterval x : A hx : x ∈ S hF : ↑(mk fun x => ContinuousMap.toFun F.toContinuousMap (t, x)) x = ↑f₀ x ∧ ↑(mk fun x => ContinuousMap.toFun F.toContinuousMap (t, x)) x = ↑f₁ x hG : ↑(mk fun x => ContinuousMap.toFun G.toContinuousMap (t, x)) x = ↑g₀ x ∧ ↑(mk fun x => ContinuousMap.toFun G.toContinuousMap (t, x)) x = ↑g₁ x ⊢ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(prodMk f₀ g₀) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(prodMk f₁ g₁) x) }.toContinuousMap (t, x)) x = ↑(prodMk f₀ g₀) x ∧ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑(prodMk f₀ g₀) x), map_one_left := (_ : ∀ (x : A), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑(prodMk f₁ g₁) x) }.toContinuousMap (t, x)) x = ↑(prodMk f₁ g₁) x [PROOFSTEP] simp only [coe_mk, prod_eval, Prod.mk.inj_iff, Homotopy.prod] at hF hG ⊢ [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β A : Type u_3 inst✝ : TopologicalSpace A f₀ f₁ : C(A, α) g₀ g₁ : C(A, β) S : Set A F : HomotopyRel f₀ f₁ S G : HomotopyRel g₀ g₁ S src✝ : Homotopy (prodMk f₀ g₀) (prodMk f₁ g₁) := Homotopy.prod F.toHomotopy G.toHomotopy t : ↑unitInterval x : A hx : x ∈ S hF : ContinuousMap.toFun F.toContinuousMap (t, x) = ↑f₀ x ∧ ContinuousMap.toFun F.toContinuousMap (t, x) = ↑f₁ x hG : ContinuousMap.toFun G.toContinuousMap (t, x) = ↑g₀ x ∧ ContinuousMap.toFun G.toContinuousMap (t, x) = ↑g₁ x ⊢ (↑F.toHomotopy (t, x) = ↑f₀ x ∧ ↑G.toHomotopy (t, x) = ↑g₀ x) ∧ ↑F.toHomotopy (t, x) = ↑f₁ x ∧ ↑G.toHomotopy (t, x) = ↑g₁ x [PROOFSTEP] exact ⟨⟨hF.1, hG.1⟩, ⟨hF.2, hG.2⟩⟩ [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ : (i : ι) → Path (as i) (bs i) ⊢ (pi fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (γ i)) = Quotient.mk (Homotopic.setoid (fun i => as i) fun i => bs i) (Path.pi γ) [PROOFSTEP] unfold pi [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ : (i : ι) → Path (as i) (bs i) ⊢ Quotient.map Path.pi (_ : ∀ (x y : (i : ι) → Path (as i) (bs i)), x ≈ y → Nonempty (Homotopy (Path.pi x) (Path.pi y))) (Quotient.choice fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (γ i)) = Quotient.mk (Homotopic.setoid (fun i => as i) fun i => bs i) (Path.pi γ) [PROOFSTEP] simp [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ₀ : (i : ι) → Homotopic.Quotient (as i) (bs i) γ₁ : (i : ι) → Homotopic.Quotient (bs i) (cs i) ⊢ pi γ₀ ⬝ pi γ₁ = pi fun i => γ₀ i ⬝ γ₁ i [PROOFSTEP] apply Quotient.induction_on_pi (p := _) γ₁ [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ₀ : (i : ι) → Homotopic.Quotient (as i) (bs i) γ₁ : (i : ι) → Homotopic.Quotient (bs i) (cs i) ⊢ ∀ (a : (i : ι) → Path (bs i) (cs i)), (pi γ₀ ⬝ pi fun i => Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i)) = pi fun i => γ₀ i ⬝ (fun i => Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i)) i [PROOFSTEP] intro a [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ₀ : (i : ι) → Homotopic.Quotient (as i) (bs i) γ₁ : (i : ι) → Homotopic.Quotient (bs i) (cs i) a : (i : ι) → Path (bs i) (cs i) ⊢ (pi γ₀ ⬝ pi fun i => Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i)) = pi fun i => γ₀ i ⬝ (fun i => Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i)) i [PROOFSTEP] apply Quotient.induction_on_pi (p := _) γ₀ [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ₀ : (i : ι) → Homotopic.Quotient (as i) (bs i) γ₁ : (i : ι) → Homotopic.Quotient (bs i) (cs i) a : (i : ι) → Path (bs i) (cs i) ⊢ ∀ (a_1 : (i : ι) → Path (as i) (bs i)), ((pi fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a_1 i)) ⬝ pi fun i => Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i)) = pi fun i => (fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a_1 i)) i ⬝ (fun i => Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i)) i [PROOFSTEP] intros [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ₀ : (i : ι) → Homotopic.Quotient (as i) (bs i) γ₁ : (i : ι) → Homotopic.Quotient (bs i) (cs i) a : (i : ι) → Path (bs i) (cs i) a✝ : (i : ι) → Path (as i) (bs i) ⊢ ((pi fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i)) ⬝ pi fun i => Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i)) = pi fun i => (fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i)) i ⬝ (fun i => Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i)) i [PROOFSTEP] simp only [pi_lift] [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ₀ : (i : ι) → Homotopic.Quotient (as i) (bs i) γ₁ : (i : ι) → Homotopic.Quotient (bs i) (cs i) a : (i : ι) → Path (bs i) (cs i) a✝ : (i : ι) → Path (as i) (bs i) ⊢ Quotient.mk (Homotopic.setoid (fun i => as i) fun i => bs i) (Path.pi fun i => a✝ i) ⬝ Quotient.mk (Homotopic.setoid (fun i => bs i) fun i => cs i) (Path.pi fun i => a i) = pi fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i) ⬝ Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i) [PROOFSTEP] rw [← Path.Homotopic.comp_lift, Path.trans_pi_eq_pi_trans, ← pi_lift] [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i γ₀ : (i : ι) → Homotopic.Quotient (as i) (bs i) γ₁ : (i : ι) → Homotopic.Quotient (bs i) (cs i) a : (i : ι) → Path (bs i) (cs i) a✝ : (i : ι) → Path (as i) (bs i) ⊢ (pi fun i => Quotient.mk (Homotopic.setoid (as i) (cs i)) (Path.trans (a✝ i) (a i))) = pi fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i) ⬝ Quotient.mk (Homotopic.setoid (bs i) (cs i)) (a i) [PROOFSTEP] rfl [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i i : ι paths : (i : ι) → Homotopic.Quotient (as i) (bs i) ⊢ proj i (pi paths) = paths i [PROOFSTEP] apply Quotient.induction_on_pi (p := _) paths [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i i : ι paths : (i : ι) → Homotopic.Quotient (as i) (bs i) ⊢ ∀ (a : (i : ι) → Path (as i) (bs i)), proj i (pi fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a i)) = (fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a i)) i [PROOFSTEP] intro [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i i : ι paths : (i : ι) → Homotopic.Quotient (as i) (bs i) a✝ : (i : ι) → Path (as i) (bs i) ⊢ proj i (pi fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i)) = (fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i)) i [PROOFSTEP] unfold proj [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i i : ι paths : (i : ι) → Homotopic.Quotient (as i) (bs i) a✝ : (i : ι) → Path (as i) (bs i) ⊢ Quotient.mapFn (pi fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i)) (ContinuousMap.mk fun p => p i) = (fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i)) i [PROOFSTEP] rw [pi_lift, ← Path.Homotopic.map_lift] [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i i : ι paths : (i : ι) → Homotopic.Quotient (as i) (bs i) a✝ : (i : ι) → Path (as i) (bs i) ⊢ Quotient.mk (Homotopic.setoid (↑(ContinuousMap.mk fun p => p i) fun i => as i) (↑(ContinuousMap.mk fun p => p i) fun i => bs i)) (Path.map (Path.pi fun i => a✝ i) (_ : Continuous ↑(ContinuousMap.mk fun p => p i))) = (fun i => Quotient.mk (Homotopic.setoid (as i) (bs i)) (a✝ i)) i [PROOFSTEP] congr [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i p : Homotopic.Quotient as bs ⊢ (pi fun i => proj i p) = p [PROOFSTEP] apply Quotient.inductionOn (motive := _) p [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i p : Homotopic.Quotient as bs ⊢ ∀ (a : Path as bs), (pi fun i => proj i (Quotient.mk (Homotopic.setoid as bs) a)) = Quotient.mk (Homotopic.setoid as bs) a [PROOFSTEP] intro [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i p : Homotopic.Quotient as bs a✝ : Path as bs ⊢ (pi fun i => proj i (Quotient.mk (Homotopic.setoid as bs) a✝)) = Quotient.mk (Homotopic.setoid as bs) a✝ [PROOFSTEP] unfold proj [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i p : Homotopic.Quotient as bs a✝ : Path as bs ⊢ (pi fun i => Quotient.mapFn (Quotient.mk (Homotopic.setoid as bs) a✝) (ContinuousMap.mk fun p => p i)) = Quotient.mk (Homotopic.setoid as bs) a✝ [PROOFSTEP] simp_rw [← Path.Homotopic.map_lift] [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i p : Homotopic.Quotient as bs a✝ : Path as bs ⊢ (pi fun i => Quotient.mk (Homotopic.setoid (↑(ContinuousMap.mk fun p => p i) as) (↑(ContinuousMap.mk fun p => p i) bs)) (Path.map a✝ (_ : Continuous ↑(ContinuousMap.mk fun p => p i)))) = Quotient.mk (Homotopic.setoid as bs) a✝ [PROOFSTEP] erw [pi_lift] [GOAL] ι : Type u_1 X : ι → Type u_2 inst✝ : (i : ι) → TopologicalSpace (X i) as bs cs : (i : ι) → X i p : Homotopic.Quotient as bs a✝ : Path as bs ⊢ Quotient.mk (Homotopic.setoid (fun i => as i) fun i => bs i) (Path.pi fun i => Path.map a✝ (_ : Continuous ↑(ContinuousMap.mk fun p => p i))) = Quotient.mk (Homotopic.setoid as bs) a✝ [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ ⊢ prod q₁ q₂ ⬝ prod r₁ r₂ = prod (q₁ ⬝ r₁) (q₂ ⬝ r₂) [PROOFSTEP] apply Quotient.inductionOn₂ (motive := _) q₁ q₂ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ ⊢ ∀ (a : Path a₁ a₂) (b : Path b₁ b₂), prod (Quotient.mk (Homotopic.setoid a₁ a₂) a) (Quotient.mk (Homotopic.setoid b₁ b₂) b) ⬝ prod r₁ r₂ = prod (Quotient.mk (Homotopic.setoid a₁ a₂) a ⬝ r₁) (Quotient.mk (Homotopic.setoid b₁ b₂) b ⬝ r₂) [PROOFSTEP] intro a b [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ a : Path a₁ a₂ b : Path b₁ b₂ ⊢ prod (Quotient.mk (Homotopic.setoid a₁ a₂) a) (Quotient.mk (Homotopic.setoid b₁ b₂) b) ⬝ prod r₁ r₂ = prod (Quotient.mk (Homotopic.setoid a₁ a₂) a ⬝ r₁) (Quotient.mk (Homotopic.setoid b₁ b₂) b ⬝ r₂) [PROOFSTEP] apply Quotient.inductionOn₂ (motive := _) r₁ r₂ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ a : Path a₁ a₂ b : Path b₁ b₂ ⊢ ∀ (a_1 : Path a₂ a₃) (b_1 : Path b₂ b₃), prod (Quotient.mk (Homotopic.setoid a₁ a₂) a) (Quotient.mk (Homotopic.setoid b₁ b₂) b) ⬝ prod (Quotient.mk (Homotopic.setoid a₂ a₃) a_1) (Quotient.mk (Homotopic.setoid b₂ b₃) b_1) = prod (Quotient.mk (Homotopic.setoid a₁ a₂) a ⬝ Quotient.mk (Homotopic.setoid a₂ a₃) a_1) (Quotient.mk (Homotopic.setoid b₁ b₂) b ⬝ Quotient.mk (Homotopic.setoid b₂ b₃) b_1) [PROOFSTEP] intros [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ a : Path a₁ a₂ b : Path b₁ b₂ a✝ : Path a₂ a₃ b✝ : Path b₂ b₃ ⊢ prod (Quotient.mk (Homotopic.setoid a₁ a₂) a) (Quotient.mk (Homotopic.setoid b₁ b₂) b) ⬝ prod (Quotient.mk (Homotopic.setoid a₂ a₃) a✝) (Quotient.mk (Homotopic.setoid b₂ b₃) b✝) = prod (Quotient.mk (Homotopic.setoid a₁ a₂) a ⬝ Quotient.mk (Homotopic.setoid a₂ a₃) a✝) (Quotient.mk (Homotopic.setoid b₁ b₂) b ⬝ Quotient.mk (Homotopic.setoid b₂ b₃) b✝) [PROOFSTEP] simp only [prod_lift, ← Path.Homotopic.comp_lift, Path.trans_prod_eq_prod_trans] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β ⊢ projLeft (prod q₁ q₂) = q₁ [PROOFSTEP] apply Quotient.inductionOn₂ (motive := _) q₁ q₂ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β ⊢ ∀ (a : Path a₁ a₂) (b : Path b₁ b₂), projLeft (prod (Quotient.mk (Homotopic.setoid a₁ a₂) a) (Quotient.mk (Homotopic.setoid b₁ b₂) b)) = Quotient.mk (Homotopic.setoid a₁ a₂) a [PROOFSTEP] intro p₁ p₂ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁✝ p₁' : Path a₁ a₂ p₂✝ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p₁ : Path a₁ a₂ p₂ : Path b₁ b₂ ⊢ projLeft (prod (Quotient.mk (Homotopic.setoid a₁ a₂) p₁) (Quotient.mk (Homotopic.setoid b₁ b₂) p₂)) = Quotient.mk (Homotopic.setoid a₁ a₂) p₁ [PROOFSTEP] unfold projLeft [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁✝ p₁' : Path a₁ a₂ p₂✝ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p₁ : Path a₁ a₂ p₂ : Path b₁ b₂ ⊢ Quotient.mapFn (prod (Quotient.mk (Homotopic.setoid a₁ a₂) p₁) (Quotient.mk (Homotopic.setoid b₁ b₂) p₂)) (ContinuousMap.mk Prod.fst) = Quotient.mk (Homotopic.setoid a₁ a₂) p₁ [PROOFSTEP] rw [prod_lift, ← Path.Homotopic.map_lift] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁✝ p₁' : Path a₁ a₂ p₂✝ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p₁ : Path a₁ a₂ p₂ : Path b₁ b₂ ⊢ Quotient.mk (Homotopic.setoid (↑(ContinuousMap.mk Prod.fst) (a₁, b₁)) (↑(ContinuousMap.mk Prod.fst) (a₂, b₂))) (Path.map (Path.prod p₁ p₂) (_ : Continuous ↑(ContinuousMap.mk Prod.fst))) = Quotient.mk (Homotopic.setoid a₁ a₂) p₁ [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β ⊢ projRight (prod q₁ q₂) = q₂ [PROOFSTEP] apply Quotient.inductionOn₂ (motive := _) q₁ q₂ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β ⊢ ∀ (a : Path a₁ a₂) (b : Path b₁ b₂), projRight (prod (Quotient.mk (Homotopic.setoid a₁ a₂) a) (Quotient.mk (Homotopic.setoid b₁ b₂) b)) = Quotient.mk (Homotopic.setoid b₁ b₂) b [PROOFSTEP] intro p₁ p₂ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁✝ p₁' : Path a₁ a₂ p₂✝ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p₁ : Path a₁ a₂ p₂ : Path b₁ b₂ ⊢ projRight (prod (Quotient.mk (Homotopic.setoid a₁ a₂) p₁) (Quotient.mk (Homotopic.setoid b₁ b₂) p₂)) = Quotient.mk (Homotopic.setoid b₁ b₂) p₂ [PROOFSTEP] unfold projRight [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁✝ p₁' : Path a₁ a₂ p₂✝ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p₁ : Path a₁ a₂ p₂ : Path b₁ b₂ ⊢ Quotient.mapFn (prod (Quotient.mk (Homotopic.setoid a₁ a₂) p₁) (Quotient.mk (Homotopic.setoid b₁ b₂) p₂)) (ContinuousMap.mk Prod.snd) = Quotient.mk (Homotopic.setoid b₁ b₂) p₂ [PROOFSTEP] rw [prod_lift, ← Path.Homotopic.map_lift] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁✝ p₁' : Path a₁ a₂ p₂✝ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p₁ : Path a₁ a₂ p₂ : Path b₁ b₂ ⊢ Quotient.mk (Homotopic.setoid (↑(ContinuousMap.mk Prod.snd) (a₁, b₁)) (↑(ContinuousMap.mk Prod.snd) (a₂, b₂))) (Path.map (Path.prod p₁ p₂) (_ : Continuous ↑(ContinuousMap.mk Prod.snd))) = Quotient.mk (Homotopic.setoid b₁ b₂) p₂ [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p : Homotopic.Quotient (a₁, b₁) (a₂, b₂) ⊢ prod (projLeft p) (projRight p) = p [PROOFSTEP] apply Quotient.inductionOn (motive := _) p [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p : Homotopic.Quotient (a₁, b₁) (a₂, b₂) ⊢ ∀ (a : Path (a₁, b₁) (a₂, b₂)), prod (projLeft (Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) a)) (projRight (Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) a)) = Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) a [PROOFSTEP] intro p' [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p : Homotopic.Quotient (a₁, b₁) (a₂, b₂) p' : Path (a₁, b₁) (a₂, b₂) ⊢ prod (projLeft (Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p')) (projRight (Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p')) = Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p' [PROOFSTEP] unfold projLeft [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p : Homotopic.Quotient (a₁, b₁) (a₂, b₂) p' : Path (a₁, b₁) (a₂, b₂) ⊢ prod (Quotient.mapFn (Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p') (ContinuousMap.mk Prod.fst)) (projRight (Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p')) = Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p' [PROOFSTEP] unfold projRight [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p : Homotopic.Quotient (a₁, b₁) (a₂, b₂) p' : Path (a₁, b₁) (a₂, b₂) ⊢ prod (Quotient.mapFn (Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p') (ContinuousMap.mk Prod.fst)) (Quotient.mapFn (Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p') (ContinuousMap.mk Prod.snd)) = Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p' [PROOFSTEP] simp only [← Path.Homotopic.map_lift, prod_lift] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β a₁ a₂ a₃ : α b₁ b₂ b₃ : β p₁ p₁' : Path a₁ a₂ p₂ p₂' : Path b₁ b₂ q₁ : Homotopic.Quotient a₁ a₂ q₂ : Homotopic.Quotient b₁ b₂ r₁ : Homotopic.Quotient a₂ a₃ r₂ : Homotopic.Quotient b₂ b₃ c₁ c₂ : α × β p : Homotopic.Quotient (a₁, b₁) (a₂, b₂) p' : Path (a₁, b₁) (a₂, b₂) ⊢ prod (Quotient.mk (Homotopic.setoid (↑(ContinuousMap.mk Prod.fst) (a₁, b₁)) (↑(ContinuousMap.mk Prod.fst) (a₂, b₂))) (Path.map p' (_ : Continuous ↑(ContinuousMap.mk Prod.fst)))) (Quotient.mk (Homotopic.setoid (↑(ContinuousMap.mk Prod.snd) (a₁, b₁)) (↑(ContinuousMap.mk Prod.snd) (a₂, b₂))) (Path.map p' (_ : Continuous ↑(ContinuousMap.mk Prod.snd)))) = Quotient.mk (Homotopic.setoid (a₁, b₁) (a₂, b₂)) p' [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.Topology.Homotopy.Product", "llama_tokens": 15882}
[GOAL] α : Type u_1 inst✝⁴ : Zero α inst✝³ : TopologicalSpace α inst✝² : PartialOrder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : OrderTopology α a : α h : 0 < a ⊢ ContinuousAt (↑SignType.sign) a [PROOFSTEP] refine' (continuousAt_const : ContinuousAt (fun _ => (1 : SignType)) a).congr _ [GOAL] α : Type u_1 inst✝⁴ : Zero α inst✝³ : TopologicalSpace α inst✝² : PartialOrder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : OrderTopology α a : α h : 0 < a ⊢ (fun x => 1) =ᶠ[nhds a] ↑SignType.sign [PROOFSTEP] rw [Filter.EventuallyEq, eventually_nhds_iff] [GOAL] α : Type u_1 inst✝⁴ : Zero α inst✝³ : TopologicalSpace α inst✝² : PartialOrder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : OrderTopology α a : α h : 0 < a ⊢ ∃ t, (∀ (x : α), x ∈ t → 1 = ↑SignType.sign x) ∧ IsOpen t ∧ a ∈ t [PROOFSTEP] exact ⟨{x | 0 < x}, fun x hx => (sign_pos hx).symm, isOpen_lt' 0, h⟩ [GOAL] α : Type u_1 inst✝⁴ : Zero α inst✝³ : TopologicalSpace α inst✝² : PartialOrder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : OrderTopology α a : α h : a < 0 ⊢ ContinuousAt (↑SignType.sign) a [PROOFSTEP] refine' (continuousAt_const : ContinuousAt (fun x => (-1 : SignType)) a).congr _ [GOAL] α : Type u_1 inst✝⁴ : Zero α inst✝³ : TopologicalSpace α inst✝² : PartialOrder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : OrderTopology α a : α h : a < 0 ⊢ (fun x => -1) =ᶠ[nhds a] ↑SignType.sign [PROOFSTEP] rw [Filter.EventuallyEq, eventually_nhds_iff] [GOAL] α : Type u_1 inst✝⁴ : Zero α inst✝³ : TopologicalSpace α inst✝² : PartialOrder α inst✝¹ : DecidableRel fun x x_1 => x < x_1 inst✝ : OrderTopology α a : α h : a < 0 ⊢ ∃ t, (∀ (x : α), x ∈ t → -1 = ↑SignType.sign x) ∧ IsOpen t ∧ a ∈ t [PROOFSTEP] exact ⟨{x | x < 0}, fun x hx => (sign_neg hx).symm, isOpen_gt' 0, h⟩ [GOAL] α : Type u_1 inst✝³ : Zero α inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α h : a ≠ 0 ⊢ ContinuousAt (↑SignType.sign) a [PROOFSTEP] rcases h.lt_or_lt with (h_neg | h_pos) [GOAL] case inl α : Type u_1 inst✝³ : Zero α inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α h : a ≠ 0 h_neg : a < 0 ⊢ ContinuousAt (↑SignType.sign) a [PROOFSTEP] exact continuousAt_sign_of_neg h_neg [GOAL] case inr α : Type u_1 inst✝³ : Zero α inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α h : a ≠ 0 h_pos : 0 < a ⊢ ContinuousAt (↑SignType.sign) a [PROOFSTEP] exact continuousAt_sign_of_pos h_pos
{"mathlib_filename": "Mathlib.Topology.Instances.Sign", "llama_tokens": 1215}
[GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y ⊢ Continuous fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd)) [PROOFSTEP] exact ((map_continuous HSpace.hmul).comp ((continuous_fst.comp continuous_fst).prod_mk (continuous_fst.comp continuous_snd))).prod_mk ((map_continuous HSpace.hmul).comp ((continuous_snd.comp continuous_fst).prod_mk (continuous_snd.comp continuous_snd))) [GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y ⊢ ↑(ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) ((e, e), e, e) = (e, e) [PROOFSTEP] simp only [ContinuousMap.coe_mk, Prod.mk.inj_iff] [GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y ⊢ ↑hmul (e, e) = e ∧ ↑hmul (e, e) = e [PROOFSTEP] exact ⟨HSpace.hmul_e_e, HSpace.hmul_e_e⟩ [GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y ⊢ HomotopyRel (comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) (ContinuousMap.id (X × Y)) {(e, e)} [PROOFSTEP] let G : I × X × Y → X × Y := fun p => (HSpace.eHmul (p.1, p.2.1), HSpace.eHmul (p.1, p.2.2)) [GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) ⊢ HomotopyRel (comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) (ContinuousMap.id (X × Y)) {(e, e)} [PROOFSTEP] have hG : Continuous G := (Continuous.comp HSpace.eHmul.1.1.2 (continuous_fst.prod_mk (continuous_fst.comp continuous_snd))).prod_mk (Continuous.comp HSpace.eHmul.1.1.2 (continuous_fst.prod_mk (continuous_snd.comp continuous_snd))) [GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) hG : Continuous G ⊢ HomotopyRel (comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) (ContinuousMap.id (X × Y)) {(e, e)} [PROOFSTEP] use!⟨G, hG⟩ [GOAL] case map_zero_left X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) hG : Continuous G ⊢ ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) x [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case map_zero_left.mk X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) hG : Continuous G x : X y : Y ⊢ ContinuousMap.toFun (ContinuousMap.mk G) (0, x, y) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) (x, y) [PROOFSTEP] exacts [Prod.mk.inj_iff.mpr ⟨HSpace.eHmul.1.2 x, HSpace.eHmul.1.2 y⟩] [GOAL] case map_one_left X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) hG : Continuous G ⊢ ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case map_one_left.mk X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) hG : Continuous G x : X y : Y ⊢ ContinuousMap.toFun (ContinuousMap.mk G) (1, x, y) = ↑(ContinuousMap.id (X × Y)) (x, y) [PROOFSTEP] exact Prod.mk.inj_iff.mpr ⟨HSpace.eHmul.1.3 x, HSpace.eHmul.1.3 y⟩ [GOAL] case prop' X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) hG : Continuous G ⊢ ∀ (t : ↑I) (x : X × Y), x ∈ {(e, e)} → ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) x = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) x = ↑(ContinuousMap.id (X × Y)) x [PROOFSTEP] rintro t ⟨x, y⟩ h [GOAL] case prop'.mk X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) hG : Continuous G t : ↑I x : X y : Y h : (x, y) ∈ {(e, e)} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) (x, y) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) (x, y) ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) (x, y) = ↑(ContinuousMap.id (X × Y)) (x, y) [PROOFSTEP] replace h := Prod.mk.inj_iff.mp (Set.mem_singleton_iff.mp h) [GOAL] case prop'.mk X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑eHmul (p.fst, p.snd.fst), ↑eHmul (p.fst, p.snd.snd)) hG : Continuous G t : ↑I x : X y : Y h : x = e ∧ y = e ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) (x, y) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) (x, y) ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (const (X × Y) (e, e)) (ContinuousMap.id (X × Y)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) (x, y) = ↑(ContinuousMap.id (X × Y)) (x, y) [PROOFSTEP] exact ⟨Prod.mk.inj_iff.mpr ⟨HomotopyRel.eq_fst HSpace.eHmul t (Set.mem_singleton_iff.mpr h.1), HomotopyRel.eq_fst HSpace.eHmul t (Set.mem_singleton_iff.mpr h.2)⟩, Prod.mk.inj_iff.mpr ⟨(HSpace.eHmul.2 t x h.1).2, (HSpace.eHmul.2 t y h.2).2⟩⟩ [GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y ⊢ HomotopyRel (comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) (ContinuousMap.id (X × Y)) {(e, e)} [PROOFSTEP] let G : I × X × Y → X × Y := fun p => (HSpace.hmulE (p.1, p.2.1), HSpace.hmulE (p.1, p.2.2)) [GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) ⊢ HomotopyRel (comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) (ContinuousMap.id (X × Y)) {(e, e)} [PROOFSTEP] have hG : Continuous G := (Continuous.comp HSpace.hmulE.1.1.2 (continuous_fst.prod_mk (continuous_fst.comp continuous_snd))).prod_mk (Continuous.comp HSpace.hmulE.1.1.2 (continuous_fst.prod_mk (continuous_snd.comp continuous_snd))) [GOAL] X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) hG : Continuous G ⊢ HomotopyRel (comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) (ContinuousMap.id (X × Y)) {(e, e)} [PROOFSTEP] use!⟨G, hG⟩ [GOAL] case map_zero_left X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) hG : Continuous G ⊢ ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) x [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case map_zero_left.mk X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) hG : Continuous G x : X y : Y ⊢ ContinuousMap.toFun (ContinuousMap.mk G) (0, x, y) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) (x, y) [PROOFSTEP] exacts [Prod.mk.inj_iff.mpr ⟨HSpace.hmulE.1.2 x, HSpace.hmulE.1.2 y⟩] [GOAL] case map_one_left X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) hG : Continuous G ⊢ ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case map_one_left.mk X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) hG : Continuous G x : X y : Y ⊢ ContinuousMap.toFun (ContinuousMap.mk G) (1, x, y) = ↑(ContinuousMap.id (X × Y)) (x, y) [PROOFSTEP] exact Prod.mk.inj_iff.mpr ⟨HSpace.hmulE.1.3 x, HSpace.hmulE.1.3 y⟩ [GOAL] case prop' X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) hG : Continuous G ⊢ ∀ (t : ↑I) (x : X × Y), x ∈ {(e, e)} → ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) x = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) x = ↑(ContinuousMap.id (X × Y)) x [PROOFSTEP] rintro t ⟨x, y⟩ h [GOAL] case prop'.mk X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) hG : Continuous G t : ↑I x : X y : Y h : (x, y) ∈ {(e, e)} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) (x, y) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) (x, y) ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) (x, y) = ↑(ContinuousMap.id (X × Y)) (x, y) [PROOFSTEP] replace h := Prod.mk.inj_iff.mp (Set.mem_singleton_iff.mp h) [GOAL] case prop'.mk X : Type u Y : Type v inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : HSpace X inst✝ : HSpace Y G : ↑I × X × Y → X × Y := fun p => (↑hmulE (p.fst, p.snd.fst), ↑hmulE (p.fst, p.snd.snd)) hG : Continuous G t : ↑I x : X y : Y h : x = e ∧ y = e ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) (x, y) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) (x, y) ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk G, map_zero_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑hmul (p.fst.fst, p.snd.fst), ↑hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (X × Y)) (const (X × Y) (e, e)))) x), map_one_left := (_ : ∀ (x : X × Y), ContinuousMap.toFun (ContinuousMap.mk G) (1, x) = ↑(ContinuousMap.id (X × Y)) x) }.toContinuousMap (t, x)) (x, y) = ↑(ContinuousMap.id (X × Y)) (x, y) [PROOFSTEP] exact ⟨Prod.mk.inj_iff.mpr ⟨HomotopyRel.eq_fst HSpace.hmulE t (Set.mem_singleton_iff.mpr h.1), HomotopyRel.eq_fst HSpace.hmulE t (Set.mem_singleton_iff.mpr h.2)⟩, Prod.mk.inj_iff.mpr ⟨(HSpace.hmulE.2 t x h.1).2, (HSpace.hmulE.2 t y h.2).2⟩⟩ [GOAL] M : Type u inst✝² : MulOneClass M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M ⊢ comp (ContinuousMap.mk (Function.uncurry Mul.mul)) (prodMk (const M 1) (ContinuousMap.id M)) = ContinuousMap.id M [PROOFSTEP] ext1 [GOAL] case h M : Type u inst✝² : MulOneClass M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M a✝ : M ⊢ ↑(comp (ContinuousMap.mk (Function.uncurry Mul.mul)) (prodMk (const M 1) (ContinuousMap.id M))) a✝ = ↑(ContinuousMap.id M) a✝ [PROOFSTEP] apply one_mul [GOAL] M : Type u inst✝² : MulOneClass M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M ⊢ comp (ContinuousMap.mk (Function.uncurry Mul.mul)) (prodMk (ContinuousMap.id M) (const M 1)) = ContinuousMap.id M [PROOFSTEP] ext1 [GOAL] case h M : Type u inst✝² : MulOneClass M inst✝¹ : TopologicalSpace M inst✝ : ContinuousMul M a✝ : M ⊢ ↑(comp (ContinuousMap.mk (Function.uncurry Mul.mul)) (prodMk (ContinuousMap.id M) (const M 1))) a✝ = ↑(ContinuousMap.id M) a✝ [PROOFSTEP] apply mul_one [GOAL] G G' : Type u inst✝⁵ : TopologicalSpace G inst✝⁴ : Group G inst✝³ : TopologicalGroup G inst✝² : TopologicalSpace G' inst✝¹ : Group G' inst✝ : TopologicalGroup G' ⊢ hSpace (G × G') = HSpace.prod G G' [PROOFSTEP] simp only [HSpace.prod] [GOAL] G G' : Type u inst✝⁵ : TopologicalSpace G inst✝⁴ : Group G inst✝³ : TopologicalGroup G inst✝² : TopologicalSpace G' inst✝¹ : Group G' inst✝ : TopologicalGroup G' ⊢ hSpace (G × G') = { hmul := ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd)), e := (HSpace.e, HSpace.e), hmul_e_e := (_ : ↑(ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) ((HSpace.e, HSpace.e), HSpace.e, HSpace.e) = (HSpace.e, HSpace.e)), eHmul := { toHomotopy := { toContinuousMap := ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd)), map_zero_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd))) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) (prodMk (const (G × G') (HSpace.e, HSpace.e)) (ContinuousMap.id (G × G')))) x), map_one_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd))) (1, x) = ↑(ContinuousMap.id (G × G')) x) }, prop' := (_ : ∀ (t : ↑I) (x : G × G'), x ∈ {(HSpace.e, HSpace.e)} → ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd)), map_zero_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd))) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) (prodMk (const (G × G') (HSpace.e, HSpace.e)) (ContinuousMap.id (G × G')))) x), map_one_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd))) (1, x) = ↑(ContinuousMap.id (G × G')) x) }.toContinuousMap (t, x)) x = ↑(comp (ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) (prodMk (const (G × G') (HSpace.e, HSpace.e)) (ContinuousMap.id (G × G')))) x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd)), map_zero_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd))) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) (prodMk (const (G × G') (HSpace.e, HSpace.e)) (ContinuousMap.id (G × G')))) x), map_one_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.eHmul (p.fst, p.snd.fst), ↑HSpace.eHmul (p.fst, p.snd.snd))) (1, x) = ↑(ContinuousMap.id (G × G')) x) }.toContinuousMap (t, x)) x = ↑(ContinuousMap.id (G × G')) x) }, hmulE := { toHomotopy := { toContinuousMap := ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd)), map_zero_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd))) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (G × G')) (const (G × G') (HSpace.e, HSpace.e)))) x), map_one_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd))) (1, x) = ↑(ContinuousMap.id (G × G')) x) }, prop' := (_ : ∀ (t : ↑I) (x : G × G'), x ∈ {(HSpace.e, HSpace.e)} → ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd)), map_zero_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd))) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (G × G')) (const (G × G') (HSpace.e, HSpace.e)))) x), map_one_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd))) (1, x) = ↑(ContinuousMap.id (G × G')) x) }.toContinuousMap (t, x)) x = ↑(comp (ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (G × G')) (const (G × G') (HSpace.e, HSpace.e)))) x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd)), map_zero_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd))) (0, x) = ↑(comp (ContinuousMap.mk fun p => (↑HSpace.hmul (p.fst.fst, p.snd.fst), ↑HSpace.hmul (p.fst.snd, p.snd.snd))) (prodMk (ContinuousMap.id (G × G')) (const (G × G') (HSpace.e, HSpace.e)))) x), map_one_left := (_ : ∀ (x : G × G'), ContinuousMap.toFun (ContinuousMap.mk fun p => (↑HSpace.hmulE (p.fst, p.snd.fst), ↑HSpace.hmulE (p.fst, p.snd.snd))) (1, x) = ↑(ContinuousMap.id (G × G')) x) }.toContinuousMap (t, x)) x = ↑(ContinuousMap.id (G × G')) x) } } [PROOFSTEP] rfl [GOAL] ⊢ Continuous fun p => 2 * ↑p.fst [PROOFSTEP] continuity [GOAL] ⊢ Continuous fun p => 1 + ↑p.snd [PROOFSTEP] continuity [GOAL] θ : ↑I ⊢ 2 * ↑(0, θ).fst / (1 + ↑(0, θ).snd) ≤ 0 [PROOFSTEP] simp only [coe_zero, mul_zero, zero_div, le_refl] [GOAL] θ : ↑I ⊢ 1 * (1 + ↑(1, θ).snd) ≤ 2 * ↑(1, θ).fst [PROOFSTEP] dsimp only [GOAL] θ : ↑I ⊢ 1 * (1 + ↑θ) ≤ 2 * ↑1 [PROOFSTEP] rw [coe_one, one_mul, mul_one, add_comm, ← one_add_one_eq_two] [GOAL] θ : ↑I ⊢ ↑θ + 1 ≤ 1 + 1 [PROOFSTEP] simp only [add_le_add_iff_right] [GOAL] θ : ↑I ⊢ ↑θ ≤ 1 [PROOFSTEP] exact le_one _ [GOAL] t : ↑I ⊢ ↑(qRight (t, 0)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1 [PROOFSTEP] simp only [qRight, coe_zero, add_zero, div_one] [GOAL] t : ↑I ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = if ↑t ≤ 1 / 2 then 2 * ↑t else 1 [PROOFSTEP] split_ifs [GOAL] case pos t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 2 * ↑t [PROOFSTEP] rw [Set.projIcc_of_mem _ ((mul_pos_mem_iff zero_lt_two).2 _)] [GOAL] t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑t ∈ Set.Icc 0 (1 / 2) [PROOFSTEP] refine' ⟨t.2.1, _⟩ [GOAL] t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ ↑t ≤ 1 / 2 [PROOFSTEP] tauto [GOAL] case neg t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ ↑(Set.projIcc 0 1 qRight.proof_1 (2 * ↑t)) = 1 [PROOFSTEP] rw [(Set.projIcc_eq_right _).2] [GOAL] case neg t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 1 ≤ 2 * ↑t [PROOFSTEP] linarith [GOAL] t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 0 < 1 [PROOFSTEP] exact zero_lt_one [GOAL] t : ↑I ⊢ qRight (t, 1) = Set.projIcc 0 1 (_ : 0 ≤ 1) ↑t [PROOFSTEP] rw [qRight] [GOAL] t : ↑I ⊢ Set.projIcc 0 1 qRight.proof_1 (2 * ↑(t, 1).fst / (1 + ↑(t, 1).snd)) = Set.projIcc 0 1 (_ : 0 ≤ 1) ↑t [PROOFSTEP] congr [GOAL] case e_x t : ↑I ⊢ 2 * ↑(t, 1).fst / (1 + ↑(t, 1).snd) = ↑t [PROOFSTEP] norm_num [GOAL] case e_x t : ↑I ⊢ 2 * ↑t / 2 = ↑t [PROOFSTEP] apply mul_div_cancel_left [GOAL] case e_x.ha t : ↑I ⊢ 2 ≠ 0 [PROOFSTEP] exact two_ne_zero [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X θ : ↑I γ : Path x y ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => ↑γ (qRight (t, θ))) 0 = x [PROOFSTEP] dsimp only [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X θ : ↑I γ : Path x y ⊢ ↑γ (qRight (0, θ)) = x [PROOFSTEP] rw [qRight_zero_left, γ.source] [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X θ : ↑I γ : Path x y ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => ↑γ (qRight (t, θ))) 1 = y [PROOFSTEP] dsimp only [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X θ : ↑I γ : Path x y ⊢ ↑γ (qRight (1, θ)) = y [PROOFSTEP] rw [qRight_one_left, γ.target] [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y ⊢ delayReflRight 0 γ = trans γ (refl y) [PROOFSTEP] ext t [GOAL] case a.h X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I ⊢ ↑(delayReflRight 0 γ) t = ↑(trans γ (refl y)) t [PROOFSTEP] simp only [delayReflRight, trans_apply, refl_extend, Path.coe_mk_mk, Function.comp_apply, refl_apply] [GOAL] case a.h X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I ⊢ ↑γ (qRight (t, 0)) = if h : ↑t ≤ 1 / 2 then ↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } else y [PROOFSTEP] split_ifs with h [GOAL] case pos X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ ↑γ (qRight (t, 0)) = ↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } case neg X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 ⊢ ↑γ (qRight (t, 0)) = y [PROOFSTEP] swap [GOAL] case neg X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 ⊢ ↑γ (qRight (t, 0)) = y case pos X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ ↑γ (qRight (t, 0)) = ↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } [PROOFSTEP] conv_rhs => rw [← γ.target] [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 | y [PROOFSTEP] rw [← γ.target] [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 | y [PROOFSTEP] rw [← γ.target] [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 | y [PROOFSTEP] rw [← γ.target] [GOAL] case neg X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 ⊢ ↑γ (qRight (t, 0)) = ↑γ 1 case pos X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ ↑γ (qRight (t, 0)) = ↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } [PROOFSTEP] all_goals apply congr_arg γ; ext1; rw [qRight_zero_right] [GOAL] case neg X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 ⊢ ↑γ (qRight (t, 0)) = ↑γ 1 [PROOFSTEP] apply congr_arg γ [GOAL] case neg X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 ⊢ qRight (t, 0) = 1 [PROOFSTEP] ext1 [GOAL] case neg.a X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 ⊢ ↑(qRight (t, 0)) = ↑1 [PROOFSTEP] rw [qRight_zero_right] [GOAL] case pos X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ ↑γ (qRight (t, 0)) = ↑γ { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } [PROOFSTEP] apply congr_arg γ [GOAL] case pos X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ qRight (t, 0) = { val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } [PROOFSTEP] ext1 [GOAL] case pos.a X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ ↑(qRight (t, 0)) = ↑{ val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } [PROOFSTEP] rw [qRight_zero_right] [GOAL] case neg.a X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ¬↑t ≤ 1 / 2 ⊢ (if ↑t ≤ 1 / 2 then 2 * ↑t else 1) = ↑1 case pos.a X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I h : ↑t ≤ 1 / 2 ⊢ (if ↑t ≤ 1 / 2 then 2 * ↑t else 1) = ↑{ val := 2 * ↑t, property := (_ : 2 * ↑t ∈ I) } [PROOFSTEP] exacts [if_neg h, if_pos h] [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y ⊢ delayReflRight 1 γ = γ [PROOFSTEP] ext t [GOAL] case a.h X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y t : ↑I ⊢ ↑(delayReflRight 1 γ) t = ↑γ t [PROOFSTEP] exact congr_arg γ (qRight_one_right t) [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y ⊢ delayReflLeft 0 γ = trans (refl x) γ [PROOFSTEP] simp only [delayReflLeft, delayReflRight_zero, trans_symm, refl_symm, Path.symm_symm] [GOAL] X : Type u inst✝ : TopologicalSpace X x y : X γ : Path x y ⊢ delayReflLeft 1 γ = γ [PROOFSTEP] simp only [delayReflLeft, delayReflRight_one, Path.symm_symm] [GOAL] X : Type u inst✝ : TopologicalSpace X x✝ y x : X ⊢ ∀ (t : ↑I) (x_1 : Path x x), x_1 ∈ {refl x} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => delayReflLeft p.fst p.snd, map_zero_left := (_ : ∀ (γ : Path x x), delayReflLeft 0 γ = trans (refl x) γ), map_one_left := (_ : ∀ (γ : Path x x), delayReflLeft 1 γ = γ) }.toContinuousMap (t, x_2)) x_1 = ↑(comp (ContinuousMap.mk fun ρ => trans ρ.fst ρ.snd) (prodMk (const (Path x x) (refl x)) (ContinuousMap.id (Path x x)))) x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => delayReflLeft p.fst p.snd, map_zero_left := (_ : ∀ (γ : Path x x), delayReflLeft 0 γ = trans (refl x) γ), map_one_left := (_ : ∀ (γ : Path x x), delayReflLeft 1 γ = γ) }.toContinuousMap (t, x_2)) x_1 = ↑(ContinuousMap.id (Path x x)) x_1 [PROOFSTEP] rintro t _ (rfl : _ = _) [GOAL] X : Type u inst✝ : TopologicalSpace X x✝ y x : X t : ↑I ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => delayReflLeft p.fst p.snd, map_zero_left := (_ : ∀ (γ : Path x x), delayReflLeft 0 γ = trans (refl x) γ), map_one_left := (_ : ∀ (γ : Path x x), delayReflLeft 1 γ = γ) }.toContinuousMap (t, x_1)) (refl x) = ↑(comp (ContinuousMap.mk fun ρ => trans ρ.fst ρ.snd) (prodMk (const (Path x x) (refl x)) (ContinuousMap.id (Path x x)))) (refl x) ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => delayReflLeft p.fst p.snd, map_zero_left := (_ : ∀ (γ : Path x x), delayReflLeft 0 γ = trans (refl x) γ), map_one_left := (_ : ∀ (γ : Path x x), delayReflLeft 1 γ = γ) }.toContinuousMap (t, x_1)) (refl x) = ↑(ContinuousMap.id (Path x x)) (refl x) [PROOFSTEP] exact ⟨refl_trans_refl.symm, rfl⟩ [GOAL] X : Type u inst✝ : TopologicalSpace X x✝ y x : X ⊢ ∀ (t : ↑I) (x_1 : Path x x), x_1 ∈ {refl x} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => delayReflRight p.fst p.snd, map_zero_left := (_ : ∀ (γ : Path x x), delayReflRight 0 γ = trans γ (refl x)), map_one_left := (_ : ∀ (γ : Path x x), delayReflRight 1 γ = γ) }.toContinuousMap (t, x_2)) x_1 = ↑(comp (ContinuousMap.mk fun ρ => trans ρ.fst ρ.snd) (prodMk (ContinuousMap.id (Path x x)) (const (Path x x) (refl x)))) x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => delayReflRight p.fst p.snd, map_zero_left := (_ : ∀ (γ : Path x x), delayReflRight 0 γ = trans γ (refl x)), map_one_left := (_ : ∀ (γ : Path x x), delayReflRight 1 γ = γ) }.toContinuousMap (t, x_2)) x_1 = ↑(ContinuousMap.id (Path x x)) x_1 [PROOFSTEP] rintro t _ (rfl : _ = _) [GOAL] X : Type u inst✝ : TopologicalSpace X x✝ y x : X t : ↑I ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => delayReflRight p.fst p.snd, map_zero_left := (_ : ∀ (γ : Path x x), delayReflRight 0 γ = trans γ (refl x)), map_one_left := (_ : ∀ (γ : Path x x), delayReflRight 1 γ = γ) }.toContinuousMap (t, x_1)) (refl x) = ↑(comp (ContinuousMap.mk fun ρ => trans ρ.fst ρ.snd) (prodMk (ContinuousMap.id (Path x x)) (const (Path x x) (refl x)))) (refl x) ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun p => delayReflRight p.fst p.snd, map_zero_left := (_ : ∀ (γ : Path x x), delayReflRight 0 γ = trans γ (refl x)), map_one_left := (_ : ∀ (γ : Path x x), delayReflRight 1 γ = γ) }.toContinuousMap (t, x_1)) (refl x) = ↑(ContinuousMap.id (Path x x)) (refl x) [PROOFSTEP] exact ⟨refl_trans_refl.symm, rfl⟩
{"mathlib_filename": "Mathlib.Topology.Homotopy.HSpaces", "llama_tokens": 18857}
[GOAL] ⊢ Dense {x | Irrational x} [PROOFSTEP] refine' Real.isTopologicalBasis_Ioo_rat.dense_iff.2 _ [GOAL] ⊢ ∀ (o : Set ℝ), o ∈ ⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo ↑a ↑b} → Set.Nonempty o → Set.Nonempty (o ∩ {x | Irrational x}) [PROOFSTEP] simp only [gt_iff_lt, Rat.cast_lt, not_lt, ge_iff_le, Rat.cast_le, mem_iUnion, mem_singleton_iff, exists_prop, forall_exists_index, and_imp] [GOAL] ⊢ ∀ (o : Set ℝ) (x x_1 : ℚ), x < x_1 → o = Ioo ↑x ↑x_1 → Set.Nonempty o → Set.Nonempty (o ∩ {x | Irrational x}) [PROOFSTEP] rintro _ a b hlt rfl _ [GOAL] a b : ℚ hlt : a < b a✝ : Set.Nonempty (Ioo ↑a ↑b) ⊢ Set.Nonempty (Ioo ↑a ↑b ∩ {x | Irrational x}) [PROOFSTEP] rw [inter_comm] [GOAL] a b : ℚ hlt : a < b a✝ : Set.Nonempty (Ioo ↑a ↑b) ⊢ Set.Nonempty ({x | Irrational x} ∩ Ioo ↑a ↑b) [PROOFSTEP] exact exists_irrational_btwn (Rat.cast_lt.2 hlt) [GOAL] x✝¹ : ℝ x✝ : { x // Irrational x } x : ℝ hx : Irrational x ⊢ { val := x, property := hx } < { val := x + ↑1, property := (_ : Irrational (x + ↑1)) } [PROOFSTEP] simp [GOAL] x✝¹ : ℝ x✝ : { x // Irrational x } x : ℝ hx : Irrational x ⊢ { val := x - ↑1, property := (_ : Irrational (x - ↑1)) } < { val := x, property := hx } [PROOFSTEP] simp [GOAL] x : ℝ hx : Irrational x n : ℕ ⊢ ∀ᶠ (ε : ℝ) in 𝓝 0, ∀ (m : ℤ), ε ≤ dist x (↑m / ↑n) [PROOFSTEP] have A : IsClosed (range (fun m => (n : ℝ)⁻¹ * m : ℤ → ℝ)) := ((isClosedMap_smul₀ (n⁻¹ : ℝ)).comp Int.closedEmbedding_coe_real.isClosedMap).closed_range [GOAL] x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) ⊢ ∀ᶠ (ε : ℝ) in 𝓝 0, ∀ (m : ℤ), ε ≤ dist x (↑m / ↑n) [PROOFSTEP] have B : x ∉ range (fun m => (n : ℝ)⁻¹ * m : ℤ → ℝ) := by rintro ⟨m, rfl⟩ simp at hx [GOAL] x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) ⊢ ¬x ∈ range fun m => (↑n)⁻¹ * ↑m [PROOFSTEP] rintro ⟨m, rfl⟩ [GOAL] case intro n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) m : ℤ hx : Irrational ((fun m => (↑n)⁻¹ * ↑m) m) ⊢ False [PROOFSTEP] simp at hx [GOAL] x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) B : ¬x ∈ range fun m => (↑n)⁻¹ * ↑m ⊢ ∀ᶠ (ε : ℝ) in 𝓝 0, ∀ (m : ℤ), ε ≤ dist x (↑m / ↑n) [PROOFSTEP] rcases Metric.mem_nhds_iff.1 (A.isOpen_compl.mem_nhds B) with ⟨ε, ε0, hε⟩ [GOAL] case intro.intro x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) B : ¬x ∈ range fun m => (↑n)⁻¹ * ↑m ε : ℝ ε0 : ε > 0 hε : ball x ε ⊆ (range fun m => (↑n)⁻¹ * ↑m)ᶜ ⊢ ∀ᶠ (ε : ℝ) in 𝓝 0, ∀ (m : ℤ), ε ≤ dist x (↑m / ↑n) [PROOFSTEP] refine' (ge_mem_nhds ε0).mono fun δ hδ m => not_lt.1 fun hlt => _ [GOAL] case intro.intro x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) B : ¬x ∈ range fun m => (↑n)⁻¹ * ↑m ε : ℝ ε0 : ε > 0 hε : ball x ε ⊆ (range fun m => (↑n)⁻¹ * ↑m)ᶜ δ : ℝ hδ : δ ≤ ε m : ℤ hlt : dist x (↑m / ↑n) < δ ⊢ False [PROOFSTEP] rw [dist_comm] at hlt [GOAL] case intro.intro x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) B : ¬x ∈ range fun m => (↑n)⁻¹ * ↑m ε : ℝ ε0 : ε > 0 hε : ball x ε ⊆ (range fun m => (↑n)⁻¹ * ↑m)ᶜ δ : ℝ hδ : δ ≤ ε m : ℤ hlt : dist (↑m / ↑n) x < δ ⊢ False [PROOFSTEP] refine' hε (ball_subset_ball hδ hlt) ⟨m, _⟩ [GOAL] case intro.intro x : ℝ hx : Irrational x n : ℕ A : IsClosed (range fun m => (↑n)⁻¹ * ↑m) B : ¬x ∈ range fun m => (↑n)⁻¹ * ↑m ε : ℝ ε0 : ε > 0 hε : ball x ε ⊆ (range fun m => (↑n)⁻¹ * ↑m)ᶜ δ : ℝ hδ : δ ≤ ε m : ℤ hlt : dist (↑m / ↑n) x < δ ⊢ (fun m => (↑n)⁻¹ * ↑m) m = ↑m / ↑n [PROOFSTEP] simp [div_eq_inv_mul] [GOAL] x : ℝ hx : Irrational x n : ℕ ε : ℝ H : ∀ (k : ℕ), k ≤ n → ∀ (m : ℤ), ε ≤ dist x (↑m / ↑k) r : ℚ hr : r.den ≤ n ⊢ ε ≤ dist x ↑r [PROOFSTEP] simpa only [Rat.cast_def] using H r.den hr r.num
{"mathlib_filename": "Mathlib.Topology.Instances.Irrational", "llama_tokens": 2095}
[GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ OrdConnected (range Real.toEReal) [PROOFSTEP] rw [range_coe_eq_Ioo] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ OrdConnected (Ioo ⊥ ⊤) [PROOFSTEP] exact ordConnected_Ioo [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ IsOpen (range Real.toEReal) [PROOFSTEP] simp only [range_coe_eq_Ioo, isOpen_Ioo] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a : EReal ha : a ≠ ⊤ h'a : a ≠ ⊥ ⊢ Tendsto toReal (𝓝 a) (𝓝 (toReal a)) [PROOFSTEP] lift a to ℝ using ⟨ha, h'a⟩ [GOAL] case intro α : Type u_1 inst✝ : TopologicalSpace α a : ℝ ha : ↑a ≠ ⊤ h'a : ↑a ≠ ⊥ ⊢ Tendsto toReal (𝓝 ↑a) (𝓝 (toReal ↑a)) [PROOFSTEP] rw [nhds_coe, tendsto_map'_iff] [GOAL] case intro α : Type u_1 inst✝ : TopologicalSpace α a : ℝ ha : ↑a ≠ ⊤ h'a : ↑a ≠ ⊥ ⊢ Tendsto (toReal ∘ Real.toEReal) (𝓝 a) (𝓝 (toReal ↑a)) [PROOFSTEP] exact tendsto_id [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ OrdConnected (range ENNReal.toEReal) [PROOFSTEP] rw [range_coe_ennreal] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ OrdConnected (Ici 0) [PROOFSTEP] exact ordConnected_Ici [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ IsClosed (range ENNReal.toEReal) [PROOFSTEP] rw [range_coe_ennreal] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ IsClosed (Ici 0) [PROOFSTEP] exact isClosed_Ici [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ ⨅ (l : EReal) (_ : l < ⊤), 𝓟 (Ioi l) = ⨅ (a : EReal) (_ : a ≠ ⊤), 𝓟 (Ioi a) [PROOFSTEP] simp only [lt_top_iff_ne_top] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ HasBasis (𝓝 ⊤) (fun x => True) fun x => Ioi ↑x [PROOFSTEP] refine nhds_top_basis.to_hasBasis (fun x hx => ?_) fun _ _ ↦ ⟨_, coe_lt_top _, Subset.rfl⟩ [GOAL] α : Type u_1 inst✝ : TopologicalSpace α x : EReal hx : x < ⊤ ⊢ ∃ i', True ∧ Ioi ↑i' ⊆ Ioi x [PROOFSTEP] rcases exists_rat_btwn_of_lt hx with ⟨y, hxy, -⟩ [GOAL] case intro.intro α : Type u_1 inst✝ : TopologicalSpace α x : EReal hx : x < ⊤ y : ℚ hxy : x < ↑↑y ⊢ ∃ i', True ∧ Ioi ↑i' ⊆ Ioi x [PROOFSTEP] exact ⟨_, trivial, Ioi_subset_Ioi hxy.le⟩ [GOAL] α : Type u_1 inst✝ : TopologicalSpace α s : Set EReal ⊢ (∃ i, True ∧ Ioi ↑i ⊆ s) ↔ ∃ y, Ioi ↑y ⊆ s [PROOFSTEP] simp only [true_and] [GOAL] α✝ : Type u_1 inst✝ : TopologicalSpace α✝ α : Type u_2 m : α → EReal f : Filter α ⊢ (∀ (i : ℝ), True → ∀ᶠ (x : α) in f, m x ∈ Ioi ↑i) ↔ ∀ (x : ℝ), ∀ᶠ (a : α) in f, ↑x < m a [PROOFSTEP] simp only [true_implies, mem_Ioi] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ ⨅ (l : EReal) (_ : ⊥ < l), 𝓟 (Iio l) = ⨅ (a : EReal) (_ : a ≠ ⊥), 𝓟 (Iio a) [PROOFSTEP] simp only [bot_lt_iff_ne_bot] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ HasBasis (𝓝 ⊥) (fun x => True) fun x => Iio ↑x [PROOFSTEP] refine nhds_bot_basis.to_hasBasis (fun x hx => ?_) fun _ _ ↦ ⟨_, bot_lt_coe _, Subset.rfl⟩ [GOAL] α : Type u_1 inst✝ : TopologicalSpace α x : EReal hx : ⊥ < x ⊢ ∃ i', True ∧ Iio ↑i' ⊆ Iio x [PROOFSTEP] rcases exists_rat_btwn_of_lt hx with ⟨y, -, hxy⟩ [GOAL] case intro.intro α : Type u_1 inst✝ : TopologicalSpace α x : EReal hx : ⊥ < x y : ℚ hxy : ↑↑y < x ⊢ ∃ i', True ∧ Iio ↑i' ⊆ Iio x [PROOFSTEP] exact ⟨_, trivial, Iio_subset_Iio hxy.le⟩ [GOAL] α : Type u_1 inst✝ : TopologicalSpace α s : Set EReal ⊢ (∃ i, True ∧ Iio ↑i ⊆ s) ↔ ∃ y, Iio ↑y ⊆ s [PROOFSTEP] simp only [true_and] [GOAL] α✝ : Type u_1 inst✝ : TopologicalSpace α✝ α : Type u_2 m : α → EReal f : Filter α ⊢ (∀ (i : ℝ), True → ∀ᶠ (x : α) in f, m x ∈ Iio ↑i) ↔ ∀ (x : ℝ), ∀ᶠ (a : α) in f, m a < ↑x [PROOFSTEP] simp only [true_implies, mem_Iio] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a b : ℝ ⊢ ContinuousAt (fun p => p.fst + p.snd) (↑a, ↑b) [PROOFSTEP] simp only [ContinuousAt, nhds_coe_coe, ← coe_add, tendsto_map'_iff, (· ∘ ·), tendsto_coe, tendsto_add] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a : ℝ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊤, ↑a) [PROOFSTEP] simp only [ContinuousAt, tendsto_nhds_top_iff_real, top_add_coe] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a : ℝ ⊢ ∀ (x : ℝ), ∀ᶠ (a : EReal × EReal) in 𝓝 (⊤, ↑a), ↑x < a.fst + a.snd [PROOFSTEP] refine fun r ↦ ((lt_mem_nhds (coe_lt_top (r - (a - 1)))).prod_nhds (lt_mem_nhds <| EReal.coe_lt_coe_iff.2 <| sub_one_lt _)).mono fun _ h ↦ ?_ [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a r : ℝ x✝ : EReal × EReal h : ↑(r - (a - 1)) < x✝.fst ∧ ↑(a - 1) < x✝.snd ⊢ ↑r < x✝.fst + x✝.snd [PROOFSTEP] simpa only [← coe_add, sub_add_cancel] using add_lt_add h.1 h.2 [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a : ℝ ⊢ ContinuousAt (fun p => p.fst + p.snd) (↑a, ⊤) [PROOFSTEP] simpa only [add_comm, (· ∘ ·), ContinuousAt, Prod.swap] using Tendsto.comp (continuousAt_add_top_coe a) (continuous_swap.tendsto ((a : EReal), ⊤)) [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊤, ⊤) [PROOFSTEP] simp only [ContinuousAt, tendsto_nhds_top_iff_real, top_add_top] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ ∀ (x : ℝ), ∀ᶠ (a : EReal × EReal) in 𝓝 (⊤, ⊤), ↑x < a.fst + a.snd [PROOFSTEP] refine fun r ↦ ((lt_mem_nhds (coe_lt_top 0)).prod_nhds (lt_mem_nhds <| coe_lt_top r)).mono fun _ h ↦ ?_ [GOAL] α : Type u_1 inst✝ : TopologicalSpace α r : ℝ x✝ : EReal × EReal h : ↑0 < x✝.fst ∧ ↑r < x✝.snd ⊢ ↑r < x✝.fst + x✝.snd [PROOFSTEP] simpa only [coe_zero, zero_add] using add_lt_add h.1 h.2 [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a : ℝ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊥, ↑a) [PROOFSTEP] simp only [ContinuousAt, tendsto_nhds_bot_iff_real, bot_add] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a : ℝ ⊢ ∀ (x : ℝ), ∀ᶠ (a : EReal × EReal) in 𝓝 (⊥, ↑a), a.fst + a.snd < ↑x [PROOFSTEP] refine fun r ↦ ((gt_mem_nhds (bot_lt_coe (r - (a + 1)))).prod_nhds (gt_mem_nhds <| EReal.coe_lt_coe_iff.2 <| lt_add_one _)).mono fun _ h ↦ ?_ [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a r : ℝ x✝ : EReal × EReal h : x✝.fst < ↑(r - (a + 1)) ∧ x✝.snd < ↑(a + 1) ⊢ x✝.fst + x✝.snd < ↑r [PROOFSTEP] simpa only [← coe_add, sub_add_cancel] using add_lt_add h.1 h.2 [GOAL] α : Type u_1 inst✝ : TopologicalSpace α a : ℝ ⊢ ContinuousAt (fun p => p.fst + p.snd) (↑a, ⊥) [PROOFSTEP] simpa only [add_comm, (· ∘ ·), ContinuousAt, Prod.swap] using Tendsto.comp (continuousAt_add_bot_coe a) (continuous_swap.tendsto ((a : EReal), ⊥)) [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊥, ⊥) [PROOFSTEP] simp only [ContinuousAt, tendsto_nhds_bot_iff_real, bot_add] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α ⊢ ∀ (x : ℝ), ∀ᶠ (a : EReal × EReal) in 𝓝 (⊥, ⊥), a.fst + a.snd < ↑x [PROOFSTEP] refine fun r ↦ ((gt_mem_nhds (bot_lt_coe 0)).prod_nhds (gt_mem_nhds <| bot_lt_coe r)).mono fun _ h ↦ ?_ [GOAL] α : Type u_1 inst✝ : TopologicalSpace α r : ℝ x✝ : EReal × EReal h : x✝.fst < ↑0 ∧ x✝.snd < ↑r ⊢ x✝.fst + x✝.snd < ↑r [PROOFSTEP] simpa only [coe_zero, zero_add] using add_lt_add h.1 h.2 [GOAL] α : Type u_1 inst✝ : TopologicalSpace α p : EReal × EReal h : p.fst ≠ ⊤ ∨ p.snd ≠ ⊥ h' : p.fst ≠ ⊥ ∨ p.snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) p [PROOFSTEP] rcases p with ⟨x, y⟩ [GOAL] case mk α : Type u_1 inst✝ : TopologicalSpace α x y : EReal h : (x, y).fst ≠ ⊤ ∨ (x, y).snd ≠ ⊥ h' : (x, y).fst ≠ ⊥ ∨ (x, y).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (x, y) [PROOFSTEP] induction x using EReal.rec [GOAL] case mk.h_bot α : Type u_1 inst✝ : TopologicalSpace α y : EReal h : (⊥, y).fst ≠ ⊤ ∨ (⊥, y).snd ≠ ⊥ h' : (⊥, y).fst ≠ ⊥ ∨ (⊥, y).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊥, y) [PROOFSTEP] induction y using EReal.rec [GOAL] case mk.h_real α : Type u_1 inst✝ : TopologicalSpace α y : EReal a✝ : ℝ h : (↑a✝, y).fst ≠ ⊤ ∨ (↑a✝, y).snd ≠ ⊥ h' : (↑a✝, y).fst ≠ ⊥ ∨ (↑a✝, y).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (↑a✝, y) [PROOFSTEP] induction y using EReal.rec [GOAL] case mk.h_top α : Type u_1 inst✝ : TopologicalSpace α y : EReal h : (⊤, y).fst ≠ ⊤ ∨ (⊤, y).snd ≠ ⊥ h' : (⊤, y).fst ≠ ⊥ ∨ (⊤, y).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊤, y) [PROOFSTEP] induction y using EReal.rec [GOAL] case mk.h_bot.h_bot α : Type u_1 inst✝ : TopologicalSpace α h : (⊥, ⊥).fst ≠ ⊤ ∨ (⊥, ⊥).snd ≠ ⊥ h' : (⊥, ⊥).fst ≠ ⊥ ∨ (⊥, ⊥).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊥, ⊥) [PROOFSTEP] exact continuousAt_add_bot_bot [GOAL] case mk.h_bot.h_real α : Type u_1 inst✝ : TopologicalSpace α a✝ : ℝ h : (⊥, ↑a✝).fst ≠ ⊤ ∨ (⊥, ↑a✝).snd ≠ ⊥ h' : (⊥, ↑a✝).fst ≠ ⊥ ∨ (⊥, ↑a✝).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊥, ↑a✝) [PROOFSTEP] exact continuousAt_add_bot_coe _ [GOAL] case mk.h_bot.h_top α : Type u_1 inst✝ : TopologicalSpace α h : (⊥, ⊤).fst ≠ ⊤ ∨ (⊥, ⊤).snd ≠ ⊥ h' : (⊥, ⊤).fst ≠ ⊥ ∨ (⊥, ⊤).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊥, ⊤) [PROOFSTEP] simp at h' [GOAL] case mk.h_real.h_bot α : Type u_1 inst✝ : TopologicalSpace α a✝ : ℝ h : (↑a✝, ⊥).fst ≠ ⊤ ∨ (↑a✝, ⊥).snd ≠ ⊥ h' : (↑a✝, ⊥).fst ≠ ⊥ ∨ (↑a✝, ⊥).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (↑a✝, ⊥) [PROOFSTEP] exact continuousAt_add_coe_bot _ [GOAL] case mk.h_real.h_real α : Type u_1 inst✝ : TopologicalSpace α a✝¹ a✝ : ℝ h : (↑a✝¹, ↑a✝).fst ≠ ⊤ ∨ (↑a✝¹, ↑a✝).snd ≠ ⊥ h' : (↑a✝¹, ↑a✝).fst ≠ ⊥ ∨ (↑a✝¹, ↑a✝).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (↑a✝¹, ↑a✝) [PROOFSTEP] exact continuousAt_add_coe_coe _ _ [GOAL] case mk.h_real.h_top α : Type u_1 inst✝ : TopologicalSpace α a✝ : ℝ h : (↑a✝, ⊤).fst ≠ ⊤ ∨ (↑a✝, ⊤).snd ≠ ⊥ h' : (↑a✝, ⊤).fst ≠ ⊥ ∨ (↑a✝, ⊤).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (↑a✝, ⊤) [PROOFSTEP] exact continuousAt_add_coe_top _ [GOAL] case mk.h_top.h_bot α : Type u_1 inst✝ : TopologicalSpace α h : (⊤, ⊥).fst ≠ ⊤ ∨ (⊤, ⊥).snd ≠ ⊥ h' : (⊤, ⊥).fst ≠ ⊥ ∨ (⊤, ⊥).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊤, ⊥) [PROOFSTEP] simp at h [GOAL] case mk.h_top.h_real α : Type u_1 inst✝ : TopologicalSpace α a✝ : ℝ h : (⊤, ↑a✝).fst ≠ ⊤ ∨ (⊤, ↑a✝).snd ≠ ⊥ h' : (⊤, ↑a✝).fst ≠ ⊥ ∨ (⊤, ↑a✝).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊤, ↑a✝) [PROOFSTEP] exact continuousAt_add_top_coe _ [GOAL] case mk.h_top.h_top α : Type u_1 inst✝ : TopologicalSpace α h : (⊤, ⊤).fst ≠ ⊤ ∨ (⊤, ⊤).snd ≠ ⊥ h' : (⊤, ⊤).fst ≠ ⊥ ∨ (⊤, ⊤).snd ≠ ⊤ ⊢ ContinuousAt (fun p => p.fst + p.snd) (⊤, ⊤) [PROOFSTEP] exact continuousAt_add_top_top
{"mathlib_filename": "Mathlib.Topology.Instances.EReal", "llama_tokens": 5728}
[GOAL] D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ IsOpen U ↔ ∀ (i : D.J), IsOpen (↑(GlueData.ι D.toGlueData i) ⁻¹' U) [PROOFSTEP] delta CategoryTheory.GlueData.ι [GOAL] D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ IsOpen U ↔ ∀ (i : D.J), IsOpen (↑(Multicoequalizer.π (GlueData.diagram D.toGlueData) i) ⁻¹' U) [PROOFSTEP] simp_rw [← Multicoequalizer.ι_sigmaπ 𝖣.diagram] [GOAL] D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ IsOpen U ↔ ∀ (i : D.J), IsOpen (↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) [PROOFSTEP] rw [← (homeoOfIso (Multicoequalizer.isoCoequalizer 𝖣.diagram).symm).isOpen_preimage] [GOAL] D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ IsOpen (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U) ↔ ∀ (i : D.J), IsOpen (↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) [PROOFSTEP] rw [coequalizer_isOpen_iff] [GOAL] D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ IsOpen (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) WalkingParallelPair.one) ⁻¹' (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U)) ↔ ∀ (i : D.J), IsOpen (↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) [PROOFSTEP] dsimp only [GlueData.diagram_l, GlueData.diagram_left, GlueData.diagram_r, GlueData.diagram_right, parallelPair_obj_one] [GOAL] D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ IsOpen (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) WalkingParallelPair.one) ⁻¹' (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U)) ↔ ∀ (i : D.J), IsOpen (↑(Sigma.ι D.U i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) [PROOFSTEP] rw [colimit_isOpen_iff.{_, u}] -- porting note: changed `.{u}` to `.{_,u}`. fun fact: the proof -- breaks down if this `rw` is merged with the `rw` above. [GOAL] D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ (∀ (j : Discrete D.J), IsOpen (↑(colimit.ι (Discrete.functor D.U) j) ⁻¹' (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) WalkingParallelPair.one) ⁻¹' (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U)))) ↔ ∀ (i : D.J), IsOpen (↑(Sigma.ι D.U i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) [PROOFSTEP] constructor [GOAL] case mp D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ (∀ (j : Discrete D.J), IsOpen (↑(colimit.ι (Discrete.functor D.U) j) ⁻¹' (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) WalkingParallelPair.one) ⁻¹' (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U)))) → ∀ (i : D.J), IsOpen (↑(Sigma.ι D.U i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) [PROOFSTEP] intro h j [GOAL] case mp D : GlueData U : Set ↑(GlueData.glued D.toGlueData) h : ∀ (j : Discrete D.J), IsOpen (↑(colimit.ι (Discrete.functor D.U) j) ⁻¹' (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) WalkingParallelPair.one) ⁻¹' (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U))) j : D.J ⊢ IsOpen (↑(Sigma.ι D.U j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) [PROOFSTEP] exact h ⟨j⟩ [GOAL] case mpr D : GlueData U : Set ↑(GlueData.glued D.toGlueData) ⊢ (∀ (i : D.J), IsOpen (↑(Sigma.ι D.U i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U)) → ∀ (j : Discrete D.J), IsOpen (↑(colimit.ι (Discrete.functor D.U) j) ⁻¹' (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) WalkingParallelPair.one) ⁻¹' (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U))) [PROOFSTEP] intro h j [GOAL] case mpr D : GlueData U : Set ↑(GlueData.glued D.toGlueData) h : ∀ (i : D.J), IsOpen (↑(Sigma.ι D.U i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) j : Discrete D.J ⊢ IsOpen (↑(colimit.ι (Discrete.functor D.U) j) ⁻¹' (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) WalkingParallelPair.one) ⁻¹' (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U))) [PROOFSTEP] cases j [GOAL] case mpr.mk D : GlueData U : Set ↑(GlueData.glued D.toGlueData) h : ∀ (i : D.J), IsOpen (↑(Sigma.ι D.U i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) ⁻¹' U) as✝ : D.J ⊢ IsOpen (↑(colimit.ι (Discrete.functor D.U) { as := as✝ }) ⁻¹' (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) WalkingParallelPair.one) ⁻¹' (↑(homeoOfIso (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).symm) ⁻¹' U))) [PROOFSTEP] apply h [GOAL] D : GlueData ⊢ ∀ {x y : (i : D.J) × ↑(GlueData.U D.toGlueData i)}, Rel D x y → Rel D y x [PROOFSTEP] rintro a b (⟨⟨⟩⟩ | ⟨x, e₁, e₂⟩) [GOAL] case inl.refl D : GlueData a : (i : D.J) × ↑(GlueData.U D.toGlueData i) ⊢ Rel D a a case inr.intro.intro D : GlueData a b : (i : D.J) × ↑(GlueData.U D.toGlueData i) x : ↑(GlueData.V D.toGlueData (a.fst, b.fst)) e₁ : ↑(GlueData.f D.toGlueData a.fst b.fst) x = a.snd e₂ : ↑(GlueData.f D.toGlueData b.fst a.fst) (↑(GlueData.t D.toGlueData a.fst b.fst) x) = b.snd ⊢ Rel D b a [PROOFSTEP] exacts [Or.inl rfl, Or.inr ⟨D.t _ _ x, by simp [e₁, e₂]⟩] [GOAL] D : GlueData a b : (i : D.J) × ↑(GlueData.U D.toGlueData i) x : ↑(GlueData.V D.toGlueData (a.fst, b.fst)) e₁ : ↑(GlueData.f D.toGlueData a.fst b.fst) x = a.snd e₂ : ↑(GlueData.f D.toGlueData b.fst a.fst) (↑(GlueData.t D.toGlueData a.fst b.fst) x) = b.snd ⊢ ↑(GlueData.f D.toGlueData b.fst a.fst) (↑(GlueData.t D.toGlueData a.fst b.fst) x) = b.snd ∧ ↑(GlueData.f D.toGlueData a.fst b.fst) (↑(GlueData.t D.toGlueData b.fst a.fst) (↑(GlueData.t D.toGlueData a.fst b.fst) x)) = a.snd [PROOFSTEP] simp [e₁, e₂] [GOAL] D : GlueData ⊢ ∀ {x y z : (i : D.J) × ↑(GlueData.U D.toGlueData i)}, Rel D x y → Rel D y z → Rel D x z [PROOFSTEP] rintro ⟨i, a⟩ ⟨j, b⟩ ⟨k, c⟩ (⟨⟨⟩⟩ | ⟨x, e₁, e₂⟩) [GOAL] case mk.mk.mk.inl.refl D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) k : D.J c : ↑(GlueData.U D.toGlueData k) ⊢ Rel D { fst := i, snd := a } { fst := k, snd := c } → Rel D { fst := i, snd := a } { fst := k, snd := c } case mk.mk.mk.inr.intro.intro D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd ⊢ Rel D { fst := j, snd := b } { fst := k, snd := c } → Rel D { fst := i, snd := a } { fst := k, snd := c } [PROOFSTEP] exact id [GOAL] case mk.mk.mk.inr.intro.intro D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd ⊢ Rel D { fst := j, snd := b } { fst := k, snd := c } → Rel D { fst := i, snd := a } { fst := k, snd := c } [PROOFSTEP] rintro (⟨⟨⟩⟩ | ⟨y, e₃, e₄⟩) [GOAL] case mk.mk.mk.inr.intro.intro.inl.refl D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd ⊢ Rel D { fst := i, snd := a } { fst := j, snd := b } case mk.mk.mk.inr.intro.intro.inr.intro.intro D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd ⊢ Rel D { fst := i, snd := a } { fst := k, snd := c } [PROOFSTEP] exact Or.inr ⟨x, e₁, e₂⟩ [GOAL] case mk.mk.mk.inr.intro.intro.inr.intro.intro D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd ⊢ Rel D { fst := i, snd := a } { fst := k, snd := c } [PROOFSTEP] let z := (pullbackIsoProdSubtype (D.f j i) (D.f j k)).inv ⟨⟨_, _⟩, e₂.trans e₃.symm⟩ [GOAL] case mk.mk.mk.inr.intro.intro.inr.intro.intro D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd z : (fun x => (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k))) { val := (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y), property := (_ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = ↑(GlueData.f D.toGlueData j k) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y).snd) } := ↑(pullbackIsoProdSubtype (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)).inv { val := (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y), property := (_ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = ↑(GlueData.f D.toGlueData j k) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y).snd) } ⊢ Rel D { fst := i, snd := a } { fst := k, snd := c } [PROOFSTEP] have eq₁ : (D.t j i) ((pullback.fst : _ /-(D.f j k)-/ ⟶ D.V (j, i)) z) = x := by simp [GOAL] D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd z : (fun x => (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k))) { val := (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y), property := (_ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = ↑(GlueData.f D.toGlueData j k) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y).snd) } := ↑(pullbackIsoProdSubtype (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)).inv { val := (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y), property := (_ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = ↑(GlueData.f D.toGlueData j k) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y).snd) } ⊢ ↑(GlueData.t D.toGlueData j i) (↑pullback.fst z) = x [PROOFSTEP] simp [GOAL] case mk.mk.mk.inr.intro.intro.inr.intro.intro D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd z : (fun x => (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k))) { val := (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y), property := (_ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = ↑(GlueData.f D.toGlueData j k) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y).snd) } := ↑(pullbackIsoProdSubtype (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)).inv { val := (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y), property := (_ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = ↑(GlueData.f D.toGlueData j k) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y).snd) } eq₁ : ↑(GlueData.t D.toGlueData j i) (↑pullback.fst z) = x ⊢ Rel D { fst := i, snd := a } { fst := k, snd := c } [PROOFSTEP] have eq₂ : (pullback.snd : _ ⟶ D.V _) z = y := pullbackIsoProdSubtype_inv_snd_apply _ _ _ [GOAL] case mk.mk.mk.inr.intro.intro.inr.intro.intro D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd z : (fun x => (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k))) { val := (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y), property := (_ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = ↑(GlueData.f D.toGlueData j k) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y).snd) } := ↑(pullbackIsoProdSubtype (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)).inv { val := (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y), property := (_ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = ↑(GlueData.f D.toGlueData j k) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x, y).snd) } eq₁ : ↑(GlueData.t D.toGlueData j i) (↑pullback.fst z) = x eq₂ : ↑pullback.snd z = y ⊢ Rel D { fst := i, snd := a } { fst := k, snd := c } [PROOFSTEP] clear_value z [GOAL] case mk.mk.mk.inr.intro.intro.inr.intro.intro D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) eq₁ : ↑(GlueData.t D.toGlueData j i) (↑pullback.fst z) = x eq₂ : ↑pullback.snd z = y ⊢ Rel D { fst := i, snd := a } { fst := k, snd := c } [PROOFSTEP] right [GOAL] case mk.mk.mk.inr.intro.intro.inr.intro.intro.h D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) eq₁ : ↑(GlueData.t D.toGlueData j i) (↑pullback.fst z) = x eq₂ : ↑pullback.snd z = y ⊢ ∃ x, ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := k, snd := c }.fst) x = { fst := i, snd := a }.snd ∧ ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := k, snd := c }.fst) x) = { fst := k, snd := c }.snd [PROOFSTEP] use(pullback.fst : _ ⟶ D.V (i, k)) (D.t' _ _ _ z) [GOAL] case h D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x = { fst := i, snd := a }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := j, snd := b }.fst) x) = { fst := j, snd := b }.snd y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y = { fst := j, snd := b }.snd e₄ : ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := j, snd := b }.fst) (↑(GlueData.t D.toGlueData { fst := j, snd := b }.fst { fst := k, snd := c }.fst) y) = { fst := k, snd := c }.snd z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) eq₁ : ↑(GlueData.t D.toGlueData j i) (↑pullback.fst z) = x eq₂ : ↑pullback.snd z = y ⊢ ↑(GlueData.f D.toGlueData { fst := i, snd := a }.fst { fst := k, snd := c }.fst) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z)) = { fst := i, snd := a }.snd ∧ ↑(GlueData.f D.toGlueData { fst := k, snd := c }.fst { fst := i, snd := a }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := a }.fst { fst := k, snd := c }.fst) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z))) = { fst := k, snd := c }.snd [PROOFSTEP] dsimp only at * [GOAL] case h D : GlueData i : D.J a : ↑(GlueData.U D.toGlueData i) j : D.J b : ↑(GlueData.U D.toGlueData j) k : D.J c : ↑(GlueData.U D.toGlueData k) x : ↑(GlueData.V D.toGlueData ({ fst := i, snd := a }.fst, { fst := j, snd := b }.fst)) e₁ : ↑(GlueData.f D.toGlueData i j) x = a e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) x) = b y : ↑(GlueData.V D.toGlueData ({ fst := j, snd := b }.fst, { fst := k, snd := c }.fst)) e₃ : ↑(GlueData.f D.toGlueData j k) y = b e₄ : ↑(GlueData.f D.toGlueData k j) (↑(GlueData.t D.toGlueData j k) y) = c z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) eq₁ : ↑(GlueData.t D.toGlueData j i) (↑pullback.fst z) = x eq₂ : ↑pullback.snd z = y ⊢ ↑(GlueData.f D.toGlueData i k) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z)) = a ∧ ↑(GlueData.f D.toGlueData k i) (↑(GlueData.t D.toGlueData i k) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z))) = c [PROOFSTEP] substs eq₁ eq₂ e₁ e₃ e₄ [GOAL] case h D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) ⊢ ↑(GlueData.f D.toGlueData i k) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z)) = ↑(GlueData.f D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z)) ∧ ↑(GlueData.f D.toGlueData k i) (↑(GlueData.t D.toGlueData i k) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z))) = ↑(GlueData.f D.toGlueData k j) (↑(GlueData.t D.toGlueData j k) (↑pullback.snd z)) [PROOFSTEP] have h₁ : D.t' j i k ≫ pullback.fst ≫ D.f i k = pullback.fst ≫ D.t j i ≫ D.f i j := by rw [← 𝖣.t_fac_assoc]; congr 1; exact pullback.condition [GOAL] D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) ⊢ GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.f D.toGlueData i k = pullback.fst ≫ GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j [PROOFSTEP] rw [← 𝖣.t_fac_assoc] [GOAL] D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) ⊢ GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.f D.toGlueData i k = GlueData.t' D.toGlueData j i k ≫ pullback.snd ≫ GlueData.f D.toGlueData i j [PROOFSTEP] congr 1 [GOAL] case e_a D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) ⊢ pullback.fst ≫ GlueData.f D.toGlueData i k = pullback.snd ≫ GlueData.f D.toGlueData i j [PROOFSTEP] exact pullback.condition [GOAL] case h D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) h₁ : GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.f D.toGlueData i k = pullback.fst ≫ GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j ⊢ ↑(GlueData.f D.toGlueData i k) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z)) = ↑(GlueData.f D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z)) ∧ ↑(GlueData.f D.toGlueData k i) (↑(GlueData.t D.toGlueData i k) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z))) = ↑(GlueData.f D.toGlueData k j) (↑(GlueData.t D.toGlueData j k) (↑pullback.snd z)) [PROOFSTEP] have h₂ : D.t' j i k ≫ pullback.fst ≫ D.t i k ≫ D.f k i = pullback.snd ≫ D.t j k ≫ D.f k j := by rw [← 𝖣.t_fac_assoc] apply @Epi.left_cancellation _ _ _ _ (D.t' k j i) rw [𝖣.cocycle_assoc, 𝖣.t_fac_assoc, 𝖣.t_inv_assoc] exact pullback.condition.symm [GOAL] D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) h₁ : GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.f D.toGlueData i k = pullback.fst ≫ GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j ⊢ GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.t D.toGlueData i k ≫ GlueData.f D.toGlueData k i = pullback.snd ≫ GlueData.t D.toGlueData j k ≫ GlueData.f D.toGlueData k j [PROOFSTEP] rw [← 𝖣.t_fac_assoc] [GOAL] D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) h₁ : GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.f D.toGlueData i k = pullback.fst ≫ GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j ⊢ GlueData.t' D.toGlueData j i k ≫ GlueData.t' D.toGlueData i k j ≫ pullback.snd ≫ GlueData.f D.toGlueData k i = pullback.snd ≫ GlueData.t D.toGlueData j k ≫ GlueData.f D.toGlueData k j [PROOFSTEP] apply @Epi.left_cancellation _ _ _ _ (D.t' k j i) [GOAL] case a D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) h₁ : GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.f D.toGlueData i k = pullback.fst ≫ GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j ⊢ GlueData.t' D.toGlueData k j i ≫ GlueData.t' D.toGlueData j i k ≫ GlueData.t' D.toGlueData i k j ≫ pullback.snd ≫ GlueData.f D.toGlueData k i = GlueData.t' D.toGlueData k j i ≫ pullback.snd ≫ GlueData.t D.toGlueData j k ≫ GlueData.f D.toGlueData k j [PROOFSTEP] rw [𝖣.cocycle_assoc, 𝖣.t_fac_assoc, 𝖣.t_inv_assoc] [GOAL] case a D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) h₁ : GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.f D.toGlueData i k = pullback.fst ≫ GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j ⊢ pullback.snd ≫ GlueData.f D.toGlueData k i = pullback.fst ≫ GlueData.f D.toGlueData k j [PROOFSTEP] exact pullback.condition.symm [GOAL] case h D : GlueData i j k : D.J z : (forget TopCat).obj (pullback (GlueData.f D.toGlueData j i) (GlueData.f D.toGlueData j k)) e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z))) = ↑(GlueData.f D.toGlueData j k) (↑pullback.snd z) h₁ : GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.f D.toGlueData i k = pullback.fst ≫ GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j h₂ : GlueData.t' D.toGlueData j i k ≫ pullback.fst ≫ GlueData.t D.toGlueData i k ≫ GlueData.f D.toGlueData k i = pullback.snd ≫ GlueData.t D.toGlueData j k ≫ GlueData.f D.toGlueData k j ⊢ ↑(GlueData.f D.toGlueData i k) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z)) = ↑(GlueData.f D.toGlueData i j) (↑(GlueData.t D.toGlueData j i) (↑pullback.fst z)) ∧ ↑(GlueData.f D.toGlueData k i) (↑(GlueData.t D.toGlueData i k) (↑pullback.fst (↑(GlueData.t' D.toGlueData j i k) z))) = ↑(GlueData.f D.toGlueData k j) (↑(GlueData.t D.toGlueData j k) (↑pullback.snd z)) [PROOFSTEP] exact ⟨ContinuousMap.congr_fun h₁ z, ContinuousMap.congr_fun h₂ z⟩ [GOAL] D : GlueData x y : ↑(∐ D.U) h : ↑(GlueData.π D.toGlueData) x = ↑(GlueData.π D.toGlueData) y ⊢ EqvGen (Types.CoequalizerRel ↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) ↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) x y [PROOFSTEP] delta GlueData.π Multicoequalizer.sigmaπ at h [GOAL] D : GlueData x y : ↑(∐ D.U) h : ↑(coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ≫ (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).inv) x = ↑(coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ≫ (Multicoequalizer.isoCoequalizer (GlueData.diagram D.toGlueData)).inv) y ⊢ EqvGen (Types.CoequalizerRel ↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) ↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) x y [PROOFSTEP] replace h := (TopCat.mono_iff_injective (Multicoequalizer.isoCoequalizer 𝖣.diagram).inv).mp inferInstance h [GOAL] D : GlueData x y : ↑(∐ D.U) h : (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 x = (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 y ⊢ EqvGen (Types.CoequalizerRel ↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) ↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) x y [PROOFSTEP] let diagram := parallelPair 𝖣.diagram.fstSigmaMap 𝖣.diagram.sndSigmaMap ⋙ forget _ [GOAL] D : GlueData x y : ↑(∐ D.U) h : (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 x = (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 y diagram : WalkingParallelPair ⥤ Type u := parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ⋙ forget TopCat ⊢ EqvGen (Types.CoequalizerRel ↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) ↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) x y [PROOFSTEP] have : colimit.ι diagram one x = colimit.ι diagram one y := by dsimp only [coequalizer.π, ContinuousMap.toFun_eq_coe] at h rw [← ι_preservesColimitsIso_hom, forget_map_eq_coe, types_comp_apply, h] simp [GOAL] D : GlueData x y : ↑(∐ D.U) h : (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 x = (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 y diagram : WalkingParallelPair ⥤ Type u := parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ⋙ forget TopCat ⊢ colimit.ι diagram one x = colimit.ι diagram one y [PROOFSTEP] dsimp only [coequalizer.π, ContinuousMap.toFun_eq_coe] at h [GOAL] D : GlueData x y : ↑(∐ D.U) h : ↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) one) x = ↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) one) y diagram : WalkingParallelPair ⥤ Type u := parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ⋙ forget TopCat ⊢ colimit.ι diagram one x = colimit.ι diagram one y [PROOFSTEP] rw [← ι_preservesColimitsIso_hom, forget_map_eq_coe, types_comp_apply, h] [GOAL] D : GlueData x y : ↑(∐ D.U) h : ↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) one) x = ↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) one) y diagram : WalkingParallelPair ⥤ Type u := parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ⋙ forget TopCat ⊢ (preservesColimitIso (forget TopCat) (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)))).hom (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) one) y) = (↑(colimit.ι (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) one) ≫ (preservesColimitIso (forget TopCat) (parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)))).hom) y [PROOFSTEP] simp [GOAL] D : GlueData x y : ↑(∐ D.U) h : (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 x = (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 y diagram : WalkingParallelPair ⥤ Type u := parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ⋙ forget TopCat this : colimit.ι diagram one x = colimit.ι diagram one y ⊢ EqvGen (Types.CoequalizerRel ↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) ↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) x y [PROOFSTEP] have : (colimit.ι diagram _ ≫ colim.map _ ≫ (colimit.isoColimitCocone _).hom) _ = (colimit.ι diagram _ ≫ colim.map _ ≫ (colimit.isoColimitCocone _).hom) _ := (congr_arg (colim.map (diagramIsoParallelPair diagram).hom ≫ (colimit.isoColimitCocone (Types.coequalizerColimit _ _)).hom) this : _) -- Porting note: was -- simp only [eqToHom_refl, types_comp_apply, colimit.ι_map_assoc, -- diagramIsoParallelPair_hom_app, colimit.isoColimitCocone_ι_hom, types_id_apply] at this -- See https://github.com/leanprover-community/mathlib4/issues/5026 [GOAL] D : GlueData x y : ↑(∐ D.U) h : (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 x = (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 y diagram : WalkingParallelPair ⥤ Type u := parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ⋙ forget TopCat this✝ : colimit.ι diagram one x = colimit.ι diagram one y this : (colimit.ι diagram one ≫ colim.map (diagramIsoParallelPair diagram).hom ≫ (colimit.isoColimitCocone (Types.coequalizerColimit (diagram.map WalkingParallelPairHom.left) (diagram.map WalkingParallelPairHom.right))).hom) x = (colimit.ι diagram one ≫ colim.map (diagramIsoParallelPair diagram).hom ≫ (colimit.isoColimitCocone (Types.coequalizerColimit (diagram.map WalkingParallelPairHom.left) (diagram.map WalkingParallelPairHom.right))).hom) y ⊢ EqvGen (Types.CoequalizerRel ↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) ↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) x y [PROOFSTEP] rw [colimit.ι_map_assoc, diagramIsoParallelPair_hom_app, eqToHom_refl, colimit.isoColimitCocone_ι_hom, types_comp_apply, types_id_apply, types_comp_apply, types_id_apply] at this [GOAL] D : GlueData x y : ↑(∐ D.U) h : (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 x = (coequalizer.π (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))).1 y diagram : WalkingParallelPair ⥤ Type u := parallelPair (MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) ⋙ forget TopCat this✝ : colimit.ι diagram one x = colimit.ι diagram one y this : NatTrans.app (Types.coequalizerColimit (diagram.map WalkingParallelPairHom.left) (diagram.map WalkingParallelPairHom.right)).cocone.ι one x = NatTrans.app (Types.coequalizerColimit (diagram.map WalkingParallelPairHom.left) (diagram.map WalkingParallelPairHom.right)).cocone.ι one y ⊢ EqvGen (Types.CoequalizerRel ↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) ↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) x y [PROOFSTEP] exact Quot.eq.1 this [GOAL] D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) ⊢ ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData j) y ↔ Rel D { fst := i, snd := x } { fst := j, snd := y } [PROOFSTEP] constructor [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) ⊢ ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData j) y → Rel D { fst := i, snd := x } { fst := j, snd := y } [PROOFSTEP] delta GlueData.ι [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) ⊢ ↑(Multicoequalizer.π (GlueData.diagram D.toGlueData) i) x = ↑(Multicoequalizer.π (GlueData.diagram D.toGlueData) j) y → Rel D { fst := i, snd := x } { fst := j, snd := y } [PROOFSTEP] simp_rw [← Multicoequalizer.ι_sigmaπ] [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) ⊢ ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y → Rel D { fst := i, snd := x } { fst := j, snd := y } [PROOFSTEP] intro h [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y ⊢ Rel D { fst := i, snd := x } { fst := j, snd := y } [PROOFSTEP] rw [← show _ = Sigma.mk i x from ConcreteCategory.congr_hom (sigmaIsoSigma.{_, u} D.U).inv_hom_id _] [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y ⊢ Rel D (↑((sigmaIsoSigma D.U).inv ≫ (sigmaIsoSigma D.U).hom) { fst := i, snd := x }) { fst := j, snd := y } [PROOFSTEP] rw [← show _ = Sigma.mk j y from ConcreteCategory.congr_hom (sigmaIsoSigma.{_, u} D.U).inv_hom_id _] [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y ⊢ Rel D (↑((sigmaIsoSigma D.U).inv ≫ (sigmaIsoSigma D.U).hom) { fst := i, snd := x }) (↑((sigmaIsoSigma D.U).inv ≫ (sigmaIsoSigma D.U).hom) { fst := j, snd := y }) [PROOFSTEP] change InvImage D.Rel (sigmaIsoSigma.{_, u} D.U).hom _ _ [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y ⊢ InvImage (Rel D) (↑(sigmaIsoSigma D.U).hom) (↑(sigmaIsoSigma D.U).inv { fst := i, snd := x }) (↑(sigmaIsoSigma D.U).inv { fst := j, snd := y }) [PROOFSTEP] simp only [TopCat.sigmaIsoSigma_inv_apply] [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y ⊢ InvImage (Rel D) (↑(sigmaIsoSigma D.U).hom) (↑(sigmaIsoSigma D.U).inv { fst := i, snd := x }) (↑(sigmaIsoSigma D.U).inv { fst := j, snd := y }) [PROOFSTEP] rw [← (InvImage.equivalence _ _ D.rel_equiv).eqvGen_iff] [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y ⊢ EqvGen (InvImage (Rel D) ↑(sigmaIsoSigma D.U).hom) (↑(sigmaIsoSigma D.U).inv { fst := i, snd := x }) (↑(sigmaIsoSigma D.U).inv { fst := j, snd := y }) [PROOFSTEP] refine' EqvGen.mono _ (D.eqvGen_of_π_eq h : _) [GOAL] case mp D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y ⊢ ∀ (a b : (forget TopCat).obj (∐ D.U)), Types.CoequalizerRel (↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData))) (↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData))) a b → InvImage (Rel D) (↑(sigmaIsoSigma D.U).hom) a b [PROOFSTEP] rintro _ _ ⟨x⟩ [GOAL] case mp.Rel D : GlueData i j : D.J x✝ : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y x : ↑(∐ (GlueData.diagram D.toGlueData).left) ⊢ InvImage (Rel D) (↑(sigmaIsoSigma D.U).hom) (↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) x) (↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) x) [PROOFSTEP] rw [← show (sigmaIsoSigma.{u, u} _).inv _ = x from ConcreteCategory.congr_hom (sigmaIsoSigma.{u, u} _).hom_inv_id x] [GOAL] case mp.Rel D : GlueData i j : D.J x✝ : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y x : ↑(∐ (GlueData.diagram D.toGlueData).left) ⊢ InvImage (Rel D) (↑(sigmaIsoSigma D.U).hom) (↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).inv (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).hom x))) (↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).inv (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).hom x))) [PROOFSTEP] generalize (sigmaIsoSigma.{u, u} D.V).hom x = x' [GOAL] case mp.Rel D : GlueData i j : D.J x✝ : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y x : ↑(∐ (GlueData.diagram D.toGlueData).left) x' : (forget TopCat).obj (of ((i : D.J × D.J) × ↑(GlueData.V D.toGlueData i))) ⊢ InvImage (Rel D) (↑(sigmaIsoSigma D.U).hom) (↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).inv x')) (↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).inv x')) [PROOFSTEP] obtain ⟨⟨i, j⟩, y⟩ := x' [GOAL] case mp.Rel.mk.mk D : GlueData i✝ j✝ : D.J x✝ : ↑(GlueData.U D.toGlueData i✝) y✝ : ↑(GlueData.U D.toGlueData j✝) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y✝ x : ↑(∐ (GlueData.diagram D.toGlueData).left) i j : D.J y : ↑(GlueData.V D.toGlueData (i, j)) ⊢ InvImage (Rel D) (↑(sigmaIsoSigma D.U).hom) (↑(MultispanIndex.fstSigmaMap (GlueData.diagram D.toGlueData)) (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).inv { fst := (i, j), snd := y })) (↑(MultispanIndex.sndSigmaMap (GlueData.diagram D.toGlueData)) (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).inv { fst := (i, j), snd := y })) [PROOFSTEP] unfold InvImage MultispanIndex.fstSigmaMap MultispanIndex.sndSigmaMap [GOAL] case mp.Rel.mk.mk D : GlueData i✝ j✝ : D.J x✝ : ↑(GlueData.U D.toGlueData i✝) y✝ : ↑(GlueData.U D.toGlueData j✝) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y✝ x : ↑(∐ (GlueData.diagram D.toGlueData).left) i j : D.J y : ↑(GlueData.V D.toGlueData (i, j)) ⊢ Rel D (↑(sigmaIsoSigma D.U).hom (↑(Sigma.desc fun b => MultispanIndex.fst (GlueData.diagram D.toGlueData) b ≫ Sigma.ι (GlueData.diagram D.toGlueData).right (MultispanIndex.fstFrom (GlueData.diagram D.toGlueData) b)) (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).inv { fst := (i, j), snd := y }))) (↑(sigmaIsoSigma D.U).hom (↑(Sigma.desc fun b => MultispanIndex.snd (GlueData.diagram D.toGlueData) b ≫ Sigma.ι (GlueData.diagram D.toGlueData).right (MultispanIndex.sndFrom (GlueData.diagram D.toGlueData) b)) (↑(sigmaIsoSigma (GlueData.diagram D.toGlueData).left).inv { fst := (i, j), snd := y }))) [PROOFSTEP] simp only [Opens.inclusion_apply, TopCat.comp_app, sigmaIsoSigma_inv_apply, Cofan.mk_ι_app] [GOAL] case mp.Rel.mk.mk D : GlueData i✝ j✝ : D.J x✝ : ↑(GlueData.U D.toGlueData i✝) y✝ : ↑(GlueData.U D.toGlueData j✝) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y✝ x : ↑(∐ (GlueData.diagram D.toGlueData).left) i j : D.J y : ↑(GlueData.V D.toGlueData (i, j)) ⊢ Rel D (↑(sigmaIsoSigma D.U).hom (↑(Sigma.desc fun b => MultispanIndex.fst (GlueData.diagram D.toGlueData) b ≫ Sigma.ι (GlueData.diagram D.toGlueData).right (MultispanIndex.fstFrom (GlueData.diagram D.toGlueData) b)) (↑(Sigma.ι (GlueData.diagram D.toGlueData).left (i, j)) y))) (↑(sigmaIsoSigma D.U).hom (↑(Sigma.desc fun b => MultispanIndex.snd (GlueData.diagram D.toGlueData) b ≫ Sigma.ι (GlueData.diagram D.toGlueData).right (MultispanIndex.sndFrom (GlueData.diagram D.toGlueData) b)) (↑(Sigma.ι (GlueData.diagram D.toGlueData).left (i, j)) y))) [PROOFSTEP] rw [← comp_apply, colimit.ι_desc, ← comp_apply, colimit.ι_desc] [GOAL] case mp.Rel.mk.mk D : GlueData i✝ j✝ : D.J x✝ : ↑(GlueData.U D.toGlueData i✝) y✝ : ↑(GlueData.U D.toGlueData j✝) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y✝ x : ↑(∐ (GlueData.diagram D.toGlueData).left) i j : D.J y : ↑(GlueData.V D.toGlueData (i, j)) ⊢ Rel D (↑(sigmaIsoSigma D.U).hom (↑(NatTrans.app (Cofan.mk (∐ (GlueData.diagram D.toGlueData).right) fun b => MultispanIndex.fst (GlueData.diagram D.toGlueData) b ≫ Sigma.ι (GlueData.diagram D.toGlueData).right (MultispanIndex.fstFrom (GlueData.diagram D.toGlueData) b)).ι { as := (i, j) }) y)) (↑(sigmaIsoSigma D.U).hom (↑(NatTrans.app (Cofan.mk (∐ (GlueData.diagram D.toGlueData).right) fun b => MultispanIndex.snd (GlueData.diagram D.toGlueData) b ≫ Sigma.ι (GlueData.diagram D.toGlueData).right (MultispanIndex.sndFrom (GlueData.diagram D.toGlueData) b)).ι { as := (i, j) }) y)) [PROOFSTEP] erw [sigmaIsoSigma_hom_ι_apply, sigmaIsoSigma_hom_ι_apply] [GOAL] case mp.Rel.mk.mk D : GlueData i✝ j✝ : D.J x✝ : ↑(GlueData.U D.toGlueData i✝) y✝ : ↑(GlueData.U D.toGlueData j✝) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y✝ x : ↑(∐ (GlueData.diagram D.toGlueData).left) i j : D.J y : ↑(GlueData.V D.toGlueData (i, j)) ⊢ Rel D { fst := MultispanIndex.fstFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.fst (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y } { fst := MultispanIndex.sndFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.snd (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y } [PROOFSTEP] exact Or.inr ⟨y, by dsimp [GlueData.diagram]; simp only [true_and]; rfl⟩ [GOAL] D : GlueData i✝ j✝ : D.J x✝ : ↑(GlueData.U D.toGlueData i✝) y✝ : ↑(GlueData.U D.toGlueData j✝) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y✝ x : ↑(∐ (GlueData.diagram D.toGlueData).left) i j : D.J y : ↑(GlueData.V D.toGlueData (i, j)) ⊢ ↑(GlueData.f D.toGlueData { fst := MultispanIndex.fstFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.fst (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y }.fst { fst := MultispanIndex.sndFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.snd (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y }.fst) y = { fst := MultispanIndex.fstFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.fst (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y }.snd ∧ ↑(GlueData.f D.toGlueData { fst := MultispanIndex.sndFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.snd (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y }.fst { fst := MultispanIndex.fstFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.fst (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y }.fst) (↑(GlueData.t D.toGlueData { fst := MultispanIndex.fstFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.fst (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y }.fst { fst := MultispanIndex.sndFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.snd (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y }.fst) y) = { fst := MultispanIndex.sndFrom (GlueData.diagram D.toGlueData) { as := (i, j) }.as, snd := ↑(MultispanIndex.snd (GlueData.diagram D.toGlueData) { as := (i, j) }.as) y }.snd [PROOFSTEP] dsimp [GlueData.diagram] [GOAL] D : GlueData i✝ j✝ : D.J x✝ : ↑(GlueData.U D.toGlueData i✝) y✝ : ↑(GlueData.U D.toGlueData j✝) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y✝ x : ↑(∐ (GlueData.diagram D.toGlueData).left) i j : D.J y : ↑(GlueData.V D.toGlueData (i, j)) ⊢ ↑(GlueData.f D.toGlueData i j) y = ↑(GlueData.f D.toGlueData i j) y ∧ ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) y) = ↑(GlueData.t D.toGlueData i j ≫ GlueData.f D.toGlueData j i) y [PROOFSTEP] simp only [true_and] [GOAL] D : GlueData i✝ j✝ : D.J x✝ : ↑(GlueData.U D.toGlueData i✝) y✝ : ↑(GlueData.U D.toGlueData j✝) h : ↑(Sigma.ι (GlueData.diagram D.toGlueData).right i✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) x✝ = ↑(Sigma.ι (GlueData.diagram D.toGlueData).right j✝ ≫ Multicoequalizer.sigmaπ (GlueData.diagram D.toGlueData)) y✝ x : ↑(∐ (GlueData.diagram D.toGlueData).left) i j : D.J y : ↑(GlueData.V D.toGlueData (i, j)) ⊢ ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) y) = ↑(GlueData.t D.toGlueData i j ≫ GlueData.f D.toGlueData j i) y [PROOFSTEP] rfl [GOAL] case mpr D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) ⊢ Rel D { fst := i, snd := x } { fst := j, snd := y } → ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData j) y [PROOFSTEP] rintro (⟨⟨⟩⟩ | ⟨z, e₁, e₂⟩) [GOAL] case mpr.inl.refl D : GlueData i : D.J x : ↑(GlueData.U D.toGlueData i) ⊢ ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData i) x case mpr.inr.intro.intro D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) z : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x }.fst, { fst := j, snd := y }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst) z = { fst := i, snd := x }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := y }.fst { fst := i, snd := x }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst) z) = { fst := j, snd := y }.snd ⊢ ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData j) y [PROOFSTEP] rfl [GOAL] case mpr.inr.intro.intro D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) z : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x }.fst, { fst := j, snd := y }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst) z = { fst := i, snd := x }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := j, snd := y }.fst { fst := i, snd := x }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := x }.fst { fst := j, snd := y }.fst) z) = { fst := j, snd := y }.snd ⊢ ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData j) y [PROOFSTEP] dsimp only at * -- porting note: there were `subst e₁` and `subst e₂`, instead of the `rw` [GOAL] case mpr.inr.intro.intro D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) z : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x }.fst, { fst := j, snd := y }.fst)) e₁ : ↑(GlueData.f D.toGlueData i j) z = x e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) z) = y ⊢ ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData j) y [PROOFSTEP] rw [← e₁, ← e₂] at * [GOAL] case mpr.inr.intro.intro D : GlueData i j : D.J x : ↑(GlueData.U D.toGlueData i) y : ↑(GlueData.U D.toGlueData j) z : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x }.fst, { fst := j, snd := y }.fst)) e₁ : ↑(GlueData.f D.toGlueData i j) z = ↑(GlueData.f D.toGlueData i j) z e₂ : ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) z) = ↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) z) ⊢ ↑(GlueData.ι D.toGlueData i) (↑(GlueData.f D.toGlueData i j) z) = ↑(GlueData.ι D.toGlueData j) (↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) z)) [PROOFSTEP] simp [GOAL] D : GlueData i : D.J ⊢ Function.Injective ↑(GlueData.ι D.toGlueData i) [PROOFSTEP] intro x y h [GOAL] D : GlueData i : D.J x y : (forget TopCat).obj (GlueData.U D.toGlueData i) h : ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData i) y ⊢ x = y [PROOFSTEP] rcases(D.ι_eq_iff_rel _ _ _ _).mp h with (⟨⟨⟩⟩ | ⟨_, e₁, e₂⟩) [GOAL] case inl.refl D : GlueData i : D.J x : (forget TopCat).obj (GlueData.U D.toGlueData i) h : ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData i) x ⊢ x = x [PROOFSTEP] rfl [GOAL] case inr.intro.intro D : GlueData i : D.J x y : (forget TopCat).obj (GlueData.U D.toGlueData i) h : ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData i) y w✝ : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x }.fst, { fst := i, snd := y }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := x }.fst { fst := i, snd := y }.fst) w✝ = { fst := i, snd := x }.snd e₂ : ↑(GlueData.f D.toGlueData { fst := i, snd := y }.fst { fst := i, snd := x }.fst) (↑(GlueData.t D.toGlueData { fst := i, snd := x }.fst { fst := i, snd := y }.fst) w✝) = { fst := i, snd := y }.snd ⊢ x = y [PROOFSTEP] dsimp only at * -- porting note: there were `cases e₁` and `cases e₂`, instead of the `rw` [GOAL] case inr.intro.intro D : GlueData i : D.J x y : (forget TopCat).obj (GlueData.U D.toGlueData i) h : ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData i) y w✝ : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x }.fst, { fst := i, snd := y }.fst)) e₁ : ↑(GlueData.f D.toGlueData i i) w✝ = x e₂ : ↑(GlueData.f D.toGlueData i i) (↑(GlueData.t D.toGlueData i i) w✝) = y ⊢ x = y [PROOFSTEP] rw [← e₁, ← e₂] [GOAL] case inr.intro.intro D : GlueData i : D.J x y : (forget TopCat).obj (GlueData.U D.toGlueData i) h : ↑(GlueData.ι D.toGlueData i) x = ↑(GlueData.ι D.toGlueData i) y w✝ : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x }.fst, { fst := i, snd := y }.fst)) e₁ : ↑(GlueData.f D.toGlueData i i) w✝ = x e₂ : ↑(GlueData.f D.toGlueData i i) (↑(GlueData.t D.toGlueData i i) w✝) = y ⊢ ↑(GlueData.f D.toGlueData i i) w✝ = ↑(GlueData.f D.toGlueData i i) (↑(GlueData.t D.toGlueData i i) w✝) [PROOFSTEP] simp [GOAL] D : GlueData i j : D.J ⊢ Set.range ↑(GlueData.ι D.toGlueData i) ∩ Set.range ↑(GlueData.ι D.toGlueData j) = Set.range ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) [PROOFSTEP] ext x [GOAL] case h D : GlueData i j : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) ⊢ x ∈ Set.range ↑(GlueData.ι D.toGlueData i) ∩ Set.range ↑(GlueData.ι D.toGlueData j) ↔ x ∈ Set.range ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) [PROOFSTEP] constructor [GOAL] case h.mp D : GlueData i j : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) ⊢ x ∈ Set.range ↑(GlueData.ι D.toGlueData i) ∩ Set.range ↑(GlueData.ι D.toGlueData j) → x ∈ Set.range ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) [PROOFSTEP] rintro ⟨⟨x₁, eq₁⟩, ⟨x₂, eq₂⟩⟩ [GOAL] case h.mp.intro.intro.intro D : GlueData i j : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) eq₁ : ↑(GlueData.ι D.toGlueData i) x₁ = x x₂ : (forget TopCat).obj (GlueData.U D.toGlueData j) eq₂ : ↑(GlueData.ι D.toGlueData j) x₂ = x ⊢ x ∈ Set.range ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) [PROOFSTEP] obtain ⟨⟨⟩⟩ | ⟨y, e₁, -⟩ := (D.ι_eq_iff_rel _ _ _ _).mp (eq₁.trans eq₂.symm) [GOAL] case h.mp.intro.intro.intro.inl.refl D : GlueData i : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) eq₁ eq₂ : ↑(GlueData.ι D.toGlueData i) x₁ = x ⊢ x ∈ Set.range ↑(GlueData.f D.toGlueData i i ≫ GlueData.ι D.toGlueData i) [PROOFSTEP] exact ⟨inv (D.f i i) x₁, by -- Porting note: was `simp [eq₁]` -- See https://github.com/leanprover-community/mathlib4/issues/5026 rw [TopCat.comp_app] erw [CategoryTheory.IsIso.inv_hom_id_apply] rw [eq₁]⟩ [GOAL] D : GlueData i : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) eq₁ eq₂ : ↑(GlueData.ι D.toGlueData i) x₁ = x ⊢ ↑(GlueData.f D.toGlueData i i ≫ GlueData.ι D.toGlueData i) (↑(inv (GlueData.f D.toGlueData i i)) x₁) = x [PROOFSTEP] rw [TopCat.comp_app] [GOAL] D : GlueData i : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) eq₁ eq₂ : ↑(GlueData.ι D.toGlueData i) x₁ = x ⊢ ↑(GlueData.ι D.toGlueData i) (↑(GlueData.f D.toGlueData i i) (↑(inv (GlueData.f D.toGlueData i i)) x₁)) = x [PROOFSTEP] erw [CategoryTheory.IsIso.inv_hom_id_apply] [GOAL] D : GlueData i : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) eq₁ eq₂ : ↑(GlueData.ι D.toGlueData i) x₁ = x ⊢ ↑(GlueData.ι D.toGlueData i) x₁ = x [PROOFSTEP] rw [eq₁] [GOAL] case h.mp.intro.intro.intro.inr.intro.intro D : GlueData i j : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) eq₁ : ↑(GlueData.ι D.toGlueData i) x₁ = x x₂ : (forget TopCat).obj (GlueData.U D.toGlueData j) eq₂ : ↑(GlueData.ι D.toGlueData j) x₂ = x y : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x₁ }.fst, { fst := j, snd := x₂ }.fst)) e₁ : ↑(GlueData.f D.toGlueData { fst := i, snd := x₁ }.fst { fst := j, snd := x₂ }.fst) y = { fst := i, snd := x₁ }.snd ⊢ x ∈ Set.range ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) [PROOFSTEP] dsimp only at * [GOAL] case h.mp.intro.intro.intro.inr.intro.intro D : GlueData i j : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) eq₁ : ↑(GlueData.ι D.toGlueData i) x₁ = x x₂ : (forget TopCat).obj (GlueData.U D.toGlueData j) eq₂ : ↑(GlueData.ι D.toGlueData j) x₂ = x y : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x₁ }.fst, { fst := j, snd := x₂ }.fst)) e₁ : ↑(GlueData.f D.toGlueData i j) y = x₁ ⊢ x ∈ Set.range ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) [PROOFSTEP] substs eq₁ [GOAL] case h.mp.intro.intro.intro.inr.intro.intro D : GlueData i j : D.J x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) x₂ : (forget TopCat).obj (GlueData.U D.toGlueData j) y : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x₁ }.fst, { fst := j, snd := x₂ }.fst)) e₁ : ↑(GlueData.f D.toGlueData i j) y = x₁ eq₂ : ↑(GlueData.ι D.toGlueData j) x₂ = ↑(GlueData.ι D.toGlueData i) x₁ ⊢ ↑(GlueData.ι D.toGlueData i) x₁ ∈ Set.range ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) [PROOFSTEP] exact ⟨y, by simp [e₁]⟩ [GOAL] D : GlueData i j : D.J x₁ : (forget TopCat).obj (GlueData.U D.toGlueData i) x₂ : (forget TopCat).obj (GlueData.U D.toGlueData j) y : ↑(GlueData.V D.toGlueData ({ fst := i, snd := x₁ }.fst, { fst := j, snd := x₂ }.fst)) e₁ : ↑(GlueData.f D.toGlueData i j) y = x₁ eq₂ : ↑(GlueData.ι D.toGlueData j) x₂ = ↑(GlueData.ι D.toGlueData i) x₁ ⊢ ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) y = ↑(GlueData.ι D.toGlueData i) x₁ [PROOFSTEP] simp [e₁] [GOAL] case h.mpr D : GlueData i j : D.J x : (forget TopCat).obj (GlueData.glued D.toGlueData) ⊢ x ∈ Set.range ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) → x ∈ Set.range ↑(GlueData.ι D.toGlueData i) ∩ Set.range ↑(GlueData.ι D.toGlueData j) [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case h.mpr.intro D : GlueData i j : D.J x✝ : (forget TopCat).obj (GlueData.glued D.toGlueData) x : (forget TopCat).obj (GlueData.V D.toGlueData (i, j)) hx : ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) x = x✝ ⊢ x✝ ∈ Set.range ↑(GlueData.ι D.toGlueData i) ∩ Set.range ↑(GlueData.ι D.toGlueData j) [PROOFSTEP] exact ⟨⟨D.f i j x, hx⟩, ⟨D.f j i (D.t _ _ x), by simp [← hx]⟩⟩ [GOAL] D : GlueData i j : D.J x✝ : (forget TopCat).obj (GlueData.glued D.toGlueData) x : (forget TopCat).obj (GlueData.V D.toGlueData (i, j)) hx : ↑(GlueData.f D.toGlueData i j ≫ GlueData.ι D.toGlueData i) x = x✝ ⊢ ↑(GlueData.ι D.toGlueData j) (↑(GlueData.f D.toGlueData j i) (↑(GlueData.t D.toGlueData i j) x)) = x✝ [PROOFSTEP] simp [← hx] [GOAL] D : GlueData i j : D.J ⊢ ↑(GlueData.ι D.toGlueData j) ⁻¹' Set.range ↑(GlueData.ι D.toGlueData i) = Set.range ↑(GlueData.f D.toGlueData j i) [PROOFSTEP] rw [← Set.preimage_image_eq (Set.range (D.f j i)) (D.ι_injective j), ← Set.image_univ, ← Set.image_univ, ← Set.image_comp, ← coe_comp, Set.image_univ, Set.image_univ, ← image_inter, Set.preimage_range_inter] [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) = ↑(GlueData.f D.toGlueData j i) '' (↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U) [PROOFSTEP] have : D.f _ _ ⁻¹' (𝖣.ι j ⁻¹' (𝖣.ι i '' U)) = (D.t j i ≫ D.f _ _) ⁻¹' U := by ext x conv_rhs => rw [← Set.preimage_image_eq U (D.ι_injective _)] generalize 𝖣.ι i '' U = U' simp [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) = ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U [PROOFSTEP] ext x [GOAL] case h D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) x : (forget TopCat).obj (GlueData.V D.toGlueData (j, i)) ⊢ x ∈ ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) ↔ x ∈ ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U [PROOFSTEP] conv_rhs => rw [← Set.preimage_image_eq U (D.ι_injective _)] [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) x : (forget TopCat).obj (GlueData.V D.toGlueData (j, i)) | x ∈ ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U [PROOFSTEP] rw [← Set.preimage_image_eq U (D.ι_injective _)] [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) x : (forget TopCat).obj (GlueData.V D.toGlueData (j, i)) | x ∈ ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U [PROOFSTEP] rw [← Set.preimage_image_eq U (D.ι_injective _)] [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) x : (forget TopCat).obj (GlueData.V D.toGlueData (j, i)) | x ∈ ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U [PROOFSTEP] rw [← Set.preimage_image_eq U (D.ι_injective _)] [GOAL] case h D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) x : (forget TopCat).obj (GlueData.V D.toGlueData (j, i)) ⊢ x ∈ ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) ↔ x ∈ ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' (↑(GlueData.ι D.toGlueData i) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) [PROOFSTEP] generalize 𝖣.ι i '' U = U' [GOAL] case h D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) x : (forget TopCat).obj (GlueData.V D.toGlueData (j, i)) U' : Set ((forget TopCat).obj (GlueData.glued D.toGlueData)) ⊢ x ∈ ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' U') ↔ x ∈ ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' (↑(GlueData.ι D.toGlueData i) ⁻¹' U') [PROOFSTEP] simp [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) this : ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) = ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U ⊢ ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) = ↑(GlueData.f D.toGlueData j i) '' (↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U) [PROOFSTEP] rw [← this, Set.image_preimage_eq_inter_range] [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) this : ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) = ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U ⊢ ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) = ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) ∩ Set.range ↑(GlueData.f D.toGlueData j i) [PROOFSTEP] symm [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) this : ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) = ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U ⊢ ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) ∩ Set.range ↑(GlueData.f D.toGlueData j i) = ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) [PROOFSTEP] apply Set.inter_eq_self_of_subset_left [GOAL] case a D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) this : ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) = ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U ⊢ ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) ⊆ Set.range ↑(GlueData.f D.toGlueData j i) [PROOFSTEP] rw [← D.preimage_range i j] [GOAL] case a D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) this : ↑(GlueData.f D.toGlueData j i) ⁻¹' (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U)) = ↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U ⊢ ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) ⊆ ↑(GlueData.ι D.toGlueData j) ⁻¹' Set.range ↑(GlueData.ι D.toGlueData i) [PROOFSTEP] exact Set.preimage_mono (Set.image_subset_range _ _) [GOAL] D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ ↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' U) = ↑(GlueData.t D.toGlueData i j ≫ GlueData.f D.toGlueData j i) '' (↑(GlueData.f D.toGlueData i j) ⁻¹' U) [PROOFSTEP] convert D.preimage_image_eq_image i j U using 1 [GOAL] case h.e'_3 D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ ↑(GlueData.t D.toGlueData i j ≫ GlueData.f D.toGlueData j i) '' (↑(GlueData.f D.toGlueData i j) ⁻¹' U) = ↑(GlueData.f D.toGlueData j i) '' (↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U) [PROOFSTEP] rw [coe_comp, coe_comp] -- porting note: `show` was not needed, since `rw [← Set.image_image]` worked. [GOAL] case h.e'_3 D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ ↑(GlueData.f D.toGlueData j i) ∘ ↑(GlueData.t D.toGlueData i j) '' (↑(GlueData.f D.toGlueData i j) ⁻¹' U) = ↑(GlueData.f D.toGlueData j i) '' (↑(GlueData.f D.toGlueData i j) ∘ ↑(GlueData.t D.toGlueData j i) ⁻¹' U) [PROOFSTEP] show (fun x => ((forget TopCat).map _ ((forget TopCat).map _ x))) '' _ = _ [GOAL] case h.e'_3 D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ (fun x => (forget TopCat).map (GlueData.f D.toGlueData j i) ((forget TopCat).map (GlueData.t D.toGlueData i j) x)) '' (↑(GlueData.f D.toGlueData i j) ⁻¹' U) = ↑(GlueData.f D.toGlueData j i) '' (↑(GlueData.f D.toGlueData i j) ∘ ↑(GlueData.t D.toGlueData j i) ⁻¹' U) [PROOFSTEP] rw [← Set.image_image] -- porting note: `congr 1` was here, instead of `congr_arg`, however, it did nothing. [GOAL] case h.e'_3 D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ (forget TopCat).map (GlueData.f D.toGlueData j i) '' ((fun x => (forget TopCat).map (GlueData.t D.toGlueData i j) x) '' (↑(GlueData.f D.toGlueData i j) ⁻¹' U)) = ↑(GlueData.f D.toGlueData j i) '' (↑(GlueData.f D.toGlueData i j) ∘ ↑(GlueData.t D.toGlueData j i) ⁻¹' U) [PROOFSTEP] refine congr_arg ?_ ?_ [GOAL] case h.e'_3 D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ (fun x => (forget TopCat).map (GlueData.t D.toGlueData i j) x) '' (↑(GlueData.f D.toGlueData i j) ⁻¹' U) = ↑(GlueData.f D.toGlueData i j) ∘ ↑(GlueData.t D.toGlueData j i) ⁻¹' U [PROOFSTEP] rw [← Set.eq_preimage_iff_image_eq, Set.preimage_preimage] [GOAL] case h.e'_3 D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ ↑(GlueData.f D.toGlueData i j) ⁻¹' U = (fun x => (↑(GlueData.f D.toGlueData i j) ∘ ↑(GlueData.t D.toGlueData j i)) ((forget TopCat).map (GlueData.t D.toGlueData i j) x)) ⁻¹' U case h.e'_3.hf D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ Function.Bijective fun x => (forget TopCat).map (GlueData.t D.toGlueData i j) x [PROOFSTEP] change _ = (D.t i j ≫ D.t j i ≫ _) ⁻¹' _ [GOAL] case h.e'_3 D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ ↑(GlueData.f D.toGlueData i j) ⁻¹' U = ↑(GlueData.t D.toGlueData i j ≫ GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' U case h.e'_3.hf D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ Function.Bijective fun x => (forget TopCat).map (GlueData.t D.toGlueData i j) x [PROOFSTEP] rw [𝖣.t_inv_assoc] [GOAL] case h.e'_3.hf D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ Function.Bijective fun x => (forget TopCat).map (GlueData.t D.toGlueData i j) x [PROOFSTEP] rw [← isIso_iff_bijective] [GOAL] case h.e'_3.hf D : GlueData i j : D.J U : Set ↑(GlueData.U D.toGlueData i) ⊢ IsIso fun x => (forget TopCat).map (GlueData.t D.toGlueData i j) x [PROOFSTEP] apply (forget TopCat).map_isIso [GOAL] D : GlueData i : D.J U : Opens ↑(GlueData.U D.toGlueData i) ⊢ IsOpen (↑(GlueData.ι D.toGlueData i) '' ↑U) [PROOFSTEP] rw [isOpen_iff] [GOAL] D : GlueData i : D.J U : Opens ↑(GlueData.U D.toGlueData i) ⊢ ∀ (i_1 : D.J), IsOpen (↑(GlueData.ι D.toGlueData i_1) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' ↑U)) [PROOFSTEP] intro j [GOAL] D : GlueData i : D.J U : Opens ↑(GlueData.U D.toGlueData i) j : D.J ⊢ IsOpen (↑(GlueData.ι D.toGlueData j) ⁻¹' (↑(GlueData.ι D.toGlueData i) '' ↑U)) [PROOFSTEP] rw [preimage_image_eq_image] [GOAL] D : GlueData i : D.J U : Opens ↑(GlueData.U D.toGlueData i) j : D.J ⊢ IsOpen (↑(GlueData.f D.toGlueData j i) '' (↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' ↑U)) [PROOFSTEP] apply (D.f_open _ _).isOpenMap [GOAL] case a D : GlueData i : D.J U : Opens ↑(GlueData.U D.toGlueData i) j : D.J ⊢ IsOpen (↑(GlueData.t D.toGlueData j i ≫ GlueData.f D.toGlueData i j) ⁻¹' ↑U) [PROOFSTEP] apply (D.t j i ≫ D.f i j).continuous_toFun.isOpen_preimage [GOAL] case a.a D : GlueData i : D.J U : Opens ↑(GlueData.U D.toGlueData i) j : D.J ⊢ IsOpen ↑U [PROOFSTEP] exact U.isOpen [GOAL] D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } ⊢ ↑(t h i j) (↑(t h j i) x) = x [PROOFSTEP] have := h.cocycle j i j x ?_ [GOAL] case refine_2 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } this : ↑(↑(t h i j) { val := ↑(↑(t h j i) x), property := (_ : ↑(↑(t h j i) x) ∈ V h i j) }) = ↑(↑(t h j j) { val := ↑x, property := ?refine_1 }) ⊢ ↑(t h i j) (↑(t h j i) x) = x case refine_1 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } ⊢ ↑x ∈ V h j j [PROOFSTEP] rw [h.t_id] at this [GOAL] case refine_2 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } this : ↑(↑(t h i j) { val := ↑(↑(t h j i) x), property := (_ : ↑(↑(t h j i) x) ∈ V h i j) }) = ↑(id { val := ↑x, property := ?refine_1 }) ⊢ ↑(t h i j) (↑(t h j i) x) = x case refine_1 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } ⊢ ↑x ∈ V h j j case refine_1 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } ⊢ ↑x ∈ V h j j [PROOFSTEP] convert Subtype.eq this [GOAL] case refine_1 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } ⊢ ↑x ∈ V h j j case refine_1 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } ⊢ ↑x ∈ V h j j case refine_1 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } ⊢ ↑x ∈ V h j j [PROOFSTEP] rw [h.V_id] [GOAL] case refine_1 D : GlueData h : MkCore i j : h.J x : { x // x ∈ V h j i } ⊢ ↑x ∈ ⊤ [PROOFSTEP] trivial [GOAL] D : GlueData h : MkCore i j : h.J ⊢ IsIso (MkCore.t h i j) [PROOFSTEP] use h.t j i [GOAL] case h D : GlueData h : MkCore i j : h.J ⊢ MkCore.t h i j ≫ MkCore.t h j i = 𝟙 ((Opens.toTopCat (MkCore.U h i)).obj (MkCore.V h i j)) ∧ MkCore.t h j i ≫ MkCore.t h i j = 𝟙 ((Opens.toTopCat (MkCore.U h j)).obj (MkCore.V h j i)) [PROOFSTEP] constructor [GOAL] case h.left D : GlueData h : MkCore i j : h.J ⊢ MkCore.t h i j ≫ MkCore.t h j i = 𝟙 ((Opens.toTopCat (MkCore.U h i)).obj (MkCore.V h i j)) [PROOFSTEP] ext1 [GOAL] case h.right D : GlueData h : MkCore i j : h.J ⊢ MkCore.t h j i ≫ MkCore.t h i j = 𝟙 ((Opens.toTopCat (MkCore.U h j)).obj (MkCore.V h j i)) [PROOFSTEP] ext1 [GOAL] case h.left.w D : GlueData h : MkCore i j : h.J x✝ : (forget TopCat).obj ((Opens.toTopCat (MkCore.U h i)).obj (MkCore.V h i j)) ⊢ ↑(MkCore.t h i j ≫ MkCore.t h j i) x✝ = ↑(𝟙 ((Opens.toTopCat (MkCore.U h i)).obj (MkCore.V h i j))) x✝ case h.right.w D : GlueData h : MkCore i j : h.J x✝ : (forget TopCat).obj ((Opens.toTopCat (MkCore.U h j)).obj (MkCore.V h j i)) ⊢ ↑(MkCore.t h j i ≫ MkCore.t h i j) x✝ = ↑(𝟙 ((Opens.toTopCat (MkCore.U h j)).obj (MkCore.V h j i))) x✝ [PROOFSTEP] exacts [h.t_inv _ _ _, h.t_inv _ _ _] [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ pullback (Opens.inclusion (V h i j)) (Opens.inclusion (V h i k)) ⟶ pullback (Opens.inclusion (V h j k)) (Opens.inclusion (V h j i)) [PROOFSTEP] refine' (pullbackIsoProdSubtype _ _).hom ≫ ⟨_, _⟩ ≫ (pullbackIsoProdSubtype _ _).inv [GOAL] case refine'_1 D : GlueData h : MkCore i j k : h.J ⊢ ↑(of { p // ↑(Opens.inclusion (V h i j)) p.fst = ↑(Opens.inclusion (V h i k)) p.snd }) → ↑(of { p // ↑(Opens.inclusion (V h j k)) p.fst = ↑(Opens.inclusion (V h j i)) p.snd }) [PROOFSTEP] intro x [GOAL] case refine'_1 D : GlueData h : MkCore i j k : h.J x : ↑(of { p // ↑(Opens.inclusion (V h i j)) p.fst = ↑(Opens.inclusion (V h i k)) p.snd }) ⊢ ↑(of { p // ↑(Opens.inclusion (V h j k)) p.fst = ↑(Opens.inclusion (V h j i)) p.snd }) [PROOFSTEP] refine' ⟨⟨⟨(h.t i j x.1.1).1, _⟩, h.t i j x.1.1⟩, rfl⟩ [GOAL] case refine'_1 D : GlueData h : MkCore i j k : h.J x : ↑(of { p // ↑(Opens.inclusion (V h i j)) p.fst = ↑(Opens.inclusion (V h i k)) p.snd }) ⊢ ↑(↑(t h i j) (↑x).fst) ∈ V h j k [PROOFSTEP] rcases x with ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, rfl : x = x'⟩ [GOAL] case refine'_1.mk.mk.mk.mk D : GlueData h : MkCore i j k : h.J x : ↑(U h i) hx : x ∈ V h i j hx' : x ∈ V h i k ⊢ ↑(↑(t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ V h j k [PROOFSTEP] exact h.t_inter _ ⟨x, hx⟩ hx' [GOAL] case refine'_2 D : GlueData h : MkCore i j k : h.J ⊢ Continuous fun x => { val := ({ val := ↑(↑(t h i j) (↑x).fst), property := (_ : ↑(↑(t h i j) (↑x).fst) ∈ V h j k) }, ↑(t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (V h j k)) ({ val := ↑(↑(t h i j) (↑x).fst), property := (_ : ↑(↑(t h i j) (↑x).fst) ∈ V h j k) }, ↑(t h i j) (↑x).fst).fst = ↑(Opens.inclusion (V h j k)) ({ val := ↑(↑(t h i j) (↑x).fst), property := (_ : ↑(↑(t h i j) (↑x).fst) ∈ V h j k) }, ↑(t h i j) (↑x).fst).fst) } [PROOFSTEP] have : Continuous (h.t i j) := map_continuous (self := ContinuousMap.toContinuousMapClass) _ [GOAL] case refine'_2 D : GlueData h : MkCore i j k : h.J this : Continuous ↑(t h i j) ⊢ Continuous fun x => { val := ({ val := ↑(↑(t h i j) (↑x).fst), property := (_ : ↑(↑(t h i j) (↑x).fst) ∈ V h j k) }, ↑(t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (V h j k)) ({ val := ↑(↑(t h i j) (↑x).fst), property := (_ : ↑(↑(t h i j) (↑x).fst) ∈ V h j k) }, ↑(t h i j) (↑x).fst).fst = ↑(Opens.inclusion (V h j k)) ({ val := ↑(↑(t h i j) (↑x).fst), property := (_ : ↑(↑(t h i j) (↑x).fst) ∈ V h j k) }, ↑(t h i j) (↑x).fst).fst) } [PROOFSTEP] exact ((Continuous.subtype_mk (by continuity) _).prod_mk (by continuity)).subtype_mk _ [GOAL] D : GlueData h : MkCore i j k : h.J this : Continuous ↑(t h i j) ⊢ Continuous fun x => ↑(↑(t h i j) (↑x).fst) [PROOFSTEP] continuity [GOAL] D : GlueData h : MkCore i j k : h.J this : Continuous ↑(t h i j) ⊢ Continuous fun x => ↑(t h i j) (↑x).fst [PROOFSTEP] continuity [GOAL] D : GlueData h : MkCore i : h.J ⊢ IsIso ((fun i j => Opens.inclusion (MkCore.V h i j)) i i) [PROOFSTEP] dsimp only [GOAL] D : GlueData h : MkCore i : h.J ⊢ IsIso (Opens.inclusion (MkCore.V h i i)) [PROOFSTEP] exact (h.V_id i).symm ▸ IsIso.of_iso (Opens.inclusionTopIso (h.U i)) [GOAL] D : GlueData h : MkCore i : h.J ⊢ MkCore.t h i i = 𝟙 ((fun i => (Opens.toTopCat (MkCore.U h i.fst)).obj (MkCore.V h i.fst i.snd)) (i, i)) [PROOFSTEP] ext [GOAL] case w D : GlueData h : MkCore i : h.J x✝ : (forget TopCat).obj ((Opens.toTopCat (MkCore.U h i)).obj (MkCore.V h i i)) ⊢ ↑(MkCore.t h i i) x✝ = ↑(𝟙 ((fun i => (Opens.toTopCat (MkCore.U h i.fst)).obj (MkCore.V h i.fst i.snd)) (i, i))) x✝ [PROOFSTEP] rw [h.t_id] [GOAL] case w D : GlueData h : MkCore i : h.J x✝ : (forget TopCat).obj ((Opens.toTopCat (MkCore.U h i)).obj (MkCore.V h i i)) ⊢ id x✝ = ↑(𝟙 ((fun i => (Opens.toTopCat (MkCore.U h i.fst)).obj (MkCore.V h i.fst i.snd)) (i, i))) x✝ [PROOFSTEP] rfl [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ MkCore.t' h i j k ≫ pullback.snd = pullback.fst ≫ MkCore.t h i j [PROOFSTEP] delta MkCore.t' [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ ((pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).hom ≫ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i))).inv) ≫ pullback.snd = pullback.fst ≫ MkCore.t h i j [PROOFSTEP] rw [Category.assoc, Category.assoc, pullbackIsoProdSubtype_inv_snd, ← Iso.eq_inv_comp, pullbackIsoProdSubtype_inv_fst_assoc] [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ pullbackSnd (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i)) = pullbackFst (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k)) ≫ MkCore.t h i j [PROOFSTEP] ext ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, rfl : x = x'⟩ [GOAL] case w.mk.mk.mk.mk D : GlueData h : MkCore i j k : h.J x : ↑(MkCore.U h i) hx : x ∈ MkCore.V h i j hx' : x ∈ MkCore.V h i k ⊢ ↑((ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ pullbackSnd (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i))) { val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) } = ↑(pullbackFst (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k)) ≫ MkCore.t h i j) { val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) } [PROOFSTEP] rfl [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ MkCore.t' h i j k ≫ MkCore.t' h j k i ≫ MkCore.t' h k i j = 𝟙 (pullback ((fun i j => Opens.inclusion (MkCore.V h i j)) i j) ((fun i j => Opens.inclusion (MkCore.V h i j)) i k)) [PROOFSTEP] delta MkCore.t' [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ ((pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).hom ≫ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i))).inv) ≫ ((pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i))).hom ≫ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h k i)) (Opens.inclusion (MkCore.V h k j))).inv) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h k i)) (Opens.inclusion (MkCore.V h k j))).hom ≫ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).inv = 𝟙 (pullback ((fun i j => Opens.inclusion (MkCore.V h i j)) i j) ((fun i j => Opens.inclusion (MkCore.V h i j)) i k)) [PROOFSTEP] simp_rw [← Category.assoc] [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ ((((((((pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).hom ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i))).inv) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i))).hom) ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h k i)) (Opens.inclusion (MkCore.V h k j))).inv) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h k i)) (Opens.inclusion (MkCore.V h k j))).hom) ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).inv = 𝟙 (pullback (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))) [PROOFSTEP] rw [Iso.comp_inv_eq] [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ ((((((((pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).hom ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i))).inv) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h j k)) (Opens.inclusion (MkCore.V h j i))).hom) ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h k i)) (Opens.inclusion (MkCore.V h k j))).inv) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h k i)) (Opens.inclusion (MkCore.V h k j))).hom) ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst) }) = 𝟙 (pullback (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))) ≫ (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).hom [PROOFSTEP] simp only [Iso.inv_hom_id_assoc, Category.assoc, Category.id_comp] [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ ((pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).hom ≫ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst) }) = (pullbackIsoProdSubtype (Opens.inclusion (MkCore.V h i j)) (Opens.inclusion (MkCore.V h i k))).hom [PROOFSTEP] rw [← Iso.eq_inv_comp, Iso.inv_hom_id] [GOAL] D : GlueData h : MkCore i j k : h.J ⊢ ((ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst) }) = 𝟙 (of { p // ↑(Opens.inclusion (MkCore.V h i j)) p.fst = ↑(Opens.inclusion (MkCore.V h i k)) p.snd }) [PROOFSTEP] ext1 ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, rfl : x = x'⟩ [GOAL] case w.mk.mk.mk.mk D : GlueData h : MkCore i j k : h.J x : ↑(MkCore.U h i) hx : x ∈ MkCore.V h i j hx' : x ∈ MkCore.V h i k ⊢ ↑((ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑x).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑x).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑x).fst).fst) }) ≫ (ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) ≫ ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h i j)) ({ val := ↑(↑(MkCore.t h k i) (↑x).fst), property := (_ : ↑(↑(MkCore.t h k i) (↑x).fst) ∈ MkCore.V h i j) }, ↑(MkCore.t h k i) (↑x).fst).fst) }) { val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) } = ↑(𝟙 (of { p // ↑(Opens.inclusion (MkCore.V h i j)) p.fst = ↑(Opens.inclusion (MkCore.V h i k)) p.snd })) { val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) } [PROOFSTEP] rw [comp_app, ContinuousMap.coe_mk, comp_app, id_app, ContinuousMap.coe_mk, Subtype.mk_eq_mk, Prod.mk.inj_iff, Subtype.mk_eq_mk, Subtype.ext_iff, and_self_iff] [GOAL] case w.mk.mk.mk.mk D : GlueData h : MkCore i j k : h.J x : ↑(MkCore.U h i) hx : x ∈ MkCore.V h i j hx' : x ∈ MkCore.V h i k ⊢ ↑(↑(MkCore.t h k i) (↑(↑(ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) { val := ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst).fst) })).fst) = x [PROOFSTEP] convert congr_arg Subtype.val (h.t_inv k i ⟨x, hx'⟩) using 3 [GOAL] case h.e'_2.h.e'_3.h.e'_6 D : GlueData h : MkCore i j k : h.J x : ↑(MkCore.U h i) hx : x ∈ MkCore.V h i j hx' : x ∈ MkCore.V h i k ⊢ (↑(↑(ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) { val := ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst).fst) })).fst = ↑(MkCore.t h i k) { val := x, property := hx' } [PROOFSTEP] refine Subtype.ext ?_ [GOAL] case h.e'_2.h.e'_3.h.e'_6 D : GlueData h : MkCore i j k : h.J x : ↑(MkCore.U h i) hx : x ∈ MkCore.V h i j hx' : x ∈ MkCore.V h i k ⊢ ↑(↑(↑(ContinuousMap.mk fun x => { val := ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst = ↑(Opens.inclusion (MkCore.V h k i)) ({ val := ↑(↑(MkCore.t h j k) (↑x).fst), property := (_ : ↑(↑(MkCore.t h j k) (↑x).fst) ∈ MkCore.V h k i) }, ↑(MkCore.t h j k) (↑x).fst).fst) }) { val := ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst).fst = ↑(Opens.inclusion (MkCore.V h j k)) ({ val := ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst), property := (_ : ↑(↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst) ∈ MkCore.V h j k) }, ↑(MkCore.t h i j) (↑{ val := ({ val := x, property := hx }, { val := x, property := hx' }), property := (_ : x = x) }).fst).fst) })).fst = ↑(↑(MkCore.t h i k) { val := x, property := hx' }) [PROOFSTEP] exact h.cocycle i j k ⟨x, hx⟩ hx' [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i j : J ⊢ Continuous fun x => { val := { val := ↑↑x, property := (_ : ↑x ∈ (fun i j => (Opens.map (Opens.inclusion (U i))).obj (U j)) i j) }, property := (_ : ↑↑x ∈ U i) } [PROOFSTEP] refine Continuous.subtype_mk ?_ ?_ [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i j : J ⊢ Continuous fun x => { val := ↑↑x, property := (_ : ↑x ∈ (fun i j => (Opens.map (Opens.inclusion (U i))).obj (U j)) i j) } [PROOFSTEP] refine Continuous.subtype_mk ?_ ?_ [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i j : J ⊢ Continuous fun x => ↑↑x [PROOFSTEP] continuity [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : J ⊢ (fun i j => (Opens.map (Opens.inclusion (U i))).obj (U j)) i i = ⊤ [PROOFSTEP] ext -- porting note: no longer needed `cases U i`! [GOAL] case h.h D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : J x✝ : ↑((Opens.toTopCat (of α)).obj (U i)) ⊢ x✝ ∈ ↑((fun i j => (Opens.map (Opens.inclusion (U i))).obj (U j)) i i) ↔ x✝ ∈ ↑⊤ [PROOFSTEP] simp [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : J ⊢ ↑((fun i j => ContinuousMap.mk fun x => { val := { val := ↑↑x, property := (_ : ↑x ∈ (fun i j => (Opens.map (Opens.inclusion (U i))).obj (U j)) i j) }, property := (_ : ↑↑x ∈ U i) }) i i) = id [PROOFSTEP] ext [GOAL] case h D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : J x✝ : (forget TopCat).obj ((Opens.toTopCat ((fun i => (Opens.toTopCat (of α)).obj (U i)) i)).obj ((fun i j => (Opens.map (Opens.inclusion (U i))).obj (U j)) i i)) ⊢ ↑((fun i j => ContinuousMap.mk fun x => { val := { val := ↑↑x, property := (_ : ↑x ∈ (fun i j => (Opens.map (Opens.inclusion (U i))).obj (U j)) i j) }, property := (_ : ↑↑x ∈ U i) }) i i) x✝ = id x✝ [PROOFSTEP] rfl [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α ⊢ ∀ (a : (GlueData.diagram (ofOpenSubsets U).toGlueData).L), MultispanIndex.fst (GlueData.diagram (ofOpenSubsets U).toGlueData) a ≫ (fun x => Opens.inclusion (U x)) (MultispanIndex.fstFrom (GlueData.diagram (ofOpenSubsets U).toGlueData) a) = MultispanIndex.snd (GlueData.diagram (ofOpenSubsets U).toGlueData) a ≫ (fun x => Opens.inclusion (U x)) (MultispanIndex.sndFrom (GlueData.diagram (ofOpenSubsets U).toGlueData) a) [PROOFSTEP] rintro ⟨i, j⟩ [GOAL] case mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i j : (ofOpenSubsets U).toGlueData.J ⊢ MultispanIndex.fst (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j) ≫ (fun x => Opens.inclusion (U x)) (MultispanIndex.fstFrom (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j)) = MultispanIndex.snd (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j) ≫ (fun x => Opens.inclusion (U x)) (MultispanIndex.sndFrom (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j)) [PROOFSTEP] ext x [GOAL] case mk.w D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i j : (ofOpenSubsets U).toGlueData.J x : (forget TopCat).obj (MultispanIndex.left (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j)) ⊢ ↑(MultispanIndex.fst (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j) ≫ (fun x => Opens.inclusion (U x)) (MultispanIndex.fstFrom (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j))) x = ↑(MultispanIndex.snd (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j) ≫ (fun x => Opens.inclusion (U x)) (MultispanIndex.sndFrom (GlueData.diagram (ofOpenSubsets U).toGlueData) (i, j))) x [PROOFSTEP] rfl [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α ⊢ Function.Injective ↑(fromOpenSubsetsGlue U) [PROOFSTEP] intro x y e [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α x y : (forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData) e : ↑(fromOpenSubsetsGlue U) x = ↑(fromOpenSubsetsGlue U) y ⊢ x = y [PROOFSTEP] obtain ⟨i, ⟨x, hx⟩, rfl⟩ := (ofOpenSubsets U).ι_jointly_surjective x [GOAL] case intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α y : (forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx : x ∈ U i e : ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx }) = ↑(fromOpenSubsetsGlue U) y ⊢ ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx } = y [PROOFSTEP] obtain ⟨j, ⟨y, hy⟩, rfl⟩ := (ofOpenSubsets U).ι_jointly_surjective y [GOAL] case intro.intro.mk.intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx : x ∈ U i j : (ofOpenSubsets U).toGlueData.J y : ↑(of α) hy : y ∈ U j e : ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx }) = ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData j) { val := y, property := hy }) ⊢ ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx } = ↑(GlueData.ι (ofOpenSubsets U).toGlueData j) { val := y, property := hy } [PROOFSTEP] erw [ι_fromOpenSubsetsGlue_apply, ι_fromOpenSubsetsGlue_apply] at e [GOAL] case intro.intro.mk.intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx : x ∈ U i j : (ofOpenSubsets U).toGlueData.J y : ↑(of α) hy : y ∈ U j e : ↑(Opens.inclusion (U i)) { val := x, property := hx } = ↑(Opens.inclusion (U j)) { val := y, property := hy } ⊢ ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx } = ↑(GlueData.ι (ofOpenSubsets U).toGlueData j) { val := y, property := hy } [PROOFSTEP] change x = y at e [GOAL] case intro.intro.mk.intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx : x ∈ U i j : (ofOpenSubsets U).toGlueData.J y : ↑(of α) hy : y ∈ U j e : x = y ⊢ ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx } = ↑(GlueData.ι (ofOpenSubsets U).toGlueData j) { val := y, property := hy } [PROOFSTEP] subst e [GOAL] case intro.intro.mk.intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx : x ∈ U i j : (ofOpenSubsets U).toGlueData.J hy : x ∈ U j ⊢ ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx } = ↑(GlueData.ι (ofOpenSubsets U).toGlueData j) { val := x, property := hy } [PROOFSTEP] rw [(ofOpenSubsets U).ι_eq_iff_rel] [GOAL] case intro.intro.mk.intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx : x ∈ U i j : (ofOpenSubsets U).toGlueData.J hy : x ∈ U j ⊢ Rel (ofOpenSubsets U) { fst := i, snd := { val := x, property := hx } } { fst := j, snd := { val := x, property := hy } } [PROOFSTEP] right [GOAL] case intro.intro.mk.intro.intro.mk.h D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx : x ∈ U i j : (ofOpenSubsets U).toGlueData.J hy : x ∈ U j ⊢ ∃ x_1, ↑(GlueData.f (ofOpenSubsets U).toGlueData { fst := i, snd := { val := x, property := hx } }.fst { fst := j, snd := { val := x, property := hy } }.fst) x_1 = { fst := i, snd := { val := x, property := hx } }.snd ∧ ↑(GlueData.f (ofOpenSubsets U).toGlueData { fst := j, snd := { val := x, property := hy } }.fst { fst := i, snd := { val := x, property := hx } }.fst) (↑(GlueData.t (ofOpenSubsets U).toGlueData { fst := i, snd := { val := x, property := hx } }.fst { fst := j, snd := { val := x, property := hy } }.fst) x_1) = { fst := j, snd := { val := x, property := hy } }.snd [PROOFSTEP] exact ⟨⟨⟨x, hx⟩, hy⟩, rfl, rfl⟩ [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α ⊢ IsOpenMap ↑(fromOpenSubsetsGlue U) [PROOFSTEP] intro s hs [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : IsOpen s ⊢ IsOpen (↑(fromOpenSubsetsGlue U) '' s) [PROOFSTEP] rw [(ofOpenSubsets U).isOpen_iff] at hs [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) ⊢ IsOpen (↑(fromOpenSubsetsGlue U) '' s) [PROOFSTEP] rw [isOpen_iff_forall_mem_open] [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) ⊢ ∀ (x : (forget TopCat).obj (of α)), x ∈ ↑(fromOpenSubsetsGlue U) '' s → ∃ t, t ⊆ ↑(fromOpenSubsetsGlue U) '' s ∧ IsOpen t ∧ x ∈ t [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) x : (forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData) hx : x ∈ s ⊢ ∃ t, t ⊆ ↑(fromOpenSubsetsGlue U) '' s ∧ IsOpen t ∧ ↑(fromOpenSubsetsGlue U) x ∈ t [PROOFSTEP] obtain ⟨i, ⟨x, hx'⟩, rfl⟩ := (ofOpenSubsets U).ι_jointly_surjective x [GOAL] case intro.intro.intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ ∃ t, t ⊆ ↑(fromOpenSubsetsGlue U) '' s ∧ IsOpen t ∧ ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' }) ∈ t [PROOFSTEP] use fromOpenSubsetsGlue U '' s ∩ Set.range (@Opens.inclusion (TopCat.of α) (U i)) [GOAL] case h D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ ↑(fromOpenSubsetsGlue U) '' s ∩ Set.range ↑(Opens.inclusion (U i)) ⊆ ↑(fromOpenSubsetsGlue U) '' s ∧ IsOpen (↑(fromOpenSubsetsGlue U) '' s ∩ Set.range ↑(Opens.inclusion (U i))) ∧ ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' }) ∈ ↑(fromOpenSubsetsGlue U) '' s ∩ Set.range ↑(Opens.inclusion (U i)) [PROOFSTEP] use Set.inter_subset_left _ _ [GOAL] case right D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ IsOpen (↑(fromOpenSubsetsGlue U) '' s ∩ Set.range ↑(Opens.inclusion (U i))) ∧ ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' }) ∈ ↑(fromOpenSubsetsGlue U) '' s ∩ Set.range ↑(Opens.inclusion (U i)) [PROOFSTEP] constructor [GOAL] case right.left D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ IsOpen (↑(fromOpenSubsetsGlue U) '' s ∩ Set.range ↑(Opens.inclusion (U i))) [PROOFSTEP] erw [← Set.image_preimage_eq_inter_range] [GOAL] case right.left D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ IsOpen (↑(Opens.inclusion (U i)) '' (↑(Opens.inclusion (U i)) ⁻¹' (↑(fromOpenSubsetsGlue U) '' s))) [PROOFSTEP] apply (Opens.openEmbedding (X := TopCat.of α) (U i)).isOpenMap [GOAL] case right.left.a D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ IsOpen (↑(Opens.inclusion (U i)) ⁻¹' (↑(fromOpenSubsetsGlue U) '' s)) [PROOFSTEP] convert hs i using 1 [GOAL] case h.e'_3.h D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s e_1✝ : (forget TopCat).obj ((Opens.toTopCat (of α)).obj (U i)) = (forget TopCat).obj (GlueData.U (ofOpenSubsets U).toGlueData i) ⊢ ↑(Opens.inclusion (U i)) ⁻¹' (↑(fromOpenSubsetsGlue U) '' s) = ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s [PROOFSTEP] erw [← ι_fromOpenSubsetsGlue, coe_comp, Set.preimage_comp] -- porting note: `congr 1` did nothing, so I replaced it with `apply congr_arg` [GOAL] case h.e'_3.h D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s e_1✝ : (forget TopCat).obj ((Opens.toTopCat (of α)).obj (U i)) = (forget TopCat).obj (GlueData.U (ofOpenSubsets U).toGlueData i) ⊢ ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' (↑(fromOpenSubsetsGlue U) ⁻¹' (↑(fromOpenSubsetsGlue U) '' s)) = ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s [PROOFSTEP] apply congr_arg [GOAL] case h.e'_3.h.h D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s e_1✝ : (forget TopCat).obj ((Opens.toTopCat (of α)).obj (U i)) = (forget TopCat).obj (GlueData.U (ofOpenSubsets U).toGlueData i) ⊢ ↑(fromOpenSubsetsGlue U) ⁻¹' (↑(fromOpenSubsetsGlue U) '' s) = s [PROOFSTEP] refine' Set.preimage_image_eq _ (fromOpenSubsetsGlue_injective U) [GOAL] case right.right D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' }) ∈ ↑(fromOpenSubsetsGlue U) '' s ∩ Set.range ↑(Opens.inclusion (U i)) [PROOFSTEP] refine' ⟨Set.mem_image_of_mem _ hx, _⟩ -- porting note: another `rw ↦ erw` -- See above. [GOAL] case right.right D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' }) ∈ Set.range ↑(Opens.inclusion (U i)) [PROOFSTEP] erw [ι_fromOpenSubsetsGlue_apply] [GOAL] case right.right D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α s : Set ((forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData)) hs : ∀ (i : (ofOpenSubsets U).toGlueData.J), IsOpen (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) ⁻¹' s) i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i hx : ↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' } ∈ s ⊢ ↑(Opens.inclusion (U i)) { val := x, property := hx' } ∈ Set.range ↑(Opens.inclusion (U i)) [PROOFSTEP] exact Set.mem_range_self _ [GOAL] D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α ⊢ Set.range ↑(fromOpenSubsetsGlue U) = ⋃ (i : J), ↑(U i) [PROOFSTEP] ext [GOAL] case h D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α x✝ : (forget TopCat).obj (of α) ⊢ x✝ ∈ Set.range ↑(fromOpenSubsetsGlue U) ↔ x✝ ∈ ⋃ (i : J), ↑(U i) [PROOFSTEP] constructor [GOAL] case h.mp D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α x✝ : (forget TopCat).obj (of α) ⊢ x✝ ∈ Set.range ↑(fromOpenSubsetsGlue U) → x✝ ∈ ⋃ (i : J), ↑(U i) [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case h.mp.intro D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α x : (forget TopCat).obj (GlueData.glued (ofOpenSubsets U).toGlueData) ⊢ ↑(fromOpenSubsetsGlue U) x ∈ ⋃ (i : J), ↑(U i) [PROOFSTEP] obtain ⟨i, ⟨x, hx'⟩, rfl⟩ := (ofOpenSubsets U).ι_jointly_surjective x [GOAL] case h.mp.intro.intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i ⊢ ↑(fromOpenSubsetsGlue U) (↑(GlueData.ι (ofOpenSubsets U).toGlueData i) { val := x, property := hx' }) ∈ ⋃ (i : J), ↑(U i) [PROOFSTEP] erw [ι_fromOpenSubsetsGlue_apply] [GOAL] case h.mp.intro.intro.intro.mk D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α i : (ofOpenSubsets U).toGlueData.J x : ↑(of α) hx' : x ∈ U i ⊢ ↑(Opens.inclusion (U i)) { val := x, property := hx' } ∈ ⋃ (i : J), ↑(U i) [PROOFSTEP] exact Set.subset_iUnion _ i hx' [GOAL] case h.mpr D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α x✝ : (forget TopCat).obj (of α) ⊢ x✝ ∈ ⋃ (i : J), ↑(U i) → x✝ ∈ Set.range ↑(fromOpenSubsetsGlue U) [PROOFSTEP] rintro ⟨_, ⟨i, rfl⟩, hx⟩ [GOAL] case h.mpr.intro.intro.intro D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α x✝ : (forget TopCat).obj (of α) i : J hx : x✝ ∈ (fun i => ↑(U i)) i ⊢ x✝ ∈ Set.range ↑(fromOpenSubsetsGlue U) [PROOFSTEP] rename_i x [GOAL] case h.mpr.intro.intro.intro D : GlueData α : Type u inst✝ : TopologicalSpace α J : Type u U : J → Opens α x : (forget TopCat).obj (of α) i : J hx : x ∈ (fun i => ↑(U i)) i ⊢ x ∈ Set.range ↑(fromOpenSubsetsGlue U) [PROOFSTEP] refine' ⟨(ofOpenSubsets U).toGlueData.ι i ⟨x, hx⟩, ι_fromOpenSubsetsGlue_apply _ _ _⟩
{"mathlib_filename": "Mathlib.Topology.Gluing", "llama_tokens": 68674}
[GOAL] m n : ℕ hne : m ≠ n ⊢ ↑m ≠ ↑n [PROOFSTEP] exact_mod_cast hne [GOAL] x : ℕ r : ℝ ⊢ closedBall x r = Icc ⌈↑x - r⌉₊ ⌊↑x + r⌋₊ [PROOFSTEP] rcases le_or_lt 0 r with (hr | hr) [GOAL] case inl x : ℕ r : ℝ hr : 0 ≤ r ⊢ closedBall x r = Icc ⌈↑x - r⌉₊ ⌊↑x + r⌋₊ [PROOFSTEP] rw [← preimage_closedBall, Real.closedBall_eq_Icc, preimage_Icc] [GOAL] case inl x : ℕ r : ℝ hr : 0 ≤ r ⊢ 0 ≤ ↑x + r [PROOFSTEP] exact add_nonneg (cast_nonneg x) hr [GOAL] case inr x : ℕ r : ℝ hr : r < 0 ⊢ closedBall x r = Icc ⌈↑x - r⌉₊ ⌊↑x + r⌋₊ [PROOFSTEP] rw [closedBall_eq_empty.2 hr, Icc_eq_empty_of_lt] [GOAL] case inr x : ℕ r : ℝ hr : r < 0 ⊢ ⌊↑x + r⌋₊ < ⌈↑x - r⌉₊ [PROOFSTEP] calc ⌊(x : ℝ) + r⌋₊ ≤ ⌊(x : ℝ)⌋₊ := floor_mono <| by linarith _ < ⌈↑x - r⌉₊ := by rw [floor_coe, Nat.lt_ceil] linarith [GOAL] x : ℕ r : ℝ hr : r < 0 ⊢ ↑x + r ≤ ↑x [PROOFSTEP] linarith [GOAL] x : ℕ r : ℝ hr : r < 0 ⊢ ⌊↑x⌋₊ < ⌈↑x - r⌉₊ [PROOFSTEP] rw [floor_coe, Nat.lt_ceil] [GOAL] x : ℕ r : ℝ hr : r < 0 ⊢ ↑x < ↑x - r [PROOFSTEP] linarith [GOAL] x : ℕ r : ℝ ⊢ IsCompact (closedBall x r) [PROOFSTEP] rw [closedBall_eq_Icc] [GOAL] x : ℕ r : ℝ ⊢ IsCompact (Icc ⌈↑x - r⌉₊ ⌊↑x + r⌋₊) [PROOFSTEP] exact (Set.finite_Icc _ _).isCompact [GOAL] ⊢ NeBot (cocompact ℕ) [PROOFSTEP] simp [Filter.atTop_neBot]
{"mathlib_filename": "Mathlib.Topology.Instances.Nat", "llama_tokens": 849}
[GOAL] x y : ℕ ⊢ dist ↑x ↑y = dist x y [PROOFSTEP] rw [← Nat.dist_cast_real, ← Rat.dist_cast] [GOAL] x y : ℕ ⊢ dist ↑↑x ↑↑y = dist ↑x ↑y [PROOFSTEP] congr [GOAL] ⊢ Pairwise fun x y => 1 ≤ dist ↑x ↑y [PROOFSTEP] simpa using Nat.pairwise_one_le_dist [GOAL] ⊢ Pairwise fun x y => 1 ≤ dist ↑x ↑y [PROOFSTEP] simpa using Nat.pairwise_one_le_dist [GOAL] x y : ℤ ⊢ dist ↑x ↑y = dist x y [PROOFSTEP] rw [← Int.dist_cast_real, ← Rat.dist_cast] [GOAL] x y : ℤ ⊢ dist ↑↑x ↑↑y = dist ↑x ↑y [PROOFSTEP] congr [GOAL] ⊢ Pairwise fun x y => 1 ≤ dist ↑x ↑y [PROOFSTEP] simpa using Int.pairwise_one_le_dist [GOAL] ⊢ Pairwise fun x y => 1 ≤ dist ↑x ↑y [PROOFSTEP] simpa using Int.pairwise_one_le_dist [GOAL] ⊢ UniformContinuous (Rat.cast ∘ fun p => p.fst + p.snd) [PROOFSTEP] simp only [(· ∘ ·), Rat.cast_add] [GOAL] ⊢ UniformContinuous fun x => ↑x.fst + ↑x.snd [PROOFSTEP] exact Real.uniformContinuous_add.comp (Rat.uniformContinuous_coe_real.prod_map Rat.uniformContinuous_coe_real) [GOAL] ε : ℝ ε0 : ε > 0 a✝ b✝ : ℚ h : dist a✝ b✝ < ε ⊢ dist (-a✝) (-b✝) < ε [PROOFSTEP] rw [dist_comm] at h [GOAL] ε : ℝ ε0 : ε > 0 a✝ b✝ : ℚ h : dist b✝ a✝ < ε ⊢ dist (-a✝) (-b✝) < ε [PROOFSTEP] simpa only [dist_eq, cast_neg, neg_sub_neg] using h [GOAL] ε : ℝ ε0 : ε > 0 a✝ b✝ : ℚ h : dist a✝ b✝ < ε ⊢ dist |a✝| |b✝| ≤ dist a✝ b✝ [PROOFSTEP] simpa [Rat.dist_eq] using abs_abs_sub_abs_le_abs_sub _ _ [GOAL] a b : ℚ ⊢ TotallyBounded (Icc a b) [PROOFSTEP] simpa only [preimage_cast_Icc] using totallyBounded_preimage Rat.uniformEmbedding_coe_real (totallyBounded_Icc (a : ℝ) b)
{"mathlib_filename": "Mathlib.Topology.Instances.Rat", "llama_tokens": 855}
{"mathlib_filename": "Mathlib.Topology.Order.Lattice", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : PartialOrder α inst✝ : PriestleySpace α x y : α h : x ≠ y ⊢ ∃ U, IsClopen U ∧ (IsUpperSet U ∨ IsLowerSet U) ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] obtain h | h := h.not_le_or_not_le [GOAL] case inl α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : PartialOrder α inst✝ : PriestleySpace α x y : α h✝ : x ≠ y h : ¬x ≤ y ⊢ ∃ U, IsClopen U ∧ (IsUpperSet U ∨ IsLowerSet U) ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] exact (exists_clopen_upper_of_not_le h).imp fun _ ↦ And.imp_right <| And.imp_left Or.inl [GOAL] case inr α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : PartialOrder α inst✝ : PriestleySpace α x y : α h✝ : x ≠ y h : ¬y ≤ x ⊢ ∃ U, IsClopen U ∧ (IsUpperSet U ∨ IsLowerSet U) ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] obtain ⟨U, hU, hU', hy, hx⟩ := exists_clopen_lower_of_not_le h [GOAL] case inr.intro.intro.intro.intro α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : PartialOrder α inst✝ : PriestleySpace α x y : α h✝ : x ≠ y h : ¬y ≤ x U : Set α hU : IsClopen U hU' : IsLowerSet U hy : ¬y ∈ U hx : x ∈ U ⊢ ∃ U, IsClopen U ∧ (IsUpperSet U ∨ IsLowerSet U) ∧ x ∈ U ∧ ¬y ∈ U [PROOFSTEP] exact ⟨U, hU, Or.inr hU', hx, hy⟩
{"mathlib_filename": "Mathlib.Topology.Order.Priestley", "llama_tokens": 621}
[GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R ⊢ det M = ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ i : n, M (↑σ i) i [PROOFSTEP] simp [det_apply, Units.smul_def] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ det (diagonal d) = ∏ i : n, d i [PROOFSTEP] rw [det_apply'] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ i : n, diagonal d (↑σ i) i = ∏ i : n, d i [PROOFSTEP] refine' (Finset.sum_eq_single 1 _ _).trans _ [GOAL] case refine'_1 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ ∀ (b : Perm n), b ∈ univ → b ≠ 1 → ↑↑(↑sign b) * ∏ i : n, diagonal d (↑b i) i = 0 [PROOFSTEP] rintro σ - h2 [GOAL] case refine'_1 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R σ : Perm n h2 : σ ≠ 1 ⊢ ↑↑(↑sign σ) * ∏ i : n, diagonal d (↑σ i) i = 0 [PROOFSTEP] cases' not_forall.1 (mt Equiv.ext h2) with x h3 [GOAL] case refine'_1.intro m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R σ : Perm n h2 : σ ≠ 1 x : n h3 : ¬↑σ x = ↑1 x ⊢ ↑↑(↑sign σ) * ∏ i : n, diagonal d (↑σ i) i = 0 [PROOFSTEP] convert mul_zero (ε σ) [GOAL] case h.e'_2.h.e'_6 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R σ : Perm n h2 : σ ≠ 1 x : n h3 : ¬↑σ x = ↑1 x ⊢ ∏ i : n, diagonal d (↑σ i) i = 0 [PROOFSTEP] apply Finset.prod_eq_zero (mem_univ x) [GOAL] case h.e'_2.h.e'_6 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R σ : Perm n h2 : σ ≠ 1 x : n h3 : ¬↑σ x = ↑1 x ⊢ diagonal d (↑σ x) x = 0 [PROOFSTEP] exact if_neg h3 [GOAL] case refine'_2 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ ¬1 ∈ univ → ↑↑(↑sign 1) * ∏ i : n, diagonal d (↑1 i) i = 0 [PROOFSTEP] simp [GOAL] case refine'_3 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ ↑↑(↑sign 1) * ∏ i : n, diagonal d (↑1 i) i = ∏ i : n, d i [PROOFSTEP] simp [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R ⊢ det 1 = 1 [PROOFSTEP] rw [← diagonal_one] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R ⊢ det (diagonal fun x => 1) = 1 [PROOFSTEP] simp [-diagonal_one] [GOAL] m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : IsEmpty n A : Matrix n n R ⊢ det A = 1 [PROOFSTEP] simp [det_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : IsEmpty n ⊢ det = const (Matrix n n R) 1 [PROOFSTEP] ext [GOAL] case h m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : IsEmpty n x✝ : Matrix n n R ⊢ det x✝ = const (Matrix n n R) 1 x✝ [PROOFSTEP] exact det_isEmpty [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁷ : DecidableEq n✝ inst✝⁶ : Fintype n✝ inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m R : Type v inst✝³ : CommRing R n : Type u_3 inst✝² : Unique n inst✝¹ : DecidableEq n inst✝ : Fintype n A : Matrix n n R ⊢ det A = A default default [PROOFSTEP] simp [det_apply, univ_unique] [GOAL] m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : Subsingleton n A : Matrix n n R k : n ⊢ det A = A k k [PROOFSTEP] have := uniqueOfSubsingleton k [GOAL] m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : Subsingleton n A : Matrix n n R k : n this : Unique n ⊢ det A = A k k [PROOFSTEP] convert det_unique A [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p ⊢ ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ x : n, M (↑σ x) (p x) * N (p x) x = 0 [PROOFSTEP] obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p ⊢ ∃ i j, p i = p j ∧ i ≠ j [PROOFSTEP] rw [← Finite.injective_iff_bijective, Injective] at H [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬∀ ⦃a₁ a₂ : n⦄, p a₁ = p a₂ → a₁ = a₂ ⊢ ∃ i j, p i = p j ∧ i ≠ j [PROOFSTEP] push_neg at H [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : Exists fun ⦃a₁⦄ => Exists fun ⦃a₂⦄ => p a₁ = p a₂ ∧ a₁ ≠ a₂ ⊢ ∃ i j, p i = p j ∧ i ≠ j [PROOFSTEP] exact H [GOAL] case intro.intro.intro m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p i j : n hpij : p i = p j hij : i ≠ j ⊢ ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ x : n, M (↑σ x) (p x) * N (p x) x = 0 [PROOFSTEP] exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p i j : n hpij : p i = p j hij : i ≠ j σ : Perm n x✝ : σ ∈ univ ⊢ ↑↑(↑sign σ) * ∏ x : n, M (↑σ x) (p x) * N (p x) x + ↑↑(↑sign ((fun σ x => σ * Equiv.swap i j) σ x✝)) * ∏ x : n, M (↑((fun σ x => σ * Equiv.swap i j) σ x✝) x) (p x) * N (p x) x = 0 [PROOFSTEP] have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p i j : n hpij : p i = p j hij : i ≠ j σ : Perm n x✝ : σ ∈ univ ⊢ ∀ (x : n), M (↑σ x) (p x) = M (↑(σ * Equiv.swap i j) (↑(Equiv.swap i j) x)) (p (↑(Equiv.swap i j) x)) [PROOFSTEP] simp [apply_swap_eq_self hpij] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p i j : n hpij : p i = p j hij : i ≠ j σ : Perm n x✝ : σ ∈ univ this : ∏ x : n, M (↑σ x) (p x) = ∏ x : n, M (↑(σ * Equiv.swap i j) x) (p x) ⊢ ↑↑(↑sign σ) * ∏ x : n, M (↑σ x) (p x) * N (p x) x + ↑↑(↑sign ((fun σ x => σ * Equiv.swap i j) σ x✝)) * ∏ x : n, M (↑((fun σ x => σ * Equiv.swap i j) σ x✝) x) (p x) * N (p x) x = 0 [PROOFSTEP] simp [this, sign_swap hij, -sign_swap', prod_mul_distrib] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R ⊢ det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ i : n, M (↑σ i) (p i) * N (p i) i [PROOFSTEP] simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R ⊢ ∑ x : Perm n, ∑ x_1 : n → n, ↑↑(↑sign x) * ∏ x_2 : n, M (↑x x_2) (x_1 x_2) * N (x_1 x_2) x_2 = ∑ x : n → n, ∑ x_1 : Perm n, ↑↑(↑sign x_1) * ∏ x_2 : n, M (↑x_1 x_2) (x x_2) * N (x x_2) x_2 [PROOFSTEP] rw [Finset.sum_comm] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R f : n → n x✝ : f ∈ univ hbij : ¬f ∈ filter Bijective univ ⊢ ¬Bijective fun i => f i [PROOFSTEP] simpa only [true_and_iff, mem_filter, mem_univ] using hbij [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R x✝³ x✝² : n → n x✝¹ : x✝³ ∈ filter Bijective univ x✝ : x✝² ∈ filter Bijective univ h : (fun p h => ofBijective p (_ : Bijective p)) x✝³ x✝¹ = (fun p h => ofBijective p (_ : Bijective p)) x✝² x✝ ⊢ x✝³ = x✝² [PROOFSTEP] injection h [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R ⊢ ∑ τ : Perm n, ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ i : n, M (↑σ i) (↑τ i) * N (↑τ i) i = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i : n, N (↑σ i) i) * ↑↑(↑sign τ) * ∏ j : n, M (↑τ j) (↑σ j) [PROOFSTEP] simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n ⊢ (∏ i : n, N (↑σ i) i) * ↑↑(↑sign τ) * ∏ j : n, M (↑τ j) (↑σ j) = (∏ i : n, N (↑σ i) i) * (↑↑(↑sign σ) * ↑↑(↑sign (↑(Equiv.mulRight σ⁻¹) τ))) * ∏ i : n, M (↑(↑(Equiv.mulRight σ⁻¹) τ) i) i [PROOFSTEP] have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n ⊢ ∏ j : n, M (↑τ j) (↑σ j) = ∏ j : n, M (↑(τ * σ⁻¹) j) j [PROOFSTEP] rw [← (σ⁻¹ : _ ≃ _).prod_comp] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n ⊢ ∏ i : n, M (↑τ (↑σ⁻¹ i)) (↑σ (↑σ⁻¹ i)) = ∏ j : n, M (↑(τ * σ⁻¹) j) j [PROOFSTEP] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (↑τ j) (↑σ j) = ∏ j : n, M (↑(τ * σ⁻¹) j) j ⊢ (∏ i : n, N (↑σ i) i) * ↑↑(↑sign τ) * ∏ j : n, M (↑τ j) (↑σ j) = (∏ i : n, N (↑σ i) i) * (↑↑(↑sign σ) * ↑↑(↑sign (↑(Equiv.mulRight σ⁻¹) τ))) * ∏ i : n, M (↑(↑(Equiv.mulRight σ⁻¹) τ) i) i [PROOFSTEP] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (↑τ j) (↑σ j) = ∏ j : n, M (↑(τ * σ⁻¹) j) j ⊢ ↑↑(↑sign σ) * ↑↑(↑sign (τ * σ⁻¹)) = ↑↑(↑sign (τ * σ⁻¹ * σ)) [PROOFSTEP] rw [mul_comm, sign_mul (τ * σ⁻¹)] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (↑τ j) (↑σ j) = ∏ j : n, M (↑(τ * σ⁻¹) j) j ⊢ ↑↑(↑sign (τ * σ⁻¹)) * ↑↑(↑sign σ) = ↑↑(↑sign (τ * σ⁻¹) * ↑sign σ) [PROOFSTEP] simp only [Int.cast_mul, Units.val_mul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (↑τ j) (↑σ j) = ∏ j : n, M (↑(τ * σ⁻¹) j) j ⊢ ↑↑(↑sign (τ * σ⁻¹ * σ)) = ↑↑(↑sign τ) [PROOFSTEP] simp only [inv_mul_cancel_right] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (↑τ j) (↑σ j) = ∏ j : n, M (↑(τ * σ⁻¹) j) j h : ↑↑(↑sign σ) * ↑↑(↑sign (τ * σ⁻¹)) = ↑↑(↑sign τ) ⊢ (∏ i : n, N (↑σ i) i) * ↑↑(↑sign τ) * ∏ j : n, M (↑τ j) (↑σ j) = (∏ i : n, N (↑σ i) i) * (↑↑(↑sign σ) * ↑↑(↑sign (↑(Equiv.mulRight σ⁻¹) τ))) * ∏ i : n, M (↑(↑(Equiv.mulRight σ⁻¹) τ) i) i [PROOFSTEP] simp_rw [Equiv.coe_mulRight, h] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (↑τ j) (↑σ j) = ∏ j : n, M (↑(τ * σ⁻¹) j) j h : ↑↑(↑sign σ) * ↑↑(↑sign (τ * σ⁻¹)) = ↑↑(↑sign τ) ⊢ (∏ x : n, N (↑σ x) x) * ↑↑(↑sign τ) * ∏ x : n, M (↑τ x) (↑σ x) = (∏ x : n, N (↑σ x) x) * ↑↑(↑sign τ) * ∏ x : n, M (↑(τ * σ⁻¹) x) x [PROOFSTEP] simp only [this] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R ⊢ ∑ σ : Perm n, ∑ τ : Perm n, (∏ i : n, N (↑σ i) i) * (↑↑(↑sign σ) * ↑↑(↑sign τ)) * ∏ i : n, M (↑τ i) i = det M * det N [PROOFSTEP] simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix m m R ⊢ det (M * N) = det (N * M) [PROOFSTEP] rw [det_mul, det_mul, mul_comm] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N P : Matrix m m R ⊢ det (M * (N * P)) = det (N * (M * P)) [PROOFSTEP] rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N P : Matrix m m R ⊢ det (M * N * P) = det (M * P * N) [PROOFSTEP] rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : (Matrix m m R)ˣ N : Matrix m m R ⊢ det (↑M * N * ↑M⁻¹) = det N [PROOFSTEP] rw [det_mul_right_comm, Units.mul_inv, one_mul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R ⊢ det Mᵀ = det M [PROOFSTEP] rw [det_apply', det_apply'] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R ⊢ ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ i : n, Mᵀ (↑σ i) i = ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ i : n, M (↑σ i) i [PROOFSTEP] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R ⊢ ∀ (x : Perm n), ↑↑(↑sign x) * ∏ i : n, Mᵀ (↑x i) i = ↑↑(↑sign x⁻¹) * ∏ i : n, M (↑x⁻¹ i) i [PROOFSTEP] intro σ [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n ⊢ ↑↑(↑sign σ) * ∏ i : n, Mᵀ (↑σ i) i = ↑↑(↑sign σ⁻¹) * ∏ i : n, M (↑σ⁻¹ i) i [PROOFSTEP] rw [sign_inv] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n ⊢ ↑↑(↑sign σ) * ∏ i : n, Mᵀ (↑σ i) i = ↑↑(↑sign σ) * ∏ i : n, M (↑σ⁻¹ i) i [PROOFSTEP] congr 1 [GOAL] case e_a m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n ⊢ ∏ i : n, Mᵀ (↑σ i) i = ∏ i : n, M (↑σ⁻¹ i) i [PROOFSTEP] apply Fintype.prod_equiv σ [GOAL] case e_a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n ⊢ ∀ (x : n), Mᵀ (↑σ x) x = M (↑σ⁻¹ (↑σ x)) (↑σ x) [PROOFSTEP] intros [GOAL] case e_a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n x✝ : n ⊢ Mᵀ (↑σ x✝) x✝ = M (↑σ⁻¹ (↑σ x✝)) (↑σ x✝) [PROOFSTEP] simp [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R σ : Perm n M : Matrix n n R ⊢ ↑sign σ • ↑detRowAlternating M = ↑↑(↑sign σ) * det M [PROOFSTEP] simp [Units.smul_def] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R ⊢ det (submatrix A ↑e ↑e) = det A [PROOFSTEP] rw [det_apply', det_apply'] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R ⊢ ∑ σ : Perm n, ↑↑(↑sign σ) * ∏ i : n, submatrix A (↑e) (↑e) (↑σ i) i = ∑ σ : Perm m, ↑↑(↑sign σ) * ∏ i : m, A (↑σ i) i [PROOFSTEP] apply Fintype.sum_equiv (Equiv.permCongr e) [GOAL] case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R ⊢ ∀ (x : Perm n), ↑↑(↑sign x) * ∏ i : n, submatrix A (↑e) (↑e) (↑x i) i = ↑↑(↑sign (↑(permCongr e) x)) * ∏ i : m, A (↑(↑(permCongr e) x) i) i [PROOFSTEP] intro σ [GOAL] case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n ⊢ ↑↑(↑sign σ) * ∏ i : n, submatrix A (↑e) (↑e) (↑σ i) i = ↑↑(↑sign (↑(permCongr e) σ)) * ∏ i : m, A (↑(↑(permCongr e) σ) i) i [PROOFSTEP] rw [Equiv.Perm.sign_permCongr e σ] [GOAL] case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n ⊢ ↑↑(↑sign σ) * ∏ i : n, submatrix A (↑e) (↑e) (↑σ i) i = ↑↑(↑sign σ) * ∏ i : m, A (↑(↑(permCongr e) σ) i) i [PROOFSTEP] congr 1 [GOAL] case h.e_a m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n ⊢ ∏ i : n, submatrix A (↑e) (↑e) (↑σ i) i = ∏ i : m, A (↑(↑(permCongr e) σ) i) i [PROOFSTEP] apply Fintype.prod_equiv e [GOAL] case h.e_a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n ⊢ ∀ (x : n), submatrix A (↑e) (↑e) (↑σ x) x = A (↑(↑(permCongr e) σ) (↑e x)) (↑e x) [PROOFSTEP] intro i [GOAL] case h.e_a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n i : n ⊢ submatrix A (↑e) (↑e) (↑σ i) i = A (↑(↑(permCongr e) σ) (↑e i)) (↑e i) [PROOFSTEP] rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R σ : Perm n ⊢ det (PEquiv.toMatrix (toPEquiv σ)) = ↑↑(↑sign σ) [PROOFSTEP] rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R c : R ⊢ det (c • A) = det ((diagonal fun x => c) * A) [PROOFSTEP] rw [smul_eq_diagonal_mul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R c : R ⊢ det (diagonal fun x => c) * det A = c ^ Fintype.card n * det A [PROOFSTEP] simp [card_univ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁸ : DecidableEq n inst✝⁷ : Fintype n inst✝⁶ : DecidableEq m inst✝⁵ : Fintype m R : Type v inst✝⁴ : CommRing R α : Type u_3 inst✝³ : Monoid α inst✝² : DistribMulAction α R inst✝¹ : IsScalarTower α R R inst✝ : SMulCommClass α R R c : α A : Matrix n n R ⊢ det (c • A) = c ^ Fintype.card n • det A [PROOFSTEP] rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R ⊢ det (-A) = (-1) ^ Fintype.card n * det A [PROOFSTEP] rw [← det_smul, neg_one_smul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R ⊢ det (-A) = (-1) ^ Fintype.card n • det A [PROOFSTEP] rw [← det_smul_of_tower, Units.neg_smul, one_smul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R v : n → R A : Matrix n n R ⊢ (↑of fun i j => v j * A i j) = A * diagonal v [PROOFSTEP] ext [GOAL] case a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R v : n → R A : Matrix n n R i✝ x✝ : n ⊢ ↑of (fun i j => v j * A i j) i✝ x✝ = (A * diagonal v) i✝ x✝ [PROOFSTEP] simp [mul_comm] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R v : n → R A : Matrix n n R ⊢ det (A * diagonal v) = (∏ i : n, v i) * det A [PROOFSTEP] rw [det_mul, det_diagonal, mul_comm] [GOAL] m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R S : Type w inst✝ : CommRing S f : R →+* S M : Matrix n n R ⊢ ↑f (det M) = det (↑(RingHom.mapMatrix f) M) [PROOFSTEP] simp [Matrix.det_apply', f.map_sum, f.map_prod] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R j : n h : ∀ (i : n), A i j = 0 ⊢ det A = 0 [PROOFSTEP] rw [← det_transpose] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R j : n h : ∀ (i : n), A i j = 0 ⊢ det Aᵀ = 0 [PROOFSTEP] exact det_eq_zero_of_row_eq_zero j h [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R i j : n i_ne_j : i ≠ j hij : ∀ (k : n), M k i = M k j ⊢ det M = 0 [PROOFSTEP] rw [← det_transpose, det_zero_of_row_eq i_ne_j] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R i j : n i_ne_j : i ≠ j hij : ∀ (k : n), M k i = M k j ⊢ Mᵀ i = Mᵀ j [PROOFSTEP] exact funext hij [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n u v : n → R ⊢ det (updateColumn M j (u + v)) = det (updateColumn M j u) + det (updateColumn M j v) [PROOFSTEP] rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n u v : n → R ⊢ det (updateRow Mᵀ j u) + det (updateRow Mᵀ j v) = det (updateColumn M j u) + det (updateColumn M j v) [PROOFSTEP] simp [updateRow_transpose, det_transpose] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ det (updateColumn M j (s • u)) = s * det (updateColumn M j u) [PROOFSTEP] rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ s * det (updateRow Mᵀ j u) = s * det (updateColumn M j u) [PROOFSTEP] simp [updateRow_transpose, det_transpose] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) [PROOFSTEP] rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ s ^ (Fintype.card n - 1) * det (updateRow Mᵀ j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) [PROOFSTEP] simp [updateRow_transpose, det_transpose] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B C : Matrix n n R hC : det C = 1 hA : A = B * C ⊢ det B * det C = det B [PROOFSTEP] rw [hC, mul_one] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B C : Matrix n n R hC : det C = 1 hA : A = C * B ⊢ det C * det B = det B [PROOFSTEP] rw [hC, one_mul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j ⊢ det (updateRow A i (A i + A j)) = det A [PROOFSTEP] simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j ⊢ det (updateColumn A i fun k => A k i + A k j) = det A [PROOFSTEP] rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j ⊢ det (updateRow Aᵀ i fun k => A k i + A k j) = det Aᵀ [PROOFSTEP] exact det_updateRow_add_self Aᵀ hij [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j c : R ⊢ det (updateRow A i (A i + c • A j)) = det A [PROOFSTEP] simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j c : R ⊢ det (updateColumn A i fun k => A k i + c • A k j) = det A [PROOFSTEP] rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j c : R ⊢ det (updateRow Aᵀ i fun k => A k i + c • A k j) = det Aᵀ [PROOFSTEP] exact det_updateRow_add_smul_self Aᵀ hij c [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R s : Finset n ⊢ ∀ (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B [PROOFSTEP] induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R s : Finset n ⊢ ∀ (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B [PROOFSTEP] induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] [GOAL] case empty m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R ⊢ ∀ (c : n → R), (∀ (i : n), ¬i ∈ ∅ → c i = 0) → ∀ (k : n), ¬k ∈ ∅ → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B [PROOFSTEP] | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] [GOAL] case empty m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R ⊢ ∀ (c : n → R), (∀ (i : n), ¬i ∈ ∅ → c i = 0) → ∀ (k : n), ¬k ∈ ∅ → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B [PROOFSTEP] rintro c hs k - A_eq [GOAL] case empty m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ det A = det B [PROOFSTEP] have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ ∀ (i : n), c i = 0 [PROOFSTEP] intro i [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n ⊢ c i = 0 [PROOFSTEP] specialize hs i [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n hs : ¬i ∈ ∅ → c i = 0 ⊢ c i = 0 [PROOFSTEP] contrapose! hs [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n hs : c i ≠ 0 ⊢ ¬i ∈ ∅ ∧ c i ≠ 0 [PROOFSTEP] simp [hs] [GOAL] case empty m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 ⊢ det A = det B [PROOFSTEP] congr [GOAL] case empty.e_M m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 ⊢ A = B [PROOFSTEP] ext i j [GOAL] case empty.e_M.a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ (i : n), ¬i ∈ ∅ → c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 i j : n ⊢ A i j = B i j [PROOFSTEP] rw [A_eq, this, zero_mul, add_zero] [GOAL] case insert m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R ⊢ ∀ (c : n → R), (∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0) → ∀ (k : n), ¬k ∈ insert i s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B [PROOFSTEP] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] [GOAL] case insert m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R ⊢ ∀ (c : n → R), (∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0) → ∀ (k : n), ¬k ∈ insert i s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B [PROOFSTEP] intro c hs k hk A_eq [GOAL] case insert m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ det A = det B [PROOFSTEP] have hAi : A i = B i + c i • B k := funext (A_eq i) [GOAL] case insert m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ det A = det B [PROOFSTEP] rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] [GOAL] case insert.hij m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ i ≠ k [PROOFSTEP] exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk [GOAL] case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ∀ (i_1 : n), ¬i_1 ∈ s → update c i 0 i_1 = 0 [PROOFSTEP] intro i' hi' [GOAL] case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s ⊢ update c i 0 i' = 0 [PROOFSTEP] rw [Function.update_apply] [GOAL] case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s ⊢ (if i' = i then 0 else c i') = 0 [PROOFSTEP] split_ifs with hi'i [GOAL] case pos m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s hi'i : i' = i ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case neg m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : ¬i' ∈ s hi'i : ¬i' = i ⊢ c i' = 0 [PROOFSTEP] exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) [GOAL] case insert.k m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ n [PROOFSTEP] exact k [GOAL] case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ¬k ∈ s [PROOFSTEP] exact fun h => hk (Finset.mem_insert_of_mem h) [GOAL] case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ∀ (i_1 j : n), A i_1 j = updateRow B i (A i) i_1 j + update c i 0 i_1 * updateRow B i (A i) k j [PROOFSTEP] intro i' j' [GOAL] case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n ⊢ A i' j' = updateRow B i (A i) i' j' + update c i 0 i' * updateRow B i (A i) k j' [PROOFSTEP] rw [updateRow_apply, Function.update_apply] [GOAL] case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n ⊢ A i' j' = (if i' = i then A i j' else B i' j') + (if i' = i then 0 else c i') * updateRow B i (A i) k j' [PROOFSTEP] split_ifs with hi'i [GOAL] case pos m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n hi'i : i' = i ⊢ A i' j' = A i j' + 0 * updateRow B i (A i) k j' [PROOFSTEP] simp [hi'i] [GOAL] case neg m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : ¬i ∈ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ (i : n), ¬i ∈ s → c i = 0) → ∀ (k : n), ¬k ∈ s → (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ (i_1 : n), ¬i_1 ∈ insert i s → c i_1 = 0 k : n hk : ¬k ∈ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n hi'i : ¬i' = i ⊢ A i' j' = B i' j' + c i' * updateRow B i (A i) k j' [PROOFSTEP] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) ⊢ ∀ (c : Fin n → R), (∀ (i : Fin n), k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N [PROOFSTEP] refine' Fin.induction _ (fun k ih => _) k [GOAL] case refine'_1 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) ⊢ ∀ (c : Fin n → R), (∀ (i : Fin n), 0 < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N [PROOFSTEP] intro c hc M N h0 hsucc [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N ⊢ ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N [PROOFSTEP] intro c hc M N h0 hsucc [GOAL] case refine'_1 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) c : Fin n → R hc : ∀ (i : Fin n), 0 < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j ⊢ det M = det N [PROOFSTEP] congr [GOAL] case refine'_1.e_M m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) c : Fin n → R hc : ∀ (i : Fin n), 0 < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j ⊢ M = N [PROOFSTEP] ext i j [GOAL] case refine'_1.e_M.a.h m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) c : Fin n → R hc : ∀ (i : Fin n), 0 < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j i j : Fin (Nat.succ n) ⊢ M i j = N i j [PROOFSTEP] refine' Fin.cases (h0 j) (fun i => _) i [GOAL] case refine'_1.e_M.a.h m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) c : Fin n → R hc : ∀ (i : Fin n), 0 < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j i✝ j : Fin (Nat.succ n) i : Fin n ⊢ M (Fin.succ i) j = N (Fin.succ i) j [PROOFSTEP] rw [hsucc, hc i (Fin.succ_pos _), zero_mul, add_zero] [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j ⊢ det M = det N [PROOFSTEP] set M' := updateRow M k.succ (N k.succ) with hM' [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) ⊢ det M = det N [PROOFSTEP] have hM : M = updateRow M' k.succ (M' k.succ + c k • M (Fin.castSucc k)) := by ext i j by_cases hi : i = k.succ · simp [hi, hM', hsucc, updateRow_self] rw [updateRow_ne hi, hM', updateRow_ne hi] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) ⊢ M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) [PROOFSTEP] ext i j [GOAL] case a.h m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) i j : Fin (Nat.succ n) ⊢ M i j = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) i j [PROOFSTEP] by_cases hi : i = k.succ [GOAL] case pos m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) i j : Fin (Nat.succ n) hi : i = Fin.succ k ⊢ M i j = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) i j [PROOFSTEP] simp [hi, hM', hsucc, updateRow_self] [GOAL] case neg m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) i j : Fin (Nat.succ n) hi : ¬i = Fin.succ k ⊢ M i j = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) i j [PROOFSTEP] rw [updateRow_ne hi, hM', updateRow_ne hi] [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) ⊢ det M = det N [PROOFSTEP] have k_ne_succ : (Fin.castSucc k) ≠ k.succ := (Fin.castSucc_lt_succ k).ne [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k ⊢ det M = det N [PROOFSTEP] have M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) := (updateRow_ne k_ne_succ).symm [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) ⊢ det M = det N [PROOFSTEP] rw [hM, M_k, det_updateRow_add_smul_self M' k_ne_succ.symm, ih (Function.update c k 0)] [GOAL] case refine'_2._hc m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) ⊢ ∀ (i : Fin n), Fin.castSucc k < Fin.succ i → update c k 0 i = 0 [PROOFSTEP] intro i hi [GOAL] case refine'_2._hc m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n hi : Fin.castSucc k < Fin.succ i ⊢ update c k 0 i = 0 [PROOFSTEP] rw [Fin.lt_iff_val_lt_val, Fin.coe_castSucc, Fin.val_succ, Nat.lt_succ_iff] at hi [GOAL] case refine'_2._hc m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n hi : ↑k ≤ ↑i ⊢ update c k 0 i = 0 [PROOFSTEP] rw [Function.update_apply] [GOAL] case refine'_2._hc m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n hi : ↑k ≤ ↑i ⊢ (if i = k then 0 else c i) = 0 [PROOFSTEP] split_ifs with hik [GOAL] case pos m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n hi : ↑k ≤ ↑i hik : i = k ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] case neg m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n hi : ↑k ≤ ↑i hik : ¬i = k ⊢ c i = 0 [PROOFSTEP] exact hc _ (Fin.succ_lt_succ_iff.mpr (lt_of_le_of_ne hi (Ne.symm hik))) [GOAL] case refine'_2._h0 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) ⊢ ∀ (j : Fin (Nat.succ n)), M' 0 j = N 0 j [PROOFSTEP] rwa [hM', updateRow_ne (Fin.succ_ne_zero _).symm] [GOAL] case refine'_2._hsucc m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) ⊢ ∀ (i : Fin n) (j : Fin (Nat.succ n)), M' (Fin.succ i) j = N (Fin.succ i) j + update c k 0 i * M' (Fin.castSucc i) j [PROOFSTEP] intro i j [GOAL] case refine'_2._hsucc m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) ⊢ M' (Fin.succ i) j = N (Fin.succ i) j + update c k 0 i * M' (Fin.castSucc i) j [PROOFSTEP] rw [Function.update_apply] [GOAL] case refine'_2._hsucc m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) ⊢ M' (Fin.succ i) j = N (Fin.succ i) j + (if i = k then 0 else c i) * M' (Fin.castSucc i) j [PROOFSTEP] split_ifs with hik [GOAL] case pos m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) hik : i = k ⊢ M' (Fin.succ i) j = N (Fin.succ i) j + 0 * M' (Fin.castSucc i) j [PROOFSTEP] rw [zero_mul, add_zero, hM', hik, updateRow_self] [GOAL] case neg m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) hik : ¬i = k ⊢ M' (Fin.succ i) j = N (Fin.succ i) j + c i * M' (Fin.castSucc i) j [PROOFSTEP] rw [hM', updateRow_ne ((Fin.succ_injective _).ne hik), hsucc] [GOAL] case neg m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) hik : ¬i = k ⊢ N (Fin.succ i) j + c i * M (Fin.castSucc i) j = N (Fin.succ i) j + c i * updateRow M (Fin.succ k) (N (Fin.succ k)) (Fin.castSucc i) j [PROOFSTEP] by_cases hik2 : k < i [GOAL] case pos m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) hik : ¬i = k hik2 : k < i ⊢ N (Fin.succ i) j + c i * M (Fin.castSucc i) j = N (Fin.succ i) j + c i * updateRow M (Fin.succ k) (N (Fin.succ k)) (Fin.castSucc i) j [PROOFSTEP] simp [hc i (Fin.succ_lt_succ_iff.mpr hik2)] [GOAL] case neg m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) hik : ¬i = k hik2 : ¬k < i ⊢ N (Fin.succ i) j + c i * M (Fin.castSucc i) j = N (Fin.succ i) j + c i * updateRow M (Fin.succ k) (N (Fin.succ k)) (Fin.castSucc i) j [PROOFSTEP] rw [updateRow_ne] [GOAL] case neg m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) hik : ¬i = k hik2 : ¬k < i ⊢ Fin.castSucc i ≠ Fin.succ k [PROOFSTEP] apply ne_of_lt [GOAL] case neg.h m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) hM : M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k)) k_ne_succ : Fin.castSucc k ≠ Fin.succ k M_k : M (Fin.castSucc k) = M' (Fin.castSucc k) i : Fin n j : Fin (Nat.succ n) hik : ¬i = k hik2 : ¬k < i ⊢ Fin.castSucc i < Fin.succ k [PROOFSTEP] rwa [Fin.lt_iff_val_lt_val, Fin.coe_castSucc, Fin.val_succ, Nat.lt_succ_iff, ← not_lt] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A B : Matrix (Fin (n + 1)) (Fin (n + 1)) R c : Fin n → R A_zero : ∀ (i : Fin (n + 1)), A i 0 = B i 0 A_succ : ∀ (i : Fin (n + 1)) (j : Fin n), A i (Fin.succ j) = B i (Fin.succ j) + c j * A i (Fin.castSucc j) ⊢ det A = det B [PROOFSTEP] rw [← det_transpose A, ← det_transpose B] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A B : Matrix (Fin (n + 1)) (Fin (n + 1)) R c : Fin n → R A_zero : ∀ (i : Fin (n + 1)), A i 0 = B i 0 A_succ : ∀ (i : Fin (n + 1)) (j : Fin n), A i (Fin.succ j) = B i (Fin.succ j) + c j * A i (Fin.castSucc j) ⊢ det Aᵀ = det Bᵀ [PROOFSTEP] exact det_eq_of_forall_row_eq_smul_add_pred c A_zero fun i j => A_succ j i [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R ⊢ det (blockDiagonal M) = ∏ k : o, det (M k) [PROOFSTEP] simp_rw [det_apply'] -- The right hand side is a product of sums, rewrite it as a sum of products. [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R ⊢ ∑ x : Perm (n × o), ↑↑(↑sign x) * ∏ x_1 : n × o, blockDiagonal M (↑x x_1) x_1 = ∏ x : o, ∑ x_1 : Perm n, ↑↑(↑sign x_1) * ∏ x_2 : n, M x (↑x_1 x_2) x_2 [PROOFSTEP] rw [Finset.prod_sum] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R ⊢ ∑ x : Perm (n × o), ↑↑(↑sign x) * ∏ x_1 : n × o, blockDiagonal M (↑x x_1) x_1 = ∑ p in pi univ fun x => univ, ∏ x in attach univ, ↑↑(↑sign (p ↑x (_ : ↑x ∈ univ))) * ∏ x_1 : n, M (↑x) (↑(p ↑x (_ : ↑x ∈ univ)) x_1) x_1 [PROOFSTEP] simp_rw [Finset.prod_attach_univ, Finset.univ_pi_univ] -- We claim that the only permutations contributing to the sum are those that -- preserve their second component. [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R ⊢ ∑ x : Perm (n × o), ↑↑(↑sign x) * ∏ x_1 : n × o, blockDiagonal M (↑x x_1) x_1 = ∑ x : (a : o) → a ∈ univ → Perm n, ∏ x_1 : o, ↑↑(↑sign (x x_1 (_ : ↑{ val := x_1, property := (_ : x_1 ∈ univ) } ∈ univ))) * ∏ x_2 : n, M x_1 (↑(x x_1 (_ : ↑{ val := x_1, property := (_ : x_1 ∈ univ) } ∈ univ)) x_2) x_2 [PROOFSTEP] let preserving_snd : Finset (Equiv.Perm (n × o)) := Finset.univ.filter fun σ => ∀ x, (σ x).snd = x.snd [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ ⊢ ∑ x : Perm (n × o), ↑↑(↑sign x) * ∏ x_1 : n × o, blockDiagonal M (↑x x_1) x_1 = ∑ x : (a : o) → a ∈ univ → Perm n, ∏ x_1 : o, ↑↑(↑sign (x x_1 (_ : ↑{ val := x_1, property := (_ : x_1 ∈ univ) } ∈ univ))) * ∏ x_2 : n, M x_1 (↑(x x_1 (_ : ↑{ val := x_1, property := (_ : x_1 ∈ univ) } ∈ univ)) x_2) x_2 [PROOFSTEP] have mem_preserving_snd : ∀ {σ : Equiv.Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ x, (σ x).snd = x.snd := fun {σ} => Finset.mem_filter.trans ⟨fun h => h.2, fun h => ⟨Finset.mem_univ _, h⟩⟩ [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∑ x : Perm (n × o), ↑↑(↑sign x) * ∏ x_1 : n × o, blockDiagonal M (↑x x_1) x_1 = ∑ x : (a : o) → a ∈ univ → Perm n, ∏ x_1 : o, ↑↑(↑sign (x x_1 (_ : ↑{ val := x_1, property := (_ : x_1 ∈ univ) } ∈ univ))) * ∏ x_2 : n, M x_1 (↑(x x_1 (_ : ↑{ val := x_1, property := (_ : x_1 ∈ univ) } ∈ univ)) x_2) x_2 [PROOFSTEP] rw [← Finset.sum_subset (Finset.subset_univ preserving_snd) _] -- And that these are in bijection with `o → Equiv.Perm m`. [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∑ x in preserving_snd, ↑↑(↑sign x) * ∏ x_1 : n × o, blockDiagonal M (↑x x_1) x_1 = ∑ x : (a : o) → a ∈ univ → Perm n, ∏ x_1 : o, ↑↑(↑sign (x x_1 (_ : ↑{ val := x_1, property := (_ : x_1 ∈ univ) } ∈ univ))) * ∏ x_2 : n, M x_1 (↑(x x_1 (_ : ↑{ val := x_1, property := (_ : x_1 ∈ univ) } ∈ univ)) x_2) x_2 m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∀ (x : Perm (n × o)), x ∈ univ → ¬x ∈ preserving_snd → ↑↑(↑sign x) * ∏ x_1 : n × o, blockDiagonal M (↑x x_1) x_1 = 0 [PROOFSTEP] rw [(Finset.sum_bij (fun (σ : ∀ k : o, k ∈ Finset.univ → Equiv.Perm n) _ => prodCongrLeft fun k => σ k (Finset.mem_univ k)) _ _ _ _).symm] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∀ (a : (k : o) → k ∈ univ → Perm n) (ha : a ∈ univ), (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha ∈ preserving_snd [PROOFSTEP] intro σ _ [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : (k : o) → k ∈ univ → Perm n ha✝ : σ ∈ univ ⊢ (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha✝ ∈ preserving_snd [PROOFSTEP] rw [mem_preserving_snd] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : (k : o) → k ∈ univ → Perm n ha✝ : σ ∈ univ ⊢ ∀ (x : n × o), (↑((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha✝) x).snd = x.snd [PROOFSTEP] rintro ⟨-, x⟩ [GOAL] case mk m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : (k : o) → k ∈ univ → Perm n ha✝ : σ ∈ univ fst✝ : n x : o ⊢ (↑((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha✝) (fst✝, x)).snd = (fst✝, x).snd [PROOFSTEP] simp only [prodCongrLeft_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∀ (a : (k : o) → k ∈ univ → Perm n) (ha : a ∈ univ), ∏ x : o, ↑↑(↑sign (a x (_ : ↑{ val := x, property := (_ : x ∈ univ) } ∈ univ))) * ∏ x_1 : n, M x (↑(a x (_ : ↑{ val := x, property := (_ : x ∈ univ) } ∈ univ)) x_1) x_1 = ↑↑(↑sign ((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha)) * ∏ x : n × o, blockDiagonal M (↑((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha) x) x [PROOFSTEP] intro σ _ [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : (k : o) → k ∈ univ → Perm n ha✝ : σ ∈ univ ⊢ ∏ x : o, ↑↑(↑sign (σ x (_ : ↑{ val := x, property := (_ : x ∈ univ) } ∈ univ))) * ∏ x_1 : n, M x (↑(σ x (_ : ↑{ val := x, property := (_ : x ∈ univ) } ∈ univ)) x_1) x_1 = ↑↑(↑sign ((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha✝)) * ∏ x : n × o, blockDiagonal M (↑((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha✝) x) x [PROOFSTEP] rw [Finset.prod_mul_distrib, ← Finset.univ_product_univ, Finset.prod_product_right] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : (k : o) → k ∈ univ → Perm n ha✝ : σ ∈ univ ⊢ (∏ x : o, ↑↑(↑sign (σ x (_ : ↑{ val := x, property := (_ : x ∈ univ) } ∈ univ)))) * ∏ x : o, ∏ x_1 : n, M x (↑(σ x (_ : ↑{ val := x, property := (_ : x ∈ univ) } ∈ univ)) x_1) x_1 = ↑↑(↑sign ((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha✝)) * ∏ y : o, ∏ x : n, blockDiagonal M (↑((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha✝) (x, y)) (x, y) [PROOFSTEP] simp only [sign_prodCongrLeft, Units.coe_prod, Int.cast_prod, blockDiagonal_apply_eq, prodCongrLeft_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∀ (a₁ a₂ : (k : o) → k ∈ univ → Perm n) (ha₁ : a₁ ∈ univ) (ha₂ : a₂ ∈ univ), (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a₁ ha₁ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] intro σ σ' _ _ eq [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ σ' : (k : o) → k ∈ univ → Perm n ha₁✝ : σ ∈ univ ha₂✝ : σ' ∈ univ eq : (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha₁✝ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ' ha₂✝ ⊢ σ = σ' [PROOFSTEP] ext x hx k [GOAL] case h.h.H m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ σ' : (k : o) → k ∈ univ → Perm n ha₁✝ : σ ∈ univ ha₂✝ : σ' ∈ univ eq : (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ ha₁✝ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) σ' ha₂✝ x : o hx : x ∈ univ k : n ⊢ ↑(σ x hx) k = ↑(σ' x hx) k [PROOFSTEP] simp only at eq [GOAL] case h.h.H m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ σ' : (k : o) → k ∈ univ → Perm n ha₁✝ : σ ∈ univ ha₂✝ : σ' ∈ univ eq : (prodCongrLeft fun k => σ k (_ : k ∈ univ)) = prodCongrLeft fun k => σ' k (_ : k ∈ univ) x : o hx : x ∈ univ k : n ⊢ ↑(σ x hx) k = ↑(σ' x hx) k [PROOFSTEP] have : ∀ k x, prodCongrLeft (fun k => σ k (Finset.mem_univ _)) (k, x) = prodCongrLeft (fun k => σ' k (Finset.mem_univ _)) (k, x) := fun k x => by rw [eq] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ σ' : (k : o) → k ∈ univ → Perm n ha₁✝ : σ ∈ univ ha₂✝ : σ' ∈ univ eq : (prodCongrLeft fun k => σ k (_ : k ∈ univ)) = prodCongrLeft fun k => σ' k (_ : k ∈ univ) x✝ : o hx : x✝ ∈ univ k✝ k : n x : o ⊢ ↑(prodCongrLeft fun k => σ k (_ : k ∈ univ)) (k, x) = ↑(prodCongrLeft fun k => σ' k (_ : k ∈ univ)) (k, x) [PROOFSTEP] rw [eq] [GOAL] case h.h.H m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ σ' : (k : o) → k ∈ univ → Perm n ha₁✝ : σ ∈ univ ha₂✝ : σ' ∈ univ eq : (prodCongrLeft fun k => σ k (_ : k ∈ univ)) = prodCongrLeft fun k => σ' k (_ : k ∈ univ) x : o hx : x ∈ univ k : n this : ∀ (k : n) (x : o), ↑(prodCongrLeft fun k => σ k (_ : k ∈ univ)) (k, x) = ↑(prodCongrLeft fun k => σ' k (_ : k ∈ univ)) (k, x) ⊢ ↑(σ x hx) k = ↑(σ' x hx) k [PROOFSTEP] simp only [prodCongrLeft_apply, Prod.mk.inj_iff] at this [GOAL] case h.h.H m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ σ' : (k : o) → k ∈ univ → Perm n ha₁✝ : σ ∈ univ ha₂✝ : σ' ∈ univ eq : (prodCongrLeft fun k => σ k (_ : k ∈ univ)) = prodCongrLeft fun k => σ' k (_ : k ∈ univ) x : o hx : x ∈ univ k : n this : ∀ (k : n) (x : o), ↑(σ x (_ : x ∈ univ)) k = ↑(σ' x (_ : x ∈ univ)) k ∧ True ⊢ ↑(σ x hx) k = ↑(σ' x hx) k [PROOFSTEP] exact (this k x).1 [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∀ (b : n × o ≃ n × o), b ∈ preserving_snd → ∃ a ha, b = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha [PROOFSTEP] intro σ hσ [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : σ ∈ preserving_snd ⊢ ∃ a ha, σ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha [PROOFSTEP] rw [mem_preserving_snd] at hσ [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∃ a ha, σ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha [PROOFSTEP] have hσ' : ∀ x, (σ⁻¹ x).snd = x.snd := by intro x conv_rhs => rw [← Perm.apply_inv_self σ x, hσ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd [PROOFSTEP] intro x [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd x : n × o ⊢ (↑σ⁻¹ x).snd = x.snd [PROOFSTEP] conv_rhs => rw [← Perm.apply_inv_self σ x, hσ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd x : n × o | x.snd [PROOFSTEP] rw [← Perm.apply_inv_self σ x, hσ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd x : n × o | x.snd [PROOFSTEP] rw [← Perm.apply_inv_self σ x, hσ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd x : n × o | x.snd [PROOFSTEP] rw [← Perm.apply_inv_self σ x, hσ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd ⊢ ∃ a ha, σ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha [PROOFSTEP] have mk_apply_eq : ∀ k x, ((σ (x, k)).fst, k) = σ (x, k) := by intro k x ext · simp only · simp only [hσ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd ⊢ ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) [PROOFSTEP] intro k x [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd k : o x : n ⊢ ((↑σ (x, k)).fst, k) = ↑σ (x, k) [PROOFSTEP] ext [GOAL] case h₁ m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd k : o x : n ⊢ ((↑σ (x, k)).fst, k).fst = (↑σ (x, k)).fst [PROOFSTEP] simp only [GOAL] case h₂ m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd k : o x : n ⊢ ((↑σ (x, k)).fst, k).snd = (↑σ (x, k)).snd [PROOFSTEP] simp only [hσ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) ⊢ ∃ a ha, σ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha [PROOFSTEP] have mk_inv_apply_eq : ∀ k x, ((σ⁻¹ (x, k)).fst, k) = σ⁻¹ (x, k) := by intro k x conv_lhs => rw [← Perm.apply_inv_self σ (x, k)] ext · simp only [apply_inv_self] · simp only [hσ'] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) ⊢ ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) [PROOFSTEP] intro k x [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) k : o x : n ⊢ ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) [PROOFSTEP] conv_lhs => rw [← Perm.apply_inv_self σ (x, k)] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) k : o x : n | ((↑σ⁻¹ (x, k)).fst, k) [PROOFSTEP] rw [← Perm.apply_inv_self σ (x, k)] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) k : o x : n | ((↑σ⁻¹ (x, k)).fst, k) [PROOFSTEP] rw [← Perm.apply_inv_self σ (x, k)] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) k : o x : n | ((↑σ⁻¹ (x, k)).fst, k) [PROOFSTEP] rw [← Perm.apply_inv_self σ (x, k)] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) k : o x : n ⊢ ((↑σ⁻¹ (↑σ (↑σ⁻¹ (x, k)))).fst, k) = ↑σ⁻¹ (x, k) [PROOFSTEP] ext [GOAL] case h₁ m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) k : o x : n ⊢ ((↑σ⁻¹ (↑σ (↑σ⁻¹ (x, k)))).fst, k).fst = (↑σ⁻¹ (x, k)).fst [PROOFSTEP] simp only [apply_inv_self] [GOAL] case h₂ m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) k : o x : n ⊢ ((↑σ⁻¹ (↑σ (↑σ⁻¹ (x, k)))).fst, k).snd = (↑σ⁻¹ (x, k)).snd [PROOFSTEP] simp only [hσ'] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) ⊢ ∃ a ha, σ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) a ha [PROOFSTEP] refine' ⟨fun k _ => ⟨fun x => (σ (x, k)).fst, fun x => (σ⁻¹ (x, k)).fst, _, _⟩, _, _⟩ [GOAL] case refine'_1 m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) k : o x✝ : k ∈ univ ⊢ LeftInverse (fun x => (↑σ⁻¹ (x, k)).fst) fun x => (↑σ (x, k)).fst [PROOFSTEP] intro x [GOAL] case refine'_1 m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) k : o x✝ : k ∈ univ x : n ⊢ (fun x => (↑σ⁻¹ (x, k)).fst) ((fun x => (↑σ (x, k)).fst) x) = x [PROOFSTEP] simp only [mk_apply_eq, inv_apply_self] [GOAL] case refine'_2 m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) k : o x✝ : k ∈ univ ⊢ Function.RightInverse (fun x => (↑σ⁻¹ (x, k)).fst) fun x => (↑σ (x, k)).fst [PROOFSTEP] intro x [GOAL] case refine'_2 m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) k : o x✝ : k ∈ univ x : n ⊢ (fun x => (↑σ (x, k)).fst) ((fun x => (↑σ⁻¹ (x, k)).fst) x) = x [PROOFSTEP] simp only [mk_inv_apply_eq, apply_inv_self] [GOAL] case refine'_3 m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) ⊢ (fun k x => { toFun := fun x => (↑σ (x, k)).fst, invFun := fun x => (↑σ⁻¹ (x, k)).fst, left_inv := (_ : ∀ (x : n), (↑σ⁻¹ ((↑σ (x, k)).fst, k)).fst = x), right_inv := (_ : ∀ (x : n), (↑σ ((↑σ⁻¹ (x, k)).fst, k)).fst = x) }) ∈ univ [PROOFSTEP] apply Finset.mem_univ [GOAL] case refine'_4 m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) ⊢ σ = (fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) (fun k x => { toFun := fun x => (↑σ (x, k)).fst, invFun := fun x => (↑σ⁻¹ (x, k)).fst, left_inv := (_ : ∀ (x : n), (↑σ⁻¹ ((↑σ (x, k)).fst, k)).fst = x), right_inv := (_ : ∀ (x : n), (↑σ ((↑σ⁻¹ (x, k)).fst, k)).fst = x) }) (_ : (fun k x => { toFun := fun x => (↑σ (x, k)).fst, invFun := fun x => (↑σ⁻¹ (x, k)).fst, left_inv := (_ : ∀ (x : n), (↑σ⁻¹ ((↑σ (x, k)).fst, k)).fst = x), right_inv := (_ : ∀ (x : n), (↑σ ((↑σ⁻¹ (x, k)).fst, k)).fst = x) }) ∈ univ) [PROOFSTEP] ext ⟨k, x⟩ [GOAL] case refine'_4.H.mk.h₁ m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) k : n x : o ⊢ (↑σ (k, x)).fst = (↑((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) (fun k x => { toFun := fun x => (↑σ (x, k)).fst, invFun := fun x => (↑σ⁻¹ (x, k)).fst, left_inv := (_ : ∀ (x : n), (↑σ⁻¹ ((↑σ (x, k)).fst, k)).fst = x), right_inv := (_ : ∀ (x : n), (↑σ ((↑σ⁻¹ (x, k)).fst, k)).fst = x) }) (_ : (fun k x => { toFun := fun x => (↑σ (x, k)).fst, invFun := fun x => (↑σ⁻¹ (x, k)).fst, left_inv := (_ : ∀ (x : n), (↑σ⁻¹ ((↑σ (x, k)).fst, k)).fst = x), right_inv := (_ : ∀ (x : n), (↑σ ((↑σ⁻¹ (x, k)).fst, k)).fst = x) }) ∈ univ)) (k, x)).fst [PROOFSTEP] simp only [coe_fn_mk, prodCongrLeft_apply] [GOAL] case refine'_4.H.mk.h₂ m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : n × o ≃ n × o hσ : ∀ (x : n × o), (↑σ x).snd = x.snd hσ' : ∀ (x : n × o), (↑σ⁻¹ x).snd = x.snd mk_apply_eq : ∀ (k : o) (x : n), ((↑σ (x, k)).fst, k) = ↑σ (x, k) mk_inv_apply_eq : ∀ (k : o) (x : n), ((↑σ⁻¹ (x, k)).fst, k) = ↑σ⁻¹ (x, k) k : n x : o ⊢ (↑σ (k, x)).snd = (↑((fun σ x => prodCongrLeft fun k => σ k (_ : k ∈ univ)) (fun k x => { toFun := fun x => (↑σ (x, k)).fst, invFun := fun x => (↑σ⁻¹ (x, k)).fst, left_inv := (_ : ∀ (x : n), (↑σ⁻¹ ((↑σ (x, k)).fst, k)).fst = x), right_inv := (_ : ∀ (x : n), (↑σ ((↑σ⁻¹ (x, k)).fst, k)).fst = x) }) (_ : (fun k x => { toFun := fun x => (↑σ (x, k)).fst, invFun := fun x => (↑σ⁻¹ (x, k)).fst, left_inv := (_ : ∀ (x : n), (↑σ⁻¹ ((↑σ (x, k)).fst, k)).fst = x), right_inv := (_ : ∀ (x : n), (↑σ ((↑σ⁻¹ (x, k)).fst, k)).fst = x) }) ∈ univ)) (k, x)).snd [PROOFSTEP] simp only [prodCongrLeft_apply, hσ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ∀ (x : Perm (n × o)), x ∈ univ → ¬x ∈ preserving_snd → ↑↑(↑sign x) * ∏ x_1 : n × o, blockDiagonal M (↑x x_1) x_1 = 0 [PROOFSTEP] intro σ _ hσ [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : Perm (n × o) a✝ : σ ∈ univ hσ : ¬σ ∈ preserving_snd ⊢ ↑↑(↑sign σ) * ∏ x : n × o, blockDiagonal M (↑σ x) x = 0 [PROOFSTEP] rw [mem_preserving_snd] at hσ [GOAL] m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : Perm (n × o) a✝ : σ ∈ univ hσ : ¬∀ (x : n × o), (↑σ x).snd = x.snd ⊢ ↑↑(↑sign σ) * ∏ x : n × o, blockDiagonal M (↑σ x) x = 0 [PROOFSTEP] obtain ⟨⟨k, x⟩, hkx⟩ := not_forall.mp hσ [GOAL] case intro.mk m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : Perm (n × o) a✝ : σ ∈ univ hσ : ¬∀ (x : n × o), (↑σ x).snd = x.snd k : n x : o hkx : ¬(↑σ (k, x)).snd = (k, x).snd ⊢ ↑↑(↑sign σ) * ∏ x : n × o, blockDiagonal M (↑σ x) x = 0 [PROOFSTEP] rw [Finset.prod_eq_zero (Finset.mem_univ (k, x)), mul_zero] [GOAL] case intro.mk m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : Perm (n × o) a✝ : σ ∈ univ hσ : ¬∀ (x : n × o), (↑σ x).snd = x.snd k : n x : o hkx : ¬(↑σ (k, x)).snd = (k, x).snd ⊢ blockDiagonal M (↑σ (k, x)) (k, x) = 0 [PROOFSTEP] rw [← @Prod.mk.eta _ _ (σ (k, x)), blockDiagonal_apply_ne] [GOAL] case intro.mk.h m : Type u_1 n : Type u_2 inst✝⁶ : DecidableEq n inst✝⁵ : Fintype n inst✝⁴ : DecidableEq m inst✝³ : Fintype m R : Type v inst✝² : CommRing R o : Type u_3 inst✝¹ : Fintype o inst✝ : DecidableEq o M : o → Matrix n n R preserving_snd : Finset (Perm (n × o)) := filter (fun σ => ∀ (x : n × o), (↑σ x).snd = x.snd) univ mem_preserving_snd : ∀ {σ : Perm (n × o)}, σ ∈ preserving_snd ↔ ∀ (x : n × o), (↑σ x).snd = x.snd σ : Perm (n × o) a✝ : σ ∈ univ hσ : ¬∀ (x : n × o), (↑σ x).snd = x.snd k : n x : o hkx : ¬(↑σ (k, x)).snd = (k, x).snd ⊢ (↑σ (k, x)).snd ≠ x [PROOFSTEP] exact hkx [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ det (fromBlocks A B 0 D) = det A * det D [PROOFSTEP] classical simp_rw [det_apply'] convert Eq.symm <| sum_subset (β := R) (subset_univ ((sumCongrHom m n).range : Set (Perm (Sum m n))).toFinset) ?_ rw [sum_mul_sum] simp_rw [univ_product_univ] rw [(sum_bij (fun (σ : Perm m × Perm n) _ => Equiv.sumCongr σ.fst σ.snd) _ _ _ _).symm] · intro σ₁₂ h simp only erw [Set.mem_toFinset, MonoidHom.mem_range] use σ₁₂ simp only [sumCongrHom_apply] · simp only [forall_prop_of_true, Prod.forall, mem_univ] intro σ₁ σ₂ rw [Fintype.prod_sum_type] simp_rw [Equiv.sumCongr_apply, Sum.map_inr, Sum.map_inl, fromBlocks_apply₁₁, fromBlocks_apply₂₂] rw [mul_mul_mul_comm] congr rw [sign_sumCongr, Units.val_mul, Int.cast_mul] · intro σ₁ σ₂ h₁ h₂ dsimp only intro h have h2 : ∀ x, Perm.sumCongr σ₁.fst σ₁.snd x = Perm.sumCongr σ₂.fst σ₂.snd x := by intro x exact congr_fun (congr_arg toFun h) x simp only [Sum.map_inr, Sum.map_inl, Perm.sumCongr_apply, Sum.forall, Sum.inl.injEq, Sum.inr.injEq] at h2 ext x · exact h2.left x · exact h2.right x · intro σ hσ erw [Set.mem_toFinset, MonoidHom.mem_range] at hσ obtain ⟨σ₁₂, hσ₁₂⟩ := hσ use σ₁₂ rw [← hσ₁₂] simp · rintro σ - hσn have h1 : ¬∀ x, ∃ y, Sum.inl y = σ (Sum.inl x) := by rw [Set.mem_toFinset] at hσn simpa only [Set.MapsTo, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff'] using mt mem_sumCongrHom_range_of_perm_mapsTo_inl hσn obtain ⟨a, ha⟩ := not_forall.mp h1 cases' hx : σ (Sum.inl a) with a2 b · have hn := (not_exists.mp ha) a2 exact absurd hx.symm hn · rw [Finset.prod_eq_zero (Finset.mem_univ (Sum.inl a)), mul_zero] rw [hx, fromBlocks_apply₂₁, zero_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ det (fromBlocks A B 0 D) = det A * det D [PROOFSTEP] simp_rw [det_apply'] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∑ x : Perm (m ⊕ n), ↑↑(↑sign x) * ∏ x_1 : m ⊕ n, fromBlocks A B 0 D (↑x x_1) x_1 = (∑ x : Perm m, ↑↑(↑sign x) * ∏ x_1 : m, A (↑x x_1) x_1) * ∑ x : Perm n, ↑↑(↑sign x) * ∏ x_1 : n, D (↑x x_1) x_1 [PROOFSTEP] convert Eq.symm <| sum_subset (β := R) (subset_univ ((sumCongrHom m n).range : Set (Perm (Sum m n))).toFinset) ?_ [GOAL] case h.e'_3 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ (∑ x : Perm m, ↑↑(↑sign x) * ∏ x_1 : m, A (↑x x_1) x_1) * ∑ x : Perm n, ↑↑(↑sign x) * ∏ x_1 : n, D (↑x x_1) x_1 = ∑ x in Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)), ↑↑(↑sign x) * ∏ x_1 : m ⊕ n, fromBlocks A B 0 D (↑x x_1) x_1 case convert_2 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (x : Perm (m ⊕ n)), x ∈ univ → ¬x ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) → ↑↑(↑sign x) * ∏ x_1 : m ⊕ n, fromBlocks A B 0 D (↑x x_1) x_1 = 0 [PROOFSTEP] rw [sum_mul_sum] [GOAL] case h.e'_3 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∑ p in univ ×ˢ univ, (↑↑(↑sign p.fst) * ∏ x : m, A (↑p.fst x) x) * (↑↑(↑sign p.snd) * ∏ x : n, D (↑p.snd x) x) = ∑ x in Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)), ↑↑(↑sign x) * ∏ x_1 : m ⊕ n, fromBlocks A B 0 D (↑x x_1) x_1 case convert_2 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (x : Perm (m ⊕ n)), x ∈ univ → ¬x ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) → ↑↑(↑sign x) * ∏ x_1 : m ⊕ n, fromBlocks A B 0 D (↑x x_1) x_1 = 0 [PROOFSTEP] simp_rw [univ_product_univ] [GOAL] case h.e'_3 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∑ p : Perm m × Perm n, (↑↑(↑sign p.fst) * ∏ x : m, A (↑p.fst x) x) * (↑↑(↑sign p.snd) * ∏ x : n, D (↑p.snd x) x) = ∑ x in Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)), ↑↑(↑sign x) * ∏ x_1 : m ⊕ n, fromBlocks A B 0 D (↑x x_1) x_1 case convert_2 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (x : Perm (m ⊕ n)), x ∈ univ → ¬x ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) → ↑↑(↑sign x) * ∏ x_1 : m ⊕ n, fromBlocks A B 0 D (↑x x_1) x_1 = 0 [PROOFSTEP] rw [(sum_bij (fun (σ : Perm m × Perm n) _ => Equiv.sumCongr σ.fst σ.snd) _ _ _ _).symm] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (a : Perm m × Perm n) (ha : a ∈ univ), (fun σ x => Equiv.sumCongr σ.fst σ.snd) a ha ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) [PROOFSTEP] intro σ₁₂ h [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁₂ : Perm m × Perm n h : σ₁₂ ∈ univ ⊢ (fun σ x => Equiv.sumCongr σ.fst σ.snd) σ₁₂ h ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) [PROOFSTEP] simp only [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁₂ : Perm m × Perm n h : σ₁₂ ∈ univ ⊢ Equiv.sumCongr σ₁₂.fst σ₁₂.snd ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) [PROOFSTEP] erw [Set.mem_toFinset, MonoidHom.mem_range] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁₂ : Perm m × Perm n h : σ₁₂ ∈ univ ⊢ ∃ x, ↑(sumCongrHom m n) x = Equiv.sumCongr σ₁₂.fst σ₁₂.snd [PROOFSTEP] use σ₁₂ [GOAL] case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁₂ : Perm m × Perm n h : σ₁₂ ∈ univ ⊢ ↑(sumCongrHom m n) σ₁₂ = Equiv.sumCongr σ₁₂.fst σ₁₂.snd [PROOFSTEP] simp only [sumCongrHom_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (a : Perm m × Perm n) (ha : a ∈ univ), (↑↑(↑sign a.fst) * ∏ x : m, A (↑a.fst x) x) * (↑↑(↑sign a.snd) * ∏ x : n, D (↑a.snd x) x) = ↑↑(↑sign ((fun σ x => Equiv.sumCongr σ.fst σ.snd) a ha)) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑((fun σ x => Equiv.sumCongr σ.fst σ.snd) a ha) x) x [PROOFSTEP] simp only [forall_prop_of_true, Prod.forall, mem_univ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (a : Perm m) (b : Perm n), (↑↑(↑sign a) * ∏ x : m, A (↑a x) x) * (↑↑(↑sign b) * ∏ x : n, D (↑b x) x) = ↑↑(↑sign (Equiv.sumCongr a b)) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑(Equiv.sumCongr a b) x) x [PROOFSTEP] intro σ₁ σ₂ [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ : Perm m σ₂ : Perm n ⊢ (↑↑(↑sign σ₁) * ∏ x : m, A (↑σ₁ x) x) * (↑↑(↑sign σ₂) * ∏ x : n, D (↑σ₂ x) x) = ↑↑(↑sign (Equiv.sumCongr σ₁ σ₂)) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑(Equiv.sumCongr σ₁ σ₂) x) x [PROOFSTEP] rw [Fintype.prod_sum_type] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ : Perm m σ₂ : Perm n ⊢ (↑↑(↑sign σ₁) * ∏ x : m, A (↑σ₁ x) x) * (↑↑(↑sign σ₂) * ∏ x : n, D (↑σ₂ x) x) = ↑↑(↑sign (Equiv.sumCongr σ₁ σ₂)) * ((∏ a₁ : m, fromBlocks A B 0 D (↑(Equiv.sumCongr σ₁ σ₂) (Sum.inl a₁)) (Sum.inl a₁)) * ∏ a₂ : n, fromBlocks A B 0 D (↑(Equiv.sumCongr σ₁ σ₂) (Sum.inr a₂)) (Sum.inr a₂)) [PROOFSTEP] simp_rw [Equiv.sumCongr_apply, Sum.map_inr, Sum.map_inl, fromBlocks_apply₁₁, fromBlocks_apply₂₂] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ : Perm m σ₂ : Perm n ⊢ (↑↑(↑sign σ₁) * ∏ x : m, A (↑σ₁ x) x) * (↑↑(↑sign σ₂) * ∏ x : n, D (↑σ₂ x) x) = ↑↑(↑sign (Equiv.sumCongr σ₁ σ₂)) * ((∏ x : m, A (↑σ₁ x) x) * ∏ x : n, D (↑σ₂ x) x) [PROOFSTEP] rw [mul_mul_mul_comm] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ : Perm m σ₂ : Perm n ⊢ ↑↑(↑sign σ₁) * ↑↑(↑sign σ₂) * ((∏ x : m, A (↑σ₁ x) x) * ∏ x : n, D (↑σ₂ x) x) = ↑↑(↑sign (Equiv.sumCongr σ₁ σ₂)) * ((∏ x : m, A (↑σ₁ x) x) * ∏ x : n, D (↑σ₂ x) x) [PROOFSTEP] congr [GOAL] case e_a m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ : Perm m σ₂ : Perm n ⊢ ↑↑(↑sign σ₁) * ↑↑(↑sign σ₂) = ↑↑(↑sign (Equiv.sumCongr σ₁ σ₂)) [PROOFSTEP] rw [sign_sumCongr, Units.val_mul, Int.cast_mul] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (a₁ a₂ : Perm m × Perm n) (ha₁ : a₁ ∈ univ) (ha₂ : a₂ ∈ univ), (fun σ x => Equiv.sumCongr σ.fst σ.snd) a₁ ha₁ = (fun σ x => Equiv.sumCongr σ.fst σ.snd) a₂ ha₂ → a₁ = a₂ [PROOFSTEP] intro σ₁ σ₂ h₁ h₂ [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ ⊢ (fun σ x => Equiv.sumCongr σ.fst σ.snd) σ₁ h₁ = (fun σ x => Equiv.sumCongr σ.fst σ.snd) σ₂ h₂ → σ₁ = σ₂ [PROOFSTEP] dsimp only [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ ⊢ Equiv.sumCongr σ₁.fst σ₁.snd = Equiv.sumCongr σ₂.fst σ₂.snd → σ₁ = σ₂ [PROOFSTEP] intro h [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ h : Equiv.sumCongr σ₁.fst σ₁.snd = Equiv.sumCongr σ₂.fst σ₂.snd ⊢ σ₁ = σ₂ [PROOFSTEP] have h2 : ∀ x, Perm.sumCongr σ₁.fst σ₁.snd x = Perm.sumCongr σ₂.fst σ₂.snd x := by intro x exact congr_fun (congr_arg toFun h) x [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ h : Equiv.sumCongr σ₁.fst σ₁.snd = Equiv.sumCongr σ₂.fst σ₂.snd ⊢ ∀ (x : m ⊕ n), ↑(Perm.sumCongr σ₁.fst σ₁.snd) x = ↑(Perm.sumCongr σ₂.fst σ₂.snd) x [PROOFSTEP] intro x [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ h : Equiv.sumCongr σ₁.fst σ₁.snd = Equiv.sumCongr σ₂.fst σ₂.snd x : m ⊕ n ⊢ ↑(Perm.sumCongr σ₁.fst σ₁.snd) x = ↑(Perm.sumCongr σ₂.fst σ₂.snd) x [PROOFSTEP] exact congr_fun (congr_arg toFun h) x [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ h : Equiv.sumCongr σ₁.fst σ₁.snd = Equiv.sumCongr σ₂.fst σ₂.snd h2 : ∀ (x : m ⊕ n), ↑(Perm.sumCongr σ₁.fst σ₁.snd) x = ↑(Perm.sumCongr σ₂.fst σ₂.snd) x ⊢ σ₁ = σ₂ [PROOFSTEP] simp only [Sum.map_inr, Sum.map_inl, Perm.sumCongr_apply, Sum.forall, Sum.inl.injEq, Sum.inr.injEq] at h2 [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ h : Equiv.sumCongr σ₁.fst σ₁.snd = Equiv.sumCongr σ₂.fst σ₂.snd h2 : (∀ (a : m), ↑σ₁.fst a = ↑σ₂.fst a) ∧ ∀ (b : n), ↑σ₁.snd b = ↑σ₂.snd b ⊢ σ₁ = σ₂ [PROOFSTEP] ext x [GOAL] case h₁.H m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ h : Equiv.sumCongr σ₁.fst σ₁.snd = Equiv.sumCongr σ₂.fst σ₂.snd h2 : (∀ (a : m), ↑σ₁.fst a = ↑σ₂.fst a) ∧ ∀ (b : n), ↑σ₁.snd b = ↑σ₂.snd b x : m ⊢ ↑σ₁.fst x = ↑σ₂.fst x [PROOFSTEP] exact h2.left x [GOAL] case h₂.H m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ₁ σ₂ : Perm m × Perm n h₁ : σ₁ ∈ univ h₂ : σ₂ ∈ univ h : Equiv.sumCongr σ₁.fst σ₁.snd = Equiv.sumCongr σ₂.fst σ₂.snd h2 : (∀ (a : m), ↑σ₁.fst a = ↑σ₂.fst a) ∧ ∀ (b : n), ↑σ₁.snd b = ↑σ₂.snd b x : n ⊢ ↑σ₁.snd x = ↑σ₂.snd x [PROOFSTEP] exact h2.right x [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (b : m ⊕ n ≃ m ⊕ n), b ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) → ∃ a ha, b = (fun σ x => Equiv.sumCongr σ.fst σ.snd) a ha [PROOFSTEP] intro σ hσ [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : m ⊕ n ≃ m ⊕ n hσ : σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) ⊢ ∃ a ha, σ = (fun σ x => Equiv.sumCongr σ.fst σ.snd) a ha [PROOFSTEP] erw [Set.mem_toFinset, MonoidHom.mem_range] at hσ [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : m ⊕ n ≃ m ⊕ n hσ : ∃ x, ↑(sumCongrHom m n) x = σ ⊢ ∃ a ha, σ = (fun σ x => Equiv.sumCongr σ.fst σ.snd) a ha [PROOFSTEP] obtain ⟨σ₁₂, hσ₁₂⟩ := hσ [GOAL] case intro m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : m ⊕ n ≃ m ⊕ n σ₁₂ : Perm m × Perm n hσ₁₂ : ↑(sumCongrHom m n) σ₁₂ = σ ⊢ ∃ a ha, σ = (fun σ x => Equiv.sumCongr σ.fst σ.snd) a ha [PROOFSTEP] use σ₁₂ [GOAL] case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : m ⊕ n ≃ m ⊕ n σ₁₂ : Perm m × Perm n hσ₁₂ : ↑(sumCongrHom m n) σ₁₂ = σ ⊢ ∃ ha, σ = (fun σ x => Equiv.sumCongr σ.fst σ.snd) σ₁₂ ha [PROOFSTEP] rw [← hσ₁₂] [GOAL] case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : m ⊕ n ≃ m ⊕ n σ₁₂ : Perm m × Perm n hσ₁₂ : ↑(sumCongrHom m n) σ₁₂ = σ ⊢ ∃ ha, ↑(sumCongrHom m n) σ₁₂ = (fun σ x => Equiv.sumCongr σ.fst σ.snd) σ₁₂ ha [PROOFSTEP] simp [GOAL] case convert_2 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R ⊢ ∀ (x : Perm (m ⊕ n)), x ∈ univ → ¬x ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) → ↑↑(↑sign x) * ∏ x_1 : m ⊕ n, fromBlocks A B 0 D (↑x x_1) x_1 = 0 [PROOFSTEP] rintro σ - hσn [GOAL] case convert_2 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) ⊢ ↑↑(↑sign σ) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑σ x) x = 0 [PROOFSTEP] have h1 : ¬∀ x, ∃ y, Sum.inl y = σ (Sum.inl x) := by rw [Set.mem_toFinset] at hσn simpa only [Set.MapsTo, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff'] using mt mem_sumCongrHom_range_of_perm_mapsTo_inl hσn [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) ⊢ ¬∀ (x : m), ∃ y, Sum.inl y = ↑σ (Sum.inl x) [PROOFSTEP] rw [Set.mem_toFinset] at hσn [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ ↑(MonoidHom.range (sumCongrHom m n)) ⊢ ¬∀ (x : m), ∃ y, Sum.inl y = ↑σ (Sum.inl x) [PROOFSTEP] simpa only [Set.MapsTo, Set.mem_range, forall_exists_index, forall_apply_eq_imp_iff'] using mt mem_sumCongrHom_range_of_perm_mapsTo_inl hσn [GOAL] case convert_2 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) h1 : ¬∀ (x : m), ∃ y, Sum.inl y = ↑σ (Sum.inl x) ⊢ ↑↑(↑sign σ) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑σ x) x = 0 [PROOFSTEP] obtain ⟨a, ha⟩ := not_forall.mp h1 [GOAL] case convert_2.intro m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) h1 : ¬∀ (x : m), ∃ y, Sum.inl y = ↑σ (Sum.inl x) a : m ha : ¬∃ y, Sum.inl y = ↑σ (Sum.inl a) ⊢ ↑↑(↑sign σ) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑σ x) x = 0 [PROOFSTEP] cases' hx : σ (Sum.inl a) with a2 b [GOAL] case convert_2.intro.inl m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) h1 : ¬∀ (x : m), ∃ y, Sum.inl y = ↑σ (Sum.inl x) a : m ha : ¬∃ y, Sum.inl y = ↑σ (Sum.inl a) a2 : m hx : ↑σ (Sum.inl a) = Sum.inl a2 ⊢ ↑↑(↑sign σ) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑σ x) x = 0 [PROOFSTEP] have hn := (not_exists.mp ha) a2 [GOAL] case convert_2.intro.inl m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) h1 : ¬∀ (x : m), ∃ y, Sum.inl y = ↑σ (Sum.inl x) a : m ha : ¬∃ y, Sum.inl y = ↑σ (Sum.inl a) a2 : m hx : ↑σ (Sum.inl a) = Sum.inl a2 hn : ¬Sum.inl a2 = ↑σ (Sum.inl a) ⊢ ↑↑(↑sign σ) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑σ x) x = 0 [PROOFSTEP] exact absurd hx.symm hn [GOAL] case convert_2.intro.inr m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) h1 : ¬∀ (x : m), ∃ y, Sum.inl y = ↑σ (Sum.inl x) a : m ha : ¬∃ y, Sum.inl y = ↑σ (Sum.inl a) b : n hx : ↑σ (Sum.inl a) = Sum.inr b ⊢ ↑↑(↑sign σ) * ∏ x : m ⊕ n, fromBlocks A B 0 D (↑σ x) x = 0 [PROOFSTEP] rw [Finset.prod_eq_zero (Finset.mem_univ (Sum.inl a)), mul_zero] [GOAL] case convert_2.intro.inr m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R B : Matrix m n R D : Matrix n n R σ : Perm (m ⊕ n) hσn : ¬σ ∈ Set.toFinset ↑(MonoidHom.range (sumCongrHom m n)) h1 : ¬∀ (x : m), ∃ y, Sum.inl y = ↑σ (Sum.inl x) a : m ha : ¬∃ y, Sum.inl y = ↑σ (Sum.inl a) b : n hx : ↑σ (Sum.inl a) = Sum.inr b ⊢ fromBlocks A B 0 D (↑σ (Sum.inl a)) (Sum.inl a) = 0 [PROOFSTEP] rw [hx, fromBlocks_apply₂₁, zero_apply] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix m m R C : Matrix n m R D : Matrix n n R ⊢ det (fromBlocks A 0 C D) = det A * det D [PROOFSTEP] rw [← det_transpose, fromBlocks_transpose, transpose_zero, det_fromBlocks_zero₂₁, det_transpose, det_transpose] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R ⊢ det A = ∑ i : Fin (Nat.succ n), (-1) ^ ↑i * A i 0 * det (submatrix A (Fin.succAbove i) Fin.succ) [PROOFSTEP] rw [Matrix.det_apply, Finset.univ_perm_fin_succ, ← Finset.univ_product_univ] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R ⊢ ∑ σ in Finset.map (Equiv.toEmbedding decomposeFin.symm) (univ ×ˢ univ), ↑sign σ • ∏ i : Fin (Nat.succ n), A (↑σ i) i = ∑ i : Fin (Nat.succ n), (-1) ^ ↑i * A i 0 * det (submatrix A (Fin.succAbove i) Fin.succ) [PROOFSTEP] simp only [Finset.sum_map, Equiv.toEmbedding_apply, Finset.sum_product, Matrix.submatrix] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R ⊢ ∑ x : Fin (Nat.succ n), ∑ y : Perm (Fin n), ↑sign (↑decomposeFin.symm (x, y)) • ∏ x_1 : Fin (Nat.succ n), A (↑(↑decomposeFin.symm (x, y)) x_1) x_1 = ∑ x : Fin (Nat.succ n), (-1) ^ ↑x * A x 0 * det (↑of fun i j => A (Fin.succAbove x i) (Fin.succ j)) [PROOFSTEP] refine' Finset.sum_congr rfl fun i _ => Fin.cases _ (fun i => _) i [GOAL] case refine'_1 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) x✝ : i ∈ univ ⊢ ∑ y : Perm (Fin n), ↑sign (↑decomposeFin.symm (0, y)) • ∏ x : Fin (Nat.succ n), A (↑(↑decomposeFin.symm (0, y)) x) x = (-1) ^ ↑0 * A 0 0 * det (↑of fun i j => A (Fin.succAbove 0 i) (Fin.succ j)) [PROOFSTEP] simp only [Fin.prod_univ_succ, Matrix.det_apply, Finset.mul_sum, Equiv.Perm.decomposeFin_symm_apply_zero, Fin.val_zero, one_mul, Equiv.Perm.decomposeFin.symm_sign, Equiv.swap_self, if_true, id.def, eq_self_iff_true, Equiv.Perm.decomposeFin_symm_apply_succ, Fin.succAbove_zero, Equiv.coe_refl, pow_zero, mul_smul_comm, of_apply] -- `univ_perm_fin_succ` gives a different embedding of `Perm (Fin n)` into -- `Perm (Fin n.succ)` than the determinant of the submatrix we want, -- permute `A` so that we get the correct one. [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i✝ : Fin (Nat.succ n) x✝ : i✝ ∈ univ i : Fin n ⊢ ∑ y : Perm (Fin n), ↑sign (↑decomposeFin.symm (Fin.succ i, y)) • ∏ x : Fin (Nat.succ n), A (↑(↑decomposeFin.symm (Fin.succ i, y)) x) x = (-1) ^ ↑(Fin.succ i) * A (Fin.succ i) 0 * det (↑of fun i_1 j => A (Fin.succAbove (Fin.succ i) i_1) (Fin.succ j)) [PROOFSTEP] have : (-1 : R) ^ (i : ℕ) = (Perm.sign i.cycleRange) := by simp [Fin.sign_cycleRange] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i✝ : Fin (Nat.succ n) x✝ : i✝ ∈ univ i : Fin n ⊢ (-1) ^ ↑i = ↑↑(↑sign (Fin.cycleRange i)) [PROOFSTEP] simp [Fin.sign_cycleRange] [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i✝ : Fin (Nat.succ n) x✝ : i✝ ∈ univ i : Fin n this : (-1) ^ ↑i = ↑↑(↑sign (Fin.cycleRange i)) ⊢ ∑ y : Perm (Fin n), ↑sign (↑decomposeFin.symm (Fin.succ i, y)) • ∏ x : Fin (Nat.succ n), A (↑(↑decomposeFin.symm (Fin.succ i, y)) x) x = (-1) ^ ↑(Fin.succ i) * A (Fin.succ i) 0 * det (↑of fun i_1 j => A (Fin.succAbove (Fin.succ i) i_1) (Fin.succ j)) [PROOFSTEP] rw [Fin.val_succ, pow_succ, this, mul_assoc, mul_assoc, mul_left_comm (ε _), ← det_permute, Matrix.det_apply, Finset.mul_sum, Finset.mul_sum] -- now we just need to move the corresponding parts to the same place [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i✝ : Fin (Nat.succ n) x✝ : i✝ ∈ univ i : Fin n this : (-1) ^ ↑i = ↑↑(↑sign (Fin.cycleRange i)) ⊢ ∑ y : Perm (Fin n), ↑sign (↑decomposeFin.symm (Fin.succ i, y)) • ∏ x : Fin (Nat.succ n), A (↑(↑decomposeFin.symm (Fin.succ i, y)) x) x = ∑ x : Perm (Fin n), -1 * (A (Fin.succ i) 0 * ↑sign x • ∏ i_1 : Fin n, ↑of (fun i_2 j => A (Fin.succAbove (Fin.succ i) i_2) (Fin.succ j)) (↑(Fin.cycleRange i) (↑x i_1)) i_1) [PROOFSTEP] refine' Finset.sum_congr rfl fun σ _ => _ [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i✝ : Fin (Nat.succ n) x✝¹ : i✝ ∈ univ i : Fin n this : (-1) ^ ↑i = ↑↑(↑sign (Fin.cycleRange i)) σ : Perm (Fin n) x✝ : σ ∈ univ ⊢ ↑sign (↑decomposeFin.symm (Fin.succ i, σ)) • ∏ x : Fin (Nat.succ n), A (↑(↑decomposeFin.symm (Fin.succ i, σ)) x) x = -1 * (A (Fin.succ i) 0 * ↑sign σ • ∏ i_1 : Fin n, ↑of (fun i_2 j => A (Fin.succAbove (Fin.succ i) i_2) (Fin.succ j)) (↑(Fin.cycleRange i) (↑σ i_1)) i_1) [PROOFSTEP] rw [Equiv.Perm.decomposeFin.symm_sign, if_neg (Fin.succ_ne_zero i)] [GOAL] case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i✝ : Fin (Nat.succ n) x✝¹ : i✝ ∈ univ i : Fin n this : (-1) ^ ↑i = ↑↑(↑sign (Fin.cycleRange i)) σ : Perm (Fin n) x✝ : σ ∈ univ ⊢ (-1 * ↑sign σ) • ∏ x : Fin (Nat.succ n), A (↑(↑decomposeFin.symm (Fin.succ i, σ)) x) x = -1 * (A (Fin.succ i) 0 * ↑sign σ • ∏ i_1 : Fin n, ↑of (fun i_2 j => A (Fin.succAbove (Fin.succ i) i_2) (Fin.succ j)) (↑(Fin.cycleRange i) (↑σ i_1)) i_1) [PROOFSTEP] calc ((-1 * Perm.sign σ : ℤ) • ∏ i', A (Perm.decomposeFin.symm (Fin.succ i, σ) i') i') = (-1 * Perm.sign σ : ℤ) • (A (Fin.succ i) 0 * ∏ i', A ((Fin.succ i).succAbove (Fin.cycleRange i (σ i'))) i'.succ) := by simp only [Fin.prod_univ_succ, Fin.succAbove_cycleRange, Equiv.Perm.decomposeFin_symm_apply_zero, Equiv.Perm.decomposeFin_symm_apply_succ] _ = -1 * (A (Fin.succ i) 0 * (Perm.sign σ : ℤ) • ∏ i', A ((Fin.succ i).succAbove (Fin.cycleRange i (σ i'))) i'.succ) := by simp [mul_assoc, mul_comm, _root_.neg_mul, one_mul, zsmul_eq_mul, neg_inj, neg_smul, Fin.succAbove_cycleRange, mul_left_comm] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i✝ : Fin (Nat.succ n) x✝¹ : i✝ ∈ univ i : Fin n this : (-1) ^ ↑i = ↑↑(↑sign (Fin.cycleRange i)) σ : Perm (Fin n) x✝ : σ ∈ univ ⊢ (-1 * ↑(↑sign σ)) • ∏ i' : Fin (Nat.succ n), A (↑(↑decomposeFin.symm (Fin.succ i, σ)) i') i' = (-1 * ↑(↑sign σ)) • (A (Fin.succ i) 0 * ∏ i' : Fin n, A (Fin.succAbove (Fin.succ i) (↑(Fin.cycleRange i) (↑σ i'))) (Fin.succ i')) [PROOFSTEP] simp only [Fin.prod_univ_succ, Fin.succAbove_cycleRange, Equiv.Perm.decomposeFin_symm_apply_zero, Equiv.Perm.decomposeFin_symm_apply_succ] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i✝ : Fin (Nat.succ n) x✝¹ : i✝ ∈ univ i : Fin n this : (-1) ^ ↑i = ↑↑(↑sign (Fin.cycleRange i)) σ : Perm (Fin n) x✝ : σ ∈ univ ⊢ (-1 * ↑(↑sign σ)) • (A (Fin.succ i) 0 * ∏ i' : Fin n, A (Fin.succAbove (Fin.succ i) (↑(Fin.cycleRange i) (↑σ i'))) (Fin.succ i')) = -1 * (A (Fin.succ i) 0 * ↑(↑sign σ) • ∏ i' : Fin n, A (Fin.succAbove (Fin.succ i) (↑(Fin.cycleRange i) (↑σ i'))) (Fin.succ i')) [PROOFSTEP] simp [mul_assoc, mul_comm, _root_.neg_mul, one_mul, zsmul_eq_mul, neg_inj, neg_smul, Fin.succAbove_cycleRange, mul_left_comm] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R ⊢ det A = ∑ j : Fin (Nat.succ n), (-1) ^ ↑j * A 0 j * det (submatrix A Fin.succ (Fin.succAbove j)) [PROOFSTEP] rw [← det_transpose A, det_succ_column_zero] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R ⊢ ∑ i : Fin (Nat.succ n), (-1) ^ ↑i * Aᵀ i 0 * det (submatrix Aᵀ (Fin.succAbove i) Fin.succ) = ∑ j : Fin (Nat.succ n), (-1) ^ ↑j * A 0 j * det (submatrix A Fin.succ (Fin.succAbove j)) [PROOFSTEP] refine' Finset.sum_congr rfl fun i _ => _ [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) x✝ : i ∈ univ ⊢ (-1) ^ ↑i * Aᵀ i 0 * det (submatrix Aᵀ (Fin.succAbove i) Fin.succ) = (-1) ^ ↑i * A 0 i * det (submatrix A Fin.succ (Fin.succAbove i)) [PROOFSTEP] rw [← det_transpose] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) x✝ : i ∈ univ ⊢ (-1) ^ ↑i * Aᵀ i 0 * det (submatrix Aᵀ (Fin.succAbove i) Fin.succ)ᵀ = (-1) ^ ↑i * A 0 i * det (submatrix A Fin.succ (Fin.succAbove i)) [PROOFSTEP] simp only [transpose_apply, transpose_submatrix, transpose_transpose] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) ⊢ det A = ∑ j : Fin (Nat.succ n), (-1) ^ (↑i + ↑j) * A i j * det (submatrix A (Fin.succAbove i) (Fin.succAbove j)) [PROOFSTEP] simp_rw [pow_add, mul_assoc, ← mul_sum] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) ⊢ det A = (-1) ^ ↑i * ∑ x : Fin (Nat.succ n), (-1) ^ ↑x * (A i x * det (submatrix A (Fin.succAbove i) (Fin.succAbove x))) [PROOFSTEP] have : det A = (-1 : R) ^ (i : ℕ) * (Perm.sign i.cycleRange⁻¹) * det A := by calc det A = ↑((-1 : ℤˣ) ^ (i : ℕ) * (-1 : ℤˣ) ^ (i : ℕ) : ℤˣ) * det A := by simp _ = (-1 : R) ^ (i : ℕ) * (Perm.sign i.cycleRange⁻¹) * det A := by simp [-Int.units_mul_self] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) ⊢ det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A [PROOFSTEP] calc det A = ↑((-1 : ℤˣ) ^ (i : ℕ) * (-1 : ℤˣ) ^ (i : ℕ) : ℤˣ) * det A := by simp _ = (-1 : R) ^ (i : ℕ) * (Perm.sign i.cycleRange⁻¹) * det A := by simp [-Int.units_mul_self] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) ⊢ det A = ↑↑((-1) ^ ↑i * (-1) ^ ↑i) * det A [PROOFSTEP] simp [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) ⊢ ↑↑((-1) ^ ↑i * (-1) ^ ↑i) * det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A [PROOFSTEP] simp [-Int.units_mul_self] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A ⊢ det A = (-1) ^ ↑i * ∑ x : Fin (Nat.succ n), (-1) ^ ↑x * (A i x * det (submatrix A (Fin.succAbove i) (Fin.succAbove x))) [PROOFSTEP] rw [this, mul_assoc] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A ⊢ (-1) ^ ↑i * (↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A) = (-1) ^ ↑i * ∑ x : Fin (Nat.succ n), (-1) ^ ↑x * (A i x * det (submatrix A (Fin.succAbove i) (Fin.succAbove x))) [PROOFSTEP] congr [GOAL] case e_a m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A ⊢ ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A = ∑ x : Fin (Nat.succ n), (-1) ^ ↑x * (A i x * det (submatrix A (Fin.succAbove i) (Fin.succAbove x))) [PROOFSTEP] rw [← det_permute, det_succ_row_zero] [GOAL] case e_a m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A ⊢ ∑ j : Fin (Nat.succ n), (-1) ^ ↑j * A (↑(Fin.cycleRange i)⁻¹ 0) j * det (submatrix (fun i_1 => A (↑(Fin.cycleRange i)⁻¹ i_1)) Fin.succ (Fin.succAbove j)) = ∑ x : Fin (Nat.succ n), (-1) ^ ↑x * (A i x * det (submatrix A (Fin.succAbove i) (Fin.succAbove x))) [PROOFSTEP] refine' Finset.sum_congr rfl fun j _ => _ [GOAL] case e_a m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A j : Fin (Nat.succ n) x✝ : j ∈ univ ⊢ (-1) ^ ↑j * A (↑(Fin.cycleRange i)⁻¹ 0) j * det (submatrix (fun i_1 => A (↑(Fin.cycleRange i)⁻¹ i_1)) Fin.succ (Fin.succAbove j)) = (-1) ^ ↑j * (A i j * det (submatrix A (Fin.succAbove i) (Fin.succAbove j))) [PROOFSTEP] rw [mul_assoc, Matrix.submatrix, Matrix.submatrix] [GOAL] case e_a m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A j : Fin (Nat.succ n) x✝ : j ∈ univ ⊢ (-1) ^ ↑j * (A (↑(Fin.cycleRange i)⁻¹ 0) j * det (↑of fun i_1 j_1 => A (↑(Fin.cycleRange i)⁻¹ (Fin.succ i_1)) (Fin.succAbove j j_1))) = (-1) ^ ↑j * (A i j * det (↑of fun i_1 j_1 => A (Fin.succAbove i i_1) (Fin.succAbove j j_1))) [PROOFSTEP] congr [GOAL] case e_a.e_a.e_a.e_a m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A j : Fin (Nat.succ n) x✝ : j ∈ univ ⊢ ↑(Fin.cycleRange i)⁻¹ 0 = i [PROOFSTEP] rw [Equiv.Perm.inv_def, Fin.cycleRange_symm_zero] [GOAL] case e_a.e_a.e_a.e_M.h.e_6.h m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A j : Fin (Nat.succ n) x✝ : j ∈ univ ⊢ (fun i_1 j_1 => A (↑(Fin.cycleRange i)⁻¹ (Fin.succ i_1)) (Fin.succAbove j j_1)) = fun i_1 j_1 => A (Fin.succAbove i i_1) (Fin.succAbove j j_1) [PROOFSTEP] ext i' j' [GOAL] case e_a.e_a.e_a.e_M.h.e_6.h.h.h m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R i : Fin (Nat.succ n) this : det A = (-1) ^ ↑i * ↑↑(↑sign (Fin.cycleRange i)⁻¹) * det A j : Fin (Nat.succ n) x✝ : j ∈ univ i' j' : Fin n ⊢ A (↑(Fin.cycleRange i)⁻¹ (Fin.succ i')) (Fin.succAbove j j') = A (Fin.succAbove i i') (Fin.succAbove j j') [PROOFSTEP] rw [Equiv.Perm.inv_def, Fin.cycleRange_symm_succ] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R j : Fin (Nat.succ n) ⊢ det A = ∑ i : Fin (Nat.succ n), (-1) ^ (↑i + ↑j) * A i j * det (submatrix A (Fin.succAbove i) (Fin.succAbove j)) [PROOFSTEP] rw [← det_transpose, det_succ_row _ j] [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R j : Fin (Nat.succ n) ⊢ ∑ j_1 : Fin (Nat.succ n), (-1) ^ (↑j + ↑j_1) * Aᵀ j j_1 * det (submatrix Aᵀ (Fin.succAbove j) (Fin.succAbove j_1)) = ∑ i : Fin (Nat.succ n), (-1) ^ (↑i + ↑j) * A i j * det (submatrix A (Fin.succAbove i) (Fin.succAbove j)) [PROOFSTEP] refine' Finset.sum_congr rfl fun i _ => _ [GOAL] m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ A : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R j i : Fin (Nat.succ n) x✝ : i ∈ univ ⊢ (-1) ^ (↑j + ↑i) * Aᵀ j i * det (submatrix Aᵀ (Fin.succAbove j) (Fin.succAbove i)) = (-1) ^ (↑i + ↑j) * A i j * det (submatrix A (Fin.succAbove i) (Fin.succAbove j)) [PROOFSTEP] rw [add_comm, ← det_transpose, transpose_apply, transpose_submatrix, transpose_transpose] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix (Fin 2) (Fin 2) R ⊢ det A = A 0 0 * A 1 1 - A 0 1 * A 1 0 [PROOFSTEP] simp [Matrix.det_succ_row_zero, Fin.sum_univ_succ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix (Fin 2) (Fin 2) R ⊢ A 0 0 * A 1 1 + -(A 0 1 * A 1 0) = A 0 0 * A 1 1 - A 0 1 * A 1 0 [PROOFSTEP] ring [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix (Fin 3) (Fin 3) R ⊢ det A = A 0 0 * A 1 1 * A 2 2 - A 0 0 * A 1 2 * A 2 1 - A 0 1 * A 1 0 * A 2 2 + A 0 1 * A 1 2 * A 2 0 + A 0 2 * A 1 0 * A 2 1 - A 0 2 * A 1 1 * A 2 0 [PROOFSTEP] simp [Matrix.det_succ_row_zero, Fin.sum_univ_succ] [GOAL] m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix (Fin 3) (Fin 3) R ⊢ A 0 0 * (A 1 1 * A 2 2 + -(A 1 2 * A 2 1)) + (-(A 0 1 * (A 1 0 * A 2 2 + -(A 1 2 * A 2 0))) + A 0 2 * (A 1 0 * A 2 1 + -(A 1 1 * A 2 0))) = A 0 0 * A 1 1 * A 2 2 - A 0 0 * A 1 2 * A 2 1 - A 0 1 * A 1 0 * A 2 2 + A 0 1 * A 1 2 * A 2 0 + A 0 2 * A 1 0 * A 2 1 - A 0 2 * A 1 1 * A 2 0 [PROOFSTEP] ring
{"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.Determinant", "llama_tokens": 90256}
[GOAL] X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring Y inst✝ : Algebra R Y ⊢ ∀ (r : R) (x : (fun x => LocallyConstant X Y) r), ↑(RingHom.comp constRingHom (algebraMap R Y)) r * x = x * ↑(RingHom.comp constRingHom (algebraMap R Y)) r [PROOFSTEP] intros [GOAL] X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring Y inst✝ : Algebra R Y r✝ : R x✝ : LocallyConstant X Y ⊢ ↑(RingHom.comp constRingHom (algebraMap R Y)) r✝ * x✝ = x✝ * ↑(RingHom.comp constRingHom (algebraMap R Y)) r✝ [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring Y inst✝ : Algebra R Y r✝ : R x✝¹ : LocallyConstant X Y x✝ : X ⊢ ↑(↑(RingHom.comp constRingHom (algebraMap R Y)) r✝ * x✝¹) x✝ = ↑(x✝¹ * ↑(RingHom.comp constRingHom (algebraMap R Y)) r✝) x✝ [PROOFSTEP] exact Algebra.commutes' _ _ [GOAL] X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring Y inst✝ : Algebra R Y ⊢ ∀ (r : R) (x : (fun x => LocallyConstant X Y) r), r • x = ↑(RingHom.comp constRingHom (algebraMap R Y)) r * x [PROOFSTEP] intros [GOAL] X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring Y inst✝ : Algebra R Y r✝ : R x✝ : LocallyConstant X Y ⊢ r✝ • x✝ = ↑(RingHom.comp constRingHom (algebraMap R Y)) r✝ * x✝ [PROOFSTEP] ext [GOAL] case h X : Type u_1 Y : Type u_2 inst✝³ : TopologicalSpace X R : Type u_3 inst✝² : CommSemiring R inst✝¹ : Semiring Y inst✝ : Algebra R Y r✝ : R x✝¹ : LocallyConstant X Y x✝ : X ⊢ ↑(r✝ • x✝¹) x✝ = ↑(↑(RingHom.comp constRingHom (algebraMap R Y)) r✝ * x✝¹) x✝ [PROOFSTEP] exact Algebra.smul_def' _ _ [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X R : Type u_3 inst✝¹ : TopologicalSpace Y Z : Type ?u.139413 inst✝ : Mul Z f : X → Y hf : Continuous f r s : LocallyConstant Y Z ⊢ comap f (r * s) = comap f r * comap f s [PROOFSTEP] ext x [GOAL] case h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X R : Type u_3 inst✝¹ : TopologicalSpace Y Z : Type ?u.139413 inst✝ : Mul Z f : X → Y hf : Continuous f r s : LocallyConstant Y Z x : X ⊢ ↑(comap f (r * s)) x = ↑(comap f r * comap f s) x [PROOFSTEP] simp [hf] [GOAL] X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X R : Type u_3 inst✝¹ : TopologicalSpace Y Z : Type ?u.141527 inst✝ : MulOneClass Z f : X → Y hf : Continuous f ⊢ comap f 1 = 1 [PROOFSTEP] ext x [GOAL] case h X : Type u_1 Y : Type u_2 inst✝² : TopologicalSpace X R : Type u_3 inst✝¹ : TopologicalSpace Y Z : Type ?u.141527 inst✝ : MulOneClass Z f : X → Y hf : Continuous f x : X ⊢ ↑(comap f 1) x = ↑1 x [PROOFSTEP] simp [hf] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁴ : TopologicalSpace X R✝ : Type u_3 inst✝³ : TopologicalSpace Y Z : Type ?u.147135 R : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid Z inst✝ : Module R Z f : X → Y hf : Continuous f r : R s : LocallyConstant Y Z ⊢ AddHom.toFun { toFun := comap f, map_add' := (_ : ∀ (x y : LocallyConstant Y Z), ↑(comapAddMonoidHom f hf) (x + y) = ↑(comapAddMonoidHom f hf) x + ↑(comapAddMonoidHom f hf) y) } (r • s) = ↑(RingHom.id R) r • AddHom.toFun { toFun := comap f, map_add' := (_ : ∀ (x y : LocallyConstant Y Z), ↑(comapAddMonoidHom f hf) (x + y) = ↑(comapAddMonoidHom f hf) x + ↑(comapAddMonoidHom f hf) y) } s [PROOFSTEP] ext x [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁴ : TopologicalSpace X R✝ : Type u_3 inst✝³ : TopologicalSpace Y Z : Type ?u.147135 R : Type u_4 inst✝² : Semiring R inst✝¹ : AddCommMonoid Z inst✝ : Module R Z f : X → Y hf : Continuous f r : R s : LocallyConstant Y Z x : X ⊢ ↑(AddHom.toFun { toFun := comap f, map_add' := (_ : ∀ (x y : LocallyConstant Y Z), ↑(comapAddMonoidHom f hf) (x + y) = ↑(comapAddMonoidHom f hf) x + ↑(comapAddMonoidHom f hf) y) } (r • s)) x = ↑(↑(RingHom.id R) r • AddHom.toFun { toFun := comap f, map_add' := (_ : ∀ (x y : LocallyConstant Y Z), ↑(comapAddMonoidHom f hf) (x + y) = ↑(comapAddMonoidHom f hf) x + ↑(comapAddMonoidHom f hf) y) } s) x [PROOFSTEP] simp [hf] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁴ : TopologicalSpace X R✝ : Type u_3 inst✝³ : TopologicalSpace Y Z : Type ?u.155777 R : Type u_4 inst✝² : CommSemiring R inst✝¹ : Semiring Z inst✝ : Algebra R Z f : X → Y hf : Continuous f r : R ⊢ OneHom.toFun (↑↑(comapRingHom f hf)) (↑(algebraMap R (LocallyConstant Y Z)) r) = ↑(algebraMap R (LocallyConstant X Z)) r [PROOFSTEP] ext x [GOAL] case h X : Type u_1 Y : Type u_2 inst✝⁴ : TopologicalSpace X R✝ : Type u_3 inst✝³ : TopologicalSpace Y Z : Type ?u.155777 R : Type u_4 inst✝² : CommSemiring R inst✝¹ : Semiring Z inst✝ : Algebra R Z f : X → Y hf : Continuous f r : R x : X ⊢ ↑(OneHom.toFun (↑↑(comapRingHom f hf)) (↑(algebraMap R (LocallyConstant Y Z)) r)) x = ↑(↑(algebraMap R (LocallyConstant X Z)) r) x [PROOFSTEP] simp [hf]
{"mathlib_filename": "Mathlib.Topology.LocallyConstant.Algebra", "llama_tokens": 2541}
[GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace R inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : CommRing R inst✝ : TopologicalRing R A : X → Matrix n n R hA : Continuous A ⊢ Continuous fun x => det (A x) [PROOFSTEP] simp_rw [Matrix.det_apply] [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace R inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : CommRing R inst✝ : TopologicalRing R A : X → Matrix n n R hA : Continuous A ⊢ Continuous fun x => Finset.sum Finset.univ fun x_1 => ↑Equiv.Perm.sign x_1 • Finset.prod Finset.univ fun x_2 => A x (↑x_1 x_2) x_2 [PROOFSTEP] refine' continuous_finset_sum _ fun l _ => Continuous.const_smul _ _ [GOAL] X : Type u_1 α : Type u_2 l✝ : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l✝ → Type u_9 n' : l✝ → Type u_10 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace R inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : CommRing R inst✝ : TopologicalRing R A : X → Matrix n n R hA : Continuous A l : Equiv.Perm n x✝ : l ∈ Finset.univ ⊢ Continuous fun x => Finset.prod Finset.univ fun x_1 => A x (↑l x_1) x_1 [PROOFSTEP] refine' continuous_finset_prod _ fun l _ => hA.matrix_elem _ _ [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D ⊢ ∀ (i : n ⊕ p) (j : l ⊕ m), Continuous fun a => fromBlocks (A a) (B a) (C a) (D a) i j [PROOFSTEP] rintro (i | i) (j | j) [GOAL] case inl.inl X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D i : n j : l ⊢ Continuous fun a => fromBlocks (A a) (B a) (C a) (D a) (Sum.inl i) (Sum.inl j) [PROOFSTEP] refine' Continuous.matrix_elem _ i j [GOAL] case inl.inr X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D i : n j : m ⊢ Continuous fun a => fromBlocks (A a) (B a) (C a) (D a) (Sum.inl i) (Sum.inr j) [PROOFSTEP] refine' Continuous.matrix_elem _ i j [GOAL] case inr.inl X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D i : p j : l ⊢ Continuous fun a => fromBlocks (A a) (B a) (C a) (D a) (Sum.inr i) (Sum.inl j) [PROOFSTEP] refine' Continuous.matrix_elem _ i j [GOAL] case inr.inr X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D i : p j : m ⊢ Continuous fun a => fromBlocks (A a) (B a) (C a) (D a) (Sum.inr i) (Sum.inr j) [PROOFSTEP] refine' Continuous.matrix_elem _ i j [GOAL] case inl.inl X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D i : n j : l ⊢ Continuous fun a => A a [PROOFSTEP] assumption [GOAL] case inl.inr X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D i : n j : m ⊢ Continuous fun a => B a [PROOFSTEP] assumption [GOAL] case inr.inl X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D i : p j : l ⊢ Continuous fun a => C a [PROOFSTEP] assumption [GOAL] case inr.inr X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace R A : X → Matrix n l R B : X → Matrix n m R C : X → Matrix p l R D : X → Matrix p m R hA : Continuous A hB : Continuous B hC : Continuous C hD : Continuous D i : p j : m ⊢ Continuous fun a => D a [PROOFSTEP] assumption [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace R inst✝¹ : Zero R inst✝ : DecidableEq l A : X → (i : l) → Matrix (m' i) (n' i) R hA : Continuous A x✝¹ : (i : l) × m' i x✝ : (i : l) × n' i i₁ : l i₂ : m' i₁ j₁ : l j₂ : n' j₁ ⊢ Continuous fun a => blockDiagonal' (A a) { fst := i₁, snd := i₂ } { fst := j₁, snd := j₂ } [PROOFSTEP] dsimp only [blockDiagonal'_apply'] [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace R inst✝¹ : Zero R inst✝ : DecidableEq l A : X → (i : l) → Matrix (m' i) (n' i) R hA : Continuous A x✝¹ : (i : l) × m' i x✝ : (i : l) × n' i i₁ : l i₂ : m' i₁ j₁ : l j₂ : n' j₁ ⊢ Continuous fun a => if h : i₁ = j₁ then A a i₁ i₂ (cast (_ : n' j₁ = n' i₁) j₂) else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace R inst✝¹ : Zero R inst✝ : DecidableEq l A : X → (i : l) → Matrix (m' i) (n' i) R hA : Continuous A x✝¹ : (i : l) × m' i x✝ : (i : l) × n' i i₁ : l i₂ : m' i₁ j₁ : l j₂ : n' j₁ h : i₁ = j₁ ⊢ Continuous fun a => A a i₁ i₂ (cast (_ : n' j₁ = n' i₁) j₂) [PROOFSTEP] subst h [GOAL] case pos X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace R inst✝¹ : Zero R inst✝ : DecidableEq l A : X → (i : l) → Matrix (m' i) (n' i) R hA : Continuous A x✝¹ : (i : l) × m' i x✝ : (i : l) × n' i i₁ : l i₂ : m' i₁ j₂ : n' i₁ ⊢ Continuous fun a => A a i₁ i₂ (cast (_ : n' i₁ = n' i₁) j₂) [PROOFSTEP] exact ((continuous_apply i₁).comp hA).matrix_elem i₂ j₂ [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace R inst✝¹ : Zero R inst✝ : DecidableEq l A : X → (i : l) → Matrix (m' i) (n' i) R hA : Continuous A x✝¹ : (i : l) × m' i x✝ : (i : l) × n' i i₁ : l i₂ : m' i₁ j₁ : l j₂ : n' j₁ h : ¬i₁ = j₁ ⊢ Continuous fun a => 0 [PROOFSTEP] exact continuous_const [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁴ : Semiring α inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : Module α R inst✝ : T2Space R f : X → Matrix m n R ⊢ (∑' (x : X), f x)ᵀ = ∑' (x : X), (f x)ᵀ [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁴ : Semiring α inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : Module α R inst✝ : T2Space R f : X → Matrix m n R hf : Summable f ⊢ (∑' (x : X), f x)ᵀ = ∑' (x : X), (f x)ᵀ [PROOFSTEP] exact hf.hasSum.matrix_transpose.tsum_eq.symm [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁴ : Semiring α inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : Module α R inst✝ : T2Space R f : X → Matrix m n R hf : ¬Summable f ⊢ (∑' (x : X), f x)ᵀ = ∑' (x : X), (f x)ᵀ [PROOFSTEP] have hft := summable_matrix_transpose.not.mpr hf [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁴ : Semiring α inst✝³ : AddCommMonoid R inst✝² : TopologicalSpace R inst✝¹ : Module α R inst✝ : T2Space R f : X → Matrix m n R hf : ¬Summable f hft : ¬Summable fun x => (f x)ᵀ ⊢ (∑' (x : X), f x)ᵀ = ∑' (x : X), (f x)ᵀ [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable hft, transpose_zero] [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁶ : Semiring α inst✝⁵ : AddCommMonoid R inst✝⁴ : TopologicalSpace R inst✝³ : Module α R inst✝² : StarAddMonoid R inst✝¹ : ContinuousStar R inst✝ : T2Space R f : X → Matrix m n R ⊢ (∑' (x : X), f x)ᴴ = ∑' (x : X), (f x)ᴴ [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁶ : Semiring α inst✝⁵ : AddCommMonoid R inst✝⁴ : TopologicalSpace R inst✝³ : Module α R inst✝² : StarAddMonoid R inst✝¹ : ContinuousStar R inst✝ : T2Space R f : X → Matrix m n R hf : Summable f ⊢ (∑' (x : X), f x)ᴴ = ∑' (x : X), (f x)ᴴ [PROOFSTEP] exact hf.hasSum.matrix_conjTranspose.tsum_eq.symm [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁶ : Semiring α inst✝⁵ : AddCommMonoid R inst✝⁴ : TopologicalSpace R inst✝³ : Module α R inst✝² : StarAddMonoid R inst✝¹ : ContinuousStar R inst✝ : T2Space R f : X → Matrix m n R hf : ¬Summable f ⊢ (∑' (x : X), f x)ᴴ = ∑' (x : X), (f x)ᴴ [PROOFSTEP] have hft := summable_matrix_conjTranspose.not.mpr hf [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁶ : Semiring α inst✝⁵ : AddCommMonoid R inst✝⁴ : TopologicalSpace R inst✝³ : Module α R inst✝² : StarAddMonoid R inst✝¹ : ContinuousStar R inst✝ : T2Space R f : X → Matrix m n R hf : ¬Summable f hft : ¬Summable fun x => (f x)ᴴ ⊢ (∑' (x : X), f x)ᴴ = ∑' (x : X), (f x)ᴴ [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable hft, conjTranspose_zero] [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq n inst✝ : T2Space R f : X → n → R ⊢ diagonal (∑' (x : X), f x) = ∑' (x : X), diagonal (f x) [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq n inst✝ : T2Space R f : X → n → R hf : Summable f ⊢ diagonal (∑' (x : X), f x) = ∑' (x : X), diagonal (f x) [PROOFSTEP] exact hf.hasSum.matrix_diagonal.tsum_eq.symm [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq n inst✝ : T2Space R f : X → n → R hf : ¬Summable f ⊢ diagonal (∑' (x : X), f x) = ∑' (x : X), diagonal (f x) [PROOFSTEP] have hft := summable_matrix_diagonal.not.mpr hf [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq n inst✝ : T2Space R f : X → n → R hf : ¬Summable f hft : ¬Summable fun x => diagonal (f x) ⊢ diagonal (∑' (x : X), f x) = ∑' (x : X), diagonal (f x) [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable hft] [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq n inst✝ : T2Space R f : X → n → R hf : ¬Summable f hft : ¬Summable fun x => diagonal (f x) ⊢ diagonal 0 = 0 [PROOFSTEP] exact diagonal_zero [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R ⊢ blockDiagonal (∑' (x : X), f x) = ∑' (x : X), blockDiagonal (f x) [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R hf : Summable f ⊢ blockDiagonal (∑' (x : X), f x) = ∑' (x : X), blockDiagonal (f x) [PROOFSTEP] exact hf.hasSum.matrix_blockDiagonal.tsum_eq.symm [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R hf : ¬Summable f ⊢ blockDiagonal (∑' (x : X), f x) = ∑' (x : X), blockDiagonal (f x) [PROOFSTEP] have hft := summable_matrix_blockDiagonal.not.mpr hf [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R hf : ¬Summable f hft : ¬Summable fun x => blockDiagonal (f x) ⊢ blockDiagonal (∑' (x : X), f x) = ∑' (x : X), blockDiagonal (f x) [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable hft] [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq p inst✝ : T2Space R f : X → p → Matrix m n R hf : ¬Summable f hft : ¬Summable fun x => blockDiagonal (f x) ⊢ blockDiagonal 0 = 0 [PROOFSTEP] exact blockDiagonal_zero [GOAL] X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq l inst✝ : T2Space R f : X → (i : l) → Matrix (m' i) (n' i) R ⊢ blockDiagonal' (∑' (x : X), f x) = ∑' (x : X), blockDiagonal' (f x) [PROOFSTEP] by_cases hf : Summable f [GOAL] case pos X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq l inst✝ : T2Space R f : X → (i : l) → Matrix (m' i) (n' i) R hf : Summable f ⊢ blockDiagonal' (∑' (x : X), f x) = ∑' (x : X), blockDiagonal' (f x) [PROOFSTEP] exact hf.hasSum.matrix_blockDiagonal'.tsum_eq.symm [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq l inst✝ : T2Space R f : X → (i : l) → Matrix (m' i) (n' i) R hf : ¬Summable f ⊢ blockDiagonal' (∑' (x : X), f x) = ∑' (x : X), blockDiagonal' (f x) [PROOFSTEP] have hft := summable_matrix_blockDiagonal'.not.mpr hf [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq l inst✝ : T2Space R f : X → (i : l) → Matrix (m' i) (n' i) R hf : ¬Summable f hft : ¬Summable fun x => blockDiagonal' (f x) ⊢ blockDiagonal' (∑' (x : X), f x) = ∑' (x : X), blockDiagonal' (f x) [PROOFSTEP] rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable hft] [GOAL] case neg X : Type u_1 α : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 p : Type u_6 S : Type u_7 R : Type u_8 m' : l → Type u_9 n' : l → Type u_10 inst✝⁵ : Semiring α inst✝⁴ : AddCommMonoid R inst✝³ : TopologicalSpace R inst✝² : Module α R inst✝¹ : DecidableEq l inst✝ : T2Space R f : X → (i : l) → Matrix (m' i) (n' i) R hf : ¬Summable f hft : ¬Summable fun x => blockDiagonal' (f x) ⊢ blockDiagonal' 0 = 0 [PROOFSTEP] exact blockDiagonal'_zero
{"mathlib_filename": "Mathlib.Topology.Instances.Matrix", "llama_tokens": 9495}
[GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α ⊢ UpperSetTopology α [PROOFSTEP] letI := upperSetTopology' α [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α this : TopologicalSpace α := upperSetTopology' α ⊢ UpperSetTopology α [PROOFSTEP] exact ⟨rfl⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α ⊢ LowerSetTopology α [PROOFSTEP] letI := lowerSetTopology' α [GOAL] α : Type u_1 β : Type u_2 inst✝ : Preorder α this : TopologicalSpace α := lowerSetTopology' α ⊢ LowerSetTopology α [PROOFSTEP] exact ⟨rfl⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : TopologicalSpace α inst✝³ : UpperSetTopology α s : Set α inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α ⊢ instTopologicalSpaceOrderDual = lowerSetTopology' αᵒᵈ [PROOFSTEP] refine topologicalSpace_eq ?_ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : TopologicalSpace α inst✝³ : UpperSetTopology α s : Set α inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α ⊢ IsOpen = IsOpen [PROOFSTEP] rw [(UpperSetTopology.topology_eq (α))] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α ⊢ WithUpperSetTopology.instTopologicalSpaceWithUpperSetTopology = induced (↑WithUpperSetTopology.ofUpperSet) inst✝¹ [PROOFSTEP] erw [topology_eq α, induced_id] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α ⊢ WithUpperSetTopology.instTopologicalSpaceWithUpperSetTopology = upperSetTopology' α [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α ⊢ IsOpen s ↔ IsUpperSet s [PROOFSTEP] rw [topology_eq α] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α ⊢ IsOpen s ↔ IsUpperSet s [PROOFSTEP] rfl -- Alexandrov property, set formulation [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α S : Set (Set α) hf : ∀ (s : Set α), s ∈ S → IsOpen s ⊢ IsOpen (⋂₀ S) [PROOFSTEP] simp_rw [IsOpen_iff_IsUpperSet] at * [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α S : Set (Set α) hf : ∀ (s : Set α), s ∈ S → IsUpperSet s ⊢ IsUpperSet (⋂₀ S) [PROOFSTEP] apply isUpperSet_sInter [GOAL] case hf α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α S : Set (Set α) hf : ∀ (s : Set α), s ∈ S → IsUpperSet s ⊢ ∀ (s : Set α), s ∈ S → IsUpperSet s [PROOFSTEP] intros s hs [GOAL] case hf α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s✝ : Set α S : Set (Set α) hf : ∀ (s : Set α), s ∈ S → IsUpperSet s s : Set α hs : s ∈ S ⊢ IsUpperSet s [PROOFSTEP] exact hf _ hs [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α ι : Sort u_3 f : ι → Set α hf : ∀ (i : ι), IsOpen (f i) ⊢ IsOpen (⋂ (i : ι), f i) [PROOFSTEP] simp_rw [IsOpen_iff_IsUpperSet] at * [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α ι : Sort u_3 f : ι → Set α hf : ∀ (i : ι), IsUpperSet (f i) ⊢ IsUpperSet (⋂ (i : ι), f i) [PROOFSTEP] apply isUpperSet_iInter [GOAL] case hf α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α ι : Sort u_3 f : ι → Set α hf : ∀ (i : ι), IsUpperSet (f i) ⊢ ∀ (i : ι), IsUpperSet (f i) [PROOFSTEP] intros i [GOAL] case hf α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α ι : Sort u_3 f : ι → Set α hf : ∀ (i : ι), IsUpperSet (f i) i : ι ⊢ IsUpperSet (f i) [PROOFSTEP] exact hf i [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s✝ s : Set α ⊢ IsClosed s ↔ IsLowerSet s [PROOFSTEP] rw [← isOpen_compl_iff, IsOpen_iff_IsUpperSet, isLowerSet_compl.symm, compl_compl] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s✝ s : Set α ⊢ closure s = ↑(lowerClosure s) [PROOFSTEP] rw [subset_antisymm_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s✝ s : Set α ⊢ closure s ⊆ ↑(lowerClosure s) ∧ ↑(lowerClosure s) ⊆ closure s [PROOFSTEP] constructor [GOAL] case left α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s✝ s : Set α ⊢ closure s ⊆ ↑(lowerClosure s) [PROOFSTEP] apply closure_minimal subset_lowerClosure _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s✝ s : Set α ⊢ IsClosed ↑(lowerClosure s) [PROOFSTEP] rw [isClosed_iff_isLower] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s✝ s : Set α ⊢ IsLowerSet ↑(lowerClosure s) [PROOFSTEP] exact LowerSet.lower (lowerClosure s) [GOAL] case right α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s✝ s : Set α ⊢ ↑(lowerClosure s) ⊆ closure s [PROOFSTEP] apply lowerClosure_min subset_closure (isClosed_isLower isClosed_closure) [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α a : α ⊢ closure {a} = Iic a [PROOFSTEP] rw [closure_eq_lowerClosure, lowerClosure_singleton] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperSetTopology α s : Set α a : α ⊢ ↑(LowerSet.Iic a) = Iic a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β ⊢ Monotone f ↔ Continuous f [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β ⊢ Monotone f → Continuous f [PROOFSTEP] intro hf [GOAL] case mp α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β hf : Monotone f ⊢ Continuous f [PROOFSTEP] simp_rw [continuous_def, IsOpen_iff_IsUpperSet] [GOAL] case mp α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β hf : Monotone f ⊢ ∀ (s : Set β), IsUpperSet s → IsUpperSet (f ⁻¹' s) [PROOFSTEP] exact fun _ hs ↦ IsUpperSet.preimage hs hf [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β ⊢ Continuous f → Monotone f [PROOFSTEP] intro hf a b hab [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β hf : Continuous f a b : α hab : a ≤ b ⊢ f a ≤ f b [PROOFSTEP] rw [← mem_Iic, ← closure_singleton] at hab ⊢ [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β hf : Continuous f a b : α hab✝ : a ∈ Iic b hab : a ∈ closure {b} ⊢ f a ∈ closure {f b} [PROOFSTEP] apply (Continuous.closure_preimage_subset hf {f b}) [GOAL] case mpr.a α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β hf : Continuous f a b : α hab✝ : a ∈ Iic b hab : a ∈ closure {b} ⊢ a ∈ closure (f ⁻¹' {f b}) [PROOFSTEP] apply mem_of_mem_of_subset hab [GOAL] case mpr.a α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β hf : Continuous f a b : α hab✝ : a ∈ Iic b hab : a ∈ closure {b} ⊢ closure {b} ⊆ closure (f ⁻¹' {f b}) [PROOFSTEP] apply closure_mono [GOAL] case mpr.a.h α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperSetTopology β f : α → β hf : Continuous f a b : α hab✝ : a ∈ Iic b hab : a ∈ closure {b} ⊢ {b} ⊆ f ⁻¹' {f b} [PROOFSTEP] rw [singleton_subset_iff, mem_preimage, mem_singleton_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperTopology β f : α → β hf : Monotone f ⊢ Continuous f [PROOFSTEP] rw [continuous_def] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperTopology β f : α → β hf : Monotone f ⊢ ∀ (s : Set β), IsOpen s → IsOpen (f ⁻¹' s) [PROOFSTEP] intro s hs [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperTopology β f : α → β hf : Monotone f s : Set β hs : IsOpen s ⊢ IsOpen (f ⁻¹' s) [PROOFSTEP] rw [IsOpen_iff_IsUpperSet] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperTopology β f : α → β hf : Monotone f s : Set β hs : IsOpen s ⊢ IsUpperSet (f ⁻¹' s) [PROOFSTEP] apply IsUpperSet.preimage _ hf [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : UpperSetTopology α inst✝¹ : TopologicalSpace β inst✝ : UpperTopology β f : α → β hf : Monotone f s : Set β hs : IsOpen s ⊢ IsUpperSet s [PROOFSTEP] apply UpperTopology.isUpperSet_of_isOpen hs [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : Preorder β t₁ : TopologicalSpace α inst✝¹ : UpperSetTopology α t₂ : TopologicalSpace α inst✝ : UpperTopology α s : Set α hs : IsOpen s ⊢ IsOpen s [PROOFSTEP] rw [@IsOpen_iff_IsUpperSet α _ t₁] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : Preorder β t₁ : TopologicalSpace α inst✝¹ : UpperSetTopology α t₂ : TopologicalSpace α inst✝ : UpperTopology α s : Set α hs : IsOpen s ⊢ IsUpperSet s [PROOFSTEP] exact UpperTopology.isUpperSet_of_isOpen hs [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : TopologicalSpace α inst✝³ : LowerSetTopology α s : Set α inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α ⊢ instTopologicalSpaceOrderDual = upperSetTopology' αᵒᵈ [PROOFSTEP] refine topologicalSpace_eq ?_ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : TopologicalSpace α inst✝³ : LowerSetTopology α s : Set α inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α ⊢ IsOpen = IsOpen [PROOFSTEP] rw [(LowerSetTopology.topology_eq (α))] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α s : Set α ⊢ WithLowerSetTopology.instTopologicalSpaceWithLowerSetTopology = induced (↑WithLowerSetTopology.ofLowerSet) inst✝¹ [PROOFSTEP] erw [topology_eq α, induced_id] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α s : Set α ⊢ WithLowerSetTopology.instTopologicalSpaceWithLowerSetTopology = lowerSetTopology' α [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α s : Set α ⊢ IsOpen s ↔ IsLowerSet s [PROOFSTEP] rw [topology_eq α] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α s : Set α ⊢ IsOpen s ↔ IsLowerSet s [PROOFSTEP] rfl -- Alexandrov property, set formulation [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α s✝ s : Set α ⊢ IsClosed s ↔ IsUpperSet s [PROOFSTEP] rw [← isOpen_compl_iff, IsOpen_iff_IsLowerSet, isUpperSet_compl.symm, compl_compl] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α s : Set α a : α ⊢ closure {a} = Ici a [PROOFSTEP] rw [closure_eq_upperClosure, upperClosure_singleton] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerSetTopology α s : Set α a : α ⊢ ↑(UpperSet.Ici a) = Ici a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : LowerSetTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerSetTopology β f : α → β ⊢ Monotone f ↔ Continuous f [PROOFSTEP] rw [← monotone_dual_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : LowerSetTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerSetTopology β f : α → β ⊢ Monotone (↑toDual ∘ f ∘ ↑ofDual) ↔ Continuous f [PROOFSTEP] exact UpperSetTopology.monotone_iff_continuous (α := αᵒᵈ) (β := βᵒᵈ) (f := (toDual ∘ f ∘ ofDual : αᵒᵈ → βᵒᵈ)) [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : LowerSetTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerTopology β f : α → β hf : Monotone f ⊢ Continuous f [PROOFSTEP] apply UpperSetTopology.Monotone_to_UpperTopology_Continuous (α := αᵒᵈ) (β := βᵒᵈ) (f := (toDual ∘ f ∘ ofDual : αᵒᵈ → βᵒᵈ)) [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : Preorder α inst✝⁴ : Preorder β inst✝³ : TopologicalSpace α inst✝² : LowerSetTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerTopology β f : α → β hf : Monotone f ⊢ Monotone (↑toDual ∘ f ∘ ↑ofDual) [PROOFSTEP] exact Monotone.dual hf [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : Preorder β t₁ : TopologicalSpace α inst✝¹ : LowerSetTopology α t₂ : TopologicalSpace α inst✝ : LowerTopology α s : Set α hs : IsOpen s ⊢ IsOpen s [PROOFSTEP] rw [@IsOpen_iff_IsLowerSet α _ t₁] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : Preorder α inst✝² : Preorder β t₁ : TopologicalSpace α inst✝¹ : LowerSetTopology α t₂ : TopologicalSpace α inst✝ : LowerTopology α s : Set α hs : IsOpen s ⊢ IsLowerSet s [PROOFSTEP] exact LowerTopology.isLowerSet_of_isOpen hs [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ UpperSetTopology αᵒᵈ ↔ LowerSetTopology α [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ UpperSetTopology αᵒᵈ → LowerSetTopology α [PROOFSTEP] apply UpperSetTopology.instLowerSetTopologyDual [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ LowerSetTopology α → UpperSetTopology αᵒᵈ [PROOFSTEP] apply LowerSetTopology.instUpperSetTopologyDual [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ LowerSetTopology αᵒᵈ ↔ UpperSetTopology α [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ LowerSetTopology αᵒᵈ → UpperSetTopology α [PROOFSTEP] apply LowerSetTopology.instUpperSetTopologyDual [GOAL] case mpr α : Type u_1 β : Type u_2 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ UpperSetTopology α → LowerSetTopology αᵒᵈ [PROOFSTEP] apply UpperSetTopology.instLowerSetTopologyDual
{"mathlib_filename": "Mathlib.Topology.Order.UpperLowerSetTopology", "llama_tokens": 7405}
[GOAL] α : Type u β : Type v γ : Type w ε : ℝ ε0 : ε > 0 a✝ b✝ : ℝ h : dist a✝ b✝ < ε ⊢ dist (-a✝) (-b✝) < ε [PROOFSTEP] rw [dist_comm] at h [GOAL] α : Type u β : Type v γ : Type w ε : ℝ ε0 : ε > 0 a✝ b✝ : ℝ h : dist b✝ a✝ < ε ⊢ dist (-a✝) (-b✝) < ε [PROOFSTEP] simpa only [Real.dist_eq, neg_sub_neg] using h [GOAL] α : Type u β : Type v γ : Type w ⊢ TopologicalAddGroup ℝ [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v γ : Type w x r : ℝ ⊢ IsCompact (closedBall x r) [PROOFSTEP] rw [Real.closedBall_eq_Icc] [GOAL] α : Type u β : Type v γ : Type w x r : ℝ ⊢ IsCompact (Icc (x - r) (x + r)) [PROOFSTEP] apply isCompact_Icc [GOAL] α : Type u β : Type v γ : Type w ⊢ ∀ (u : Set ℝ), u ∈ ⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo ↑a ↑b} → IsOpen u [PROOFSTEP] simp (config := { contextual := true }) [isOpen_Ioo] [GOAL] α : Type u β : Type v γ : Type w a : ℝ v : Set ℝ hav : a ∈ v hv : IsOpen v l u : ℝ hl : l < a hu : a < u h : Ioo l u ⊆ v q : ℚ hlq : l < ↑q hqa : ↑q < a p : ℚ hap : a < ↑p hpu : ↑p < u ⊢ Ioo ↑q ↑p ∈ ⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo ↑a ↑b} [PROOFSTEP] simp only [mem_iUnion] [GOAL] α : Type u β : Type v γ : Type w a : ℝ v : Set ℝ hav : a ∈ v hv : IsOpen v l u : ℝ hl : l < a hu : a < u h : Ioo l u ⊆ v q : ℚ hlq : l < ↑q hqa : ↑q < a p : ℚ hap : a < ↑p hpu : ↑p < u ⊢ ∃ i i_1 i_2, Ioo ↑q ↑p ∈ {Ioo ↑i ↑i_1} [PROOFSTEP] exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩ [GOAL] α : Type u β : Type v γ : Type w ⊢ cocompact ℝ = atBot ⊔ atTop [PROOFSTEP] simp only [← comap_dist_right_atTop_eq_cocompact (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop] [GOAL] α : Type u β : Type v γ : Type w s : Set ℝ x : ℝ ⊢ x ∈ closure s ↔ ∀ (ε : ℝ), ε > 0 → ∃ y, y ∈ s ∧ |y - x| < ε [PROOFSTEP] simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq] [GOAL] α : Type u β : Type v γ : Type w ⊢ CompleteSpace ℝ [PROOFSTEP] apply complete_of_cauchySeq_tendsto [GOAL] case a α : Type u β : Type v γ : Type w ⊢ ∀ (u : ℕ → ℝ), CauchySeq u → ∃ a, Tendsto u atTop (𝓝 a) [PROOFSTEP] intro u hu [GOAL] case a α : Type u β : Type v γ : Type w u : ℕ → ℝ hu : CauchySeq u ⊢ ∃ a, Tendsto u atTop (𝓝 a) [PROOFSTEP] let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩ [GOAL] case a α : Type u β : Type v γ : Type w u : ℕ → ℝ hu : CauchySeq u c : CauSeq ℝ abs := { val := u, property := (_ : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < ε) } ⊢ ∃ a, Tendsto u atTop (𝓝 a) [PROOFSTEP] refine' ⟨c.lim, fun s h => _⟩ [GOAL] case a α : Type u β : Type v γ : Type w u : ℕ → ℝ hu : CauchySeq u c : CauSeq ℝ abs := { val := u, property := (_ : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < ε) } s : Set ℝ h : s ∈ 𝓝 (CauSeq.lim c) ⊢ s ∈ map u atTop [PROOFSTEP] rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩ [GOAL] case a.intro.intro α : Type u β : Type v γ : Type w u : ℕ → ℝ hu : CauchySeq u c : CauSeq ℝ abs := { val := u, property := (_ : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < ε) } s : Set ℝ h : s ∈ 𝓝 (CauSeq.lim c) ε : ℝ ε0 : ε > 0 hε : ball (CauSeq.lim c) ε ⊆ s ⊢ s ∈ map u atTop [PROOFSTEP] have := c.equiv_lim ε ε0 [GOAL] case a.intro.intro α : Type u β : Type v γ : Type w u : ℕ → ℝ hu : CauchySeq u c : CauSeq ℝ abs := { val := u, property := (_ : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < ε) } s : Set ℝ h : s ∈ 𝓝 (CauSeq.lim c) ε : ℝ ε0 : ε > 0 hε : ball (CauSeq.lim c) ε ⊆ s this : ∃ i, ∀ (j : ℕ), j ≥ i → |↑(c - CauSeq.const abs (CauSeq.lim c)) j| < ε ⊢ s ∈ map u atTop [PROOFSTEP] simp only [mem_map, mem_atTop_sets, mem_setOf_eq] [GOAL] case a.intro.intro α : Type u β : Type v γ : Type w u : ℕ → ℝ hu : CauchySeq u c : CauSeq ℝ abs := { val := u, property := (_ : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < ε) } s : Set ℝ h : s ∈ 𝓝 (CauSeq.lim c) ε : ℝ ε0 : ε > 0 hε : ball (CauSeq.lim c) ε ⊆ s this : ∃ i, ∀ (j : ℕ), j ≥ i → |↑(c - CauSeq.const abs (CauSeq.lim c)) j| < ε ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → b ∈ u ⁻¹' s [PROOFSTEP] refine' this.imp fun N hN n hn => hε (hN n hn) [GOAL] α : Type u β : Type v γ : Type w x ε : ℝ ⊢ TotallyBounded (ball x ε) [PROOFSTEP] rw [Real.ball_eq_Ioo] [GOAL] α : Type u β : Type v γ : Type w x ε : ℝ ⊢ TotallyBounded (Ioo (x - ε) (x + ε)) [PROOFSTEP] apply totallyBounded_Ioo [GOAL] α : Type u β : Type v γ : Type w q : ℚ x : ℝ hx : x ∈ {r | ↑q ≤ r} t : Set ℝ ht : t ∈ 𝓝 x ε : ℝ ε0 : ε > 0 hε : ball x ε ⊆ t p : ℚ h₁ : x < ↑p h₂ : ↑p < x + ε ⊢ ↑p ∈ ball x ε [PROOFSTEP] rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'] [GOAL] α : Type u β : Type v γ : Type w s : Set ℝ ⊢ Metric.Bounded s → BddBelow s ∧ BddAbove s [PROOFSTEP] intro bdd [GOAL] α : Type u β : Type v γ : Type w s : Set ℝ bdd : Metric.Bounded s ⊢ BddBelow s ∧ BddAbove s [PROOFSTEP] rcases(bounded_iff_subset_ball 0).1 bdd with ⟨r, hr⟩ -- hr : s ⊆ closed_ball 0 r [GOAL] case intro α : Type u β : Type v γ : Type w s : Set ℝ bdd : Metric.Bounded s r : ℝ hr : s ⊆ closedBall 0 r ⊢ BddBelow s ∧ BddAbove s [PROOFSTEP] rw [Real.closedBall_eq_Icc] at hr [GOAL] case intro α : Type u β : Type v γ : Type w s : Set ℝ bdd : Metric.Bounded s r : ℝ hr : s ⊆ Icc (0 - r) (0 + r) ⊢ BddBelow s ∧ BddAbove s [PROOFSTEP] exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝ : TopologicalSpace α f : ℝ → α c : ℝ hp : Periodic f c hc : c ≠ 0 hf : Continuous f ⊢ IsCompact (range f) [PROOFSTEP] rw [← hp.image_uIcc hc 0] [GOAL] α : Type u β : Type v γ : Type w inst✝ : TopologicalSpace α f : ℝ → α c : ℝ hp : Periodic f c hc : c ≠ 0 hf : Continuous f ⊢ IsCompact (f '' [[0, 0 + c]]) [PROOFSTEP] exact isCompact_uIcc.image hf [GOAL] α : Type u β : Type v γ : Type w a : ℝ ⊢ DiscreteTopology { x // x ∈ AddSubgroup.zmultiples a } [PROOFSTEP] rcases eq_or_ne a 0 with (rfl | ha) [GOAL] case inl α : Type u β : Type v γ : Type w ⊢ DiscreteTopology { x // x ∈ AddSubgroup.zmultiples 0 } [PROOFSTEP] rw [AddSubgroup.zmultiples_zero_eq_bot] [GOAL] case inl α : Type u β : Type v γ : Type w ⊢ DiscreteTopology { x // x ∈ ⊥ } [PROOFSTEP] exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ)) [GOAL] case inr α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 ⊢ DiscreteTopology { x // x ∈ AddSubgroup.zmultiples a } [PROOFSTEP] rw [discreteTopology_iff_open_singleton_zero, isOpen_induced_iff] [GOAL] case inr α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 ⊢ ∃ t, IsOpen t ∧ Subtype.val ⁻¹' t = {0} [PROOFSTEP] refine' ⟨ball 0 |a|, isOpen_ball, _⟩ [GOAL] case inr α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 ⊢ Subtype.val ⁻¹' ball 0 |a| = {0} [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case inr.h.mk α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 x : ℝ hx : x ∈ AddSubgroup.zmultiples a ⊢ { val := x, property := hx } ∈ Subtype.val ⁻¹' ball 0 |a| ↔ { val := x, property := hx } ∈ {0} [PROOFSTEP] obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx [GOAL] case inr.h.mk.intro α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 k : ℤ hx : k • a ∈ AddSubgroup.zmultiples a ⊢ { val := k • a, property := hx } ∈ Subtype.val ⁻¹' ball 0 |a| ↔ { val := k • a, property := hx } ∈ {0} [PROOFSTEP] simp [ha, Real.dist_eq, abs_mul, (by norm_cast : |(k : ℝ)| < 1 ↔ |k| < 1)] [GOAL] α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 k : ℤ hx : k • a ∈ AddSubgroup.zmultiples a ⊢ |↑k| < 1 ↔ |k| < 1 [PROOFSTEP] norm_cast [GOAL] α : Type u β : Type v γ : Type w ⊢ Tendsto Int.cast cofinite (cocompact ℝ) [PROOFSTEP] apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective [GOAL] α : Type u β : Type v γ : Type w ⊢ DiscreteTopology { x // x ∈ AddMonoidHom.range (castAddHom ℝ) } [PROOFSTEP] rw [range_castAddHom] [GOAL] α : Type u β : Type v γ : Type w ⊢ DiscreteTopology { x // x ∈ AddSubgroup.zmultiples 1 } [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 ⊢ Tendsto (↑(↑(zmultiplesHom ℝ) a)) cofinite (cocompact ℝ) [PROOFSTEP] apply (zmultiplesHom ℝ a).tendsto_coe_cofinite_of_discrete $ smul_left_injective ℤ ha [GOAL] α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 ⊢ DiscreteTopology { x // x ∈ AddMonoidHom.range (↑(zmultiplesHom ℝ) a) } [PROOFSTEP] rw [AddSubgroup.range_zmultiplesHom] [GOAL] α : Type u β : Type v γ : Type w a : ℝ ha : a ≠ 0 ⊢ DiscreteTopology { x // x ∈ AddSubgroup.zmultiples a } [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.Instances.Real", "llama_tokens": 4379}
[GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 ⊢ Associated (↑(Algebra.norm R) f) (∏ i : ι, smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i) [PROOFSTEP] have hI := span_singleton_eq_bot.not.2 hf [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ ⊢ Associated (↑(Algebra.norm R) f) (∏ i : ι, smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i) [PROOFSTEP] let b' := ringBasis b (span { f }) hI [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI ⊢ Associated (↑(Algebra.norm R) f) (∏ i : ι, smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i) [PROOFSTEP] classical rw [← Matrix.det_diagonal, ← LinearMap.det_toLin b'] let e := (b'.equiv ((span { f }).selfBasis b hI) <| Equiv.refl _).trans ((LinearEquiv.coord S S f hf).restrictScalars R) refine (LinearMap.associated_det_of_eq_comp e _ _ ?_).symm dsimp only [LinearEquiv.trans_apply] simp_rw [← LinearEquiv.coe_toLinearMap, ← LinearMap.comp_apply, ← LinearMap.ext_iff] refine b'.ext fun i => ?_ simp_rw [LinearMap.comp_apply, LinearEquiv.coe_toLinearMap, Matrix.toLin_apply, Basis.repr_self, Finsupp.single_eq_pi_single, Matrix.diagonal_mulVec_single, Pi.single_apply, ite_smul, zero_smul, Finset.sum_ite_eq', mul_one, if_pos (Finset.mem_univ _), b'.equiv_apply] change _ = f * _ rw [mul_comm, ← smul_eq_mul, LinearEquiv.restrictScalars_apply, LinearEquiv.coord_apply_smul, Ideal.selfBasis_def] rfl [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI ⊢ Associated (↑(Algebra.norm R) f) (∏ i : ι, smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i) [PROOFSTEP] rw [← Matrix.det_diagonal, ← LinearMap.det_toLin b'] [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI ⊢ Associated (↑(Algebra.norm R) f) (↑LinearMap.det (↑(Matrix.toLin b' b') (Matrix.diagonal fun i => smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i))) [PROOFSTEP] let e := (b'.equiv ((span { f }).selfBasis b hI) <| Equiv.refl _).trans ((LinearEquiv.coord S S f hf).restrictScalars R) [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := LinearEquiv.trans (Basis.equiv b' (selfBasis b (span {f}) hI) (Equiv.refl ι)) (LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) ⊢ Associated (↑(Algebra.norm R) f) (↑LinearMap.det (↑(Matrix.toLin b' b') (Matrix.diagonal fun i => smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i))) [PROOFSTEP] refine (LinearMap.associated_det_of_eq_comp e _ _ ?_).symm [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := LinearEquiv.trans (Basis.equiv b' (selfBasis b (span {f}) hI) (Equiv.refl ι)) (LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) ⊢ ∀ (x : S), ↑(↑(Matrix.toLin b' b') (Matrix.diagonal fun i => smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i)) x = ↑(↑↑↑(Algebra.lmul R S) f) (↑e x) [PROOFSTEP] dsimp only [LinearEquiv.trans_apply] [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := LinearEquiv.trans (Basis.equiv b' (selfBasis b (span {f}) hI) (Equiv.refl ι)) (LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) ⊢ ∀ (x : S), ↑(↑(Matrix.toLin (ringBasis b (span {f}) hI) (ringBasis b (span {f}) hI)) (Matrix.diagonal fun i => smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i)) x = ↑(↑↑↑(Algebra.lmul R S) f) (↑(LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) (↑(Basis.equiv (ringBasis b (span {f}) hI) (selfBasis b (span {f}) hI) (Equiv.refl ι)) x)) [PROOFSTEP] simp_rw [← LinearEquiv.coe_toLinearMap, ← LinearMap.comp_apply, ← LinearMap.ext_iff] [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := LinearEquiv.trans (Basis.equiv b' (selfBasis b (span {f}) hI) (Equiv.refl ι)) (LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) ⊢ ↑↑(Matrix.toLin (ringBasis b (span {f}) hI) (ringBasis b (span {f}) hI)) (Matrix.diagonal fun i => smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i) = LinearMap.comp (↑↑↑(Algebra.lmul R S) f) (LinearMap.comp ↑(LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) ↑(Basis.equiv (ringBasis b (span {f}) hI) (selfBasis b (span {f}) hI) (Equiv.refl ι))) [PROOFSTEP] refine b'.ext fun i => ?_ [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := LinearEquiv.trans (Basis.equiv b' (selfBasis b (span {f}) hI) (Equiv.refl ι)) (LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) i : ι ⊢ ↑(↑↑(Matrix.toLin (ringBasis b (span {f}) hI) (ringBasis b (span {f}) hI)) (Matrix.diagonal fun i => smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i)) (↑b' i) = ↑(LinearMap.comp (↑↑↑(Algebra.lmul R S) f) (LinearMap.comp ↑(LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) ↑(Basis.equiv (ringBasis b (span {f}) hI) (selfBasis b (span {f}) hI) (Equiv.refl ι)))) (↑b' i) [PROOFSTEP] simp_rw [LinearMap.comp_apply, LinearEquiv.coe_toLinearMap, Matrix.toLin_apply, Basis.repr_self, Finsupp.single_eq_pi_single, Matrix.diagonal_mulVec_single, Pi.single_apply, ite_smul, zero_smul, Finset.sum_ite_eq', mul_one, if_pos (Finset.mem_univ _), b'.equiv_apply] [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := LinearEquiv.trans (Basis.equiv b' (selfBasis b (span {f}) hI) (Equiv.refl ι)) (LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) i : ι ⊢ smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i • ↑(ringBasis b (span {f}) hI) i = ↑(↑↑↑(Algebra.lmul R S) f) (↑(LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) (↑(selfBasis b (span {f}) hI) (↑(Equiv.refl ι) i))) [PROOFSTEP] change _ = f * _ [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := LinearEquiv.trans (Basis.equiv b' (selfBasis b (span {f}) hI) (Equiv.refl ι)) (LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) i : ι ⊢ smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i • ↑(ringBasis b (span {f}) hI) i = f * ↑(LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) (↑(selfBasis b (span {f}) hI) (↑(Equiv.refl ι) i)) [PROOFSTEP] rw [mul_comm, ← smul_eq_mul, LinearEquiv.restrictScalars_apply, LinearEquiv.coord_apply_smul, Ideal.selfBasis_def] [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : CommRing F inst✝³ : Algebra F R inst✝² : Algebra F S inst✝¹ : IsScalarTower F R S inst✝ : Fintype ι b : Basis ι R S f : S hf : f ≠ 0 hI : ¬span {f} = ⊥ b' : Basis ι R S := ringBasis b (span {f}) hI e : S ≃ₗ[R] S := LinearEquiv.trans (Basis.equiv b' (selfBasis b (span {f}) hI) (Equiv.refl ι)) (LinearEquiv.restrictScalars R (LinearEquiv.coord S S f hf)) i : ι ⊢ smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i • ↑(ringBasis b (span {f}) hI) i = smithCoeffs b (span {f}) hI (↑(Equiv.refl ι) i) • ↑(ringBasis b (span {f}) hI) (↑(Equiv.refl ι) i) [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : IsDomain R inst✝⁶ : IsPrincipalIdealRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain S inst✝³ : Algebra R S F : Type u_4 inst✝² : Field F inst✝¹ : Algebra F[X] S inst✝ : Finite ι b : Basis ι F[X] S I : Ideal S hI : I ≠ ⊥ i : ι ⊢ FiniteDimensional F (F[X] ⧸ span {smithCoeffs b I hI i}) [PROOFSTEP] refine PowerBasis.finiteDimensional ?_ [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : IsDomain R inst✝⁶ : IsPrincipalIdealRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain S inst✝³ : Algebra R S F : Type u_4 inst✝² : Field F inst✝¹ : Algebra F[X] S inst✝ : Finite ι b : Basis ι F[X] S I : Ideal S hI : I ≠ ⊥ i : ι ⊢ PowerBasis F (F[X] ⧸ span {smithCoeffs b I hI i}) [PROOFSTEP] refine AdjoinRoot.powerBasis ?_ [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝⁸ : CommRing R inst✝⁷ : IsDomain R inst✝⁶ : IsPrincipalIdealRing R inst✝⁵ : CommRing S inst✝⁴ : IsDomain S inst✝³ : Algebra R S F : Type u_4 inst✝² : Field F inst✝¹ : Algebra F[X] S inst✝ : Finite ι b : Basis ι F[X] S I : Ideal S hI : I ≠ ⊥ i : ι ⊢ smithCoeffs b I hI i ≠ 0 [PROOFSTEP] refine I.smithCoeffs_ne_zero b hI i [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : Field F inst✝³ : Algebra F[X] S inst✝² : Finite ι inst✝¹ : Algebra F S inst✝ : IsScalarTower F F[X] S b : Basis ι F[X] S f : S hf : f ≠ 0 ⊢ FiniteDimensional.finrank F (S ⧸ span {f}) = natDegree (↑(Algebra.norm F[X]) f) [PROOFSTEP] haveI := Fintype.ofFinite ι [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : Field F inst✝³ : Algebra F[X] S inst✝² : Finite ι inst✝¹ : Algebra F S inst✝ : IsScalarTower F F[X] S b : Basis ι F[X] S f : S hf : f ≠ 0 this : Fintype ι ⊢ FiniteDimensional.finrank F (S ⧸ span {f}) = natDegree (↑(Algebra.norm F[X]) f) [PROOFSTEP] have h := span_singleton_eq_bot.not.2 hf [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : Field F inst✝³ : Algebra F[X] S inst✝² : Finite ι inst✝¹ : Algebra F S inst✝ : IsScalarTower F F[X] S b : Basis ι F[X] S f : S hf : f ≠ 0 this : Fintype ι h : ¬span {f} = ⊥ ⊢ FiniteDimensional.finrank F (S ⧸ span {f}) = natDegree (↑(Algebra.norm F[X]) f) [PROOFSTEP] rw [natDegree_eq_of_degree_eq (degree_eq_degree_of_associated <| associated_norm_prod_smith b hf)] [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : Field F inst✝³ : Algebra F[X] S inst✝² : Finite ι inst✝¹ : Algebra F S inst✝ : IsScalarTower F F[X] S b : Basis ι F[X] S f : S hf : f ≠ 0 this : Fintype ι h : ¬span {f} = ⊥ ⊢ FiniteDimensional.finrank F (S ⧸ span {f}) = natDegree (∏ i : ι, smithCoeffs b (span {f}) (_ : ¬span {f} = ⊥) i) [PROOFSTEP] rw [natDegree_prod _ _ fun i _ => smithCoeffs_ne_zero b _ h i, finrank_quotient_eq_sum F h b] -- finrank_quotient_eq_sum slow [GOAL] R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : Field F inst✝³ : Algebra F[X] S inst✝² : Finite ι inst✝¹ : Algebra F S inst✝ : IsScalarTower F F[X] S b : Basis ι F[X] S f : S hf : f ≠ 0 this : Fintype ι h : ¬span {f} = ⊥ ⊢ ∑ i : ι, FiniteDimensional.finrank F (F[X] ⧸ span {smithCoeffs b (span {f}) h i}) = ∑ i : ι, natDegree (smithCoeffs b (span {f}) h i) [PROOFSTEP] congr with i [GOAL] case e_f.h R : Type u_1 S : Type u_2 ι : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : IsDomain R inst✝⁸ : IsPrincipalIdealRing R inst✝⁷ : CommRing S inst✝⁶ : IsDomain S inst✝⁵ : Algebra R S F : Type u_4 inst✝⁴ : Field F inst✝³ : Algebra F[X] S inst✝² : Finite ι inst✝¹ : Algebra F S inst✝ : IsScalarTower F F[X] S b : Basis ι F[X] S f : S hf : f ≠ 0 this : Fintype ι h : ¬span {f} = ⊥ i : ι ⊢ FiniteDimensional.finrank F (F[X] ⧸ span {smithCoeffs b (span {f}) h i}) = natDegree (smithCoeffs b (span {f}) h i) [PROOFSTEP] exact (AdjoinRoot.powerBasis <| smithCoeffs_ne_zero b _ h i).finrank
{"mathlib_filename": "Mathlib.LinearAlgebra.FreeModule.Norm", "llama_tokens": 7851}
[GOAL] α : Type u_1 S : Type u_2 R : Type u_3 M : Type u_4 inst✝¹ : TopologicalSpace R inst✝ : TopologicalSpace M x : tsze R M ⊢ nhds x = Filter.prod (nhds (fst x)) (nhds (snd x)) [PROOFSTEP] cases x [GOAL] case mk α : Type u_1 S : Type u_2 R : Type u_3 M : Type u_4 inst✝¹ : TopologicalSpace R inst✝ : TopologicalSpace M fst✝ : R snd✝ : M ⊢ nhds (fst✝, snd✝) = Filter.prod (nhds (fst (fst✝, snd✝))) (nhds (snd (fst✝, snd✝))) [PROOFSTEP] exact nhds_prod_eq
{"mathlib_filename": "Mathlib.Topology.Instances.TrivSqZeroExt", "llama_tokens": 251}
[GOAL] α : Type u_1 ⊢ Tendsto Real.toNNReal atTop atTop [PROOFSTEP] rw [← tendsto_coe_atTop] [GOAL] α : Type u_1 ⊢ Tendsto (fun a => ↑(Real.toNNReal a)) atTop atTop [PROOFSTEP] exact tendsto_atTop_mono Real.le_coe_toNNReal tendsto_id [GOAL] α : Type u_1 ⊢ ⨅ (l : ℝ≥0) (_ : ⊥ < l), 𝓟 (Set.Iio l) = ⨅ (a : ℝ≥0) (_ : a ≠ 0), 𝓟 (Set.Iio a) [PROOFSTEP] simp only [bot_lt_iff_ne_bot] [GOAL] α : Type u_1 ⊢ ⨅ (l : ℝ≥0) (_ : l ≠ ⊥), 𝓟 (Set.Iio l) = ⨅ (a : ℝ≥0) (_ : a ≠ 0), 𝓟 (Set.Iio a) [PROOFSTEP] rfl [GOAL] α : Type u_1 f : α → ℝ≥0 r : ℝ≥0 ⊢ HasSum (fun a => ↑(f a)) ↑r ↔ HasSum f r [PROOFSTEP] simp only [HasSum, ← coe_sum, tendsto_coe] [GOAL] α : Type u_1 f : α → ℝ y : ℝ hf₀ : ∀ (n : α), 0 ≤ f n hy : HasSum f y ⊢ HasSum (fun x => Real.toNNReal (f x)) (Real.toNNReal y) [PROOFSTEP] lift y to ℝ≥0 using hy.nonneg hf₀ [GOAL] case intro α : Type u_1 f : α → ℝ hf₀ : ∀ (n : α), 0 ≤ f n y : ℝ≥0 hy : HasSum f ↑y ⊢ HasSum (fun x => Real.toNNReal (f x)) (Real.toNNReal ↑y) [PROOFSTEP] lift f to α → ℝ≥0 using hf₀ [GOAL] case intro.intro α : Type u_1 y : ℝ≥0 f : α → ℝ≥0 hy : HasSum (fun i => ↑(f i)) ↑y ⊢ HasSum (fun x => Real.toNNReal ((fun i => ↑(f i)) x)) (Real.toNNReal ↑y) [PROOFSTEP] simpa [hasSum_coe] using hy [GOAL] α : Type u_1 f : α → ℝ≥0 ⊢ (Summable fun a => ↑(f a)) ↔ Summable f [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 f : α → ℝ≥0 ⊢ (Summable fun a => ↑(f a)) → Summable f case mpr α : Type u_1 f : α → ℝ≥0 ⊢ Summable f → Summable fun a => ↑(f a) [PROOFSTEP] exact fun ⟨a, ha⟩ => ⟨⟨a, ha.nonneg fun x => (f x).2⟩, hasSum_coe.1 ha⟩ [GOAL] case mpr α : Type u_1 f : α → ℝ≥0 ⊢ Summable f → Summable fun a => ↑(f a) [PROOFSTEP] exact fun ⟨a, ha⟩ => ⟨a.1, hasSum_coe.2 ha⟩ [GOAL] α : Type u_1 f : α → ℝ≥0 hf : ¬Summable f ⊢ ↑(∑' (a : α), f a) = ∑' (a : α), ↑(f a) [PROOFSTEP] simp [tsum_def, hf, mt summable_coe.1 hf] [GOAL] α : Type u_1 a : ℝ≥0 f : α → ℝ≥0 ⊢ ↑(∑' (x : α), a * f x) = ↑(a * ∑' (x : α), f x) [PROOFSTEP] simp only [coe_tsum, NNReal.coe_mul, tsum_mul_left] [GOAL] α : Type u_1 f : α → ℝ≥0 a : ℝ≥0 ⊢ ↑(∑' (x : α), f x * a) = ↑((∑' (x : α), f x) * a) [PROOFSTEP] simp only [coe_tsum, NNReal.coe_mul, tsum_mul_right] [GOAL] α : Type u_1 β : Type u_2 f : α → ℝ≥0 hf : Summable f i : β → α hi : Function.Injective i ⊢ Summable (f ∘ i) [PROOFSTEP] rw [← summable_coe] at hf ⊢ [GOAL] α : Type u_1 β : Type u_2 f : α → ℝ≥0 hf : Summable fun a => ↑(f a) i : β → α hi : Function.Injective i ⊢ Summable fun a => ↑((f ∘ i) a) [PROOFSTEP] exact hf.comp_injective hi [GOAL] α : Type u_1 f : ℕ → ℝ≥0 k : ℕ ⊢ (Summable fun i => f (i + k)) ↔ Summable f [PROOFSTEP] rw [← summable_coe, ← summable_coe] [GOAL] α : Type u_1 f : ℕ → ℝ≥0 k : ℕ ⊢ (Summable fun a => ↑(f (a + k))) ↔ Summable fun a => ↑(f a) [PROOFSTEP] exact @summable_nat_add_iff ℝ _ _ _ (fun i => (f i : ℝ)) k [GOAL] α : Type u_1 f : ℕ → ℝ≥0 k : ℕ a : ℝ≥0 ⊢ HasSum (fun n => f (n + k)) a ↔ HasSum f (a + ∑ i in Finset.range k, f i) [PROOFSTEP] rw [← hasSum_coe, hasSum_nat_add_iff (f := fun n => toReal (f n)) k] [GOAL] α : Type u_1 f : ℕ → ℝ≥0 k : ℕ a : ℝ≥0 ⊢ HasSum (fun n => ↑(f n)) (↑a + ∑ i in Finset.range k, ↑(f i)) ↔ HasSum f (a + ∑ i in Finset.range k, f i) [PROOFSTEP] norm_cast [GOAL] α : Type u_1 f : α → ℝ≥0 hf : Summable f ⊢ Tendsto f cofinite (𝓝 0) [PROOFSTEP] simp only [← summable_coe, ← tendsto_coe] at hf ⊢ [GOAL] α : Type u_1 f : α → ℝ≥0 hf : Summable fun a => ↑(f a) ⊢ Tendsto (fun a => ↑(f a)) cofinite (𝓝 ↑0) [PROOFSTEP] exact hf.tendsto_cofinite_zero [GOAL] f : ℕ → ℝ≥0 hf : Summable f ⊢ Tendsto f atTop (𝓝 0) [PROOFSTEP] rw [← Nat.cofinite_eq_atTop] [GOAL] f : ℕ → ℝ≥0 hf : Summable f ⊢ Tendsto f cofinite (𝓝 0) [PROOFSTEP] exact tendsto_cofinite_zero_of_summable hf [GOAL] α : Type u_1 f : α → ℝ≥0 ⊢ Tendsto (fun s => ∑' (b : { x // ¬x ∈ s }), f ↑b) atTop (𝓝 0) [PROOFSTEP] simp_rw [← tendsto_coe, coe_tsum, NNReal.coe_zero] [GOAL] α : Type u_1 f : α → ℝ≥0 ⊢ Tendsto (fun a => ∑' (a_1 : { x // ¬x ∈ a }), ↑(f ↑a_1)) atTop (𝓝 0) [PROOFSTEP] exact tendsto_tsum_compl_atTop_zero fun a : α => (f a : ℝ) [GOAL] n : ℕ hn : n ≠ 0 ⊢ Tendsto (fun b => id b ^ n) atBot atBot [PROOFSTEP] simpa [OrderBot.atBot_eq, pos_iff_ne_zero]
{"mathlib_filename": "Mathlib.Topology.Instances.NNReal", "llama_tokens": 2327}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ f g : α →Co β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ g : α →Co β toFun✝ : α → β monotone'✝ : Monotone toFun✝ continuous_toFun✝ : Continuous { toFun := toFun✝, monotone' := monotone'✝ }.toFun h : (fun f => f.toFun) { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ } = (fun f => f.toFun) g ⊢ { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ toFun✝¹ : α → β monotone'✝¹ : Monotone toFun✝¹ continuous_toFun✝¹ : Continuous { toFun := toFun✝¹, monotone' := monotone'✝¹ }.toFun toFun✝ : α → β monotone'✝ : Monotone toFun✝ continuous_toFun✝ : Continuous { toFun := toFun✝, monotone' := monotone'✝ }.toFun h : (fun f => f.toFun) { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, continuous_toFun := continuous_toFun✝¹ } = (fun f => f.toFun) { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ } ⊢ { toOrderHom := { toFun := toFun✝¹, monotone' := monotone'✝¹ }, continuous_toFun := continuous_toFun✝¹ } = { toOrderHom := { toFun := toFun✝, monotone' := monotone'✝ }, continuous_toFun := continuous_toFun✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝⁷ : TopologicalSpace α inst✝⁶ : Preorder α inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder β inst✝³ : TopologicalSpace γ inst✝² : Preorder γ inst✝¹ : TopologicalSpace δ inst✝ : Preorder δ g : β →Co γ f₁ f₂ : α →Co β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply]
{"mathlib_filename": "Mathlib.Topology.Order.Hom.Basic", "llama_tokens": 1224}
[GOAL] α : Type ?u.6639 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ WithLowerTopology.instTopologicalSpaceWithLowerTopology = induced (↑WithLowerTopology.ofLower) inst✝¹ [PROOFSTEP] erw [topology_eq α, induced_id] [GOAL] α : Type ?u.6639 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ WithLowerTopology.instTopologicalSpaceWithLowerTopology = generateFrom {s | ∃ a, (Ici a)ᶜ = s} [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ IsOpen s ↔ GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s [PROOFSTEP] rw [topology_eq α] [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ IsOpen s ↔ GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α h : Set.Finite s ⊢ IsClosed ↑(upperClosure s) [PROOFSTEP] simp only [← UpperSet.iInf_Ici, UpperSet.coe_iInf] [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α h : Set.Finite s ⊢ IsClosed (⋃ (i : α) (_ : i ∈ s), ↑(UpperSet.Ici i)) [PROOFSTEP] exact isClosed_biUnion h fun _ _ => isClosed_Ici [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α h : IsOpen s ⊢ IsLowerSet s [PROOFSTEP] replace h := isOpen_iff_generate_Ici_compl.1 h [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α h : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s ⊢ IsLowerSet s [PROOFSTEP] induction h [GOAL] case basic α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s s✝ : Set α a✝ : s✝ ∈ {t | ∃ a, (Ici a)ᶜ = t} ⊢ IsLowerSet s✝ case univ α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ IsLowerSet univ case inter α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s s✝ t✝ : Set α a✝¹ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s✝ a✝ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} t✝ a_ih✝¹ : IsLowerSet s✝ a_ih✝ : IsLowerSet t✝ ⊢ IsLowerSet (s✝ ∩ t✝) case sUnion α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α S✝ : Set (Set α) a✝ : ∀ (s : Set α), s ∈ S✝ → GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s a_ih✝ : ∀ (s : Set α), s ∈ S✝ → IsLowerSet s ⊢ IsLowerSet (⋃₀ S✝) [PROOFSTEP] case basic u h' => obtain ⟨a, rfl⟩ := h'; exact (isUpperSet_Ici a).compl [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s u : Set α h' : u ∈ {t | ∃ a, (Ici a)ᶜ = t} ⊢ IsLowerSet u [PROOFSTEP] case basic u h' => obtain ⟨a, rfl⟩ := h'; exact (isUpperSet_Ici a).compl [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s u : Set α h' : u ∈ {t | ∃ a, (Ici a)ᶜ = t} ⊢ IsLowerSet u [PROOFSTEP] obtain ⟨a, rfl⟩ := h' [GOAL] case intro α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α a : α ⊢ IsLowerSet (Ici a)ᶜ [PROOFSTEP] exact (isUpperSet_Ici a).compl [GOAL] case univ α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ IsLowerSet univ case inter α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s s✝ t✝ : Set α a✝¹ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s✝ a✝ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} t✝ a_ih✝¹ : IsLowerSet s✝ a_ih✝ : IsLowerSet t✝ ⊢ IsLowerSet (s✝ ∩ t✝) case sUnion α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α S✝ : Set (Set α) a✝ : ∀ (s : Set α), s ∈ S✝ → GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s a_ih✝ : ∀ (s : Set α), s ∈ S✝ → IsLowerSet s ⊢ IsLowerSet (⋃₀ S✝) [PROOFSTEP] case univ => exact isLowerSet_univ [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ IsLowerSet univ [PROOFSTEP] case univ => exact isLowerSet_univ [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ IsLowerSet univ [PROOFSTEP] exact isLowerSet_univ [GOAL] case inter α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s s✝ t✝ : Set α a✝¹ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s✝ a✝ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} t✝ a_ih✝¹ : IsLowerSet s✝ a_ih✝ : IsLowerSet t✝ ⊢ IsLowerSet (s✝ ∩ t✝) case sUnion α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α S✝ : Set (Set α) a✝ : ∀ (s : Set α), s ∈ S✝ → GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s a_ih✝ : ∀ (s : Set α), s ∈ S✝ → IsLowerSet s ⊢ IsLowerSet (⋃₀ S✝) [PROOFSTEP] case inter u v _ _ hu2 hv2 => exact hu2.inter hv2 [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s u v : Set α a✝¹ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} u a✝ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} v hu2 : IsLowerSet u hv2 : IsLowerSet v ⊢ IsLowerSet (u ∩ v) [PROOFSTEP] case inter u v _ _ hu2 hv2 => exact hu2.inter hv2 [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s u v : Set α a✝¹ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} u a✝ : GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} v hu2 : IsLowerSet u hv2 : IsLowerSet v ⊢ IsLowerSet (u ∩ v) [PROOFSTEP] exact hu2.inter hv2 [GOAL] case sUnion α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α S✝ : Set (Set α) a✝ : ∀ (s : Set α), s ∈ S✝ → GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s a_ih✝ : ∀ (s : Set α), s ∈ S✝ → IsLowerSet s ⊢ IsLowerSet (⋃₀ S✝) [PROOFSTEP] case sUnion _ _ ih => exact isLowerSet_sUnion ih [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α S✝ : Set (Set α) a✝ : ∀ (s : Set α), s ∈ S✝ → GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s ih : ∀ (s : Set α), s ∈ S✝ → IsLowerSet s ⊢ IsLowerSet (⋃₀ S✝) [PROOFSTEP] case sUnion _ _ ih => exact isLowerSet_sUnion ih [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α S✝ : Set (Set α) a✝ : ∀ (s : Set α), s ∈ S✝ → GenerateOpen {t | ∃ a, (Ici a)ᶜ = t} s ih : ∀ (s : Set α), s ∈ S✝ → IsLowerSet s ⊢ IsLowerSet (⋃₀ S✝) [PROOFSTEP] exact isLowerSet_sUnion ih [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ IsTopologicalBasis (lowerBasis α) [PROOFSTEP] convert isTopologicalBasis_of_subbasis (topology_eq α) [GOAL] case h.e'_3 α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ lowerBasis α = (fun f => ⋂₀ f) '' {f | Set.Finite f ∧ f ⊆ {s | ∃ a, (Ici a)ᶜ = s}} [PROOFSTEP] simp_rw [lowerBasis, coe_upperClosure, compl_iUnion] [GOAL] case h.e'_3 α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α ⊢ {s | ∃ t, Set.Finite t ∧ ⋂ (i : α) (_ : i ∈ t), (Ici i)ᶜ = s} = (fun f => ⋂₀ f) '' {f | Set.Finite f ∧ f ⊆ {s | ∃ a, (Ici a)ᶜ = s}} [PROOFSTEP] ext s [GOAL] case h.e'_3.h α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s✝ s : Set α ⊢ s ∈ {s | ∃ t, Set.Finite t ∧ ⋂ (i : α) (_ : i ∈ t), (Ici i)ᶜ = s} ↔ s ∈ (fun f => ⋂₀ f) '' {f | Set.Finite f ∧ f ⊆ {s | ∃ a, (Ici a)ᶜ = s}} [PROOFSTEP] constructor [GOAL] case h.e'_3.h.mp α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s✝ s : Set α ⊢ s ∈ {s | ∃ t, Set.Finite t ∧ ⋂ (i : α) (_ : i ∈ t), (Ici i)ᶜ = s} → s ∈ (fun f => ⋂₀ f) '' {f | Set.Finite f ∧ f ⊆ {s | ∃ a, (Ici a)ᶜ = s}} [PROOFSTEP] rintro ⟨F, hF, rfl⟩ [GOAL] case h.e'_3.h.mp.intro.intro α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s F : Set α hF : Set.Finite F ⊢ ⋂ (i : α) (_ : i ∈ F), (Ici i)ᶜ ∈ (fun f => ⋂₀ f) '' {f | Set.Finite f ∧ f ⊆ {s | ∃ a, (Ici a)ᶜ = s}} [PROOFSTEP] refine' ⟨(fun a => (Ici a)ᶜ) '' F, ⟨hF.image _, image_subset_iff.2 fun _ _ => ⟨_, rfl⟩⟩, _⟩ [GOAL] case h.e'_3.h.mp.intro.intro α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s F : Set α hF : Set.Finite F ⊢ (fun f => ⋂₀ f) ((fun a => (Ici a)ᶜ) '' F) = ⋂ (i : α) (_ : i ∈ F), (Ici i)ᶜ [PROOFSTEP] simp only [sInter_image] [GOAL] case h.e'_3.h.mpr α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s✝ s : Set α ⊢ s ∈ (fun f => ⋂₀ f) '' {f | Set.Finite f ∧ f ⊆ {s | ∃ a, (Ici a)ᶜ = s}} → s ∈ {s | ∃ t, Set.Finite t ∧ ⋂ (i : α) (_ : i ∈ t), (Ici i)ᶜ = s} [PROOFSTEP] rintro ⟨F, ⟨hF, hs⟩, rfl⟩ [GOAL] case h.e'_3.h.mpr.intro.intro.intro α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α F : Set (Set α) hF : Set.Finite F hs : F ⊆ {s | ∃ a, (Ici a)ᶜ = s} ⊢ (fun f => ⋂₀ f) F ∈ {s | ∃ t, Set.Finite t ∧ ⋂ (i : α) (_ : i ∈ t), (Ici i)ᶜ = s} [PROOFSTEP] haveI := hF.to_subtype [GOAL] case h.e'_3.h.mpr.intro.intro.intro α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α F : Set (Set α) hF : Set.Finite F hs : F ⊆ {s | ∃ a, (Ici a)ᶜ = s} this : Finite ↑F ⊢ (fun f => ⋂₀ f) F ∈ {s | ∃ t, Set.Finite t ∧ ⋂ (i : α) (_ : i ∈ t), (Ici i)ᶜ = s} [PROOFSTEP] rw [subset_def, Subtype.forall'] at hs [GOAL] case h.e'_3.h.mpr.intro.intro.intro α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α F : Set (Set α) hF : Set.Finite F hs : ∀ (x : { a // a ∈ F }), ↑x ∈ {s | ∃ a, (Ici a)ᶜ = s} this : Finite ↑F ⊢ (fun f => ⋂₀ f) F ∈ {s | ∃ t, Set.Finite t ∧ ⋂ (i : α) (_ : i ∈ t), (Ici i)ᶜ = s} [PROOFSTEP] choose f hf using hs [GOAL] case h.e'_3.h.mpr.intro.intro.intro α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α F : Set (Set α) hF : Set.Finite F this : Finite ↑F f : { a // a ∈ F } → α hf : ∀ (x : { a // a ∈ F }), (Ici (f x))ᶜ = ↑x ⊢ (fun f => ⋂₀ f) F ∈ {s | ∃ t, Set.Finite t ∧ ⋂ (i : α) (_ : i ∈ t), (Ici i)ᶜ = s} [PROOFSTEP] exact ⟨_, finite_range f, by simp_rw [biInter_range, hf, sInter_eq_iInter]⟩ [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α s : Set α F : Set (Set α) hF : Set.Finite F this : Finite ↑F f : { a // a ∈ F } → α hf : ∀ (x : { a // a ∈ F }), (Ici (f x))ᶜ = ↑x ⊢ ⋂ (i : α) (_ : i ∈ range f), (Ici i)ᶜ = (fun f => ⋂₀ f) F [PROOFSTEP] simp_rw [biInter_range, hf, sInter_eq_iInter] [GOAL] α : Type u_2 inst✝³ : Preorder α inst✝² : TopologicalSpace α inst✝¹ : LowerTopology α s : Set α β : Type u_1 inst✝ : TopologicalSpace β f : β → α h : ∀ (a : α), IsClosed (f ⁻¹' Ici a) ⊢ Continuous f [PROOFSTEP] obtain rfl := LowerTopology.topology_eq α [GOAL] α : Type u_2 inst✝² : Preorder α s : Set α β : Type u_1 inst✝¹ : TopologicalSpace β f : β → α h : ∀ (a : α), IsClosed (f ⁻¹' Ici a) inst✝ : LowerTopology α ⊢ Continuous f [PROOFSTEP] refine continuous_generateFrom ?_ [GOAL] α : Type u_2 inst✝² : Preorder α s : Set α β : Type u_1 inst✝¹ : TopologicalSpace β f : β → α h : ∀ (a : α), IsClosed (f ⁻¹' Ici a) inst✝ : LowerTopology α ⊢ ∀ (s : Set α), s ∈ {s | ∃ a, (Ici a)ᶜ = s} → IsOpen (f ⁻¹' s) [PROOFSTEP] rintro _ ⟨a, rfl⟩ [GOAL] case intro α : Type u_2 inst✝² : Preorder α s : Set α β : Type u_1 inst✝¹ : TopologicalSpace β f : β → α h : ∀ (a : α), IsClosed (f ⁻¹' Ici a) inst✝ : LowerTopology α a : α ⊢ IsOpen (f ⁻¹' (Ici a)ᶜ) [PROOFSTEP] exact (h a).isOpen_compl [GOAL] α : Type ?u.15319 inst✝² : PartialOrder α inst✝¹ : TopologicalSpace α inst✝ : LowerTopology α x y : α h : Inseparable x y ⊢ Ici x = Ici y [PROOFSTEP] simpa only [inseparable_iff_closure_eq, closure_singleton] using h [GOAL] α : Type ?u.16169 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperTopology α s : Set α ⊢ WithUpperTopology.instTopologicalSpaceWithUpperTopology = induced (↑WithUpperTopology.ofUpper) inst✝¹ [PROOFSTEP] erw [topology_eq α, induced_id] [GOAL] α : Type ?u.16169 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperTopology α s : Set α ⊢ WithUpperTopology.instTopologicalSpaceWithUpperTopology = generateFrom {s | ∃ a, (Iic a)ᶜ = s} [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperTopology α s : Set α ⊢ IsOpen s ↔ GenerateOpen {t | ∃ a, (Iic a)ᶜ = t} s [PROOFSTEP] rw [topology_eq α] [GOAL] α : Type u_1 inst✝² : Preorder α inst✝¹ : TopologicalSpace α inst✝ : UpperTopology α s : Set α ⊢ IsOpen s ↔ GenerateOpen {t | ∃ a, (Iic a)ᶜ = t} s [PROOFSTEP] rfl [GOAL] α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β ⊢ instTopologicalSpaceProd = generateFrom {s | ∃ a, (Ici a)ᶜ = s} [PROOFSTEP] refine' le_antisymm (le_generateFrom _) _ [GOAL] case refine'_1 α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β ⊢ ∀ (s : Set (α × β)), s ∈ {s | ∃ a, (Ici a)ᶜ = s} → IsOpen s [PROOFSTEP] rintro _ ⟨x, rfl⟩ [GOAL] case refine'_1.intro α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β x : α × β ⊢ IsOpen (Ici x)ᶜ [PROOFSTEP] exact (isClosed_Ici.prod isClosed_Ici).isOpen_compl [GOAL] case refine'_2 α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β ⊢ generateFrom {s | ∃ a, (Ici a)ᶜ = s} ≤ instTopologicalSpaceProd [PROOFSTEP] rw [(LowerTopology.isTopologicalBasis.prod LowerTopology.isTopologicalBasis).eq_generateFrom, le_generateFrom_iff_subset_isOpen, image2_subset_iff] [GOAL] case refine'_2 α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β ⊢ ∀ (x : Set α), x ∈ LowerTopology.lowerBasis α → ∀ (y : Set β), y ∈ LowerTopology.lowerBasis β → x ×ˢ y ∈ {s | IsOpen s} [PROOFSTEP] rintro _ ⟨s, hs, rfl⟩ _ ⟨t, ht, rfl⟩ [GOAL] case refine'_2.intro.intro.intro.intro α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β s : Set α hs : Set.Finite s t : Set β ht : Set.Finite t ⊢ (↑(upperClosure s))ᶜ ×ˢ (↑(upperClosure t))ᶜ ∈ {s | IsOpen s} [PROOFSTEP] dsimp [GOAL] case refine'_2.intro.intro.intro.intro α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β s : Set α hs : Set.Finite s t : Set β ht : Set.Finite t ⊢ IsOpen ((↑(upperClosure s))ᶜ ×ˢ (↑(upperClosure t))ᶜ) [PROOFSTEP] simp_rw [coe_upperClosure, compl_iUnion, prod_eq, preimage_iInter, preimage_compl] -- without `let`, `refine` tries to use the product topology and fails [GOAL] case refine'_2.intro.intro.intro.intro α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β s : Set α hs : Set.Finite s t : Set β ht : Set.Finite t ⊢ IsOpen ((⋂ (i : α) (_ : i ∈ s), (Prod.fst ⁻¹' Ici i)ᶜ) ∩ ⋂ (i : β) (_ : i ∈ t), (Prod.snd ⁻¹' Ici i)ᶜ) [PROOFSTEP] let _ : TopologicalSpace (α × β) := generateFrom {s | ∃ a, (Ici a)ᶜ = s} [GOAL] case refine'_2.intro.intro.intro.intro α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β s : Set α hs : Set.Finite s t : Set β ht : Set.Finite t x✝ : TopologicalSpace (α × β) := generateFrom {s | ∃ a, (Ici a)ᶜ = s} ⊢ IsOpen ((⋂ (i : α) (_ : i ∈ s), (Prod.fst ⁻¹' Ici i)ᶜ) ∩ ⋂ (i : β) (_ : i ∈ t), (Prod.snd ⁻¹' Ici i)ᶜ) [PROOFSTEP] refine (isOpen_biInter hs fun a _ => ?_).inter (isOpen_biInter ht fun b _ => ?_) [GOAL] case refine'_2.intro.intro.intro.intro.refine_1 α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β s : Set α hs : Set.Finite s t : Set β ht : Set.Finite t x✝¹ : TopologicalSpace (α × β) := generateFrom {s | ∃ a, (Ici a)ᶜ = s} a : α x✝ : a ∈ s ⊢ IsOpen (Prod.fst ⁻¹' Ici a)ᶜ [PROOFSTEP] exact GenerateOpen.basic _ ⟨(a, ⊥), by simp [Ici_prod_eq, prod_univ]⟩ [GOAL] α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β s : Set α hs : Set.Finite s t : Set β ht : Set.Finite t x✝¹ : TopologicalSpace (α × β) := generateFrom {s | ∃ a, (Ici a)ᶜ = s} a : α x✝ : a ∈ s ⊢ (Ici (a, ⊥))ᶜ = (Prod.fst ⁻¹' Ici a)ᶜ [PROOFSTEP] simp [Ici_prod_eq, prod_univ] [GOAL] case refine'_2.intro.intro.intro.intro.refine_2 α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β s : Set α hs : Set.Finite s t : Set β ht : Set.Finite t x✝¹ : TopologicalSpace (α × β) := generateFrom {s | ∃ a, (Ici a)ᶜ = s} b : β x✝ : b ∈ t ⊢ IsOpen (Prod.snd ⁻¹' Ici b)ᶜ [PROOFSTEP] exact GenerateOpen.basic _ ⟨(⊥, b), by simp [Ici_prod_eq, univ_prod]⟩ [GOAL] α : Type ?u.18877 β : Type ?u.18906 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : LowerTopology α inst✝⁴ : OrderBot α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : LowerTopology β inst✝ : OrderBot β s : Set α hs : Set.Finite s t : Set β ht : Set.Finite t x✝¹ : TopologicalSpace (α × β) := generateFrom {s | ∃ a, (Ici a)ᶜ = s} b : β x✝ : b ∈ t ⊢ (Ici (⊥, b))ᶜ = (Prod.snd ⁻¹' Ici b)ᶜ [PROOFSTEP] simp [Ici_prod_eq, univ_prod] [GOAL] α : Type ?u.24860 β : Type ?u.24889 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : UpperTopology α inst✝⁴ : OrderTop α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : UpperTopology β inst✝ : OrderTop β ⊢ instTopologicalSpaceProd = generateFrom {s | ∃ a, (Iic a)ᶜ = s} [PROOFSTEP] suffices : LowerTopology (α × β)ᵒᵈ [GOAL] α : Type ?u.24860 β : Type ?u.24889 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : UpperTopology α inst✝⁴ : OrderTop α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : UpperTopology β inst✝ : OrderTop β this : LowerTopology (α × β)ᵒᵈ ⊢ instTopologicalSpaceProd = generateFrom {s | ∃ a, (Iic a)ᶜ = s} [PROOFSTEP] exact LowerTopology.topology_eq_lowerTopology (α := (α × β)ᵒᵈ) [GOAL] case this α : Type ?u.24860 β : Type ?u.24889 inst✝⁷ : Preorder α inst✝⁶ : TopologicalSpace α inst✝⁵ : UpperTopology α inst✝⁴ : OrderTop α inst✝³ : Preorder β inst✝² : TopologicalSpace β inst✝¹ : UpperTopology β inst✝ : OrderTop β ⊢ LowerTopology (α × β)ᵒᵈ [PROOFSTEP] exact instLowerTopologyProd (α := αᵒᵈ) (β := βᵒᵈ) [GOAL] α : Type u_2 β : Type u_1 inst✝⁵ : CompleteLattice α inst✝⁴ : CompleteLattice β inst✝³ : TopologicalSpace α inst✝² : LowerTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerTopology β f : sInfHom α β ⊢ Continuous ↑f [PROOFSTEP] refine LowerTopology.continuous_of_Ici fun b => ?_ [GOAL] α : Type u_2 β : Type u_1 inst✝⁵ : CompleteLattice α inst✝⁴ : CompleteLattice β inst✝³ : TopologicalSpace α inst✝² : LowerTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerTopology β f : sInfHom α β b : β ⊢ IsClosed (↑f ⁻¹' Ici b) [PROOFSTEP] convert isClosed_Ici (a := sInf <| f ⁻¹' Ici b) [GOAL] case h.e'_3 α : Type u_2 β : Type u_1 inst✝⁵ : CompleteLattice α inst✝⁴ : CompleteLattice β inst✝³ : TopologicalSpace α inst✝² : LowerTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerTopology β f : sInfHom α β b : β ⊢ ↑f ⁻¹' Ici b = Ici (sInf (↑f ⁻¹' Ici b)) [PROOFSTEP] refine' Subset.antisymm (fun a => sInf_le) fun a ha => le_trans _ <| OrderHomClass.mono (f : α →o β) ha [GOAL] case h.e'_3 α : Type u_2 β : Type u_1 inst✝⁵ : CompleteLattice α inst✝⁴ : CompleteLattice β inst✝³ : TopologicalSpace α inst✝² : LowerTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerTopology β f : sInfHom α β b : β a : α ha : a ∈ Ici (sInf (↑f ⁻¹' Ici b)) ⊢ b ≤ ↑↑f (sInf (↑f ⁻¹' Ici b)) [PROOFSTEP] refine' LE.le.trans _ (map_sInf f _).ge [GOAL] case h.e'_3 α : Type u_2 β : Type u_1 inst✝⁵ : CompleteLattice α inst✝⁴ : CompleteLattice β inst✝³ : TopologicalSpace α inst✝² : LowerTopology α inst✝¹ : TopologicalSpace β inst✝ : LowerTopology β f : sInfHom α β b : β a : α ha : a ∈ Ici (sInf (↑f ⁻¹' Ici b)) ⊢ b ≤ sInf (↑f '' (↑f ⁻¹' Ici b)) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ UpperTopology αᵒᵈ ↔ LowerTopology α [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ UpperTopology αᵒᵈ → LowerTopology α [PROOFSTEP] apply UpperTopology.instLowerTopologyDual [GOAL] case mpr α : Type u_1 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ LowerTopology α → UpperTopology αᵒᵈ [PROOFSTEP] apply LowerTopology.instUpperTopologyDual [GOAL] α : Type u_1 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ LowerTopology αᵒᵈ ↔ UpperTopology α [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ LowerTopology αᵒᵈ → UpperTopology α [PROOFSTEP] apply LowerTopology.instUpperTopologyDual [GOAL] case mpr α : Type u_1 inst✝¹ : Preorder α inst✝ : TopologicalSpace α ⊢ UpperTopology α → LowerTopology αᵒᵈ [PROOFSTEP] apply UpperTopology.instLowerTopologyDual
{"mathlib_filename": "Mathlib.Topology.Order.LowerUpperTopology", "llama_tokens": 11321}
{"mathlib_filename": "Mathlib.Topology.Instances.RealVectorSpace", "llama_tokens": 0}
[GOAL] F : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) f g : Homotopy f₀ f₁ h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) g : Homotopy f₀ f₁ toFun✝ : ↑I × X → Y continuous_toFun✝ : Continuous toFun✝ map_zero_left✝ : ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk toFun✝) (0, x) = ↑f₀ x map_one_left✝ : ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk toFun✝) (1, x) = ↑f₁ x h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, map_zero_left := map_zero_left✝, map_one_left := map_one_left✝ } = (fun f => f.toFun) g ⊢ { toContinuousMap := ContinuousMap.mk toFun✝, map_zero_left := map_zero_left✝, map_one_left := map_one_left✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) toFun✝¹ : ↑I × X → Y continuous_toFun✝¹ : Continuous toFun✝¹ map_zero_left✝¹ : ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk toFun✝¹) (0, x) = ↑f₀ x map_one_left✝¹ : ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk toFun✝¹) (1, x) = ↑f₁ x toFun✝ : ↑I × X → Y continuous_toFun✝ : Continuous toFun✝ map_zero_left✝ : ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk toFun✝) (0, x) = ↑f₀ x map_one_left✝ : ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk toFun✝) (1, x) = ↑f₁ x h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝¹, map_zero_left := map_zero_left✝¹, map_one_left := map_one_left✝¹ } = (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, map_zero_left := map_zero_left✝, map_one_left := map_one_left✝ } ⊢ { toContinuousMap := ContinuousMap.mk toFun✝¹, map_zero_left := map_zero_left✝¹, map_one_left := map_one_left✝¹ } = { toContinuousMap := ContinuousMap.mk toFun✝, map_zero_left := map_zero_left✝, map_one_left := map_one_left✝ } [PROOFSTEP] congr [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) F : Homotopy f₀ f₁ t : ℝ ht : t ≤ 0 x : X ⊢ ↑(↑(extend F) t) x = ↑f₀ x [PROOFSTEP] rw [← F.apply_zero] [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) F : Homotopy f₀ f₁ t : ℝ ht : t ≤ 0 x : X ⊢ ↑(↑(extend F) t) x = ↑F (0, x) [PROOFSTEP] exact ContinuousMap.congr_fun (Set.IccExtend_of_le_left (zero_le_one' ℝ) F.curry ht) x [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) F : Homotopy f₀ f₁ t : ℝ ht : 1 ≤ t x : X ⊢ ↑(↑(extend F) t) x = ↑f₁ x [PROOFSTEP] rw [← F.apply_one] [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) F : Homotopy f₀ f₁ t : ℝ ht : 1 ≤ t x : X ⊢ ↑(↑(extend F) t) x = ↑F (1, x) [PROOFSTEP] exact ContinuousMap.congr_fun (Set.IccExtend_of_right_le (zero_le_one' ℝ) F.curry ht) x [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) F : Homotopy f₀ f₁ ⊢ ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑F (σ x.fst, x.snd)) (0, x) = ↑f₁ x [PROOFSTEP] norm_num [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) F : Homotopy f₀ f₁ ⊢ ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑F (σ x.fst, x.snd)) (1, x) = ↑f₀ x [PROOFSTEP] norm_num [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) F : Homotopy f₀ f₁ ⊢ symm (symm F) = F [PROOFSTEP] ext [GOAL] case h F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) F : Homotopy f₀ f₁ x✝ : ↑I × X ⊢ ↑(symm (symm F)) x✝ = ↑F x✝ [PROOFSTEP] simp [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ ⊢ Continuous fun x => if ↑x.fst ≤ 1 / 2 then ↑(↑(extend F) (2 * ↑x.fst)) x.snd else ↑(↑(extend G) (2 * ↑x.fst - 1)) x.snd [PROOFSTEP] refine' continuous_if_le (continuous_induced_dom.comp continuous_fst) continuous_const (F.continuous.comp (by continuity)).continuousOn (G.continuous.comp (by continuity)).continuousOn _ [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ ⊢ Continuous fun x => (Set.projIcc 0 1 extend.proof_1 (2 * ↑x.fst), x.snd) [PROOFSTEP] continuity [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ ⊢ Continuous fun x => (Set.projIcc 0 1 extend.proof_1 (2 * ↑x.fst - 1), x.snd) [PROOFSTEP] continuity [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ ⊢ ∀ (x : ↑I × X), ↑x.fst = 1 / 2 → ↑(↑(extend F) (2 * ↑x.fst)) x.snd = ↑(↑(extend G) (2 * ↑x.fst - 1)) x.snd [PROOFSTEP] rintro x hx [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X hx : ↑x.fst = 1 / 2 ⊢ ↑(↑(extend F) (2 * ↑x.fst)) x.snd = ↑(↑(extend G) (2 * ↑x.fst - 1)) x.snd [PROOFSTEP] rw [hx] [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X hx : ↑x.fst = 1 / 2 ⊢ ↑(↑(extend F) (2 * (1 / 2))) x.snd = ↑(↑(extend G) (2 * (1 / 2) - 1)) x.snd [PROOFSTEP] norm_num [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : X ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => if ↑x.fst ≤ 1 / 2 then ↑(↑(extend F) (2 * ↑x.fst)) x.snd else ↑(↑(extend G) (2 * ↑x.fst - 1)) x.snd) (0, x) = ↑f₀ x [PROOFSTEP] norm_num [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : X ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => if ↑x.fst ≤ 1 / 2 then ↑(↑(extend F) (2 * ↑x.fst)) x.snd else ↑(↑(extend G) (2 * ↑x.fst - 1)) x.snd) (1, x) = ↑f₂ x [PROOFSTEP] norm_num [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X ⊢ (if ↑x.fst ≤ 1 / 2 then ↑(↑(extend F) (2 * ↑x.fst)) x.snd else ↑(↑(extend G) (2 * ↑x.fst - 1)) x.snd) = if h : ↑x.fst ≤ 1 / 2 then ↑F ({ val := 2 * ↑x.fst, property := (_ : 2 * ↑x.fst ∈ I) }, x.snd) else ↑G ({ val := 2 * ↑x.fst - 1, property := (_ : 2 * ↑x.fst - 1 ∈ I) }, x.snd) [PROOFSTEP] split_ifs [GOAL] case pos F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X h✝ : ↑x.fst ≤ 1 / 2 ⊢ ↑(↑(extend F) (2 * ↑x.fst)) x.snd = ↑F ({ val := 2 * ↑x.fst, property := (_ : 2 * ↑x.fst ∈ I) }, x.snd) [PROOFSTEP] rw [extend, ContinuousMap.coe_IccExtend, Set.IccExtend_of_mem] [GOAL] case pos F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X h✝ : ↑x.fst ≤ 1 / 2 ⊢ ↑(↑(curry F) { val := 2 * ↑x.fst, property := ?pos.hx✝ }) x.snd = ↑F ({ val := 2 * ↑x.fst, property := (_ : 2 * ↑x.fst ∈ I) }, x.snd) case pos.hx F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X h✝ : ↑x.fst ≤ 1 / 2 ⊢ 2 * ↑x.fst ∈ Set.Icc 0 1 [PROOFSTEP] rfl [GOAL] case neg F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X h✝ : ¬↑x.fst ≤ 1 / 2 ⊢ ↑(↑(extend G) (2 * ↑x.fst - 1)) x.snd = ↑G ({ val := 2 * ↑x.fst - 1, property := (_ : 2 * ↑x.fst - 1 ∈ I) }, x.snd) [PROOFSTEP] rw [extend, ContinuousMap.coe_IccExtend, Set.IccExtend_of_mem] [GOAL] case neg F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X h✝ : ¬↑x.fst ≤ 1 / 2 ⊢ ↑(↑(curry G) { val := 2 * ↑x.fst - 1, property := ?neg.hx✝ }) x.snd = ↑G ({ val := 2 * ↑x.fst - 1, property := (_ : 2 * ↑x.fst - 1 ∈ I) }, x.snd) case neg.hx F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ x : ↑I × X h✝ : ¬↑x.fst ≤ 1 / 2 ⊢ 2 * ↑x.fst - 1 ∈ Set.Icc 0 1 [PROOFSTEP] rfl [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ ⊢ symm (trans F G) = trans (symm G) (symm F) [PROOFSTEP] ext ⟨t, _⟩ [GOAL] case h.mk F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X ⊢ ↑(symm (trans F G)) (t, snd✝) = ↑(trans (symm G) (symm F)) (t, snd✝) [PROOFSTEP] rw [trans_apply, symm_apply, trans_apply] [GOAL] case h.mk F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X ⊢ (if h : ↑(σ (t, snd✝).fst, (t, snd✝).snd).fst ≤ 1 / 2 then ↑F ({ val := 2 * ↑(σ (t, snd✝).fst, (t, snd✝).snd).fst, property := (_ : 2 * ↑(σ (t, snd✝).fst, (t, snd✝).snd).fst ∈ I) }, (σ (t, snd✝).fst, (t, snd✝).snd).snd) else ↑G ({ val := 2 * ↑(σ (t, snd✝).fst, (t, snd✝).snd).fst - 1, property := (_ : 2 * ↑(σ (t, snd✝).fst, (t, snd✝).snd).fst - 1 ∈ I) }, (σ (t, snd✝).fst, (t, snd✝).snd).snd)) = if h : ↑(t, snd✝).fst ≤ 1 / 2 then ↑(symm G) ({ val := 2 * ↑(t, snd✝).fst, property := (_ : 2 * ↑(t, snd✝).fst ∈ I) }, (t, snd✝).snd) else ↑(symm F) ({ val := 2 * ↑(t, snd✝).fst - 1, property := (_ : 2 * ↑(t, snd✝).fst - 1 ∈ I) }, (t, snd✝).snd) [PROOFSTEP] simp only [coe_symm_eq, symm_apply] [GOAL] case h.mk F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X ⊢ (if h : 1 - ↑t ≤ 1 / 2 then ↑F ({ val := 2 * (1 - ↑t), property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t))) }, snd✝) else ↑G ({ val := 2 * (1 - ↑t) - 1, property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t) - 1)) }, snd✝)) = if h : ↑t ≤ 1 / 2 then ↑G (σ { val := 2 * ↑t, property := (_ : 2 * ↑(t, snd✝).fst ∈ I) }, snd✝) else ↑F (σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑(t, snd✝).fst - 1 ∈ I) }, snd✝) [PROOFSTEP] split_ifs with h₁ h₂ h₂ [GOAL] case pos F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : 1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ ↑F ({ val := 2 * (1 - ↑t), property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t))) }, snd✝) = ↑G (σ { val := 2 * ↑t, property := (_ : 2 * ↑(t, snd✝).fst ∈ I) }, snd✝) [PROOFSTEP] have ht : (t : ℝ) = 1 / 2 := by linarith [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : 1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ ↑t = 1 / 2 [PROOFSTEP] linarith [GOAL] case pos F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : 1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ht : ↑t = 1 / 2 ⊢ ↑F ({ val := 2 * (1 - ↑t), property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t))) }, snd✝) = ↑G (σ { val := 2 * ↑t, property := (_ : 2 * ↑(t, snd✝).fst ∈ I) }, snd✝) [PROOFSTEP] simp only [ht] [GOAL] case pos F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : 1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ht : ↑t = 1 / 2 ⊢ ↑F ({ val := 2 * (1 - 1 / 2), property := (_ : (fun x => x ∈ I) (2 * (1 - 1 / 2))) }, snd✝) = ↑G (σ { val := 2 * (1 / 2), property := (_ : (fun x => x ∈ I) (2 * (1 / 2))) }, snd✝) [PROOFSTEP] norm_num [GOAL] case neg F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : 1 - ↑t ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ ↑F ({ val := 2 * (1 - ↑t), property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t))) }, snd✝) = ↑F (σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑(t, snd✝).fst - 1 ∈ I) }, snd✝) [PROOFSTEP] congr 2 [GOAL] case neg.h.e_6.h.e_fst F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : 1 - ↑t ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ { val := 2 * (1 - ↑t), property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t))) } = σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑(t, snd✝).fst - 1 ∈ I) } [PROOFSTEP] apply Subtype.ext [GOAL] case neg.h.e_6.h.e_fst.a F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : 1 - ↑t ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ ↑{ val := 2 * (1 - ↑t), property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t))) } = ↑(σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑(t, snd✝).fst - 1 ∈ I) }) [PROOFSTEP] simp only [coe_symm_eq] [GOAL] case neg.h.e_6.h.e_fst.a F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : 1 - ↑t ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ 2 * (1 - ↑t) = 1 - (2 * ↑t - 1) [PROOFSTEP] linarith [GOAL] case pos F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : ¬1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ ↑G ({ val := 2 * (1 - ↑t) - 1, property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t) - 1)) }, snd✝) = ↑G (σ { val := 2 * ↑t, property := (_ : 2 * ↑(t, snd✝).fst ∈ I) }, snd✝) [PROOFSTEP] congr 2 [GOAL] case pos.h.e_6.h.e_fst F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : ¬1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ { val := 2 * (1 - ↑t) - 1, property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t) - 1)) } = σ { val := 2 * ↑t, property := (_ : 2 * ↑(t, snd✝).fst ∈ I) } [PROOFSTEP] apply Subtype.ext [GOAL] case pos.h.e_6.h.e_fst.a F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : ¬1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ ↑{ val := 2 * (1 - ↑t) - 1, property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t) - 1)) } = ↑(σ { val := 2 * ↑t, property := (_ : 2 * ↑(t, snd✝).fst ∈ I) }) [PROOFSTEP] simp only [coe_symm_eq] [GOAL] case pos.h.e_6.h.e_fst.a F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : ¬1 - ↑t ≤ 1 / 2 h₂ : ↑t ≤ 1 / 2 ⊢ 2 * (1 - ↑t) - 1 = 1 - 2 * ↑t [PROOFSTEP] linarith [GOAL] case neg F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : ¬1 - ↑t ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ ↑G ({ val := 2 * (1 - ↑t) - 1, property := (_ : (fun x => x ∈ I) (2 * (1 - ↑t) - 1)) }, snd✝) = ↑F (σ { val := 2 * ↑t - 1, property := (_ : 2 * ↑(t, snd✝).fst - 1 ∈ I) }, snd✝) [PROOFSTEP] exfalso [GOAL] case neg.h F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) F : Homotopy f₀ f₁ G : Homotopy f₁ f₂ t : ↑I snd✝ : X h₁ : ¬1 - ↑t ≤ 1 / 2 h₂ : ¬↑t ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ g₀ g₁ : C(X, Y) F : Homotopy f₀ f₁ h₀ : f₀ = g₀ h₁ : f₁ = g₁ ⊢ ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk ↑F) (0, x) = ↑g₀ x [PROOFSTEP] simp [← h₀] [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ g₀ g₁ : C(X, Y) F : Homotopy f₀ f₁ h₀ : f₀ = g₀ h₁ : f₁ = g₁ ⊢ ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk ↑F) (1, x) = ↑g₁ x [PROOFSTEP] simp [← h₁] [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) g₀ g₁ : C(Y, Z) F : Homotopy f₀ f₁ G : Homotopy g₀ g₁ ⊢ ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑G (x.fst, ↑F x)) (0, x) = ↑(comp g₀ f₀) x [PROOFSTEP] simp [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ : C(X, Y) g₀ g₁ : C(Y, Z) F : Homotopy f₀ f₁ G : Homotopy g₀ g₁ ⊢ ∀ (x : X), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑G (x.fst, ↑F x)) (1, x) = ↑(comp g₁ f₁) x [PROOFSTEP] simp [GOAL] F : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' ⊢ ∀ {x y : C(X, Y)}, Homotopic x y → Homotopic y x [PROOFSTEP] apply symm [GOAL] F : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' ⊢ ∀ {x y z : C(X, Y)}, Homotopic x y → Homotopic y z → Homotopic x z [PROOFSTEP] apply trans [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' P : C(X, Y) → Prop f₀ f₁ f₂ : C(X, Y) F : HomotopyWith f₀ f₁ P G : HomotopyWith f₁ f₂ P src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I ⊢ P (ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : X), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑f₀ x), map_one_left := (_ : ∀ (x : X), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑f₂ x) }.toContinuousMap (t, x)) [PROOFSTEP] simp only [Homotopy.trans] [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' P : C(X, Y) → Prop f₀ f₁ f₂ : C(X, Y) F : HomotopyWith f₀ f₁ P G : HomotopyWith f₁ f₂ P src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I ⊢ P (ContinuousMap.mk fun x => if ↑t ≤ 1 / 2 then ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x else ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) [PROOFSTEP] change P ⟨fun _ => ite ((t : ℝ) ≤ _) _ _, _⟩ [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' P : C(X, Y) → Prop f₀ f₁ f₂ : C(X, Y) F : HomotopyWith f₀ f₁ P G : HomotopyWith f₁ f₂ P src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I ⊢ P (ContinuousMap.mk fun x => if ↑t ≤ 1 / 2 then ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x else ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) [PROOFSTEP] split_ifs [GOAL] case pos F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' P : C(X, Y) → Prop f₀ f₁ f₂ : C(X, Y) F : HomotopyWith f₀ f₁ P G : HomotopyWith f₁ f₂ P src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ P (ContinuousMap.mk fun x => ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x) [PROOFSTEP] exact F.extendProp _ [GOAL] case neg F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' P : C(X, Y) → Prop f₀ f₁ f₂ : C(X, Y) F : HomotopyWith f₀ f₁ P G : HomotopyWith f₁ f₂ P src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ P (ContinuousMap.mk fun x => ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) [PROOFSTEP] exact G.extendProp _ [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) S : Set X F : HomotopyRel f₀ f₁ S G : HomotopyRel f₁ f₂ S src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I x : X hx : x ∈ S ⊢ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : X), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑f₀ x), map_one_left := (_ : ∀ (x : X), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑f₂ x) }.toContinuousMap (t, x)) x = ↑f₀ x ∧ ↑(mk fun x => ContinuousMap.toFun { toContinuousMap := src✝.toContinuousMap, map_zero_left := (_ : ∀ (x : X), ContinuousMap.toFun src✝.toContinuousMap (0, x) = ↑f₀ x), map_one_left := (_ : ∀ (x : X), ContinuousMap.toFun src✝.toContinuousMap (1, x) = ↑f₂ x) }.toContinuousMap (t, x)) x = ↑f₂ x [PROOFSTEP] simp only [Homotopy.trans] [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) S : Set X F : HomotopyRel f₀ f₁ S G : HomotopyRel f₁ f₂ S src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I x : X hx : x ∈ S ⊢ ↑(mk fun x => if ↑t ≤ 1 / 2 then ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x else ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) x = ↑f₀ x ∧ ↑(mk fun x => if ↑t ≤ 1 / 2 then ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x else ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) x = ↑f₂ x [PROOFSTEP] change (⟨fun _ => ite ((t : ℝ) ≤ _) _ _, _⟩ : C(X, Y)) _ = _ ∧ _ = _ [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) S : Set X F : HomotopyRel f₀ f₁ S G : HomotopyRel f₁ f₂ S src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I x : X hx : x ∈ S ⊢ ↑(mk fun x => if ↑t ≤ 1 / 2 then ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x else ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) x = ↑f₀ x ∧ ↑(mk fun x => if ↑t ≤ 1 / 2 then ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x else ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) x = ↑f₂ x [PROOFSTEP] split_ifs [GOAL] case pos F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) S : Set X F : HomotopyRel f₀ f₁ S G : HomotopyRel f₁ f₂ S src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I x : X hx : x ∈ S h✝ : ↑t ≤ 1 / 2 ⊢ ↑(mk fun x => ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x) x = ↑f₀ x ∧ ↑(mk fun x => ↑(↑(Homotopy.extend F.toHomotopy) (2 * ↑t)) x) x = ↑f₂ x [PROOFSTEP] simp [(HomotopyWith.extendProp F (2 * t) x hx).1, F.fst_eq_snd hx, G.fst_eq_snd hx] [GOAL] case neg F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀ f₁ f₂ : C(X, Y) S : Set X F : HomotopyRel f₀ f₁ S G : HomotopyRel f₁ f₂ S src✝ : Homotopy f₀ f₂ := Homotopy.trans F.toHomotopy G.toHomotopy t : ↑I x : X hx : x ∈ S h✝ : ¬↑t ≤ 1 / 2 ⊢ ↑(mk fun x => ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) x = ↑f₀ x ∧ ↑(mk fun x => ↑(↑(Homotopy.extend G.toHomotopy) (2 * ↑t - 1)) x) x = ↑f₂ x [PROOFSTEP] simp [(HomotopyWith.extendProp G (2 * t - 1) x hx).1, F.fst_eq_snd hx, G.fst_eq_snd hx] [GOAL] F✝ : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' f₀✝ f₁✝ f₂ : C(X, Y) S : Set X f₀ f₁ g₀ g₁ : C(X, Y) F : HomotopyRel f₀ f₁ S h₀ : f₀ = g₀ h₁ : f₁ = g₁ t : ↑I x : X hx : x ∈ S ⊢ ↑(mk fun x => ContinuousMap.toFun (Homotopy.cast F.toHomotopy h₀ h₁).toContinuousMap (t, x)) x = ↑g₀ x ∧ ↑(mk fun x => ContinuousMap.toFun (Homotopy.cast F.toHomotopy h₀ h₁).toContinuousMap (t, x)) x = ↑g₁ x [PROOFSTEP] simpa only [← h₀, ← h₁] using F.prop t x hx [GOAL] F : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' S : Set X ⊢ ∀ {x y : C(X, Y)}, HomotopicRel x y S → HomotopicRel y x S [PROOFSTEP] apply symm [GOAL] F : Type u_1 X : Type u Y : Type v Z : Type w Z' : Type x inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace Z' S : Set X ⊢ ∀ {x y z : C(X, Y)}, HomotopicRel x y S → HomotopicRel y z S → HomotopicRel x z S [PROOFSTEP] apply trans
{"mathlib_filename": "Mathlib.Topology.Homotopy.Basic", "llama_tokens": 15468}
[GOAL] n : Type ?u.20 m : Type ?u.8 inst✝⁴ : Fintype m inst✝³ : DecidableEq m inst✝² : Fintype n inst✝¹ : DecidableEq n R : Type ?u.35 inst✝ : Fintype R ⊢ Fintype (Matrix m n R) [PROOFSTEP] unfold Matrix [GOAL] n : Type ?u.20 m : Type ?u.8 inst✝⁴ : Fintype m inst✝³ : DecidableEq m inst✝² : Fintype n inst✝¹ : DecidableEq n R : Type ?u.35 inst✝ : Fintype R ⊢ Fintype (m → n → R) [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n ⊢ vecMul (↑(LinearMap.stdBasis R (fun x => R) i) 1) M j = M i j [PROOFSTEP] have : (∑ i', (if i = i' then 1 else 0) * M i' j) = M i j := by simp_rw [boole_mul, Finset.sum_ite_eq, Finset.mem_univ, if_true] [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n ⊢ ∑ i' : m, (if i = i' then 1 else 0) * M i' j = M i j [PROOFSTEP] simp_rw [boole_mul, Finset.sum_ite_eq, Finset.mem_univ, if_true] [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n this : ∑ i' : m, (if i = i' then 1 else 0) * M i' j = M i j ⊢ vecMul (↑(LinearMap.stdBasis R (fun x => R) i) 1) M j = M i j [PROOFSTEP] simp only [vecMul, dotProduct] [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n this : ∑ i' : m, (if i = i' then 1 else 0) * M i' j = M i j ⊢ ∑ x : m, ↑(LinearMap.stdBasis R (fun x => R) i) 1 x * M x j = M i j [PROOFSTEP] convert this [GOAL] case h.e'_2.a.h.e'_5 R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n this : ∑ i' : m, (if i = i' then 1 else 0) * M i' j = M i j x✝ : m a✝ : x✝ ∈ Finset.univ ⊢ ↑(LinearMap.stdBasis R (fun x => R) i) 1 x✝ = if i = x✝ then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n this : ∑ i' : m, (if i = i' then 1 else 0) * M i' j = M i j x✝ : m a✝ : x✝ ∈ Finset.univ h : i = x✝ ⊢ ↑(LinearMap.stdBasis R (fun x => R) i) 1 x✝ = 1 [PROOFSTEP] simp only [stdBasis_apply] [GOAL] case neg R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n this : ∑ i' : m, (if i = i' then 1 else 0) * M i' j = M i j x✝ : m a✝ : x✝ ∈ Finset.univ h : ¬i = x✝ ⊢ ↑(LinearMap.stdBasis R (fun x => R) i) 1 x✝ = 0 [PROOFSTEP] simp only [stdBasis_apply] [GOAL] case pos R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n this : ∑ i' : m, (if i = i' then 1 else 0) * M i' j = M i j x✝ : m a✝ : x✝ ∈ Finset.univ h : i = x✝ ⊢ Function.update 0 i 1 x✝ = 1 [PROOFSTEP] rw [h, Function.update_same] [GOAL] case neg R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n this : ∑ i' : m, (if i = i' then 1 else 0) * M i' j = M i j x✝ : m a✝ : x✝ ∈ Finset.univ h : ¬i = x✝ ⊢ Function.update 0 i 1 x✝ = 0 [PROOFSTEP] rw [Function.update_noteq (Ne.symm h), Pi.zero_apply] [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m f g : (m → R) →ₗ[R] n → R ⊢ (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m f g : (m → R) →ₗ[R] n → R i : m j : n ⊢ (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) i j = ((fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) i j [PROOFSTEP] simp only [Pi.add_apply, LinearMap.add_apply, Matrix.add_apply] [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m c : Rᵐᵒᵖ f : (m → R) →ₗ[R] n → R ⊢ AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } (c • f) = ↑(RingHom.id Rᵐᵒᵖ) c • AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } f [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m c : Rᵐᵒᵖ f : (m → R) →ₗ[R] n → R i : m j : n ⊢ AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } (c • f) i j = (↑(RingHom.id Rᵐᵒᵖ) c • AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } f) i j [PROOFSTEP] simp only [Pi.smul_apply, LinearMap.smul_apply, RingHom.id_apply, Matrix.smul_apply] [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m f : (m → R) →ₗ[R] n → R ⊢ vecMulLinear (AddHom.toFun { toAddHom := { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) }, map_smul' := (_ : ∀ (c : Rᵐᵒᵖ) (f : (m → R) →ₗ[R] n → R), AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } (c • f) = ↑(RingHom.id Rᵐᵒᵖ) c • AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } f) }.toAddHom f) = f [PROOFSTEP] apply (Pi.basisFun R m).ext [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m f : (m → R) →ₗ[R] n → R ⊢ ∀ (i : m), ↑(vecMulLinear (AddHom.toFun { toAddHom := { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) }, map_smul' := (_ : ∀ (c : Rᵐᵒᵖ) (f : (m → R) →ₗ[R] n → R), AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } (c • f) = ↑(RingHom.id Rᵐᵒᵖ) c • AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } f) }.toAddHom f)) (↑(Pi.basisFun R m) i) = ↑f (↑(Pi.basisFun R m) i) [PROOFSTEP] intro j [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m f : (m → R) →ₗ[R] n → R j : m ⊢ ↑(vecMulLinear (AddHom.toFun { toAddHom := { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) }, map_smul' := (_ : ∀ (c : Rᵐᵒᵖ) (f : (m → R) →ₗ[R] n → R), AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } (c • f) = ↑(RingHom.id Rᵐᵒᵖ) c • AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } f) }.toAddHom f)) (↑(Pi.basisFun R m) j) = ↑f (↑(Pi.basisFun R m) j) [PROOFSTEP] ext i [GOAL] case h R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m f : (m → R) →ₗ[R] n → R j : m i : n ⊢ ↑(vecMulLinear (AddHom.toFun { toAddHom := { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) }, map_smul' := (_ : ∀ (c : Rᵐᵒᵖ) (f : (m → R) →ₗ[R] n → R), AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } (c • f) = ↑(RingHom.id Rᵐᵒᵖ) c • AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } f) }.toAddHom f)) (↑(Pi.basisFun R m) j) i = ↑f (↑(Pi.basisFun R m) j) i [PROOFSTEP] simp only [Pi.basisFun_apply, Matrix.vecMul_stdBasis, Matrix.vecMulLinear_apply] [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R ⊢ AddHom.toFun { toAddHom := { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) }, map_smul' := (_ : ∀ (c : Rᵐᵒᵖ) (f : (m → R) →ₗ[R] n → R), AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } (c • f) = ↑(RingHom.id Rᵐᵒᵖ) c • AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } f) }.toAddHom (vecMulLinear M) = M [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R i : m j : n ⊢ AddHom.toFun { toAddHom := { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) }, map_smul' := (_ : ∀ (c : Rᵐᵒᵖ) (f : (m → R) →ₗ[R] n → R), AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } (c • f) = ↑(RingHom.id Rᵐᵒᵖ) c • AddHom.toFun { toFun := fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j, map_add' := (_ : ∀ (f g : (m → R) →ₗ[R] n → R), (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) (f + g) = (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) f + (fun f i j => ↑f (↑(stdBasis R (fun x => R) i) 1) j) g) } f) }.toAddHom (vecMulLinear M) i j = M i j [PROOFSTEP] simp only [Matrix.vecMul_stdBasis, Matrix.vecMulLinear_apply] [GOAL] R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m ⊢ ↑toLinearMapRight' 1 = LinearMap.id [PROOFSTEP] ext [GOAL] case h.h.h R : Type u_1 inst✝² : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹ : Fintype m inst✝ : DecidableEq m i✝ x✝ : m ⊢ ↑(comp (↑toLinearMapRight' 1) (single i✝)) 1 x✝ = ↑(comp LinearMap.id (single i✝)) 1 x✝ [PROOFSTEP] simp [LinearMap.one_apply, stdBasis_apply] [GOAL] R : Type u_1 inst✝⁴ : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n inst✝ : DecidableEq n M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => (n → R) →ₗ[R] m → R) M' := ↑(LinearEquiv.symm toMatrixRight') M' x : n → R ⊢ ↑(↑toLinearMapRight' M) (AddHom.toFun { toAddHom := { toFun := ↑(↑toLinearMapRight' M'), map_add' := (_ : ∀ (x y : n → R), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : n → R), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x) = x [PROOFSTEP] dsimp only -- porting note: needed due to non-flat structures [GOAL] R : Type u_1 inst✝⁴ : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n inst✝ : DecidableEq n M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => (n → R) →ₗ[R] m → R) M' := ↑(LinearEquiv.symm toMatrixRight') M' x : n → R ⊢ ↑(↑toLinearMapRight' M) (↑(↑toLinearMapRight' M') x) = x [PROOFSTEP] rw [← Matrix.toLinearMapRight'_mul_apply, hM'M, Matrix.toLinearMapRight'_one, id_apply] [GOAL] R : Type u_1 inst✝⁴ : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n inst✝ : DecidableEq n M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => (n → R) →ₗ[R] m → R) M' := ↑(LinearEquiv.symm toMatrixRight') M' x : m → R ⊢ AddHom.toFun { toAddHom := { toFun := ↑(↑toLinearMapRight' M'), map_add' := (_ : ∀ (x y : n → R), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : n → R), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (↑(↑toLinearMapRight' M) x) = x [PROOFSTEP] dsimp only -- porting note: needed due to non-flat structures [GOAL] R : Type u_1 inst✝⁴ : Semiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n inst✝ : DecidableEq n M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => (n → R) →ₗ[R] m → R) M' := ↑(LinearEquiv.symm toMatrixRight') M' x : m → R ⊢ ↑(↑toLinearMapRight' M') (↑(↑toLinearMapRight' M) x) = x [PROOFSTEP] rw [← Matrix.toLinearMapRight'_mul_apply, hMM', Matrix.toLinearMapRight'_one, id_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n ⊢ mulVecLin 1 = LinearMap.id [PROOFSTEP] ext [GOAL] case h.h.h R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n i✝ x✝ : n ⊢ ↑(comp (mulVecLin 1) (single i✝)) 1 x✝ = ↑(comp LinearMap.id (single i✝)) 1 x✝ [PROOFSTEP] simp [Matrix.one_apply, Pi.single_apply] [GOAL] R : Type u_1 inst✝¹ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝ : Fintype n M : Matrix n n R ⊢ ker (mulVecLin M) = ⊥ ↔ ∀ (v : n → R), mulVec M v = 0 → v = 0 [PROOFSTEP] simp only [Submodule.eq_bot_iff, LinearMap.mem_ker, Matrix.mulVecLin_apply] [GOAL] R : Type u_1 inst✝¹ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝ : Fintype n M : Matrix m n R ⊢ LinearMap.range (mulVecLin M) = span R (Set.range Mᵀ) [PROOFSTEP] letI := Classical.decEq n [GOAL] R : Type u_1 inst✝¹ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝ : Fintype n M : Matrix m n R this : DecidableEq n := Classical.decEq n ⊢ LinearMap.range (mulVecLin M) = span R (Set.range Mᵀ) [PROOFSTEP] simp_rw [range_eq_map, ← iSup_range_stdBasis, Submodule.map_iSup, range_eq_map, ← Ideal.span_singleton_one, Ideal.span, Submodule.map_span, image_image, image_singleton, Matrix.mulVecLin_apply, M.mulVec_stdBasis_apply, iSup_span, range_eq_iUnion] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f g : (n → R) →ₗ[R] m → R ⊢ (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f g : (n → R) →ₗ[R] m → R i : m j : n ⊢ (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) i j = ((fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) i j [PROOFSTEP] simp only [Pi.add_apply, LinearMap.add_apply, of_apply, Matrix.add_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n c : R f : (n → R) →ₗ[R] m → R ⊢ AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } f [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n c : R f : (n → R) →ₗ[R] m → R i : m j : n ⊢ AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } (c • f) i j = (↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } f) i j [PROOFSTEP] simp only [Pi.smul_apply, LinearMap.smul_apply, RingHom.id_apply, of_apply, Matrix.smul_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R ⊢ mulVecLin (AddHom.toFun { toAddHom := { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) }, map_smul' := (_ : ∀ (c : R) (f : (n → R) →ₗ[R] m → R), AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } f) }.toAddHom f) = f [PROOFSTEP] apply (Pi.basisFun R n).ext [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R ⊢ ∀ (i : n), ↑(mulVecLin (AddHom.toFun { toAddHom := { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) }, map_smul' := (_ : ∀ (c : R) (f : (n → R) →ₗ[R] m → R), AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } f) }.toAddHom f)) (↑(Pi.basisFun R n) i) = ↑f (↑(Pi.basisFun R n) i) [PROOFSTEP] intro j [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R j : n ⊢ ↑(mulVecLin (AddHom.toFun { toAddHom := { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) }, map_smul' := (_ : ∀ (c : R) (f : (n → R) →ₗ[R] m → R), AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } f) }.toAddHom f)) (↑(Pi.basisFun R n) j) = ↑f (↑(Pi.basisFun R n) j) [PROOFSTEP] ext i [GOAL] case h R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R j : n i : m ⊢ ↑(mulVecLin (AddHom.toFun { toAddHom := { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) }, map_smul' := (_ : ∀ (c : R) (f : (n → R) →ₗ[R] m → R), AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } f) }.toAddHom f)) (↑(Pi.basisFun R n) j) i = ↑f (↑(Pi.basisFun R n) j) i [PROOFSTEP] simp only [Pi.basisFun_apply, Matrix.mulVec_stdBasis, Matrix.mulVecLin_apply, of_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n M : Matrix m n R ⊢ AddHom.toFun { toAddHom := { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) }, map_smul' := (_ : ∀ (c : R) (f : (n → R) →ₗ[R] m → R), AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } f) }.toAddHom (mulVecLin M) = M [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n M : Matrix m n R i : m j : n ⊢ AddHom.toFun { toAddHom := { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) }, map_smul' := (_ : ∀ (c : R) (f : (n → R) →ₗ[R] m → R), AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } (c • f) = ↑(RingHom.id R) c • AddHom.toFun { toFun := fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i, map_add' := (_ : ∀ (f g : (n → R) →ₗ[R] m → R), (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) (f + g) = (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) f + (fun f => ↑of fun i j => ↑f (↑(stdBasis R (fun x => R) j) 1) i) g) } f) }.toAddHom (mulVecLin M) i j = M i j [PROOFSTEP] simp only [Matrix.mulVec_stdBasis, Matrix.mulVecLin_apply, of_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R i : m j : n ⊢ ↑toMatrix' f i j = ↑f (fun j' => if j' = j then 1 else 0) i [PROOFSTEP] simp only [LinearMap.toMatrix', LinearEquiv.coe_mk, of_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R i : m j : n ⊢ ↑f (↑(stdBasis R (fun x => R) j) 1) i = ↑f (fun j' => if j' = j then 1 else 0) i [PROOFSTEP] refine congr_fun ?_ _ -- porting note: `congr` didn't do this [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R i : m j : n ⊢ ↑f (↑(stdBasis R (fun x => R) j) 1) = ↑f fun j' => if j' = j then 1 else 0 [PROOFSTEP] congr [GOAL] case h.e_6.h R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R i : m j : n ⊢ ↑(stdBasis R (fun x => R) j) 1 = fun j' => if j' = j then 1 else 0 [PROOFSTEP] ext j' [GOAL] case h.e_6.h.h R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R i : m j j' : n ⊢ ↑(stdBasis R (fun x => R) j) 1 j' = if j' = j then 1 else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R i : m j j' : n h : j' = j ⊢ ↑(stdBasis R (fun x => R) j) 1 j' = 1 [PROOFSTEP] rw [h, stdBasis_same] [GOAL] case neg R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] m → R i : m j j' : n h : ¬j' = j ⊢ ↑(stdBasis R (fun x => R) j) 1 j' = 0 [PROOFSTEP] apply stdBasis_ne _ _ _ _ h [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n ⊢ ↑toMatrix' id = 1 [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n i✝ x✝ : n ⊢ ↑toMatrix' id i✝ x✝ = OfNat.ofNat 1 i✝ x✝ [PROOFSTEP] rw [Matrix.one_apply, LinearMap.toMatrix'_apply, id_apply] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix l m R N : Matrix m n R x : n → R ⊢ ↑(↑toLin' (M * N)) x = ↑(↑toLin' M) (↑(↑toLin' N) x) [PROOFSTEP] rw [Matrix.toLin'_mul, LinearMap.comp_apply] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : Fintype l inst✝ : DecidableEq l f : (n → R) →ₗ[R] m → R g : (l → R) →ₗ[R] n → R ⊢ ↑toMatrix' (comp f g) = ↑toMatrix' f * ↑toMatrix' g [PROOFSTEP] suffices f.comp g = Matrix.toLin' (LinearMap.toMatrix' f * LinearMap.toMatrix' g) by rw [this, LinearMap.toMatrix'_toLin'] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : Fintype l inst✝ : DecidableEq l f : (n → R) →ₗ[R] m → R g : (l → R) →ₗ[R] n → R this : comp f g = ↑toLin' (↑toMatrix' f * ↑toMatrix' g) ⊢ ↑toMatrix' (comp f g) = ↑toMatrix' f * ↑toMatrix' g [PROOFSTEP] rw [this, LinearMap.toMatrix'_toLin'] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : Fintype l inst✝ : DecidableEq l f : (n → R) →ₗ[R] m → R g : (l → R) →ₗ[R] n → R ⊢ comp f g = ↑toLin' (↑toMatrix' f * ↑toMatrix' g) [PROOFSTEP] rw [Matrix.toLin'_mul, Matrix.toLin'_toMatrix', Matrix.toLin'_toMatrix'] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n x : R ⊢ ↑toMatrix' (↑(algebraMap R (Module.End R (n → R))) x) = ↑(scalar n) x [PROOFSTEP] simp [Module.algebraMap_end_eq_smul_id] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => (m → R) →ₗ[R] n → R) M' := ↑toLin' M' x : m → R ⊢ ↑(↑toLin' M) (AddHom.toFun { toAddHom := { toFun := ↑(↑toLin' M'), map_add' := (_ : ∀ (x y : m → R), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : m → R), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x) = x [PROOFSTEP] rw [← Matrix.toLin'_mul_apply, hMM', Matrix.toLin'_one, id_apply] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => (m → R) →ₗ[R] n → R) M' := ↑toLin' M' x : n → R ⊢ AddHom.toFun { toAddHom := { toFun := ↑(↑toLin' M'), map_add' := (_ : ∀ (x y : m → R), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : m → R), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (↑(↑toLin' M) x) = x [PROOFSTEP] simp only [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝³ : Fintype n inst✝² : DecidableEq n inst✝¹ : Fintype m inst✝ : DecidableEq m M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => (m → R) →ₗ[R] n → R) M' := ↑toLin' M' x : n → R ⊢ ↑(↑toLin' M') (↑(↑toLin' M) x) = x [PROOFSTEP] rw [← Matrix.toLin'_mul_apply, hM'M, Matrix.toLin'_one, id_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R k : Type u_2 l : Type u_3 m : Type u_4 n : Type u_5 inst✝¹ : Fintype n inst✝ : DecidableEq n f : (n → R) →ₗ[R] n → R i j : n ⊢ ↑toMatrixAlgEquiv' f i j = ↑f (fun j' => if j' = j then 1 else 0) i [PROOFSTEP] simp [LinearMap.toMatrixAlgEquiv'] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ f : M₁ →ₗ[R] M₂ ⊢ ↑(toLin v₁ v₂) (↑(toMatrix v₁ v₂) f) = f [PROOFSTEP] rw [← Matrix.toLin_symm, LinearEquiv.apply_symm_apply] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R ⊢ ↑(toMatrix v₁ v₂) (↑(toLin v₁ v₂) M) = M [PROOFSTEP] rw [← Matrix.toLin_symm, LinearEquiv.symm_apply_apply] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ f : M₁ →ₗ[R] M₂ i : m j : n ⊢ ↑(toMatrix v₁ v₂) f i j = ↑(↑v₂.repr (↑f (↑v₁ j))) i [PROOFSTEP] rw [LinearMap.toMatrix, LinearEquiv.trans_apply, LinearMap.toMatrix'_apply, LinearEquiv.arrowCongr_apply, Basis.equivFun_symm_apply, Finset.sum_eq_single j, if_pos rfl, one_smul, Basis.equivFun_apply] [GOAL] case h₀ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ f : M₁ →ₗ[R] M₂ i : m j : n ⊢ ∀ (b : n), b ∈ Finset.univ → b ≠ j → (if b = j then 1 else 0) • ↑v₁ b = 0 [PROOFSTEP] intro j' _ hj' [GOAL] case h₀ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ f : M₁ →ₗ[R] M₂ i : m j j' : n a✝ : j' ∈ Finset.univ hj' : j' ≠ j ⊢ (if j' = j then 1 else 0) • ↑v₁ j' = 0 [PROOFSTEP] rw [if_neg hj', zero_smul] [GOAL] case h₁ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ f : M₁ →ₗ[R] M₂ i : m j : n ⊢ ¬j ∈ Finset.univ → (if j = j then 1 else 0) • ↑v₁ j = 0 [PROOFSTEP] intro hj [GOAL] case h₁ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ f : M₁ →ₗ[R] M₂ i : m j : n hj : ¬j ∈ Finset.univ ⊢ (if j = j then 1 else 0) • ↑v₁ j = 0 [PROOFSTEP] have := Finset.mem_univ j [GOAL] case h₁ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ f : M₁ →ₗ[R] M₂ i : m j : n hj : ¬j ∈ Finset.univ this : j ∈ Finset.univ ⊢ (if j = j then 1 else 0) • ↑v₁ j = 0 [PROOFSTEP] contradiction [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R v : M₁ ⊢ ↑(LinearEquiv.symm (Basis.equivFun v₂)) (↑(↑toLin' M) ↑(↑v₁.repr v)) = ∑ j : m, mulVec M (↑(↑v₁.repr v)) j • ↑v₂ j [PROOFSTEP] rw [Matrix.toLin'_apply, v₂.equivFun_symm_apply] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R i : n ⊢ ↑(↑(toLin v₁ v₂) M) (↑v₁ i) = ∑ j : m, M j i • ↑v₂ j [PROOFSTEP] rw [Matrix.toLin_apply, Finset.sum_congr rfl fun j _hj => ?_] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R i : n j : m _hj : j ∈ Finset.univ ⊢ mulVec M (↑(↑v₁.repr (↑v₁ i))) j • ↑v₂ j = M j i • ↑v₂ j [PROOFSTEP] rw [Basis.repr_self, Matrix.mulVec, dotProduct, Finset.sum_eq_single i, Finsupp.single_eq_same, mul_one] [GOAL] case h₀ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R i : n j : m _hj : j ∈ Finset.univ ⊢ ∀ (b : n), b ∈ Finset.univ → b ≠ i → M j b * ↑(Finsupp.single i 1) b = 0 [PROOFSTEP] intro i' _ i'_ne [GOAL] case h₀ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R i : n j : m _hj : j ∈ Finset.univ i' : n a✝ : i' ∈ Finset.univ i'_ne : i' ≠ i ⊢ M j i' * ↑(Finsupp.single i 1) i' = 0 [PROOFSTEP] rw [Finsupp.single_eq_of_ne i'_ne.symm, mul_zero] [GOAL] case h₁ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R i : n j : m _hj : j ∈ Finset.univ ⊢ ¬i ∈ Finset.univ → M j i * ↑(Finsupp.single i 1) i = 0 [PROOFSTEP] intros [GOAL] case h₁ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R i : n j : m _hj : j ∈ Finset.univ a✝ : ¬i ∈ Finset.univ ⊢ M j i * ↑(Finsupp.single i 1) i = 0 [PROOFSTEP] have := Finset.mem_univ i [GOAL] case h₁ R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M : Matrix m n R i : n j : m _hj : j ∈ Finset.univ a✝ : ¬i ∈ Finset.univ this : i ∈ Finset.univ ⊢ M j i * ↑(Finsupp.single i 1) i = 0 [PROOFSTEP] contradiction [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ ⊢ ↑(toMatrix v₁ v₁) id = 1 [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ i j : n ⊢ ↑(toMatrix v₁ v₁) id i j = OfNat.ofNat 1 i j [PROOFSTEP] simp [LinearMap.toMatrix_apply, Matrix.one_apply, Finsupp.single_apply, eq_comm] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁶ : Fintype n inst✝⁵ : Fintype m inst✝⁴ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝³ : AddCommMonoid M₁ inst✝² : AddCommMonoid M₂ inst✝¹ : Module R M₁ inst✝ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ ⊢ ↑(toLin v₁ v₁) 1 = LinearMap.id [PROOFSTEP] rw [← LinearMap.toMatrix_id v₁, Matrix.toLin_toMatrix] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ inst✝¹ : DecidableEq M₁ inst✝ : DecidableEq M₂ f : M₁ →ₗ[R] M₂ k : m i : n ⊢ ↑(toMatrix (Basis.reindexRange v₁) (Basis.reindexRange v₂)) f { val := ↑v₂ k, property := (_ : ↑v₂ k ∈ Set.range ↑v₂) } { val := ↑v₁ i, property := (_ : ↑v₁ i ∈ Set.range ↑v₁) } = ↑(toMatrix v₁ v₂) f k i [PROOFSTEP] simp_rw [LinearMap.toMatrix_apply, Basis.reindexRange_self, Basis.reindexRange_repr] [GOAL] R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m f : M₂ →ₗ[R] M₃ g : M₁ →ₗ[R] M₂ ⊢ ↑(toMatrix v₁ v₃) (comp f g) = ↑(toMatrix v₂ v₃) f * ↑(toMatrix v₁ v₂) g [PROOFSTEP] simp_rw [LinearMap.toMatrix, LinearEquiv.trans_apply, LinearEquiv.arrowCongr_comp _ v₂.equivFun, LinearMap.toMatrix'_comp] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f g : M₁ →ₗ[R] M₁ ⊢ ↑(toMatrix v₁ v₁) (f * g) = ↑(toMatrix v₁ v₁) f * ↑(toMatrix v₁ v₁) g [PROOFSTEP] rw [LinearMap.mul_eq_comp, LinearMap.toMatrix_comp v₁ v₁ v₁ f g] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ x : R ⊢ ↑(toMatrix v₁ v₁) (↑(algebraMap R (Module.End R M₁)) x) = ↑(scalar n) x [PROOFSTEP] simp [Module.algebraMap_end_eq_smul_id, LinearMap.toMatrix_id] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f : M₁ →ₗ[R] M₂ x : M₁ ⊢ mulVec (↑(toMatrix v₁ v₂) f) ↑(↑v₁.repr x) = ↑(↑v₂.repr (↑f x)) [PROOFSTEP] ext i [GOAL] case h R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f : M₁ →ₗ[R] M₂ x : M₁ i : m ⊢ mulVec (↑(toMatrix v₁ v₂) f) (↑(↑v₁.repr x)) i = ↑(↑v₂.repr (↑f x)) i [PROOFSTEP] rw [← Matrix.toLin'_apply, LinearMap.toMatrix, LinearEquiv.trans_apply, Matrix.toLin'_toMatrix', LinearEquiv.arrowCongr_apply, v₂.equivFun_apply] [GOAL] case h R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f : M₁ →ₗ[R] M₂ x : M₁ i : m ⊢ ↑(↑v₂.repr (↑f (↑(LinearEquiv.symm (Basis.equivFun v₁)) ↑(↑v₁.repr x)))) i = ↑(↑v₂.repr (↑f x)) i [PROOFSTEP] congr [GOAL] case h.e_a.h.e_6.h.h.e_6.h R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f : M₁ →ₗ[R] M₂ x : M₁ i : m ⊢ ↑(LinearEquiv.symm (Basis.equivFun v₁)) ↑(↑v₁.repr x) = x [PROOFSTEP] exact v₁.equivFun.symm_apply_apply x [GOAL] R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq l b : Basis l R M₁ b' : Basis l R M₂ ⊢ ↑(toMatrix b' b) ↑(Basis.equiv b' b (Equiv.refl l)) = 1 [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq l b : Basis l R M₁ b' : Basis l R M₂ i j : l ⊢ ↑(toMatrix b' b) (↑(Basis.equiv b' b (Equiv.refl l))) i j = OfNat.ofNat 1 i j [PROOFSTEP] simp [LinearMap.toMatrix_apply, Matrix.one_apply, Finsupp.single_apply, eq_comm] [GOAL] R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m A : Matrix l m R B : Matrix m n R ⊢ ↑(toLin v₁ v₃) (A * B) = comp (↑(toLin v₂ v₃) A) (↑(toLin v₁ v₂) B) [PROOFSTEP] apply (LinearMap.toMatrix v₁ v₃).injective [GOAL] case a R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m A : Matrix l m R B : Matrix m n R ⊢ ↑(toMatrix v₁ v₃) (↑(toLin v₁ v₃) (A * B)) = ↑(toMatrix v₁ v₃) (comp (↑(toLin v₂ v₃) A) (↑(toLin v₁ v₂) B)) [PROOFSTEP] haveI : DecidableEq l := fun _ _ => Classical.propDecidable _ [GOAL] case a R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m A : Matrix l m R B : Matrix m n R this : DecidableEq l ⊢ ↑(toMatrix v₁ v₃) (↑(toLin v₁ v₃) (A * B)) = ↑(toMatrix v₁ v₃) (comp (↑(toLin v₂ v₃) A) (↑(toLin v₁ v₂) B)) [PROOFSTEP] rw [LinearMap.toMatrix_comp v₁ v₂ v₃] [GOAL] case a R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m A : Matrix l m R B : Matrix m n R this : DecidableEq l ⊢ ↑(toMatrix v₁ v₃) (↑(toLin v₁ v₃) (A * B)) = ↑(toMatrix v₂ v₃) (↑(toLin v₂ v₃) A) * ↑(toMatrix v₁ v₂) (↑(toLin v₁ v₂) B) [PROOFSTEP] repeat' rw [LinearMap.toMatrix_toLin] [GOAL] case a R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m A : Matrix l m R B : Matrix m n R this : DecidableEq l ⊢ ↑(toMatrix v₁ v₃) (↑(toLin v₁ v₃) (A * B)) = ↑(toMatrix v₂ v₃) (↑(toLin v₂ v₃) A) * ↑(toMatrix v₁ v₂) (↑(toLin v₁ v₂) B) [PROOFSTEP] rw [LinearMap.toMatrix_toLin] [GOAL] case a R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m A : Matrix l m R B : Matrix m n R this : DecidableEq l ⊢ A * B = ↑(toMatrix v₂ v₃) (↑(toLin v₂ v₃) A) * ↑(toMatrix v₁ v₂) (↑(toLin v₁ v₂) B) [PROOFSTEP] rw [LinearMap.toMatrix_toLin] [GOAL] case a R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m A : Matrix l m R B : Matrix m n R this : DecidableEq l ⊢ A * B = A * ↑(toMatrix v₁ v₂) (↑(toLin v₁ v₂) B) [PROOFSTEP] rw [LinearMap.toMatrix_toLin] [GOAL] R : Type u_1 inst✝¹¹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝¹⁰ : Fintype n inst✝⁹ : Fintype m inst✝⁸ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : AddCommMonoid M₂ inst✝⁵ : Module R M₁ inst✝⁴ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝³ : AddCommMonoid M₃ inst✝² : Module R M₃ v₃ : Basis l R M₃ inst✝¹ : Fintype l inst✝ : DecidableEq m A : Matrix l m R B : Matrix m n R x : M₁ ⊢ ↑(↑(toLin v₁ v₃) (A * B)) x = ↑(↑(toLin v₂ v₃) A) (↑(↑(toLin v₁ v₂) B) x) [PROOFSTEP] rw [Matrix.toLin_mul v₁ v₂, LinearMap.comp_apply] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁹ : Fintype n inst✝⁸ : Fintype m inst✝⁷ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₁ inst✝³ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ v₃ : Basis l R M₃ inst✝ : DecidableEq m M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => M₁ →ₗ[R] M₂) M := ↑(toLin v₁ v₂) M x : M₁ ⊢ ↑(↑(toLin v₂ v₁) M') (AddHom.toFun { toAddHom := { toFun := ↑(↑(toLin v₁ v₂) M), map_add' := (_ : ∀ (x y : M₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : M₁), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom x) = x [PROOFSTEP] rw [← Matrix.toLin_mul_apply, hM'M, Matrix.toLin_one, id_apply] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁹ : Fintype n inst✝⁸ : Fintype m inst✝⁷ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₁ inst✝³ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ v₃ : Basis l R M₃ inst✝ : DecidableEq m M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => M₁ →ₗ[R] M₂) M := ↑(toLin v₁ v₂) M x : M₂ ⊢ AddHom.toFun { toAddHom := { toFun := ↑(↑(toLin v₁ v₂) M), map_add' := (_ : ∀ (x y : M₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : ∀ (r : R) (x : M₁), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }.toAddHom (↑(↑(toLin v₂ v₁) M') x) = x [PROOFSTEP] simp only [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁹ : Fintype n inst✝⁸ : Fintype m inst✝⁷ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₁ inst✝³ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ v₃ : Basis l R M₃ inst✝ : DecidableEq m M : Matrix m n R M' : Matrix n m R hMM' : M * M' = 1 hM'M : M' * M = 1 src✝ : (fun x => M₁ →ₗ[R] M₂) M := ↑(toLin v₁ v₂) M x : M₂ ⊢ ↑(↑(toLin v₁ v₂) M) (↑(↑(toLin v₂ v₁) M') x) = x [PROOFSTEP] rw [← Matrix.toLin_mul_apply, hMM', Matrix.toLin_one, id_apply] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f : M₁ →ₗ[R] M₁ ⊢ ↑(toLinAlgEquiv v₁) (↑(toMatrixAlgEquiv v₁) f) = f [PROOFSTEP] rw [← Matrix.toLinAlgEquiv_symm, AlgEquiv.apply_symm_apply] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ M : Matrix n n R ⊢ ↑(toMatrixAlgEquiv v₁) (↑(toLinAlgEquiv v₁) M) = M [PROOFSTEP] rw [← Matrix.toLinAlgEquiv_symm, AlgEquiv.symm_apply_apply] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f : M₁ →ₗ[R] M₁ i j : n ⊢ ↑(toMatrixAlgEquiv v₁) f i j = ↑(↑v₁.repr (↑f (↑v₁ j))) i [PROOFSTEP] simp [LinearMap.toMatrixAlgEquiv, LinearMap.toMatrix_apply] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ M : Matrix n n R v : M₁ ⊢ ↑(LinearEquiv.symm (Basis.equivFun v₁)) (↑(↑toLinAlgEquiv' M) ↑(↑v₁.repr v)) = ∑ j : n, mulVec M (↑(↑v₁.repr v)) j • ↑v₁ j [PROOFSTEP] rw [Matrix.toLinAlgEquiv'_apply, v₁.equivFun_symm_apply] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ ⊢ ↑(toMatrixAlgEquiv v₁) id = 1 [PROOFSTEP] simp_rw [LinearMap.toMatrixAlgEquiv, AlgEquiv.ofLinearEquiv_apply, LinearMap.toMatrix_id] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ ⊢ ↑(toLinAlgEquiv v₁) 1 = LinearMap.id [PROOFSTEP] rw [← LinearMap.toMatrixAlgEquiv_id v₁, Matrix.toLinAlgEquiv_toMatrixAlgEquiv] [GOAL] R : Type u_1 inst✝¹⁰ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁹ : Fintype n inst✝⁸ : Fintype m inst✝⁷ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁶ : AddCommMonoid M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₁ inst✝³ : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝² : AddCommMonoid M₃ inst✝¹ : Module R M₃ v₃ : Basis l R M₃ inst✝ : DecidableEq M₁ f : M₁ →ₗ[R] M₁ k i : n ⊢ ↑(toMatrixAlgEquiv (Basis.reindexRange v₁)) f { val := ↑v₁ k, property := (_ : ↑v₁ k ∈ Set.range ↑v₁) } { val := ↑v₁ i, property := (_ : ↑v₁ i ∈ Set.range ↑v₁) } = ↑(toMatrixAlgEquiv v₁) f k i [PROOFSTEP] simp_rw [LinearMap.toMatrixAlgEquiv_apply, Basis.reindexRange_self, Basis.reindexRange_repr] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f g : M₁ →ₗ[R] M₁ ⊢ ↑(toMatrixAlgEquiv v₁) (comp f g) = ↑(toMatrixAlgEquiv v₁) f * ↑(toMatrixAlgEquiv v₁) g [PROOFSTEP] simp [LinearMap.toMatrixAlgEquiv, LinearMap.toMatrix_comp v₁ v₁ v₁ f g] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ f g : M₁ →ₗ[R] M₁ ⊢ ↑(toMatrixAlgEquiv v₁) (f * g) = ↑(toMatrixAlgEquiv v₁) f * ↑(toMatrixAlgEquiv v₁) g [PROOFSTEP] rw [LinearMap.mul_eq_comp, LinearMap.toMatrixAlgEquiv_comp v₁ f g] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ A B : Matrix n n R ⊢ ↑(toLinAlgEquiv v₁) (A * B) = comp (↑(toLinAlgEquiv v₁) A) (↑(toLinAlgEquiv v₁) B) [PROOFSTEP] convert Matrix.toLin_mul v₁ v₁ v₁ A B [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ a b c d : R x : R × R ⊢ ↑(↑(toLin (Basis.finTwoProd R) (Basis.finTwoProd R)) (↑of ![![a, b], ![c, d]])) x = (a * x.fst + b * x.snd, c * x.fst + d * x.snd) [PROOFSTEP] simp [Matrix.toLin_apply, Matrix.mulVec, Matrix.dotProduct, (Prod.smul_mk)] [GOAL] R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ x : R ⊢ ↑(toMatrix v₁ v₁) (DistribMulAction.toLinearMap R M₁ x) = Matrix.diagonal fun x_1 => x [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 inst✝⁹ : CommSemiring R l : Type u_2 m : Type u_3 n : Type u_4 inst✝⁸ : Fintype n inst✝⁷ : Fintype m inst✝⁶ : DecidableEq n M₁ : Type u_5 M₂ : Type u_6 inst✝⁵ : AddCommMonoid M₁ inst✝⁴ : AddCommMonoid M₂ inst✝³ : Module R M₁ inst✝² : Module R M₂ v₁ : Basis n R M₁ v₂ : Basis m R M₂ M₃ : Type u_7 inst✝¹ : AddCommMonoid M₃ inst✝ : Module R M₃ v₃ : Basis l R M₃ x : R i✝ x✝ : n ⊢ ↑(toMatrix v₁ v₁) (DistribMulAction.toLinearMap R M₁ x) i✝ x✝ = Matrix.diagonal (fun x_1 => x) i✝ x✝ [PROOFSTEP] rw [LinearMap.toMatrix_apply, DistribMulAction.toLinearMap_apply, LinearEquiv.map_smul, Basis.repr_self, Finsupp.smul_single_one, Finsupp.single_eq_pi_single, Matrix.diagonal_apply, Pi.single_apply] [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S x : S i j : m ⊢ ↑(toMatrix b b) (↑(lmul R S) x) i j = ↑(↑b.repr (x * ↑b j)) i [PROOFSTEP] simp only [LinearMap.toMatrix_apply', coe_lmul_eq_mul, LinearMap.mul_apply'] [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S ⊢ (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1 [PROOFSTEP] dsimp only -- porting node: needed due to new-style structures [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S ⊢ ↑(toMatrix b b) (↑(lmul R S) 1) = 1 [PROOFSTEP] rw [AlgHom.map_one, LinearMap.toMatrix_one] [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S x y : S ⊢ OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y [PROOFSTEP] dsimp only -- porting node: needed due to new-style structures [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S x y : S ⊢ ↑(toMatrix b b) (↑(lmul R S) (x * y)) = ↑(toMatrix b b) (↑(lmul R S) x) * ↑(toMatrix b b) (↑(lmul R S) y) [PROOFSTEP] rw [AlgHom.map_mul, LinearMap.toMatrix_mul] [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }) 0 = 0 [PROOFSTEP] dsimp only -- porting node: needed due to new-style structures [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S ⊢ ↑(toMatrix b b) (↑(lmul R S) 0) = 0 [PROOFSTEP] rw [AlgHom.map_zero, LinearEquiv.map_zero] [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S x y : S ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }) y [PROOFSTEP] dsimp only -- porting node: needed due to new-style structures [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S x y : S ⊢ ↑(toMatrix b b) (↑(lmul R S) (x + y)) = ↑(toMatrix b b) (↑(lmul R S) x) + ↑(toMatrix b b) (↑(lmul R S) y) [PROOFSTEP] rw [AlgHom.map_add, LinearEquiv.map_add] [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }) 0 = 0), map_add' := (_ : ∀ (x y : S), OneHom.toFun (↑{ toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) }, map_mul' := (_ : ∀ (x y : S), OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } (x * y) = OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } x * OneHom.toFun { toFun := fun x => ↑(toMatrix b b) (↑(lmul R S) x), map_one' := (_ : (fun x => ↑(toMatrix b b) (↑(lmul R S) x)) 1 = 1) } y) }) y) }) (↑(algebraMap R S) r) = ↑(algebraMap R (Matrix m m R)) r [PROOFSTEP] dsimp only -- porting node: needed due to new-style structures [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S r : R ⊢ ↑(toMatrix b b) (↑(lmul R S) (↑(algebraMap R S) r)) = ↑(algebraMap R (Matrix m m R)) r [PROOFSTEP] ext [GOAL] case a.h R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S r : R i✝ x✝ : m ⊢ ↑(toMatrix b b) (↑(lmul R S) (↑(algebraMap R S) r)) i✝ x✝ = ↑(algebraMap R (Matrix m m R)) r i✝ x✝ [PROOFSTEP] rw [lmul_algebraMap, toMatrix_lsmul, algebraMap_eq_diagonal, Pi.algebraMap_def, Algebra.id.map_eq_self] [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S x : S i j : m ⊢ ↑(leftMulMatrix b) x i j = ↑(↑b.repr (x * ↑b j)) i [PROOFSTEP] rw [leftMulMatrix_apply, toMatrix_lmul' b x i j] [GOAL] R : Type u_1 S : Type u_2 inst✝⁴ : CommRing R inst✝³ : Ring S inst✝² : Algebra R S m : Type u_3 inst✝¹ : Fintype m inst✝ : DecidableEq m b : Basis m R S x x' : S h : ↑(leftMulMatrix b) x = ↑(leftMulMatrix b) x' ⊢ ↑(↑(lmul R S) x) 1 = ↑(↑(lmul R S) x') 1 [PROOFSTEP] rw [(LinearMap.toMatrix b b).injective h] [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : T ik jk : m × n ⊢ ↑(leftMulMatrix (Basis.smul b c)) x ik jk = ↑(leftMulMatrix b) (↑(leftMulMatrix c) x ik.snd jk.snd) ik.fst jk.fst [PROOFSTEP] simp only [leftMulMatrix_apply, LinearMap.toMatrix_apply, mul_comm, Basis.smul_apply, Basis.smul_repr, Finsupp.smul_apply, id.smul_eq_mul, LinearEquiv.map_smul, mul_smul_comm, coe_lmul_eq_mul, LinearMap.mul_apply'] [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S ⊢ ↑(leftMulMatrix (Basis.smul b c)) (↑(algebraMap S T) x) = blockDiagonal fun x_1 => ↑(leftMulMatrix b) x [PROOFSTEP] ext ⟨i, k⟩ ⟨j, k'⟩ [GOAL] case a.mk.h.mk R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S i : m k : n j : m k' : n ⊢ ↑(leftMulMatrix (Basis.smul b c)) (↑(algebraMap S T) x) (i, k) (j, k') = blockDiagonal (fun x_1 => ↑(leftMulMatrix b) x) (i, k) (j, k') [PROOFSTEP] rw [smul_leftMulMatrix, AlgHom.commutes, blockDiagonal_apply, algebraMap_matrix_apply] [GOAL] case a.mk.h.mk R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S i : m k : n j : m k' : n ⊢ ↑(leftMulMatrix b) (if (i, k).snd = (j, k').snd then ↑(algebraMap S S) x else 0) (i, k).fst (j, k').fst = if (i, k).snd = (j, k').snd then ↑(leftMulMatrix b) x (i, k).fst (j, k').fst else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S i : m k : n j : m k' : n h : (i, k).snd = (j, k').snd ⊢ ↑(leftMulMatrix b) (if (i, k).snd = (j, k').snd then ↑(algebraMap S S) x else 0) (i, k).fst (j, k').fst = ↑(leftMulMatrix b) x (i, k).fst (j, k').fst [PROOFSTEP] simp only at h [GOAL] case neg R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S i : m k : n j : m k' : n h : ¬(i, k).snd = (j, k').snd ⊢ ↑(leftMulMatrix b) (if (i, k).snd = (j, k').snd then ↑(algebraMap S S) x else 0) (i, k).fst (j, k').fst = 0 [PROOFSTEP] simp only at h [GOAL] case pos R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S i : m k : n j : m k' : n h : k = k' ⊢ ↑(leftMulMatrix b) (if (i, k).snd = (j, k').snd then ↑(algebraMap S S) x else 0) (i, k).fst (j, k').fst = ↑(leftMulMatrix b) x (i, k).fst (j, k').fst [PROOFSTEP] simp [h] [GOAL] case neg R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S i : m k : n j : m k' : n h : ¬k = k' ⊢ ↑(leftMulMatrix b) (if (i, k).snd = (j, k').snd then ↑(algebraMap S S) x else 0) (i, k).fst (j, k').fst = 0 [PROOFSTEP] simp [h] [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S i j : m k : n ⊢ ↑(leftMulMatrix (Basis.smul b c)) (↑(algebraMap S T) x) (i, k) (j, k) = ↑(leftMulMatrix b) x i j [PROOFSTEP] rw [smul_leftMulMatrix_algebraMap, blockDiagonal_apply_eq] [GOAL] R : Type u_1 S : Type u_2 T : Type u_3 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing S inst✝⁸ : Ring T inst✝⁷ : Algebra R S inst✝⁶ : Algebra S T inst✝⁵ : Algebra R T inst✝⁴ : IsScalarTower R S T m : Type u_4 n : Type u_5 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : DecidableEq n b : Basis m R S c : Basis n S T x : S i j : m k k' : n h : k ≠ k' ⊢ ↑(leftMulMatrix (Basis.smul b c)) (↑(algebraMap S T) x) (i, k) (j, k') = 0 [PROOFSTEP] rw [smul_leftMulMatrix_algebraMap, blockDiagonal_apply_ne _ _ _ h] [GOAL] R : Type v inst✝⁷ : CommRing R n : Type u_1 inst✝⁶ : DecidableEq n M : Type u_2 M₁ : Type u_3 M₂ : Type u_4 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M₁ ≃ₗ[R] M₂ src✝ : Module.End R M₁ ≃ₗ[R] Module.End R M₂ := conj e f g : Module.End R M₁ ⊢ Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (f * g) = Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } f * Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } g [PROOFSTEP] apply e.arrowCongr_comp [GOAL] R : Type v inst✝⁷ : CommRing R n : Type u_1 inst✝⁶ : DecidableEq n M : Type u_2 M₁ : Type u_3 M₂ : Type u_4 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M₁ ≃ₗ[R] M₂ src✝ : Module.End R M₁ ≃ₗ[R] Module.End R M₂ := conj e r : R ⊢ Equiv.toFun { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) } (↑(algebraMap R (Module.End R M₁)) r) = ↑(algebraMap R (Module.End R M₂)) r [PROOFSTEP] change e.conj (r • LinearMap.id) = r • LinearMap.id [GOAL] R : Type v inst✝⁷ : CommRing R n : Type u_1 inst✝⁶ : DecidableEq n M : Type u_2 M₁ : Type u_3 M₂ : Type u_4 inst✝⁵ : AddCommGroup M inst✝⁴ : Module R M inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : AddCommGroup M₂ inst✝ : Module R M₂ e : M₁ ≃ₗ[R] M₂ src✝ : Module.End R M₁ ≃ₗ[R] Module.End R M₂ := conj e r : R ⊢ ↑(conj e) (r • LinearMap.id) = r • LinearMap.id [PROOFSTEP] rw [LinearEquiv.map_smul, LinearEquiv.conj_id]
{"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.ToLin", "llama_tokens": 45910}
[GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a b c d : α ⊢ 𝓝ˢ (Ici a) = 𝓝 a ⊔ 𝓟 (Ioi a) [PROOFSTEP] rw [← Ioi_insert, nhdsSet_insert, nhdsSet_Ioi] [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a b c d : α h : a < b ⊢ 𝓝ˢ (Ico a b) = 𝓝 a ⊔ 𝓟 (Ioo a b) [PROOFSTEP] rw [← Ioo_insert_left h, nhdsSet_insert, nhdsSet_Ioo] [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a b c d : α h : a < b ⊢ 𝓝ˢ (Ioc a b) = 𝓝 b ⊔ 𝓟 (Ioo a b) [PROOFSTEP] rw [← Ioo_insert_right h, nhdsSet_insert, nhdsSet_Ioo] [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a b c d : α h : a ≤ b ⊢ 𝓝ˢ (Icc a b) = 𝓝 a ⊔ 𝓝 b ⊔ 𝓟 (Ioo a b) [PROOFSTEP] rcases h.eq_or_lt with rfl | hlt [GOAL] case inl α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a c d : α h : a ≤ a ⊢ 𝓝ˢ (Icc a a) = 𝓝 a ⊔ 𝓝 a ⊔ 𝓟 (Ioo a a) [PROOFSTEP] simp [GOAL] case inr α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a b c d : α h : a ≤ b hlt : a < b ⊢ 𝓝ˢ (Icc a b) = 𝓝 a ⊔ 𝓝 b ⊔ 𝓟 (Ioo a b) [PROOFSTEP] rw [← Ioc_insert_left h, nhdsSet_insert, nhdsSet_Ioc hlt, sup_assoc] [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a b c d : α ⊢ Ioi a ∈ 𝓝ˢ (Ici b) ↔ a < b [PROOFSTEP] rw [isOpen_Ioi.mem_nhdsSet, Ici_subset_Ioi] [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a b c d : α h : b ≤ c ⊢ Iio c ∈ 𝓝ˢ (Iio b) [PROOFSTEP] simpa [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderClosedTopology α a b c d : α h : a ≤ b ⊢ Ioi a ∈ 𝓝ˢ (Ioi b) [PROOFSTEP] simpa [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a : α h : Nonempty ↑(Ioi a) ⊢ HasBasis (𝓝ˢ (Iic a)) (fun x => a < x) Iio [PROOFSTEP] refine ⟨fun s ↦ ⟨fun hs ↦ ?_, fun ⟨b, hab, hb⟩ ↦ mem_of_superset (Iio_mem_nhdsSet_Iic hab) hb⟩⟩ [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a : α h : Nonempty ↑(Ioi a) s : Set α hs : s ∈ 𝓝ˢ (Iic a) ⊢ ∃ i, a < i ∧ Iio i ⊆ s [PROOFSTEP] rw [nhdsSet_Iic, mem_sup, mem_principal] at hs [GOAL] α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a : α h : Nonempty ↑(Ioi a) s : Set α hs : s ∈ 𝓝 a ∧ Iio a ⊆ s ⊢ ∃ i, a < i ∧ Iio i ⊆ s [PROOFSTEP] rcases exists_Ico_subset_of_mem_nhds hs.1 (Set.nonempty_coe_sort.1 h) with ⟨b, hab, hbs⟩ [GOAL] case intro.intro α : Type u_1 inst✝² : LinearOrder α inst✝¹ : TopologicalSpace α inst✝ : OrderTopology α a : α h : Nonempty ↑(Ioi a) s : Set α hs : s ∈ 𝓝 a ∧ Iio a ⊆ s b : α hab : a < b hbs : Ico a b ⊆ s ⊢ ∃ i, a < i ∧ Iio i ⊆ s [PROOFSTEP] exact ⟨b, hab, Iio_subset_Iio_union_Ico.trans (union_subset hs.2 hbs)⟩ [GOAL] α : Type u_1 inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α a : α inst✝ : NeBot (𝓝[Ioi a] a) ⊢ HasBasis (𝓝ˢ (Iic a)) (fun x => a < x) Iic [PROOFSTEP] have : Nonempty (Ioi a) := (Filter.nonempty_of_mem (self_mem_nhdsWithin : Ioi a ∈ 𝓝[>] a)).to_subtype [GOAL] α : Type u_1 inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α a : α inst✝ : NeBot (𝓝[Ioi a] a) this : Nonempty ↑(Ioi a) ⊢ HasBasis (𝓝ˢ (Iic a)) (fun x => a < x) Iic [PROOFSTEP] refine (hasBasis_nhdsSet_Iic_Iio _).to_hasBasis (fun c hc ↦ ?_) (fun _ h ↦ ⟨_, h, Iio_subset_Iic_self⟩) [GOAL] α : Type u_1 inst✝³ : LinearOrder α inst✝² : TopologicalSpace α inst✝¹ : OrderTopology α a : α inst✝ : NeBot (𝓝[Ioi a] a) this : Nonempty ↑(Ioi a) c : α hc : a < c ⊢ ∃ i', a < i' ∧ Iic i' ⊆ Iio c [PROOFSTEP] simpa only [Iic_subset_Iio] using (Filter.nonempty_of_mem <| Ioo_mem_nhdsWithin_Ioi' hc)
{"mathlib_filename": "Mathlib.Topology.Order.NhdsSet", "llama_tokens": 2075}
[GOAL] K : Subfield ℂ hc : IsClosed ↑K ⊢ K = RingHom.fieldRange ofReal ∨ K = ⊤ [PROOFSTEP] suffices range (ofReal' : ℝ → ℂ) ⊆ K by rw [range_subset_iff, ← coe_algebraMap] at this have := (Subalgebra.isSimpleOrder_of_finrank finrank_real_complex).eq_bot_or_eq_top (Subfield.toIntermediateField K this).toSubalgebra simp_rw [← SetLike.coe_set_eq] at this ⊢ convert this using 2 simp only [RingHom.coe_fieldRange, Algebra.coe_bot, coe_algebraMap] rfl [GOAL] K : Subfield ℂ hc : IsClosed ↑K this : range ofReal' ⊆ ↑K ⊢ K = RingHom.fieldRange ofReal ∨ K = ⊤ [PROOFSTEP] rw [range_subset_iff, ← coe_algebraMap] at this [GOAL] K : Subfield ℂ hc : IsClosed ↑K this : ∀ (y : ℝ), ↑(algebraMap ℝ ℂ) y ∈ ↑K ⊢ K = RingHom.fieldRange ofReal ∨ K = ⊤ [PROOFSTEP] have := (Subalgebra.isSimpleOrder_of_finrank finrank_real_complex).eq_bot_or_eq_top (Subfield.toIntermediateField K this).toSubalgebra [GOAL] K : Subfield ℂ hc : IsClosed ↑K this✝ : ∀ (y : ℝ), ↑(algebraMap ℝ ℂ) y ∈ ↑K this : (Subfield.toIntermediateField K this✝).toSubalgebra = ⊥ ∨ (Subfield.toIntermediateField K this✝).toSubalgebra = ⊤ ⊢ K = RingHom.fieldRange ofReal ∨ K = ⊤ [PROOFSTEP] simp_rw [← SetLike.coe_set_eq] at this ⊢ [GOAL] K : Subfield ℂ hc : IsClosed ↑K this✝ : ∀ (y : ℝ), ↑(algebraMap ℝ ℂ) y ∈ ↑K this : ↑(Subfield.toIntermediateField K this✝).toSubalgebra = ↑⊥ ∨ ↑(Subfield.toIntermediateField K this✝).toSubalgebra = ↑⊤ ⊢ ↑K = ↑(RingHom.fieldRange ofReal) ∨ ↑K = ↑⊤ [PROOFSTEP] convert this using 2 [GOAL] case h.e'_1.h.e'_3 K : Subfield ℂ hc : IsClosed ↑K this✝ : ∀ (y : ℝ), ↑(algebraMap ℝ ℂ) y ∈ ↑K this : ↑(Subfield.toIntermediateField K this✝).toSubalgebra = ↑⊥ ∨ ↑(Subfield.toIntermediateField K this✝).toSubalgebra = ↑⊤ ⊢ ↑(RingHom.fieldRange ofReal) = ↑⊥ [PROOFSTEP] simp only [RingHom.coe_fieldRange, Algebra.coe_bot, coe_algebraMap] [GOAL] case h.e'_1.h.e'_3 K : Subfield ℂ hc : IsClosed ↑K this✝ : ∀ (y : ℝ), ↑(algebraMap ℝ ℂ) y ∈ ↑K this : ↑(Subfield.toIntermediateField K this✝).toSubalgebra = ↑⊥ ∨ ↑(Subfield.toIntermediateField K this✝).toSubalgebra = ↑⊤ ⊢ range ↑ofReal = range ofReal' [PROOFSTEP] rfl [GOAL] K : Subfield ℂ hc : IsClosed ↑K ⊢ range ofReal' ⊆ ↑K [PROOFSTEP] suffices range (ofReal' : ℝ → ℂ) ⊆ closure (Set.range ((ofReal' : ℝ → ℂ) ∘ ((↑) : ℚ → ℝ))) by refine' subset_trans this _ rw [← IsClosed.closure_eq hc] apply closure_mono rintro _ ⟨_, rfl⟩ simp only [Function.comp_apply, ofReal_rat_cast, SetLike.mem_coe, SubfieldClass.coe_rat_mem] [GOAL] K : Subfield ℂ hc : IsClosed ↑K this : range ofReal' ⊆ closure (range (ofReal' ∘ Rat.cast)) ⊢ range ofReal' ⊆ ↑K [PROOFSTEP] refine' subset_trans this _ [GOAL] K : Subfield ℂ hc : IsClosed ↑K this : range ofReal' ⊆ closure (range (ofReal' ∘ Rat.cast)) ⊢ closure (range (ofReal' ∘ Rat.cast)) ⊆ ↑K [PROOFSTEP] rw [← IsClosed.closure_eq hc] [GOAL] K : Subfield ℂ hc : IsClosed ↑K this : range ofReal' ⊆ closure (range (ofReal' ∘ Rat.cast)) ⊢ closure (range (ofReal' ∘ Rat.cast)) ⊆ closure ↑K [PROOFSTEP] apply closure_mono [GOAL] case h K : Subfield ℂ hc : IsClosed ↑K this : range ofReal' ⊆ closure (range (ofReal' ∘ Rat.cast)) ⊢ range (ofReal' ∘ Rat.cast) ⊆ ↑K [PROOFSTEP] rintro _ ⟨_, rfl⟩ [GOAL] case h.intro K : Subfield ℂ hc : IsClosed ↑K this : range ofReal' ⊆ closure (range (ofReal' ∘ Rat.cast)) w✝ : ℚ ⊢ (ofReal' ∘ Rat.cast) w✝ ∈ ↑K [PROOFSTEP] simp only [Function.comp_apply, ofReal_rat_cast, SetLike.mem_coe, SubfieldClass.coe_rat_mem] [GOAL] K : Subfield ℂ hc : IsClosed ↑K ⊢ range ofReal' ⊆ closure (range (ofReal' ∘ Rat.cast)) [PROOFSTEP] nth_rw 1 [range_comp] [GOAL] K : Subfield ℂ hc : IsClosed ↑K ⊢ range ofReal' ⊆ closure (ofReal' '' range Rat.cast) [PROOFSTEP] refine' subset_trans _ (image_closure_subset_closure_image continuous_ofReal) [GOAL] K : Subfield ℂ hc : IsClosed ↑K ⊢ range ofReal' ⊆ ofReal' '' closure (range Rat.cast) [PROOFSTEP] rw [DenseRange.closure_range Rat.denseEmbedding_coe_real.dense] [GOAL] K : Subfield ℂ hc : IsClosed ↑K ⊢ range ofReal' ⊆ ofReal' '' univ [PROOFSTEP] simp only [image_univ] [GOAL] K : Subfield ℂ hc : IsClosed ↑K ⊢ range ofReal' ⊆ range ofReal' [PROOFSTEP] rfl [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] letI : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] letI : TopologicalRing K.topologicalClosure := Subring.instTopologicalRing K.topologicalClosure.toSubring [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] set ι : K → K.topologicalClosure := ⇑(Subfield.inclusion K.le_topologicalClosure) [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] have ui : UniformInducing ι := ⟨by erw [uniformity_subtype, uniformity_subtype, Filter.comap_comap] congr⟩ [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ⊢ Filter.comap (fun x => (ι x.fst, ι x.snd)) (uniformity { x // x ∈ Subfield.topologicalClosure K }) = uniformity { x // x ∈ K } [PROOFSTEP] erw [uniformity_subtype, uniformity_subtype, Filter.comap_comap] [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ⊢ Filter.comap ((fun q => (↑q.fst, ↑q.snd)) ∘ fun x => (ι x.fst, ι x.snd)) (uniformity ℂ) = Filter.comap (fun q => (↑q.fst, ↑q.snd)) (uniformity ℂ) [PROOFSTEP] congr [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] let di := ui.denseInducing (?_ : DenseRange ι) [GOAL] case refine_2 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] let extψ := DenseInducing.extendRingHom ui di.dense hc [GOAL] case refine_2 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] haveI hψ := (uniformContinuous_uniformly_extend ui di.dense hc).continuous [GOAL] case refine_2 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] cases' Complex.subfield_eq_of_closed (Subfield.isClosed_topologicalClosure K) with h h [GOAL] case refine_2.inl K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] left [GOAL] case refine_2.inl.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal ⊢ ψ.toFun = ↑(Subfield.subtype K) [PROOFSTEP] let j := RingEquiv.subfieldCongr h [GOAL] case refine_2.inl.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ⊢ ψ.toFun = ↑(Subfield.subtype K) [PROOFSTEP] let ψ₁ := RingHom.comp extψ (RingHom.comp j.symm.toRingHom ofReal.rangeRestrict) -- porting note: was `by continuity!` and was used inline [GOAL] case refine_2.inl.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) ⊢ ψ.toFun = ↑(Subfield.subtype K) [PROOFSTEP] have hψ₁ : Continuous ψ₁ := by simpa only [RingHom.coe_comp] using hψ.comp ((continuous_algebraMap ℝ ℂ).subtype_mk _) [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) ⊢ Continuous ↑ψ₁ [PROOFSTEP] simpa only [RingHom.coe_comp] using hψ.comp ((continuous_algebraMap ℝ ℂ).subtype_mk _) [GOAL] case refine_2.inl.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ ⊢ ψ.toFun = ↑(Subfield.subtype K) [PROOFSTEP] ext1 x [GOAL] case refine_2.inl.h.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } ⊢ OneHom.toFun (↑↑ψ) x = ↑(Subfield.subtype K) x [PROOFSTEP] rsuffices ⟨r, hr⟩ : ∃ r : ℝ, ofReal.rangeRestrict r = j (ι x) [GOAL] case refine_2.inl.h.h.intro K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } r : ℝ hr : ↑(RingHom.rangeRestrict ofReal) r = ↑j (ι x) ⊢ OneHom.toFun (↑↑ψ) x = ↑(Subfield.subtype K) x [PROOFSTEP] have := RingHom.congr_fun (ringHom_eq_ofReal_of_continuous hψ₁) r [GOAL] case refine_2.inl.h.h.intro K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝¹ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this✝ : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } r : ℝ hr : ↑(RingHom.rangeRestrict ofReal) r = ↑j (ι x) this : ↑ψ₁ r = ↑ofReal r ⊢ OneHom.toFun (↑↑ψ) x = ↑(Subfield.subtype K) x [PROOFSTEP] rw [RingHom.comp_apply, RingHom.comp_apply, hr, RingEquiv.toRingHom_eq_coe] at this [GOAL] case refine_2.inl.h.h.intro K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝¹ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this✝ : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } r : ℝ hr : ↑(RingHom.rangeRestrict ofReal) r = ↑j (ι x) this : ↑extψ (↑↑(RingEquiv.symm j) (↑j (ι x))) = ↑ofReal r ⊢ OneHom.toFun (↑↑ψ) x = ↑(Subfield.subtype K) x [PROOFSTEP] convert this using 1 [GOAL] case h.e'_2 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝¹ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this✝ : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } r : ℝ hr : ↑(RingHom.rangeRestrict ofReal) r = ↑j (ι x) this : ↑extψ (↑↑(RingEquiv.symm j) (↑j (ι x))) = ↑ofReal r ⊢ OneHom.toFun (↑↑ψ) x = ↑extψ (↑↑(RingEquiv.symm j) (↑j (ι x))) [PROOFSTEP] exact (DenseInducing.extend_eq di hc.continuous _).symm [GOAL] case h.e'_3 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝¹ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this✝ : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } r : ℝ hr : ↑(RingHom.rangeRestrict ofReal) r = ↑j (ι x) this : ↑extψ (↑↑(RingEquiv.symm j) (↑j (ι x))) = ↑ofReal r ⊢ ↑(Subfield.subtype K) x = ↑ofReal r [PROOFSTEP] rw [← ofReal.coe_rangeRestrict, hr] [GOAL] case h.e'_3 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝¹ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this✝ : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } r : ℝ hr : ↑(RingHom.rangeRestrict ofReal) r = ↑j (ι x) this : ↑extψ (↑↑(RingEquiv.symm j) (↑j (ι x))) = ↑ofReal r ⊢ ↑(Subfield.subtype K) x = ↑(↑j (ι x)) [PROOFSTEP] rfl [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } ⊢ ∃ r, ↑(RingHom.rangeRestrict ofReal) r = ↑j (ι x) [PROOFSTEP] obtain ⟨r, hr⟩ := SetLike.coe_mem (j (ι x)) [GOAL] case intro K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = RingHom.fieldRange ofReal j : { x // x ∈ Subfield.topologicalClosure K } ≃+* { x // x ∈ RingHom.fieldRange ofReal } := RingEquiv.subfieldCongr h ψ₁ : ℝ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm j)) (RingHom.rangeRestrict ofReal)) hψ₁ : Continuous ↑ψ₁ x : { x // x ∈ K } r : ℝ hr : ↑ofReal r = ↑(↑j (ι x)) ⊢ ∃ r, ↑(RingHom.rangeRestrict ofReal) r = ↑j (ι x) [PROOFSTEP] exact ⟨r, Subtype.ext hr⟩ [GOAL] case refine_2.inr K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = ⊤ ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] let ψ₁ := RingHom.comp extψ (RingHom.comp (RingEquiv.subfieldCongr h).symm.toRingHom (@Subfield.topEquiv ℂ _).symm.toRingHom) -- porting note: was `by continuity!` and was used inline [GOAL] case refine_2.inr K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] have hψ₁ : Continuous ψ₁ := by simpa only [RingHom.coe_comp] using hψ.comp (continuous_id.subtype_mk _) [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) ⊢ Continuous ↑ψ₁ [PROOFSTEP] simpa only [RingHom.coe_comp] using hψ.comp (continuous_id.subtype_mk _) [GOAL] case refine_2.inr K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] cases' ringHom_eq_id_or_conj_of_continuous hψ₁ with h h [GOAL] case refine_2.inr.inl K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h✝ : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h✝))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ h : ψ₁ = RingHom.id ℂ ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] left [GOAL] case refine_2.inr.inl.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h✝ : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h✝))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ h : ψ₁ = RingHom.id ℂ ⊢ ψ.toFun = ↑(Subfield.subtype K) [PROOFSTEP] ext1 z [GOAL] case refine_2.inr.inl.h.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h✝ : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h✝))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ h : ψ₁ = RingHom.id ℂ z : { x // x ∈ K } ⊢ OneHom.toFun (↑↑ψ) z = ↑(Subfield.subtype K) z [PROOFSTEP] convert RingHom.congr_fun h z using 1 [GOAL] case h.e'_2 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h✝ : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h✝))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ h : ψ₁ = RingHom.id ℂ z : { x // x ∈ K } ⊢ OneHom.toFun (↑↑ψ) z = ↑ψ₁ ↑z [PROOFSTEP] exact (DenseInducing.extend_eq di hc.continuous z).symm [GOAL] case refine_2.inr.inr K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h✝ : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h✝))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ h : ψ₁ = starRingEnd ℂ ⊢ ψ.toFun = ↑(Subfield.subtype K) ∨ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] right [GOAL] case refine_2.inr.inr.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h✝ : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h✝))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ h : ψ₁ = starRingEnd ℂ ⊢ ψ.toFun = ↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K) [PROOFSTEP] ext1 z [GOAL] case refine_2.inr.inr.h.h K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h✝ : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h✝))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ h : ψ₁ = starRingEnd ℂ z : { x // x ∈ K } ⊢ OneHom.toFun (↑↑ψ) z = (↑(starRingEnd ℂ) ∘ ↑(Subfield.subtype K)) z [PROOFSTEP] convert RingHom.congr_fun h z using 1 [GOAL] case h.e'_2 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι di : DenseInducing ι := UniformInducing.denseInducing ui ?refine_1 extψ : { x // x ∈ Subfield.topologicalClosure K } →+* ℂ := DenseInducing.extendRingHom ui (_ : DenseRange ι) hc hψ : Continuous (DenseInducing.extend (_ : DenseInducing ι) ↑ψ) h✝ : Subfield.topologicalClosure K = ⊤ ψ₁ : ℂ →+* ℂ := RingHom.comp extψ (RingHom.comp (RingEquiv.toRingHom (RingEquiv.symm (RingEquiv.subfieldCongr h✝))) (RingEquiv.toRingHom (RingEquiv.symm Subfield.topEquiv))) hψ₁ : Continuous ↑ψ₁ h : ψ₁ = starRingEnd ℂ z : { x // x ∈ K } ⊢ OneHom.toFun (↑↑ψ) z = ↑ψ₁ ↑z [PROOFSTEP] exact (DenseInducing.extend_eq di hc.continuous z).symm [GOAL] case refine_1 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι ⊢ DenseRange ι [PROOFSTEP] let j : { x // x ∈ closure (id '' {x | (K : Set ℂ) x}) } → (K.topologicalClosure : Set ℂ) := fun x => ⟨x, by convert x.prop simp only [id.def, Set.image_id'] rfl⟩ [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι x : { x // x ∈ closure (id '' {x | ↑K x}) } ⊢ ↑x ∈ ↑(Subfield.topologicalClosure K) [PROOFSTEP] convert x.prop [GOAL] case h.e'_5 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι x : { x // x ∈ closure (id '' {x | ↑K x}) } ⊢ ↑(Subfield.topologicalClosure K) = closure (id '' {x | ↑K x}) [PROOFSTEP] simp only [id.def, Set.image_id'] [GOAL] case h.e'_5 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι x : { x // x ∈ closure (id '' {x | ↑K x}) } ⊢ ↑(Subfield.topologicalClosure K) = closure {x | ↑K x} [PROOFSTEP] rfl [GOAL] case refine_1 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι j : { x // x ∈ closure (id '' {x | ↑K x}) } → ↑↑(Subfield.topologicalClosure K) := fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(Subfield.topologicalClosure K)) } ⊢ DenseRange ι [PROOFSTEP] convert DenseRange.comp (Function.Surjective.denseRange _) (DenseEmbedding.subtype denseEmbedding_id (K : Set ℂ)).dense (by continuity : Continuous j) [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι j : { x // x ∈ closure (id '' {x | ↑K x}) } → ↑↑(Subfield.topologicalClosure K) := fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(Subfield.topologicalClosure K)) } ⊢ Continuous j [PROOFSTEP] continuity [GOAL] case refine_1 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι j : { x // x ∈ closure (id '' {x | ↑K x}) } → ↑↑(Subfield.topologicalClosure K) := fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(Subfield.topologicalClosure K)) } ⊢ Function.Surjective j [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case refine_1.mk K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι j : { x // x ∈ closure (id '' {x | ↑K x}) } → ↑↑(Subfield.topologicalClosure K) := fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(Subfield.topologicalClosure K)) } y : ℂ hy : y ∈ ↑(Subfield.topologicalClosure K) ⊢ ∃ a, j a = { val := y, property := hy } [PROOFSTEP] use⟨y, by convert hy simp only [id.def, Set.image_id'] rfl⟩ [GOAL] K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι j : { x // x ∈ closure (id '' {x | ↑K x}) } → ↑↑(Subfield.topologicalClosure K) := fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(Subfield.topologicalClosure K)) } y : ℂ hy : y ∈ ↑(Subfield.topologicalClosure K) ⊢ y ∈ closure (id '' {x | ↑K x}) [PROOFSTEP] convert hy [GOAL] case h.e'_5 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι j : { x // x ∈ closure (id '' {x | ↑K x}) } → ↑↑(Subfield.topologicalClosure K) := fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(Subfield.topologicalClosure K)) } y : ℂ hy : y ∈ ↑(Subfield.topologicalClosure K) ⊢ closure (id '' {x | ↑K x}) = ↑(Subfield.topologicalClosure K) [PROOFSTEP] simp only [id.def, Set.image_id'] [GOAL] case h.e'_5 K : Subfield ℂ ψ : { x // x ∈ K } →+* ℂ hc : UniformContinuous ↑ψ this✝ : TopologicalDivisionRing ℂ := TopologicalDivisionRing.mk this : TopologicalRing { x // x ∈ Subfield.topologicalClosure K } := Subring.instTopologicalRing (Subfield.topologicalClosure K).toSubring ι : { x // x ∈ K } → { x // x ∈ Subfield.topologicalClosure K } := ↑(Subfield.inclusion (_ : K ≤ Subfield.topologicalClosure K)) ui : UniformInducing ι j : { x // x ∈ closure (id '' {x | ↑K x}) } → ↑↑(Subfield.topologicalClosure K) := fun x => { val := ↑x, property := (_ : ↑x ∈ ↑(Subfield.topologicalClosure K)) } y : ℂ hy : y ∈ ↑(Subfield.topologicalClosure K) ⊢ closure {x | ↑K x} = ↑(Subfield.topologicalClosure K) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.Instances.Complex", "llama_tokens": 20428}
[GOAL] β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm ⊢ ∀ (s : Set β), IsOpen s → lim f ∈ s → ↑f ⁻¹' s ∈ atTop [PROOFSTEP] intro s os lfs [GOAL] β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ⊢ ↑f ⁻¹' s ∈ atTop [PROOFSTEP] suffices ∃ a : ℕ, ∀ b : ℕ, b ≥ a → f b ∈ s by simpa using this [GOAL] β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s this : ∃ a, ∀ (b : ℕ), b ≥ a → ↑f b ∈ s ⊢ ↑f ⁻¹' s ∈ atTop [PROOFSTEP] simpa using this [GOAL] β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → ↑f b ∈ s [PROOFSTEP] rcases Metric.isOpen_iff.1 os _ lfs with ⟨ε, ⟨hε, hεs⟩⟩ [GOAL] case intro.intro β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ε : ℝ hε : ε > 0 hεs : Metric.ball (lim f) ε ⊆ s ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → ↑f b ∈ s [PROOFSTEP] cases' Setoid.symm (CauSeq.equiv_lim f) _ hε with N hN [GOAL] case intro.intro.intro β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ε : ℝ hε : ε > 0 hεs : Metric.ball (lim f) ε ⊆ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ‖↑(const norm (lim f) - f) j‖ < ε ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → ↑f b ∈ s [PROOFSTEP] exists N [GOAL] case intro.intro.intro β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ε : ℝ hε : ε > 0 hεs : Metric.ball (lim f) ε ⊆ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ‖↑(const norm (lim f) - f) j‖ < ε ⊢ ∀ (b : ℕ), b ≥ N → ↑f b ∈ s [PROOFSTEP] intro b hb [GOAL] case intro.intro.intro β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ε : ℝ hε : ε > 0 hεs : Metric.ball (lim f) ε ⊆ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ‖↑(const norm (lim f) - f) j‖ < ε b : ℕ hb : b ≥ N ⊢ ↑f b ∈ s [PROOFSTEP] apply hεs [GOAL] case intro.intro.intro.a β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ε : ℝ hε : ε > 0 hεs : Metric.ball (lim f) ε ⊆ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ‖↑(const norm (lim f) - f) j‖ < ε b : ℕ hb : b ≥ N ⊢ ↑f b ∈ Metric.ball (lim f) ε [PROOFSTEP] dsimp [Metric.ball] [GOAL] case intro.intro.intro.a β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ε : ℝ hε : ε > 0 hεs : Metric.ball (lim f) ε ⊆ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ‖↑(const norm (lim f) - f) j‖ < ε b : ℕ hb : b ≥ N ⊢ dist (↑f b) (lim f) < ε [PROOFSTEP] rw [dist_comm, dist_eq_norm] [GOAL] case intro.intro.intro.a β : Type v inst✝¹ : NormedRing β hn : IsAbsoluteValue norm f : CauSeq β norm inst✝ : IsComplete β norm s : Set β os : IsOpen s lfs : lim f ∈ s ε : ℝ hε : ε > 0 hεs : Metric.ball (lim f) ε ⊆ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ‖↑(const norm (lim f) - f) j‖ < ε b : ℕ hb : b ≥ N ⊢ ‖lim f - ↑f b‖ < ε [PROOFSTEP] solve_by_elim [GOAL] β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f ⊢ IsCauSeq norm f [PROOFSTEP] cases' cauchy_iff.1 hf with hf1 hf2 [GOAL] case intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ⊢ IsCauSeq norm f [PROOFSTEP] intro ε hε [GOAL] case intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 ⊢ ∃ i, ∀ (j : ℕ), j ≥ i → ‖f j - f i‖ < ε [PROOFSTEP] rcases hf2 {x | dist x.1 x.2 < ε} (dist_mem_uniformity hε) with ⟨t, ⟨ht, htsub⟩⟩ [GOAL] case intro.intro.intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β ht : t ∈ map f atTop htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} ⊢ ∃ i, ∀ (j : ℕ), j ≥ i → ‖f j - f i‖ < ε [PROOFSTEP] simp at ht [GOAL] case intro.intro.intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} ht : ∃ a, ∀ (b : ℕ), a ≤ b → f b ∈ t ⊢ ∃ i, ∀ (j : ℕ), j ≥ i → ‖f j - f i‖ < ε [PROOFSTEP] cases' ht with N hN [GOAL] case intro.intro.intro.intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} N : ℕ hN : ∀ (b : ℕ), N ≤ b → f b ∈ t ⊢ ∃ i, ∀ (j : ℕ), j ≥ i → ‖f j - f i‖ < ε [PROOFSTEP] exists N [GOAL] case intro.intro.intro.intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} N : ℕ hN : ∀ (b : ℕ), N ≤ b → f b ∈ t ⊢ ∀ (j : ℕ), j ≥ N → ‖f j - f N‖ < ε [PROOFSTEP] intro j hj [GOAL] case intro.intro.intro.intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} N : ℕ hN : ∀ (b : ℕ), N ≤ b → f b ∈ t j : ℕ hj : j ≥ N ⊢ ‖f j - f N‖ < ε [PROOFSTEP] rw [← dist_eq_norm] [GOAL] case intro.intro.intro.intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} N : ℕ hN : ∀ (b : ℕ), N ≤ b → f b ∈ t j : ℕ hj : j ≥ N ⊢ dist (f j) (f N) < ε [PROOFSTEP] apply @htsub (f j, f N) [GOAL] case intro.intro.intro.intro β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} N : ℕ hN : ∀ (b : ℕ), N ≤ b → f b ∈ t j : ℕ hj : j ≥ N ⊢ (f j, f N) ∈ t ×ˢ t [PROOFSTEP] apply Set.mk_mem_prod [GOAL] case intro.intro.intro.intro.ha β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} N : ℕ hN : ∀ (b : ℕ), N ≤ b → f b ∈ t j : ℕ hj : j ≥ N ⊢ f j ∈ t [PROOFSTEP] solve_by_elim [le_refl] [GOAL] case intro.intro.intro.intro.hb β : Type v inst✝ : NormedField β f : ℕ → β hf : CauchySeq f hf1 : NeBot (map f atTop) hf2 : ∀ (s : Set (β × β)), s ∈ uniformity β → ∃ t, t ∈ map f atTop ∧ t ×ˢ t ⊆ s ε : ℝ hε : ε > 0 t : Set β htsub : t ×ˢ t ⊆ {x | dist x.fst x.snd < ε} N : ℕ hN : ∀ (b : ℕ), N ≤ b → f b ∈ t j : ℕ hj : j ≥ N ⊢ f N ∈ t [PROOFSTEP] solve_by_elim [le_refl] [GOAL] β : Type v inst✝ : NormedField β f : CauSeq β norm ⊢ CauchySeq ↑f [PROOFSTEP] refine' cauchy_iff.2 ⟨by infer_instance, fun s hs => _⟩ [GOAL] β : Type v inst✝ : NormedField β f : CauSeq β norm ⊢ NeBot (map (↑f) atTop) [PROOFSTEP] infer_instance [GOAL] β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ⊢ ∃ t, t ∈ map (↑f) atTop ∧ t ×ˢ t ⊆ s [PROOFSTEP] rcases mem_uniformity_dist.1 hs with ⟨ε, ⟨hε, hεs⟩⟩ [GOAL] case intro.intro β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s ⊢ ∃ t, t ∈ map (↑f) atTop ∧ t ×ˢ t ⊆ s [PROOFSTEP] cases' CauSeq.cauchy₂ f hε with N hN [GOAL] case intro.intro.intro β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε ⊢ ∃ t, t ∈ map (↑f) atTop ∧ t ×ˢ t ⊆ s [PROOFSTEP] exists {n | n ≥ N}.image f [GOAL] case intro.intro.intro β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε ⊢ ↑f '' {n | n ≥ N} ∈ map (↑f) atTop ∧ (↑f '' {n | n ≥ N}) ×ˢ (↑f '' {n | n ≥ N}) ⊆ s [PROOFSTEP] simp only [exists_prop, mem_atTop_sets, mem_map, mem_image, ge_iff_le, mem_setOf_eq] [GOAL] case intro.intro.intro β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε ⊢ (∃ a, ∀ (b : ℕ), a ≤ b → b ∈ ↑f ⁻¹' (↑f '' {n | N ≤ n})) ∧ (↑f '' {n | N ≤ n}) ×ˢ (↑f '' {n | N ≤ n}) ⊆ s [PROOFSTEP] constructor [GOAL] case intro.intro.intro.left β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε ⊢ ∃ a, ∀ (b : ℕ), a ≤ b → b ∈ ↑f ⁻¹' (↑f '' {n | N ≤ n}) [PROOFSTEP] exists N [GOAL] case intro.intro.intro.left β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε ⊢ ∀ (b : ℕ), N ≤ b → b ∈ ↑f ⁻¹' (↑f '' {n | N ≤ n}) [PROOFSTEP] intro b hb [GOAL] case intro.intro.intro.left β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε b : ℕ hb : N ≤ b ⊢ b ∈ ↑f ⁻¹' (↑f '' {n | N ≤ n}) [PROOFSTEP] exists b [GOAL] case intro.intro.intro.right β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε ⊢ (↑f '' {n | N ≤ n}) ×ˢ (↑f '' {n | N ≤ n}) ⊆ s [PROOFSTEP] rintro ⟨a, b⟩ ⟨⟨a', ⟨ha'1, ha'2⟩⟩, ⟨b', ⟨hb'1, hb'2⟩⟩⟩ [GOAL] case intro.intro.intro.right.mk.intro.intro.intro.intro.intro β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε a b : β a' : ℕ ha'1 : a' ∈ {n | N ≤ n} ha'2 : ↑f a' = (a, b).fst b' : ℕ hb'1 : b' ∈ {n | N ≤ n} hb'2 : ↑f b' = (a, b).snd ⊢ (a, b) ∈ s [PROOFSTEP] dsimp at ha'1 ha'2 hb'1 hb'2 [GOAL] case intro.intro.intro.right.mk.intro.intro.intro.intro.intro β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε a b : β a' : ℕ ha'1 : N ≤ a' ha'2 : ↑f a' = a b' : ℕ hb'1 : N ≤ b' hb'2 : ↑f b' = b ⊢ (a, b) ∈ s [PROOFSTEP] rw [← ha'2, ← hb'2] [GOAL] case intro.intro.intro.right.mk.intro.intro.intro.intro.intro β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε a b : β a' : ℕ ha'1 : N ≤ a' ha'2 : ↑f a' = a b' : ℕ hb'1 : N ≤ b' hb'2 : ↑f b' = b ⊢ (↑f a', ↑f b') ∈ s [PROOFSTEP] apply hεs [GOAL] case intro.intro.intro.right.mk.intro.intro.intro.intro.intro.a β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε a b : β a' : ℕ ha'1 : N ≤ a' ha'2 : ↑f a' = a b' : ℕ hb'1 : N ≤ b' hb'2 : ↑f b' = b ⊢ dist (↑f a') (↑f b') < ε [PROOFSTEP] rw [dist_eq_norm] [GOAL] case intro.intro.intro.right.mk.intro.intro.intro.intro.intro.a β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε a b : β a' : ℕ ha'1 : N ≤ a' ha'2 : ↑f a' = a b' : ℕ hb'1 : N ≤ b' hb'2 : ↑f b' = b ⊢ ‖↑f a' - ↑f b'‖ < ε [PROOFSTEP] apply hN [GOAL] case intro.intro.intro.right.mk.intro.intro.intro.intro.intro.a.x β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε a b : β a' : ℕ ha'1 : N ≤ a' ha'2 : ↑f a' = a b' : ℕ hb'1 : N ≤ b' hb'2 : ↑f b' = b ⊢ a' ≥ N [PROOFSTEP] assumption [GOAL] case intro.intro.intro.right.mk.intro.intro.intro.intro.intro.a.x β : Type v inst✝ : NormedField β f : CauSeq β norm s : Set (β × β) hs : s ∈ uniformity β ε : ℝ hε : ε > 0 hεs : ∀ {a b : β}, dist a b < ε → (a, b) ∈ s N : ℕ hN : ∀ (j : ℕ), j ≥ N → ∀ (k : ℕ), k ≥ N → ‖↑f j - ↑f k‖ < ε a b : β a' : ℕ ha'1 : N ≤ a' ha'2 : ↑f a' = a b' : ℕ hb'1 : N ≤ b' hb'2 : ↑f b' = b ⊢ b' ≥ N [PROOFSTEP] assumption [GOAL] β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm ⊢ CompleteSpace β [PROOFSTEP] apply complete_of_cauchySeq_tendsto [GOAL] case a β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm ⊢ ∀ (u : ℕ → β), CauchySeq u → ∃ a, Tendsto u atTop (𝓝 a) [PROOFSTEP] intro u hu [GOAL] case a β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm u : ℕ → β hu : CauchySeq u ⊢ ∃ a, Tendsto u atTop (𝓝 a) [PROOFSTEP] have C : IsCauSeq norm u := isCauSeq_iff_cauchySeq.2 hu [GOAL] case a β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm u : ℕ → β hu : CauchySeq u C : IsCauSeq norm u ⊢ ∃ a, Tendsto u atTop (𝓝 a) [PROOFSTEP] exists CauSeq.lim ⟨u, C⟩ [GOAL] case a β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm u : ℕ → β hu : CauchySeq u C : IsCauSeq norm u ⊢ Tendsto u atTop (𝓝 (CauSeq.lim { val := u, property := C })) [PROOFSTEP] rw [Metric.tendsto_atTop] [GOAL] case a β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm u : ℕ → β hu : CauchySeq u C : IsCauSeq norm u ⊢ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → dist (u n) (CauSeq.lim { val := u, property := C }) < ε [PROOFSTEP] intro ε εpos [GOAL] case a β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm u : ℕ → β hu : CauchySeq u C : IsCauSeq norm u ε : ℝ εpos : ε > 0 ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (u n) (CauSeq.lim { val := u, property := C }) < ε [PROOFSTEP] cases' (CauSeq.equiv_lim ⟨u, C⟩) _ εpos with N hN [GOAL] case a.intro β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm u : ℕ → β hu : CauchySeq u C : IsCauSeq norm u ε : ℝ εpos : ε > 0 N : ℕ hN : ∀ (j : ℕ), j ≥ N → ‖↑({ val := u, property := C } - CauSeq.const norm (CauSeq.lim { val := u, property := C })) j‖ < ε ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (u n) (CauSeq.lim { val := u, property := C }) < ε [PROOFSTEP] exists N [GOAL] case a.intro β : Type v inst✝¹ : NormedField β inst✝ : CauSeq.IsComplete β norm u : ℕ → β hu : CauchySeq u C : IsCauSeq norm u ε : ℝ εpos : ε > 0 N : ℕ hN : ∀ (j : ℕ), j ≥ N → ‖↑({ val := u, property := C } - CauSeq.const norm (CauSeq.lim { val := u, property := C })) j‖ < ε ⊢ ∀ (n : ℕ), n ≥ N → dist (u n) (CauSeq.lim { val := u, property := C }) < ε [PROOFSTEP] simpa [dist_eq_norm] using hN
{"mathlib_filename": "Mathlib.Topology.MetricSpace.CauSeqFilter", "llama_tokens": 9050}
[GOAL] α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r✝ : ℝ s : Set α r : ι → ℝ hs : IsClosed s uf : ∀ (x : α), x ∈ s → Set.Finite {i | x ∈ ball (c i) (r i)} us : s ⊆ ⋃ (i : ι), ball (c i) (r i) ⊢ ∃ r', s ⊆ ⋃ (i : ι), ball (c i) (r' i) ∧ ∀ (i : ι), r' i < r i [PROOFSTEP] rcases exists_subset_iUnion_closed_subset hs (fun i => @isOpen_ball _ _ (c i) (r i)) uf us with ⟨v, hsv, hvc, hcv⟩ [GOAL] case intro.intro.intro α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r✝ : ℝ s : Set α r : ι → ℝ hs : IsClosed s uf : ∀ (x : α), x ∈ s → Set.Finite {i | x ∈ ball (c i) (r i)} us : s ⊆ ⋃ (i : ι), ball (c i) (r i) v : ι → Set α hsv : s ⊆ iUnion v hvc : ∀ (i : ι), IsClosed (v i) hcv : ∀ (i : ι), v i ⊆ ball (c i) (r i) ⊢ ∃ r', s ⊆ ⋃ (i : ι), ball (c i) (r' i) ∧ ∀ (i : ι), r' i < r i [PROOFSTEP] have := fun i => exists_lt_subset_ball (hvc i) (hcv i) [GOAL] case intro.intro.intro α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r✝ : ℝ s : Set α r : ι → ℝ hs : IsClosed s uf : ∀ (x : α), x ∈ s → Set.Finite {i | x ∈ ball (c i) (r i)} us : s ⊆ ⋃ (i : ι), ball (c i) (r i) v : ι → Set α hsv : s ⊆ iUnion v hvc : ∀ (i : ι), IsClosed (v i) hcv : ∀ (i : ι), v i ⊆ ball (c i) (r i) this : ∀ (i : ι), ∃ r', r' < r i ∧ v i ⊆ ball (c i) r' ⊢ ∃ r', s ⊆ ⋃ (i : ι), ball (c i) (r' i) ∧ ∀ (i : ι), r' i < r i [PROOFSTEP] choose r' hlt hsub using this [GOAL] case intro.intro.intro α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r✝ : ℝ s : Set α r : ι → ℝ hs : IsClosed s uf : ∀ (x : α), x ∈ s → Set.Finite {i | x ∈ ball (c i) (r i)} us : s ⊆ ⋃ (i : ι), ball (c i) (r i) v : ι → Set α hsv : s ⊆ iUnion v hvc : ∀ (i : ι), IsClosed (v i) hcv : ∀ (i : ι), v i ⊆ ball (c i) (r i) r' : ι → ℝ hlt : ∀ (i : ι), r' i < r i hsub : ∀ (i : ι), v i ⊆ ball (c i) (r' i) ⊢ ∃ r', s ⊆ ⋃ (i : ι), ball (c i) (r' i) ∧ ∀ (i : ι), r' i < r i [PROOFSTEP] exact ⟨r', hsv.trans <| iUnion_mono <| hsub, hlt⟩ [GOAL] α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r✝ : ℝ s : Set α r : ι → ℝ hr : ∀ (i : ι), 0 < r i hs : IsClosed s uf : ∀ (x : α), x ∈ s → Set.Finite {i | x ∈ ball (c i) (r i)} us : s ⊆ ⋃ (i : ι), ball (c i) (r i) ⊢ ∃ r', s ⊆ ⋃ (i : ι), ball (c i) (r' i) ∧ ∀ (i : ι), r' i ∈ Ioo 0 (r i) [PROOFSTEP] rcases exists_subset_iUnion_closed_subset hs (fun i => @isOpen_ball _ _ (c i) (r i)) uf us with ⟨v, hsv, hvc, hcv⟩ [GOAL] case intro.intro.intro α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r✝ : ℝ s : Set α r : ι → ℝ hr : ∀ (i : ι), 0 < r i hs : IsClosed s uf : ∀ (x : α), x ∈ s → Set.Finite {i | x ∈ ball (c i) (r i)} us : s ⊆ ⋃ (i : ι), ball (c i) (r i) v : ι → Set α hsv : s ⊆ iUnion v hvc : ∀ (i : ι), IsClosed (v i) hcv : ∀ (i : ι), v i ⊆ ball (c i) (r i) ⊢ ∃ r', s ⊆ ⋃ (i : ι), ball (c i) (r' i) ∧ ∀ (i : ι), r' i ∈ Ioo 0 (r i) [PROOFSTEP] have := fun i => exists_pos_lt_subset_ball (hr i) (hvc i) (hcv i) [GOAL] case intro.intro.intro α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r✝ : ℝ s : Set α r : ι → ℝ hr : ∀ (i : ι), 0 < r i hs : IsClosed s uf : ∀ (x : α), x ∈ s → Set.Finite {i | x ∈ ball (c i) (r i)} us : s ⊆ ⋃ (i : ι), ball (c i) (r i) v : ι → Set α hsv : s ⊆ iUnion v hvc : ∀ (i : ι), IsClosed (v i) hcv : ∀ (i : ι), v i ⊆ ball (c i) (r i) this : ∀ (i : ι), ∃ r', r' ∈ Ioo 0 (r i) ∧ v i ⊆ ball (c i) r' ⊢ ∃ r', s ⊆ ⋃ (i : ι), ball (c i) (r' i) ∧ ∀ (i : ι), r' i ∈ Ioo 0 (r i) [PROOFSTEP] choose r' hlt hsub using this [GOAL] case intro.intro.intro α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r✝ : ℝ s : Set α r : ι → ℝ hr : ∀ (i : ι), 0 < r i hs : IsClosed s uf : ∀ (x : α), x ∈ s → Set.Finite {i | x ∈ ball (c i) (r i)} us : s ⊆ ⋃ (i : ι), ball (c i) (r i) v : ι → Set α hsv : s ⊆ iUnion v hvc : ∀ (i : ι), IsClosed (v i) hcv : ∀ (i : ι), v i ⊆ ball (c i) (r i) r' : ι → ℝ hlt : ∀ (i : ι), r' i ∈ Ioo 0 (r i) hsub : ∀ (i : ι), v i ⊆ ball (c i) (r' i) ⊢ ∃ r', s ⊆ ⋃ (i : ι), ball (c i) (r' i) ∧ ∀ (i : ι), r' i ∈ Ioo 0 (r i) [PROOFSTEP] exact ⟨r', hsv.trans <| iUnion_mono hsub, hlt⟩ [GOAL] α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r : ℝ s : Set α hs : IsClosed s R : α → ℝ hR : ∀ (x : α), x ∈ s → 0 < R x ⊢ ∃ ι c r r', (∀ (i : ι), c i ∈ s ∧ 0 < r i ∧ r i < r' i ∧ r' i < R (c i)) ∧ (LocallyFinite fun i => ball (c i) (r' i)) ∧ s ⊆ ⋃ (i : ι), ball (c i) (r i) [PROOFSTEP] have : ∀ x ∈ s, (𝓝 x).HasBasis (fun r : ℝ => 0 < r ∧ r < R x) fun r => ball x r := fun x hx => nhds_basis_uniformity (uniformity_basis_dist_lt (hR x hx)) [GOAL] α : Type u ι : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c : ι → α x : α r : ℝ s : Set α hs : IsClosed s R : α → ℝ hR : ∀ (x : α), x ∈ s → 0 < R x this : ∀ (x : α), x ∈ s → Filter.HasBasis (𝓝 x) (fun r => 0 < r ∧ r < R x) fun r => ball x r ⊢ ∃ ι c r r', (∀ (i : ι), c i ∈ s ∧ 0 < r i ∧ r i < r' i ∧ r' i < R (c i)) ∧ (LocallyFinite fun i => ball (c i) (r' i)) ∧ s ⊆ ⋃ (i : ι), ball (c i) (r i) [PROOFSTEP] rcases refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set hs this with ⟨ι, c, r', hr', hsub', hfin⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u ι✝ : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c✝ : ι✝ → α x : α r : ℝ s : Set α hs : IsClosed s R : α → ℝ hR : ∀ (x : α), x ∈ s → 0 < R x this : ∀ (x : α), x ∈ s → Filter.HasBasis (𝓝 x) (fun r => 0 < r ∧ r < R x) fun r => ball x r ι : Type u c : ι → α r' : ι → ℝ hr' : ∀ (a : ι), c a ∈ s ∧ 0 < r' a ∧ r' a < R (c a) hsub' : s ⊆ ⋃ (a : ι), ball (c a) (r' a) hfin : LocallyFinite fun a => ball (c a) (r' a) ⊢ ∃ ι c r r', (∀ (i : ι), c i ∈ s ∧ 0 < r i ∧ r i < r' i ∧ r' i < R (c i)) ∧ (LocallyFinite fun i => ball (c i) (r' i)) ∧ s ⊆ ⋃ (i : ι), ball (c i) (r i) [PROOFSTEP] rcases exists_subset_iUnion_ball_radius_pos_lt (fun i => (hr' i).2.1) hs (fun x _ => hfin.point_finite x) hsub' with ⟨r, hsub, hlt⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u ι✝ : Type v inst✝¹ : MetricSpace α inst✝ : ProperSpace α c✝ : ι✝ → α x : α r✝ : ℝ s : Set α hs : IsClosed s R : α → ℝ hR : ∀ (x : α), x ∈ s → 0 < R x this : ∀ (x : α), x ∈ s → Filter.HasBasis (𝓝 x) (fun r => 0 < r ∧ r < R x) fun r => ball x r ι : Type u c : ι → α r' : ι → ℝ hr' : ∀ (a : ι), c a ∈ s ∧ 0 < r' a ∧ r' a < R (c a) hsub' : s ⊆ ⋃ (a : ι), ball (c a) (r' a) hfin : LocallyFinite fun a => ball (c a) (r' a) r : ι → ℝ hsub : s ⊆ ⋃ (i : ι), ball (c i) (r i) hlt : ∀ (i : ι), r i ∈ Ioo 0 (r' i) ⊢ ∃ ι c r r', (∀ (i : ι), c i ∈ s ∧ 0 < r i ∧ r i < r' i ∧ r' i < R (c i)) ∧ (LocallyFinite fun i => ball (c i) (r' i)) ∧ s ⊆ ⋃ (i : ι), ball (c i) (r i) [PROOFSTEP] exact ⟨ι, c, r, r', fun i => ⟨(hr' i).1, (hlt i).1, (hlt i).2, (hr' i).2.2⟩, hfin, hsub⟩
{"mathlib_filename": "Mathlib.Topology.MetricSpace.ShrinkingLemma", "llama_tokens": 3879}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β f g : α →ᵈ β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β g : α →ᵈ β toFun✝ : α → β edist_eq'✝ : ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (toFun✝ x) (toFun✝ y) = ↑r * edist x y h : { toFun := toFun✝, edist_eq' := edist_eq'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, edist_eq' := edist_eq'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β toFun✝¹ : α → β edist_eq'✝¹ : ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (toFun✝¹ x) (toFun✝¹ y) = ↑r * edist x y toFun✝ : α → β edist_eq'✝ : ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (toFun✝ x) (toFun✝ y) = ↑r * edist x y h : { toFun := toFun✝¹, edist_eq' := edist_eq'✝¹ }.toFun = { toFun := toFun✝, edist_eq' := edist_eq'✝ }.toFun ⊢ { toFun := toFun✝¹, edist_eq' := edist_eq'✝¹ } = { toFun := toFun✝, edist_eq' := edist_eq'✝ } [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝³ : PseudoEMetricSpace α inst✝² : PseudoEMetricSpace β inst✝¹ : Subsingleton α inst✝ : DilationClass F α β f : F x y : α ⊢ edist x y = 0 ∨ edist x y = ⊤ [PROOFSTEP] simp [Subsingleton.elim x y] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F ⊢ ratio f ≠ 0 [PROOFSTEP] rw [ratio] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F ⊢ (if ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ then 1 else Exists.choose (_ : ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (↑f x) (↑f y) = ↑r * edist x y)) ≠ 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F h✝ : ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F h✝ : ¬∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ ⊢ Exists.choose (_ : ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (↑f x) (↑f y) = ↑r * edist x y) ≠ 0 [PROOFSTEP] exact (DilationClass.edist_eq' f).choose_spec.1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α ⊢ edist (↑f x) (↑f y) = ↑(ratio f) * edist x y [PROOFSTEP] rw [ratio] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α ⊢ edist (↑f x) (↑f y) = ↑(if ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ then 1 else Exists.choose (_ : ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (↑f x) (↑f y) = ↑r * edist x y)) * edist x y [PROOFSTEP] split_ifs with key [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α key : ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ ⊢ edist (↑f x) (↑f y) = ↑1 * edist x y [PROOFSTEP] rcases DilationClass.edist_eq' f with ⟨r, hne, hr⟩ [GOAL] case pos.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α key : ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ r : ℝ≥0 hne : r ≠ 0 hr : ∀ (x y : α), edist (↑f x) (↑f y) = ↑r * edist x y ⊢ edist (↑f x) (↑f y) = ↑1 * edist x y [PROOFSTEP] replace hr := hr x y [GOAL] case pos.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α key : ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ r : ℝ≥0 hne : r ≠ 0 hr : edist (↑f x) (↑f y) = ↑r * edist x y ⊢ edist (↑f x) (↑f y) = ↑1 * edist x y [PROOFSTEP] cases' key x y with h h [GOAL] case pos.intro.intro.inl α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α key : ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ r : ℝ≥0 hne : r ≠ 0 hr : edist (↑f x) (↑f y) = ↑r * edist x y h : edist x y = 0 ⊢ edist (↑f x) (↑f y) = ↑1 * edist x y [PROOFSTEP] simp only [hr, h, mul_zero] [GOAL] case pos.intro.intro.inr α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α key : ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ r : ℝ≥0 hne : r ≠ 0 hr : edist (↑f x) (↑f y) = ↑r * edist x y h : edist x y = ⊤ ⊢ edist (↑f x) (↑f y) = ↑1 * edist x y [PROOFSTEP] simp [hr, h, hne] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α key : ¬∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ ⊢ edist (↑f x) (↑f y) = ↑(Exists.choose (_ : ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (↑f x) (↑f y) = ↑r * edist x y)) * edist x y [PROOFSTEP] exact (DilationClass.edist_eq' f).choose_spec.2 x y [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F✝ : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α✝ inst✝³ : PseudoEMetricSpace β✝ α : Type u_6 β : Type u_7 F : Type u_8 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : DilationClass F α β f : F x y : α ⊢ nndist (↑f x) (↑f y) = ratio f * nndist x y [PROOFSTEP] simp only [← ENNReal.coe_eq_coe, ← edist_nndist, ENNReal.coe_mul, edist_eq] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F✝ : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α✝ inst✝³ : PseudoEMetricSpace β✝ α : Type u_6 β : Type u_7 F : Type u_8 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : DilationClass F α β f : F x y : α ⊢ dist (↑f x) (↑f y) = ↑(ratio f) * dist x y [PROOFSTEP] simp only [dist_nndist, nndist_eq, NNReal.coe_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : DilationClass F α β f : F x y : α r : ℝ≥0 h₀ : edist x y ≠ 0 htop : edist x y ≠ ⊤ hr : edist (↑f x) (↑f y) = ↑r * edist x y ⊢ r = ratio f [PROOFSTEP] simpa only [hr, ENNReal.mul_eq_mul_right h₀ htop, ENNReal.coe_eq_coe] using edist_eq f x y [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F✝ : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α✝ inst✝³ : PseudoEMetricSpace β✝ α : Type u_6 β : Type u_7 F : Type u_8 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : DilationClass F α β f : F x y : α r : ℝ≥0 hxy : nndist x y ≠ 0 hr : nndist (↑f x) (↑f y) = r * nndist x y ⊢ edist x y ≠ 0 [PROOFSTEP] rwa [edist_nndist, ENNReal.coe_ne_zero] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F✝ : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α✝ inst✝³ : PseudoEMetricSpace β✝ α : Type u_6 β : Type u_7 F : Type u_8 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : DilationClass F α β f : F x y : α r : ℝ≥0 hxy : nndist x y ≠ 0 hr : nndist (↑f x) (↑f y) = r * nndist x y ⊢ edist (↑f x) (↑f y) = ↑r * edist x y [PROOFSTEP] rw [edist_nndist, edist_nndist, hr, ENNReal.coe_mul] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F✝ : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α✝ inst✝³ : PseudoEMetricSpace β✝ α : Type u_7 β : Type u_8 F : Type u_6 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : DilationClass F α β f : F x y : α r : ℝ≥0 hxy : dist x y ≠ 0 hr : dist (↑f x) (↑f y) = ↑r * dist x y ⊢ ↑(nndist (↑f x) (↑f y)) = ↑(r * nndist x y) [PROOFSTEP] rw [coe_nndist, hr, NNReal.coe_mul, coe_nndist] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝³ : PseudoEMetricSpace α✝ inst✝² : PseudoEMetricSpace β✝ α : Type ?u.24367 β : Type ?u.24370 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β h : ∃ r, r ≠ 0 ∧ ∀ (x y : α), nndist (f x) (f y) = r * nndist x y ⊢ ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (f x) (f y) = ↑r * edist x y [PROOFSTEP] rcases h with ⟨r, hne, h⟩ [GOAL] case intro.intro α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝³ : PseudoEMetricSpace α✝ inst✝² : PseudoEMetricSpace β✝ α : Type ?u.24367 β : Type ?u.24370 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β r : ℝ≥0 hne : r ≠ 0 h : ∀ (x y : α), nndist (f x) (f y) = r * nndist x y ⊢ ∃ r, r ≠ 0 ∧ ∀ (x y : α), edist (f x) (f y) = ↑r * edist x y [PROOFSTEP] refine' ⟨r, hne, fun x y => _⟩ [GOAL] case intro.intro α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝³ : PseudoEMetricSpace α✝ inst✝² : PseudoEMetricSpace β✝ α : Type ?u.24367 β : Type ?u.24370 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β r : ℝ≥0 hne : r ≠ 0 h : ∀ (x y : α), nndist (f x) (f y) = r * nndist x y x y : α ⊢ edist (f x) (f y) = ↑r * edist x y [PROOFSTEP] rw [edist_nndist, edist_nndist, ← ENNReal.coe_mul, h x y] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝³ : PseudoEMetricSpace α✝ inst✝² : PseudoEMetricSpace β✝ α : Type ?u.25376 β : Type ?u.25379 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β h : ∃ r, r ≠ 0 ∧ ∀ (x y : α), dist (f x) (f y) = ↑r * dist x y r : ℝ≥0 hr : r ≠ 0 ∧ ∀ (x y : α), dist (f x) (f y) = ↑r * dist x y x y : α ⊢ ↑(nndist (f x) (f y)) = ↑(r * nndist x y) [PROOFSTEP] rw [coe_nndist, hr.2, NNReal.coe_mul, coe_nndist] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x✝ y✝ z : α s : Set α x y : α ⊢ edist x y ≤ ↑(ratio f)⁻¹ * edist (↑f x) (↑f y) [PROOFSTEP] have hr : ratio f ≠ 0 := ratio_ne_zero f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x✝ y✝ z : α s : Set α x y : α hr : ratio f ≠ 0 ⊢ edist x y ≤ ↑(ratio f)⁻¹ * edist (↑f x) (↑f y) [PROOFSTEP] exact_mod_cast (ENNReal.mul_le_iff_le_inv (ENNReal.coe_ne_zero.2 hr) ENNReal.coe_ne_top).1 (edist_eq f x y).ge [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁵ : PseudoEMetricSpace α✝ inst✝⁴ : PseudoEMetricSpace β inst✝³ : PseudoEMetricSpace γ inst✝² : DilationClass F α✝ β inst✝¹ : DilationClass G β γ f : F g : G x✝ y✝ z : α✝ s : Set α✝ α : Type ?u.28806 inst✝ : PseudoEMetricSpace α x y : α ⊢ edist (id x) (id y) = ↑1 * edist x y [PROOFSTEP] simp only [id.def, ENNReal.coe_one, one_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s : Set α ⊢ ratio (Dilation.id α) = 1 [PROOFSTEP] by_cases h : ∀ x y : α, edist x y = 0 ∨ edist x y = ∞ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s : Set α h : ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ ⊢ ratio (Dilation.id α) = 1 [PROOFSTEP] rw [ratio, if_pos h] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s : Set α h : ¬∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ ⊢ ratio (Dilation.id α) = 1 [PROOFSTEP] push_neg at h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s : Set α h : ∃ x y, edist x y ≠ 0 ∧ edist x y ≠ ⊤ ⊢ ratio (Dilation.id α) = 1 [PROOFSTEP] rcases h with ⟨x, y, hne⟩ [GOAL] case neg.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x✝ y✝ z : α s : Set α x y : α hne : edist x y ≠ 0 ∧ edist x y ≠ ⊤ ⊢ ratio (Dilation.id α) = 1 [PROOFSTEP] refine' (ratio_unique hne.1 hne.2 _).symm [GOAL] case neg.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x✝ y✝ z : α s : Set α x y : α hne : edist x y ≠ 0 ∧ edist x y ≠ ⊤ ⊢ edist (↑(Dilation.id α) x) (↑(Dilation.id α) y) = ↑1 * edist x y [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x✝ y✝ z : α s : Set α g : β →ᵈ γ f : α →ᵈ β x y : α ⊢ edist ((↑g ∘ ↑f) x) ((↑g ∘ ↑f) y) = ↑(ratio g * ratio f) * edist x y [PROOFSTEP] simp_rw [Function.comp, edist_eq, ENNReal.coe_mul, mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x y z : α s : Set α g : β →ᵈ γ f : α →ᵈ β hne : ∃ x y, edist x y ≠ 0 ∧ edist x y ≠ ⊤ ⊢ ratio (comp g f) = ratio g * ratio f [PROOFSTEP] rcases hne with ⟨x, y, hα⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x✝ y✝ z : α s : Set α g : β →ᵈ γ f : α →ᵈ β x y : α hα : edist x y ≠ 0 ∧ edist x y ≠ ⊤ ⊢ ratio (comp g f) = ratio g * ratio f [PROOFSTEP] have hgf := (edist_eq (g.comp f) x y).symm [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x✝ y✝ z : α s : Set α g : β →ᵈ γ f : α →ᵈ β x y : α hα : edist x y ≠ 0 ∧ edist x y ≠ ⊤ hgf : ↑(ratio (comp g f)) * edist x y = edist (↑(comp g f) x) (↑(comp g f) y) ⊢ ratio (comp g f) = ratio g * ratio f [PROOFSTEP] simp_rw [coe_comp, Function.comp, edist_eq, ← mul_assoc, ENNReal.mul_eq_mul_right hα.1 hα.2] at hgf [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x✝ y✝ z : α s : Set α g : β →ᵈ γ f : α →ᵈ β x y : α hα : edist x y ≠ 0 ∧ edist x y ≠ ⊤ hgf : ↑(ratio (comp g f)) = ↑(ratio g) * ↑(ratio f) ⊢ ratio (comp g f) = ratio g * ratio f [PROOFSTEP] rwa [← ENNReal.coe_eq_coe, ENNReal.coe_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x y z : α s : Set α f g : α →ᵈ α ⊢ ratio (f * g) = ratio f * ratio g [PROOFSTEP] by_cases h : ∀ x y : α, edist x y = 0 ∨ edist x y = ∞ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x y z : α s : Set α f g : α →ᵈ α h : ∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ ⊢ ratio (f * g) = ratio f * ratio g [PROOFSTEP] simp [ratio_of_trivial, h] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x y z : α s : Set α f g : α →ᵈ α h : ¬∀ (x y : α), edist x y = 0 ∨ edist x y = ⊤ ⊢ ratio (f * g) = ratio f * ratio g [PROOFSTEP] push_neg at h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f✝ : F g✝ : G x y z : α s : Set α f g : α →ᵈ α h : ∃ x y, edist x y ≠ 0 ∧ edist x y ≠ ⊤ ⊢ ratio (f * g) = ratio f * ratio g [PROOFSTEP] exact ratio_comp' h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g✝ : G x✝ y z : α s : Set α g : β →ᵈ γ f₁ f₂ : α →ᵈ β hg : Injective ↑g h : comp g f₁ = comp g f₂ x : α ⊢ ↑g (↑f₁ x) = ↑g (↑f₂ x) [PROOFSTEP] rw [← comp_apply, h, comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s✝ s : Set α ⊢ EMetric.diam (↑f '' s) = ↑(ratio f) * EMetric.diam s [PROOFSTEP] refine' ((lipschitz f).ediam_image_le s).antisymm _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s✝ s : Set α ⊢ ↑(ratio f) * EMetric.diam s ≤ EMetric.diam (↑f '' s) [PROOFSTEP] apply ENNReal.mul_le_of_le_div' [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s✝ s : Set α ⊢ EMetric.diam s ≤ EMetric.diam (↑f '' s) / ↑(ratio f) [PROOFSTEP] rw [div_eq_mul_inv, mul_comm, ← ENNReal.coe_inv] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s✝ s : Set α ⊢ EMetric.diam s ≤ ↑(ratio f)⁻¹ * EMetric.diam (↑f '' s) case h α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s✝ s : Set α ⊢ ratio f ≠ 0 [PROOFSTEP] exacts [(antilipschitz f).le_mul_ediam_image s, ratio_ne_zero f] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s : Set α ⊢ EMetric.diam (range ↑f) = ↑(ratio f) * EMetric.diam univ [PROOFSTEP] rw [← image_univ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x y z : α s : Set α ⊢ EMetric.diam (↑f '' univ) = ↑(ratio f) * EMetric.diam univ [PROOFSTEP] exact ediam_image f univ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : DilationClass F α β inst✝ : DilationClass G β γ f : F g : G x✝ y✝ z : α s : Set α x : α r' : ℝ≥0∞ y : α hy : y ∈ EMetric.closedBall x r' ⊢ edist y x ≤ r' [PROOFSTEP] exact hy [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : DilationClass F α β f : F s : Set α ⊢ Metric.diam (↑f '' s) = ↑(ratio f) * Metric.diam s [PROOFSTEP] simp [Metric.diam, ediam_image, ENNReal.toReal_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 F : Type u_4 G : Type u_5 inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : DilationClass F α β f : F ⊢ Metric.diam (range ↑f) = ↑(ratio f) * Metric.diam univ [PROOFSTEP] rw [← image_univ, diam_image]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Dilation", "llama_tokens": 11404}
[GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z ⊢ ∀ (e g : X ≃ᵈ Y), (fun f => ↑f.toEquiv) e = (fun f => ↑f.toEquiv) g → (fun f => ↑f.symm) e = (fun f => ↑f.symm) g → e = g [PROOFSTEP] rintro ⟨⟩ ⟨⟩ h - [GOAL] case mk.mk X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z toEquiv✝¹ : X ≃ Y edist_eq'✝¹ : ∃ r, r ≠ 0 ∧ ∀ (x y : X), edist (Equiv.toFun toEquiv✝¹ x) (Equiv.toFun toEquiv✝¹ y) = ↑r * edist x y toEquiv✝ : X ≃ Y edist_eq'✝ : ∃ r, r ≠ 0 ∧ ∀ (x y : X), edist (Equiv.toFun toEquiv✝ x) (Equiv.toFun toEquiv✝ y) = ↑r * edist x y h : (fun f => ↑f.toEquiv) { toEquiv := toEquiv✝¹, edist_eq' := edist_eq'✝¹ } = (fun f => ↑f.toEquiv) { toEquiv := toEquiv✝, edist_eq' := edist_eq'✝ } ⊢ { toEquiv := toEquiv✝¹, edist_eq' := edist_eq'✝¹ } = { toEquiv := toEquiv✝, edist_eq' := edist_eq'✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_toEquiv X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z toEquiv✝¹ : X ≃ Y edist_eq'✝¹ : ∃ r, r ≠ 0 ∧ ∀ (x y : X), edist (Equiv.toFun toEquiv✝¹ x) (Equiv.toFun toEquiv✝¹ y) = ↑r * edist x y toEquiv✝ : X ≃ Y edist_eq'✝ : ∃ r, r ≠ 0 ∧ ∀ (x y : X), edist (Equiv.toFun toEquiv✝ x) (Equiv.toFun toEquiv✝ y) = ↑r * edist x y h : (fun f => ↑f.toEquiv) { toEquiv := toEquiv✝¹, edist_eq' := edist_eq'✝¹ } = (fun f => ↑f.toEquiv) { toEquiv := toEquiv✝, edist_eq' := edist_eq'✝ } ⊢ toEquiv✝¹ = toEquiv✝ [PROOFSTEP] exact FunLike.ext' h [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y ⊢ ∃ r, r ≠ 0 ∧ ∀ (x y : Y), edist (Equiv.toFun e.symm x) (Equiv.toFun e.symm y) = ↑r * edist x y [PROOFSTEP] refine ⟨(ratio e)⁻¹, inv_ne_zero <| ratio_ne_zero e, e.surjective.forall₂.2 fun x y ↦ ?_⟩ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y x y : X ⊢ edist (Equiv.toFun e.symm (↑e.toEquiv x)) (Equiv.toFun e.symm (↑e.toEquiv y)) = ↑(ratio e)⁻¹ * edist (↑e.toEquiv x) (↑e.toEquiv y) [PROOFSTEP] simp_rw [Equiv.toFun_as_coe, Equiv.symm_apply_apply, coe_toEquiv, edist_eq] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y x y : X ⊢ edist x y = ↑(ratio e)⁻¹ * (↑(ratio e) * edist x y) [PROOFSTEP] rw [← mul_assoc, ← ENNReal.coe_mul, inv_mul_cancel (ratio_ne_zero e), ENNReal.coe_one, one_mul] [GOAL] X✝ : Type u_1 Y : Type u_2 Z : Type u_3 inst✝³ : PseudoEMetricSpace X✝ inst✝² : PseudoEMetricSpace Y inst✝¹ : PseudoEMetricSpace Z X : Type u_4 inst✝ : PseudoEMetricSpace X x✝¹ x✝ : X ⊢ edist (Equiv.toFun (Equiv.refl X) x✝¹) (Equiv.toFun (Equiv.refl X) x✝) = ↑1 * edist x✝¹ x✝ [PROOFSTEP] simp [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y e' : Y ≃ᵈ Z ⊢ ratio (trans e e') = ratio e * ratio e' [PROOFSTEP] by_cases hX : ∀ x y : X, edist x y = 0 ∨ edist x y = ∞ [GOAL] case pos X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y e' : Y ≃ᵈ Z hX : ∀ (x y : X), edist x y = 0 ∨ edist x y = ⊤ ⊢ ratio (trans e e') = ratio e * ratio e' [PROOFSTEP] have hY : ∀ x y : Y, edist x y = 0 ∨ edist x y = ∞ := e.surjective.forall₂.2 fun x y ↦ by refine (hX x y).imp (fun h ↦ ?_) fun h ↦ ?_ <;> simp [*, Dilation.ratio_ne_zero] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y e' : Y ≃ᵈ Z hX : ∀ (x y : X), edist x y = 0 ∨ edist x y = ⊤ x y : X ⊢ edist (↑e x) (↑e y) = 0 ∨ edist (↑e x) (↑e y) = ⊤ [PROOFSTEP] refine (hX x y).imp (fun h ↦ ?_) fun h ↦ ?_ [GOAL] case refine_1 X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y e' : Y ≃ᵈ Z hX : ∀ (x y : X), edist x y = 0 ∨ edist x y = ⊤ x y : X h : edist x y = 0 ⊢ edist (↑e x) (↑e y) = 0 [PROOFSTEP] simp [*, Dilation.ratio_ne_zero] [GOAL] case refine_2 X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y e' : Y ≃ᵈ Z hX : ∀ (x y : X), edist x y = 0 ∨ edist x y = ⊤ x y : X h : edist x y = ⊤ ⊢ edist (↑e x) (↑e y) = ⊤ [PROOFSTEP] simp [*, Dilation.ratio_ne_zero] [GOAL] case pos X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y e' : Y ≃ᵈ Z hX : ∀ (x y : X), edist x y = 0 ∨ edist x y = ⊤ hY : ∀ (x y : Y), edist x y = 0 ∨ edist x y = ⊤ ⊢ ratio (trans e e') = ratio e * ratio e' [PROOFSTEP] simp [Dilation.ratio_of_trivial, *] [GOAL] case neg X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y e' : Y ≃ᵈ Z hX : ¬∀ (x y : X), edist x y = 0 ∨ edist x y = ⊤ ⊢ ratio (trans e e') = ratio e * ratio e' [PROOFSTEP] push_neg at hX [GOAL] case neg X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y e' : Y ≃ᵈ Z hX : ∃ x y, edist x y ≠ 0 ∧ edist x y ≠ ⊤ ⊢ ratio (trans e e') = ratio e * ratio e' [PROOFSTEP] exact (Dilation.ratio_comp' (g := e'.toDilation) (f := e.toDilation) hX).trans (mul_comm _ _) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ Y ⊢ ratio (symm e) * ratio e = 1 [PROOFSTEP] rw [← ratio_trans, symm_trans_self, ratio_refl] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ X n : ℕ ⊢ ↑(e ^ n) = (↑e)^[n] [PROOFSTEP] rw [← coe_toEquiv, ← toPerm_apply, map_pow, Equiv.Perm.coe_pow] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z e : X ≃ᵈ X n : ℕ ⊢ (↑(↑toPerm e))^[n] = (↑e)^[n] [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.MetricSpace.DilationEquiv", "llama_tokens": 3436}
[GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix l m α D : Matrix l n α inst✝ : Invertible A ⊢ fromBlocks A B C D = fromBlocks 1 0 (C * ⅟A) 1 * fromBlocks A 0 0 (D - C * ⅟A * B) * fromBlocks 1 (⅟A * B) 0 1 [PROOFSTEP] simp only [fromBlocks_multiply, Matrix.mul_zero, Matrix.zero_mul, add_zero, zero_add, Matrix.one_mul, Matrix.mul_one, invOf_mul_self, Matrix.mul_invOf_self_assoc, Matrix.mul_invOf_mul_self_cancel, Matrix.mul_assoc, add_sub_cancel'_right] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix l m α B : Matrix l n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D ⊢ ↑(reindex (Equiv.sumComm l n) (Equiv.sumComm m n)) (fromBlocks A B C D) = ↑(reindex (Equiv.sumComm l n) (Equiv.sumComm m n)) (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) [PROOFSTEP] simpa [reindex_apply, Equiv.sumComm_symm, ← submatrix_mul_equiv _ _ _ (Equiv.sumComm n m), ← submatrix_mul_equiv _ _ _ (Equiv.sumComm n l), Equiv.sumComm_apply, fromBlocks_submatrix_sum_swap_sum_swap] using fromBlocks_eq_of_invertible₁₁ D C B A [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝¹ : Invertible A inst✝ : Invertible D ⊢ fromBlocks (⅟A) (-(⅟A * B * ⅟D)) 0 ⅟D * fromBlocks A B 0 D = 1 [PROOFSTEP] simp_rw [fromBlocks_multiply, Matrix.mul_zero, Matrix.zero_mul, zero_add, add_zero, Matrix.neg_mul, invOf_mul_self, Matrix.mul_invOf_mul_self_cancel, add_right_neg, fromBlocks_one] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible A inst✝ : Invertible D ⊢ fromBlocks (⅟A) 0 (-(⅟D * C * ⅟A)) ⅟D * fromBlocks A 0 C D = 1 [PROOFSTEP] simp_rw [fromBlocks_multiply, Matrix.mul_zero, Matrix.zero_mul, zero_add, add_zero, Matrix.neg_mul, invOf_mul_self, Matrix.mul_invOf_mul_self_cancel, add_left_neg, fromBlocks_one] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁹ : Fintype l inst✝⁸ : Fintype m inst✝⁷ : Fintype n inst✝⁶ : DecidableEq l inst✝⁵ : DecidableEq m inst✝⁴ : DecidableEq n inst✝³ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝² : Invertible A inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B 0 D) ⊢ ⅟(fromBlocks A B 0 D) = fromBlocks (⅟A) (-(⅟A * B * ⅟D)) 0 ⅟D [PROOFSTEP] letI := fromBlocksZero₂₁Invertible A B D [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁹ : Fintype l inst✝⁸ : Fintype m inst✝⁷ : Fintype n inst✝⁶ : DecidableEq l inst✝⁵ : DecidableEq m inst✝⁴ : DecidableEq n inst✝³ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝² : Invertible A inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B 0 D) this : Invertible (fromBlocks A B 0 D) := fromBlocksZero₂₁Invertible A B D ⊢ ⅟(fromBlocks A B 0 D) = fromBlocks (⅟A) (-(⅟A * B * ⅟D)) 0 ⅟D [PROOFSTEP] convert (rfl : ⅟(fromBlocks A B 0 D) = _) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁹ : Fintype l inst✝⁸ : Fintype m inst✝⁷ : Fintype n inst✝⁶ : DecidableEq l inst✝⁵ : DecidableEq m inst✝⁴ : DecidableEq n inst✝³ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝² : Invertible A inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A 0 C D) ⊢ ⅟(fromBlocks A 0 C D) = fromBlocks (⅟A) 0 (-(⅟D * C * ⅟A)) ⅟D [PROOFSTEP] letI := fromBlocksZero₁₂Invertible A C D [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁹ : Fintype l inst✝⁸ : Fintype m inst✝⁷ : Fintype n inst✝⁶ : DecidableEq l inst✝⁵ : DecidableEq m inst✝⁴ : DecidableEq n inst✝³ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝² : Invertible A inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A 0 C D) this : Invertible (fromBlocks A 0 C D) := fromBlocksZero₁₂Invertible A C D ⊢ ⅟(fromBlocks A 0 C D) = fromBlocks (⅟A) 0 (-(⅟D * C * ⅟A)) ⅟D [PROOFSTEP] convert (rfl : ⅟(fromBlocks A 0 C D) = _) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝ : Invertible (fromBlocks A B 0 D) ⊢ toBlocks₁₁ ⅟(fromBlocks A B 0 D) * A = 1 [PROOFSTEP] have := invOf_mul_self (fromBlocks A B 0 D) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝ : Invertible (fromBlocks A B 0 D) this : ⅟(fromBlocks A B 0 D) * fromBlocks A B 0 D = 1 ⊢ toBlocks₁₁ ⅟(fromBlocks A B 0 D) * A = 1 [PROOFSTEP] rw [← fromBlocks_toBlocks (⅟(fromBlocks A B 0 D)), fromBlocks_multiply] at this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝ : Invertible (fromBlocks A B 0 D) this : fromBlocks (toBlocks₁₁ ⅟(fromBlocks A B 0 D) * A + toBlocks₁₂ ⅟(fromBlocks A B 0 D) * 0) (toBlocks₁₁ ⅟(fromBlocks A B 0 D) * B + toBlocks₁₂ ⅟(fromBlocks A B 0 D) * D) (toBlocks₂₁ ⅟(fromBlocks A B 0 D) * A + toBlocks₂₂ ⅟(fromBlocks A B 0 D) * 0) (toBlocks₂₁ ⅟(fromBlocks A B 0 D) * B + toBlocks₂₂ ⅟(fromBlocks A B 0 D) * D) = 1 ⊢ toBlocks₁₁ ⅟(fromBlocks A B 0 D) * A = 1 [PROOFSTEP] replace := congr_arg Matrix.toBlocks₁₁ this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝ : Invertible (fromBlocks A B 0 D) this : toBlocks₁₁ (fromBlocks (toBlocks₁₁ ⅟(fromBlocks A B 0 D) * A + toBlocks₁₂ ⅟(fromBlocks A B 0 D) * 0) (toBlocks₁₁ ⅟(fromBlocks A B 0 D) * B + toBlocks₁₂ ⅟(fromBlocks A B 0 D) * D) (toBlocks₂₁ ⅟(fromBlocks A B 0 D) * A + toBlocks₂₂ ⅟(fromBlocks A B 0 D) * 0) (toBlocks₂₁ ⅟(fromBlocks A B 0 D) * B + toBlocks₂₂ ⅟(fromBlocks A B 0 D) * D)) = toBlocks₁₁ 1 ⊢ toBlocks₁₁ ⅟(fromBlocks A B 0 D) * A = 1 [PROOFSTEP] simpa only [Matrix.toBlocks_fromBlocks₁₁, Matrix.mul_zero, add_zero, ← fromBlocks_one] using this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝ : Invertible (fromBlocks A B 0 D) ⊢ D * toBlocks₂₂ ⅟(fromBlocks A B 0 D) = 1 [PROOFSTEP] have := mul_invOf_self (fromBlocks A B 0 D) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝ : Invertible (fromBlocks A B 0 D) this : fromBlocks A B 0 D * ⅟(fromBlocks A B 0 D) = 1 ⊢ D * toBlocks₂₂ ⅟(fromBlocks A B 0 D) = 1 [PROOFSTEP] rw [← fromBlocks_toBlocks (⅟(fromBlocks A B 0 D)), fromBlocks_multiply] at this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝ : Invertible (fromBlocks A B 0 D) this : fromBlocks (A * toBlocks₁₁ ⅟(fromBlocks A B 0 D) + B * toBlocks₂₁ ⅟(fromBlocks A B 0 D)) (A * toBlocks₁₂ ⅟(fromBlocks A B 0 D) + B * toBlocks₂₂ ⅟(fromBlocks A B 0 D)) (0 * toBlocks₁₁ ⅟(fromBlocks A B 0 D) + D * toBlocks₂₁ ⅟(fromBlocks A B 0 D)) (0 * toBlocks₁₂ ⅟(fromBlocks A B 0 D) + D * toBlocks₂₂ ⅟(fromBlocks A B 0 D)) = 1 ⊢ D * toBlocks₂₂ ⅟(fromBlocks A B 0 D) = 1 [PROOFSTEP] replace := congr_arg Matrix.toBlocks₂₂ this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α inst✝ : Invertible (fromBlocks A B 0 D) this : toBlocks₂₂ (fromBlocks (A * toBlocks₁₁ ⅟(fromBlocks A B 0 D) + B * toBlocks₂₁ ⅟(fromBlocks A B 0 D)) (A * toBlocks₁₂ ⅟(fromBlocks A B 0 D) + B * toBlocks₂₂ ⅟(fromBlocks A B 0 D)) (0 * toBlocks₁₁ ⅟(fromBlocks A B 0 D) + D * toBlocks₂₁ ⅟(fromBlocks A B 0 D)) (0 * toBlocks₁₂ ⅟(fromBlocks A B 0 D) + D * toBlocks₂₂ ⅟(fromBlocks A B 0 D))) = toBlocks₂₂ 1 ⊢ D * toBlocks₂₂ ⅟(fromBlocks A B 0 D) = 1 [PROOFSTEP] simpa only [Matrix.toBlocks_fromBlocks₂₂, Matrix.zero_mul, zero_add, ← fromBlocks_one] using this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝ : Invertible (fromBlocks A 0 C D) ⊢ A * toBlocks₁₁ ⅟(fromBlocks A 0 C D) = 1 [PROOFSTEP] have := mul_invOf_self (fromBlocks A 0 C D) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝ : Invertible (fromBlocks A 0 C D) this : fromBlocks A 0 C D * ⅟(fromBlocks A 0 C D) = 1 ⊢ A * toBlocks₁₁ ⅟(fromBlocks A 0 C D) = 1 [PROOFSTEP] rw [← fromBlocks_toBlocks (⅟(fromBlocks A 0 C D)), fromBlocks_multiply] at this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝ : Invertible (fromBlocks A 0 C D) this : fromBlocks (A * toBlocks₁₁ ⅟(fromBlocks A 0 C D) + 0 * toBlocks₂₁ ⅟(fromBlocks A 0 C D)) (A * toBlocks₁₂ ⅟(fromBlocks A 0 C D) + 0 * toBlocks₂₂ ⅟(fromBlocks A 0 C D)) (C * toBlocks₁₁ ⅟(fromBlocks A 0 C D) + D * toBlocks₂₁ ⅟(fromBlocks A 0 C D)) (C * toBlocks₁₂ ⅟(fromBlocks A 0 C D) + D * toBlocks₂₂ ⅟(fromBlocks A 0 C D)) = 1 ⊢ A * toBlocks₁₁ ⅟(fromBlocks A 0 C D) = 1 [PROOFSTEP] replace := congr_arg Matrix.toBlocks₁₁ this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝ : Invertible (fromBlocks A 0 C D) this : toBlocks₁₁ (fromBlocks (A * toBlocks₁₁ ⅟(fromBlocks A 0 C D) + 0 * toBlocks₂₁ ⅟(fromBlocks A 0 C D)) (A * toBlocks₁₂ ⅟(fromBlocks A 0 C D) + 0 * toBlocks₂₂ ⅟(fromBlocks A 0 C D)) (C * toBlocks₁₁ ⅟(fromBlocks A 0 C D) + D * toBlocks₂₁ ⅟(fromBlocks A 0 C D)) (C * toBlocks₁₂ ⅟(fromBlocks A 0 C D) + D * toBlocks₂₂ ⅟(fromBlocks A 0 C D))) = toBlocks₁₁ 1 ⊢ A * toBlocks₁₁ ⅟(fromBlocks A 0 C D) = 1 [PROOFSTEP] simpa only [Matrix.toBlocks_fromBlocks₁₁, Matrix.zero_mul, add_zero, ← fromBlocks_one] using this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝ : Invertible (fromBlocks A 0 C D) ⊢ toBlocks₂₂ ⅟(fromBlocks A 0 C D) * D = 1 [PROOFSTEP] have := invOf_mul_self (fromBlocks A 0 C D) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝ : Invertible (fromBlocks A 0 C D) this : ⅟(fromBlocks A 0 C D) * fromBlocks A 0 C D = 1 ⊢ toBlocks₂₂ ⅟(fromBlocks A 0 C D) * D = 1 [PROOFSTEP] rw [← fromBlocks_toBlocks (⅟(fromBlocks A 0 C D)), fromBlocks_multiply] at this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝ : Invertible (fromBlocks A 0 C D) this : fromBlocks (toBlocks₁₁ ⅟(fromBlocks A 0 C D) * A + toBlocks₁₂ ⅟(fromBlocks A 0 C D) * C) (toBlocks₁₁ ⅟(fromBlocks A 0 C D) * 0 + toBlocks₁₂ ⅟(fromBlocks A 0 C D) * D) (toBlocks₂₁ ⅟(fromBlocks A 0 C D) * A + toBlocks₂₂ ⅟(fromBlocks A 0 C D) * C) (toBlocks₂₁ ⅟(fromBlocks A 0 C D) * 0 + toBlocks₂₂ ⅟(fromBlocks A 0 C D) * D) = 1 ⊢ toBlocks₂₂ ⅟(fromBlocks A 0 C D) * D = 1 [PROOFSTEP] replace := congr_arg Matrix.toBlocks₂₂ this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α inst✝ : Invertible (fromBlocks A 0 C D) this : toBlocks₂₂ (fromBlocks (toBlocks₁₁ ⅟(fromBlocks A 0 C D) * A + toBlocks₁₂ ⅟(fromBlocks A 0 C D) * C) (toBlocks₁₁ ⅟(fromBlocks A 0 C D) * 0 + toBlocks₁₂ ⅟(fromBlocks A 0 C D) * D) (toBlocks₂₁ ⅟(fromBlocks A 0 C D) * A + toBlocks₂₂ ⅟(fromBlocks A 0 C D) * C) (toBlocks₂₁ ⅟(fromBlocks A 0 C D) * 0 + toBlocks₂₂ ⅟(fromBlocks A 0 C D) * D)) = toBlocks₂₂ 1 ⊢ toBlocks₂₂ ⅟(fromBlocks A 0 C D) * D = 1 [PROOFSTEP] simpa only [Matrix.toBlocks_fromBlocks₂₂, Matrix.mul_zero, zero_add, ← fromBlocks_one] using this [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α i : Invertible A × Invertible D ⊢ Invertible (fromBlocks A B 0 D) [PROOFSTEP] letI := i.1 [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α i : Invertible A × Invertible D this : Invertible A := i.fst ⊢ Invertible (fromBlocks A B 0 D) [PROOFSTEP] letI := i.2 [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α i : Invertible A × Invertible D this✝ : Invertible A := i.fst this : Invertible D := i.snd ⊢ Invertible (fromBlocks A B 0 D) [PROOFSTEP] exact fromBlocksZero₂₁Invertible A B D [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α i : Invertible A × Invertible D ⊢ Invertible (fromBlocks A 0 C D) [PROOFSTEP] letI := i.1 [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α i : Invertible A × Invertible D this : Invertible A := i.fst ⊢ Invertible (fromBlocks A 0 C D) [PROOFSTEP] letI := i.2 [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α i : Invertible A × Invertible D this✝ : Invertible A := i.fst this : Invertible D := i.snd ⊢ Invertible (fromBlocks A 0 C D) [PROOFSTEP] exact fromBlocksZero₁₂Invertible A C D [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α ⊢ IsUnit (fromBlocks A B 0 D) ↔ IsUnit A ∧ IsUnit D [PROOFSTEP] simp only [← nonempty_invertible_iff_isUnit, ← nonempty_prod, (fromBlocksZero₂₁InvertibleEquiv _ _ _).nonempty_congr] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α ⊢ IsUnit (fromBlocks A 0 C D) ↔ IsUnit A ∧ IsUnit D [PROOFSTEP] simp only [← nonempty_invertible_iff_isUnit, ← nonempty_prod, (fromBlocksZero₁₂InvertibleEquiv _ _ _).nonempty_congr] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] by_cases hA : IsUnit A [GOAL] case pos l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] have hD := hAD.mp hA [GOAL] case pos l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A hD : IsUnit D ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] cases hA.nonempty_invertible [GOAL] case pos.intro l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A hD : IsUnit D val✝ : Invertible A ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] cases hD.nonempty_invertible [GOAL] case pos.intro.intro l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A hD : IsUnit D val✝¹ : Invertible A val✝ : Invertible D ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] letI := fromBlocksZero₂₁Invertible A B D [GOAL] case pos.intro.intro l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A hD : IsUnit D val✝¹ : Invertible A val✝ : Invertible D this : Invertible (fromBlocks A B 0 D) := fromBlocksZero₂₁Invertible A B D ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] simp_rw [← invOf_eq_nonsing_inv, invOf_fromBlocks_zero₂₁_eq] [GOAL] case neg l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : ¬IsUnit A ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] have hD := hAD.not.mp hA [GOAL] case neg l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : ¬IsUnit A hD : ¬IsUnit D ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] have : ¬IsUnit (fromBlocks A B 0 D) := isUnit_fromBlocks_zero₂₁.not.mpr (not_and'.mpr fun _ => hA) [GOAL] case neg l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : ¬IsUnit A hD : ¬IsUnit D this : ¬IsUnit (fromBlocks A B 0 D) ⊢ (fromBlocks A B 0 D)⁻¹ = fromBlocks A⁻¹ (-(A⁻¹ * B * D⁻¹)) 0 D⁻¹ [PROOFSTEP] simp_rw [nonsing_inv_eq_ring_inverse, Ring.inverse_non_unit _ hA, Ring.inverse_non_unit _ hD, Ring.inverse_non_unit _ this, Matrix.zero_mul, neg_zero, fromBlocks_zero] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] by_cases hA : IsUnit A [GOAL] case pos l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] have hD := hAD.mp hA [GOAL] case pos l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A hD : IsUnit D ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] cases hA.nonempty_invertible [GOAL] case pos.intro l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A hD : IsUnit D val✝ : Invertible A ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] cases hD.nonempty_invertible [GOAL] case pos.intro.intro l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A hD : IsUnit D val✝¹ : Invertible A val✝ : Invertible D ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] letI := fromBlocksZero₁₂Invertible A C D [GOAL] case pos.intro.intro l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : IsUnit A hD : IsUnit D val✝¹ : Invertible A val✝ : Invertible D this : Invertible (fromBlocks A 0 C D) := fromBlocksZero₁₂Invertible A C D ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] simp_rw [← invOf_eq_nonsing_inv, invOf_fromBlocks_zero₁₂_eq] [GOAL] case neg l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : ¬IsUnit A ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] have hD := hAD.not.mp hA [GOAL] case neg l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : ¬IsUnit A hD : ¬IsUnit D ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] have : ¬IsUnit (fromBlocks A 0 C D) := isUnit_fromBlocks_zero₁₂.not.mpr (not_and'.mpr fun _ => hA) [GOAL] case neg l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α C : Matrix n m α D : Matrix n n α hAD : IsUnit A ↔ IsUnit D hA : ¬IsUnit A hD : ¬IsUnit D this : ¬IsUnit (fromBlocks A 0 C D) ⊢ (fromBlocks A 0 C D)⁻¹ = fromBlocks A⁻¹ 0 (-(D⁻¹ * C * A⁻¹)) D⁻¹ [PROOFSTEP] simp_rw [nonsing_inv_eq_ring_inverse, Ring.inverse_non_unit _ hA, Ring.inverse_non_unit _ hD, Ring.inverse_non_unit _ this, Matrix.zero_mul, neg_zero, fromBlocks_zero] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (A - B * ⅟D * C) ⊢ Invertible (fromBlocks A B C D) [PROOFSTEP] refine' Invertible.copy' _ _ (fromBlocks (⅟(A - B * ⅟D * C)) (-(⅟(A - B * ⅟D * C) * B * ⅟D)) (-(⅟D * C * ⅟(A - B * ⅟D * C))) (⅟D + ⅟D * C * ⅟(A - B * ⅟D * C) * B * ⅟D)) (fromBlocks_eq_of_invertible₂₂ _ _ _ _) _ [GOAL] case refine'_1 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (A - B * ⅟D * C) ⊢ Invertible (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) [PROOFSTEP] letI : Invertible (1 : Matrix n n α) := invertibleOne [GOAL] case refine'_1 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (A - B * ⅟D * C) this : Invertible 1 := invertibleOne ⊢ Invertible (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) [PROOFSTEP] letI : Invertible (1 : Matrix m m α) := invertibleOne [GOAL] case refine'_1 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (A - B * ⅟D * C) this✝ : Invertible 1 := invertibleOne this : Invertible 1 := invertibleOne ⊢ Invertible (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) [PROOFSTEP] refine' Invertible.mul _ (fromBlocksZero₁₂Invertible _ _ _) [GOAL] case refine'_1 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (A - B * ⅟D * C) this✝ : Invertible 1 := invertibleOne this : Invertible 1 := invertibleOne ⊢ Invertible (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D) [PROOFSTEP] exact Invertible.mul (fromBlocksZero₂₁Invertible _ _ _) (fromBlocksZero₂₁Invertible _ _ _) [GOAL] case refine'_2 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (A - B * ⅟D * C) ⊢ fromBlocks (⅟(A - B * ⅟D * C)) (-(⅟(A - B * ⅟D * C) * B * ⅟D)) (-(⅟D * C * ⅟(A - B * ⅟D * C))) (⅟D + ⅟D * C * ⅟(A - B * ⅟D * C) * B * ⅟D) = ⅟(fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) [PROOFSTEP] show _ = fromBlocks 1 0 (-(1 * (⅟D * C) * 1)) 1 * (fromBlocks (⅟(A - B * ⅟D * C)) (-(⅟(A - B * ⅟D * C) * 0 * ⅟D)) 0 (⅟D) * fromBlocks 1 (-(1 * (B * ⅟D) * 1)) 0 1) -- combine into a single block matrix [GOAL] case refine'_2 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (A - B * ⅟D * C) ⊢ fromBlocks (⅟(A - B * ⅟D * C)) (-(⅟(A - B * ⅟D * C) * B * ⅟D)) (-(⅟D * C * ⅟(A - B * ⅟D * C))) (⅟D + ⅟D * C * ⅟(A - B * ⅟D * C) * B * ⅟D) = fromBlocks 1 0 (-(1 * (⅟D * C) * 1)) 1 * (fromBlocks (⅟(A - B * ⅟D * C)) (-(⅟(A - B * ⅟D * C) * 0 * ⅟D)) 0 ⅟D * fromBlocks 1 (-(1 * (B * ⅟D) * 1)) 0 1) [PROOFSTEP] simp only [fromBlocks_multiply, invOf_one, Matrix.one_mul, Matrix.mul_one, Matrix.zero_mul, Matrix.mul_zero, add_zero, zero_add, neg_zero, Matrix.mul_neg, Matrix.neg_mul, neg_neg, ← Matrix.mul_assoc, add_comm (⅟D)] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible A inst✝ : Invertible (D - C * ⅟A * B) ⊢ Invertible (fromBlocks A B C D) [PROOFSTEP] letI := fromBlocks₂₂Invertible D C B A [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible A inst✝ : Invertible (D - C * ⅟A * B) this : Invertible (fromBlocks D C B A) := fromBlocks₂₂Invertible D C B A ⊢ Invertible (fromBlocks A B C D) [PROOFSTEP] letI iDCBA := submatrixEquivInvertible (fromBlocks D C B A) (Equiv.sumComm _ _) (Equiv.sumComm _ _) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible A inst✝ : Invertible (D - C * ⅟A * B) this : Invertible (fromBlocks D C B A) := fromBlocks₂₂Invertible D C B A iDCBA : Invertible (submatrix (fromBlocks D C B A) ↑(Equiv.sumComm m n) ↑(Equiv.sumComm m n)) := submatrixEquivInvertible (fromBlocks D C B A) (Equiv.sumComm m n) (Equiv.sumComm m n) ⊢ Invertible (fromBlocks A B C D) [PROOFSTEP] exact iDCBA.copy' _ (fromBlocks (⅟A + ⅟A * B * ⅟(D - C * ⅟A * B) * C * ⅟A) (-(⅟A * B * ⅟(D - C * ⅟A * B))) (-(⅟(D - C * ⅟A * B) * C * ⅟A)) (⅟(D - C * ⅟A * B))) (fromBlocks_submatrix_sum_swap_sum_swap _ _ _ _).symm (fromBlocks_submatrix_sum_swap_sum_swap _ _ _ _).symm [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁹ : Fintype l inst✝⁸ : Fintype m inst✝⁷ : Fintype n inst✝⁶ : DecidableEq l inst✝⁵ : DecidableEq m inst✝⁴ : DecidableEq n inst✝³ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝² : Invertible D inst✝¹ : Invertible (A - B * ⅟D * C) inst✝ : Invertible (fromBlocks A B C D) ⊢ ⅟(fromBlocks A B C D) = fromBlocks (⅟(A - B * ⅟D * C)) (-(⅟(A - B * ⅟D * C) * B * ⅟D)) (-(⅟D * C * ⅟(A - B * ⅟D * C))) (⅟D + ⅟D * C * ⅟(A - B * ⅟D * C) * B * ⅟D) [PROOFSTEP] letI := fromBlocks₂₂Invertible A B C D [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁹ : Fintype l inst✝⁸ : Fintype m inst✝⁷ : Fintype n inst✝⁶ : DecidableEq l inst✝⁵ : DecidableEq m inst✝⁴ : DecidableEq n inst✝³ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝² : Invertible D inst✝¹ : Invertible (A - B * ⅟D * C) inst✝ : Invertible (fromBlocks A B C D) this : Invertible (fromBlocks A B C D) := fromBlocks₂₂Invertible A B C D ⊢ ⅟(fromBlocks A B C D) = fromBlocks (⅟(A - B * ⅟D * C)) (-(⅟(A - B * ⅟D * C) * B * ⅟D)) (-(⅟D * C * ⅟(A - B * ⅟D * C))) (⅟D + ⅟D * C * ⅟(A - B * ⅟D * C) * B * ⅟D) [PROOFSTEP] convert (rfl : ⅟(fromBlocks A B C D) = _) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁹ : Fintype l inst✝⁸ : Fintype m inst✝⁷ : Fintype n inst✝⁶ : DecidableEq l inst✝⁵ : DecidableEq m inst✝⁴ : DecidableEq n inst✝³ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝² : Invertible A inst✝¹ : Invertible (D - C * ⅟A * B) inst✝ : Invertible (fromBlocks A B C D) ⊢ ⅟(fromBlocks A B C D) = fromBlocks (⅟A + ⅟A * B * ⅟(D - C * ⅟A * B) * C * ⅟A) (-(⅟A * B * ⅟(D - C * ⅟A * B))) (-(⅟(D - C * ⅟A * B) * C * ⅟A)) ⅟(D - C * ⅟A * B) [PROOFSTEP] letI := fromBlocks₁₁Invertible A B C D [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁹ : Fintype l inst✝⁸ : Fintype m inst✝⁷ : Fintype n inst✝⁶ : DecidableEq l inst✝⁵ : DecidableEq m inst✝⁴ : DecidableEq n inst✝³ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝² : Invertible A inst✝¹ : Invertible (D - C * ⅟A * B) inst✝ : Invertible (fromBlocks A B C D) this : Invertible (fromBlocks A B C D) := fromBlocks₁₁Invertible A B C D ⊢ ⅟(fromBlocks A B C D) = fromBlocks (⅟A + ⅟A * B * ⅟(D - C * ⅟A * B) * C * ⅟A) (-(⅟A * B * ⅟(D - C * ⅟A * B))) (-(⅟(D - C * ⅟A * B) * C * ⅟A)) ⅟(D - C * ⅟A * B) [PROOFSTEP] convert (rfl : ⅟(fromBlocks A B C D) = _) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) ⊢ Invertible (A - B * ⅟D * C) [PROOFSTEP] suffices Invertible (fromBlocks (A - B * ⅟D * C) 0 0 D) by exact (invertibleOfFromBlocksZero₁₂Invertible (A - B * ⅟D * C) 0 D).1 [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) this : Invertible (fromBlocks (A - B * ⅟D * C) 0 0 D) ⊢ Invertible (A - B * ⅟D * C) [PROOFSTEP] exact (invertibleOfFromBlocksZero₁₂Invertible (A - B * ⅟D * C) 0 D).1 [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) ⊢ Invertible (fromBlocks (A - B * ⅟D * C) 0 0 D) [PROOFSTEP] letI : Invertible (1 : Matrix n n α) := invertibleOne [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) this : Invertible 1 := invertibleOne ⊢ Invertible (fromBlocks (A - B * ⅟D * C) 0 0 D) [PROOFSTEP] letI : Invertible (1 : Matrix m m α) := invertibleOne [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) this✝ : Invertible 1 := invertibleOne this : Invertible 1 := invertibleOne ⊢ Invertible (fromBlocks (A - B * ⅟D * C) 0 0 D) [PROOFSTEP] letI iDC : Invertible (fromBlocks 1 0 (⅟D * C) 1 : Matrix (Sum m n) (Sum m n) α) := fromBlocksZero₁₂Invertible _ _ _ [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) this✝ : Invertible 1 := invertibleOne this : Invertible 1 := invertibleOne iDC : Invertible (fromBlocks 1 0 (⅟D * C) 1) := fromBlocksZero₁₂Invertible 1 (⅟D * C) 1 ⊢ Invertible (fromBlocks (A - B * ⅟D * C) 0 0 D) [PROOFSTEP] letI iBD : Invertible (fromBlocks 1 (B * ⅟D) 0 1 : Matrix (Sum m n) (Sum m n) α) := fromBlocksZero₂₁Invertible _ _ _ [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) this✝ : Invertible 1 := invertibleOne this : Invertible 1 := invertibleOne iDC : Invertible (fromBlocks 1 0 (⅟D * C) 1) := fromBlocksZero₁₂Invertible 1 (⅟D * C) 1 iBD : Invertible (fromBlocks 1 (B * ⅟D) 0 1) := fromBlocksZero₂₁Invertible 1 (B * ⅟D) 1 ⊢ Invertible (fromBlocks (A - B * ⅟D * C) 0 0 D) [PROOFSTEP] letI iBDC := Invertible.copy ‹_› _ (fromBlocks_eq_of_invertible₂₂ A B C D).symm [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) this✝ : Invertible 1 := invertibleOne this : Invertible 1 := invertibleOne iDC : Invertible (fromBlocks 1 0 (⅟D * C) 1) := fromBlocksZero₁₂Invertible 1 (⅟D * C) 1 iBD : Invertible (fromBlocks 1 (B * ⅟D) 0 1) := fromBlocksZero₂₁Invertible 1 (B * ⅟D) 1 iBDC : Invertible (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) := Invertible.copy inst✝ (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) (_ : fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1 = fromBlocks A B C D) ⊢ Invertible (fromBlocks (A - B * ⅟D * C) 0 0 D) [PROOFSTEP] refine' (iBD.mulLeft _).symm _ [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible D inst✝ : Invertible (fromBlocks A B C D) this✝ : Invertible 1 := invertibleOne this : Invertible 1 := invertibleOne iDC : Invertible (fromBlocks 1 0 (⅟D * C) 1) := fromBlocksZero₁₂Invertible 1 (⅟D * C) 1 iBD : Invertible (fromBlocks 1 (B * ⅟D) 0 1) := fromBlocksZero₂₁Invertible 1 (B * ⅟D) 1 iBDC : Invertible (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) := Invertible.copy inst✝ (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1) (_ : fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D * fromBlocks 1 0 (⅟D * C) 1 = fromBlocks A B C D) ⊢ Invertible (fromBlocks 1 (B * ⅟D) 0 1 * fromBlocks (A - B * ⅟D * C) 0 0 D) [PROOFSTEP] refine' (iDC.mulRight _).symm iBDC [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible A inst✝ : Invertible (fromBlocks A B C D) ⊢ Invertible (D - C * ⅟A * B) [PROOFSTEP] letI iABCD' := submatrixEquivInvertible (fromBlocks A B C D) (Equiv.sumComm _ _) (Equiv.sumComm _ _) [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible A inst✝ : Invertible (fromBlocks A B C D) iABCD' : Invertible (submatrix (fromBlocks A B C D) ↑(Equiv.sumComm n m) ↑(Equiv.sumComm n m)) := submatrixEquivInvertible (fromBlocks A B C D) (Equiv.sumComm n m) (Equiv.sumComm n m) ⊢ Invertible (D - C * ⅟A * B) [PROOFSTEP] letI iDCBA := iABCD'.copy _ (fromBlocks_submatrix_sum_swap_sum_swap _ _ _ _).symm [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁸ : Fintype l inst✝⁷ : Fintype m inst✝⁶ : Fintype n inst✝⁵ : DecidableEq l inst✝⁴ : DecidableEq m inst✝³ : DecidableEq n inst✝² : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝¹ : Invertible A inst✝ : Invertible (fromBlocks A B C D) iABCD' : Invertible (submatrix (fromBlocks A B C D) ↑(Equiv.sumComm n m) ↑(Equiv.sumComm n m)) := submatrixEquivInvertible (fromBlocks A B C D) (Equiv.sumComm n m) (Equiv.sumComm n m) iDCBA : Invertible (fromBlocks D C B A) := Invertible.copy iABCD' (fromBlocks D C B A) (_ : fromBlocks D C B A = submatrix (fromBlocks A B C D) Sum.swap Sum.swap) ⊢ Invertible (D - C * ⅟A * B) [PROOFSTEP] refine' invertibleOfFromBlocks₂₂Invertible D C B A [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D ⊢ IsUnit (fromBlocks A B C D) ↔ IsUnit (A - B * ⅟D * C) [PROOFSTEP] simp only [← nonempty_invertible_iff_isUnit, (invertibleEquivFromBlocks₂₂Invertible A B C D).nonempty_congr] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible A ⊢ IsUnit (fromBlocks A B C D) ↔ IsUnit (D - C * ⅟A * B) [PROOFSTEP] simp only [← nonempty_invertible_iff_isUnit, (invertibleEquivFromBlocks₁₁Invertible A B C D).nonempty_congr] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible A ⊢ det (fromBlocks A B C D) = det A * det (D - C * ⅟A * B) [PROOFSTEP] rw [fromBlocks_eq_of_invertible₁₁ (A := A), det_mul, det_mul, det_fromBlocks_zero₂₁, det_fromBlocks_zero₂₁, det_fromBlocks_zero₁₂, det_one, det_one, one_mul, one_mul, mul_one] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α B : Matrix m n α C : Matrix n m α D : Matrix n n α ⊢ det (fromBlocks 1 B C D) = det (D - C * B) [PROOFSTEP] haveI : Invertible (1 : Matrix m m α) := invertibleOne [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α B : Matrix m n α C : Matrix n m α D : Matrix n n α this : Invertible 1 ⊢ det (fromBlocks 1 B C D) = det (D - C * B) [PROOFSTEP] rw [det_fromBlocks₁₁, invOf_one, Matrix.mul_one, det_one, one_mul] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D ⊢ det (fromBlocks A B C D) = det D * det (A - B * ⅟D * C) [PROOFSTEP] have : fromBlocks A B C D = (fromBlocks D C B A).submatrix (Equiv.sumComm _ _) (Equiv.sumComm _ _) := by ext (i j) cases i <;> cases j <;> rfl [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D ⊢ fromBlocks A B C D = submatrix (fromBlocks D C B A) ↑(Equiv.sumComm m n) ↑(Equiv.sumComm m n) [PROOFSTEP] ext (i j) [GOAL] case a.h l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D i j : m ⊕ n ⊢ fromBlocks A B C D i j = submatrix (fromBlocks D C B A) (↑(Equiv.sumComm m n)) (↑(Equiv.sumComm m n)) i j [PROOFSTEP] cases i [GOAL] case a.h.inl l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D j : m ⊕ n val✝ : m ⊢ fromBlocks A B C D (Sum.inl val✝) j = submatrix (fromBlocks D C B A) (↑(Equiv.sumComm m n)) (↑(Equiv.sumComm m n)) (Sum.inl val✝) j [PROOFSTEP] cases j [GOAL] case a.h.inr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D j : m ⊕ n val✝ : n ⊢ fromBlocks A B C D (Sum.inr val✝) j = submatrix (fromBlocks D C B A) (↑(Equiv.sumComm m n)) (↑(Equiv.sumComm m n)) (Sum.inr val✝) j [PROOFSTEP] cases j [GOAL] case a.h.inl.inl l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D val✝¹ val✝ : m ⊢ fromBlocks A B C D (Sum.inl val✝¹) (Sum.inl val✝) = submatrix (fromBlocks D C B A) (↑(Equiv.sumComm m n)) (↑(Equiv.sumComm m n)) (Sum.inl val✝¹) (Sum.inl val✝) [PROOFSTEP] rfl [GOAL] case a.h.inl.inr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D val✝¹ : m val✝ : n ⊢ fromBlocks A B C D (Sum.inl val✝¹) (Sum.inr val✝) = submatrix (fromBlocks D C B A) (↑(Equiv.sumComm m n)) (↑(Equiv.sumComm m n)) (Sum.inl val✝¹) (Sum.inr val✝) [PROOFSTEP] rfl [GOAL] case a.h.inr.inl l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D val✝¹ : n val✝ : m ⊢ fromBlocks A B C D (Sum.inr val✝¹) (Sum.inl val✝) = submatrix (fromBlocks D C B A) (↑(Equiv.sumComm m n)) (↑(Equiv.sumComm m n)) (Sum.inr val✝¹) (Sum.inl val✝) [PROOFSTEP] rfl [GOAL] case a.h.inr.inr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D val✝¹ val✝ : n ⊢ fromBlocks A B C D (Sum.inr val✝¹) (Sum.inr val✝) = submatrix (fromBlocks D C B A) (↑(Equiv.sumComm m n)) (↑(Equiv.sumComm m n)) (Sum.inr val✝¹) (Sum.inr val✝) [PROOFSTEP] rfl [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁷ : Fintype l inst✝⁶ : Fintype m inst✝⁵ : Fintype n inst✝⁴ : DecidableEq l inst✝³ : DecidableEq m inst✝² : DecidableEq n inst✝¹ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α D : Matrix n n α inst✝ : Invertible D this : fromBlocks A B C D = submatrix (fromBlocks D C B A) ↑(Equiv.sumComm m n) ↑(Equiv.sumComm m n) ⊢ det (fromBlocks A B C D) = det D * det (A - B * ⅟D * C) [PROOFSTEP] rw [this, det_submatrix_equiv_self, det_fromBlocks₁₁] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α ⊢ det (fromBlocks A B C 1) = det (A - B * C) [PROOFSTEP] haveI : Invertible (1 : Matrix n n α) := invertibleOne [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m m α B : Matrix m n α C : Matrix n m α this : Invertible 1 ⊢ det (fromBlocks A B C 1) = det (A - B * C) [PROOFSTEP] rw [det_fromBlocks₂₂, invOf_one, Matrix.mul_one, det_one, one_mul] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m n α B : Matrix n m α ⊢ det (1 + A * B) = det (fromBlocks 1 (-A) B 1) [PROOFSTEP] rw [det_fromBlocks_one₂₂, Matrix.neg_mul, sub_neg_eq_add] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m n α B : Matrix n m α ⊢ det (fromBlocks 1 (-A) B 1) = det (1 + B * A) [PROOFSTEP] rw [det_fromBlocks_one₁₁, Matrix.mul_neg, sub_neg_eq_add] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m n α B : Matrix n m α ⊢ det (A * B + 1) = det (B * A + 1) [PROOFSTEP] rw [add_comm, det_one_add_mul_comm, add_comm] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α A : Matrix m n α B : Matrix n m α ⊢ det (1 - A * B) = det (1 - B * A) [PROOFSTEP] rw [sub_eq_add_neg, ← Matrix.neg_mul, det_one_add_mul_comm, Matrix.mul_neg, ← sub_eq_add_neg] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 inst✝⁶ : Fintype l inst✝⁵ : Fintype m inst✝⁴ : Fintype n inst✝³ : DecidableEq l inst✝² : DecidableEq m inst✝¹ : DecidableEq n inst✝ : CommRing α u v : m → α ⊢ det (1 + col u * row v) = 1 + v ⬝ᵥ u [PROOFSTEP] rw [det_one_add_mul_comm, det_unique, Pi.add_apply, Pi.add_apply, Matrix.one_apply_eq, Matrix.row_mul_col_apply] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible A hA : IsHermitian A ⊢ vecMul (star (x ⊕ᵥ y)) (fromBlocks A B Bᴴ D) ⬝ᵥ (x ⊕ᵥ y) = vecMul (star (x + mulVec (A⁻¹ * B) y)) A ⬝ᵥ (x + mulVec (A⁻¹ * B) y) + vecMul (star y) (D - Bᴴ * A⁻¹ * B) ⬝ᵥ y [PROOFSTEP] simp [Function.star_sum_elim, fromBlocks_mulVec, vecMul_fromBlocks, add_vecMul, dotProduct_mulVec, vecMul_sub, Matrix.mul_assoc, vecMul_mulVec, hA.eq, conjTranspose_nonsing_inv, star_mulVec] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible A hA : IsHermitian A ⊢ vecMul (star x) A ⬝ᵥ x + vecMul (star y) Bᴴ ⬝ᵥ x + (vecMul (star x) B ⬝ᵥ y + vecMul (star y) D ⬝ᵥ y) = vecMul (star x) A ⬝ᵥ x + vecMul (star y) Bᴴ ⬝ᵥ x + (vecMul (star x) B ⬝ᵥ y + vecMul (star y) (Bᴴ * (A⁻¹ * B)) ⬝ᵥ y) + (vecMul (star y) D ⬝ᵥ y - vecMul (star y) (Bᴴ * (A⁻¹ * B)) ⬝ᵥ y) [PROOFSTEP] abel [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible A hA : IsHermitian A ⊢ vecMul (star x) A ⬝ᵥ x + vecMul (star y) Bᴴ ⬝ᵥ x + (vecMul (star x) B ⬝ᵥ y + vecMul (star y) D ⬝ᵥ y) = vecMul (star x) A ⬝ᵥ x + vecMul (star y) Bᴴ ⬝ᵥ x + (vecMul (star x) B ⬝ᵥ y + vecMul (star y) (Bᴴ * (A⁻¹ * B)) ⬝ᵥ y) + (vecMul (star y) D ⬝ᵥ y - vecMul (star y) (Bᴴ * (A⁻¹ * B)) ⬝ᵥ y) [PROOFSTEP] abel [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible D hD : IsHermitian D ⊢ vecMul (star (x ⊕ᵥ y)) (fromBlocks A B Bᴴ D) ⬝ᵥ (x ⊕ᵥ y) = vecMul (star (mulVec (D⁻¹ * Bᴴ) x + y)) D ⬝ᵥ (mulVec (D⁻¹ * Bᴴ) x + y) + vecMul (star x) (A - B * D⁻¹ * Bᴴ) ⬝ᵥ x [PROOFSTEP] simp [Function.star_sum_elim, fromBlocks_mulVec, vecMul_fromBlocks, add_vecMul, dotProduct_mulVec, vecMul_sub, Matrix.mul_assoc, vecMul_mulVec, hD.eq, conjTranspose_nonsing_inv, star_mulVec] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible D hD : IsHermitian D ⊢ vecMul (star x) A ⬝ᵥ x + vecMul (star y) Bᴴ ⬝ᵥ x + (vecMul (star x) B ⬝ᵥ y + vecMul (star y) D ⬝ᵥ y) = vecMul (star x) (B * (D⁻¹ * Bᴴ)) ⬝ᵥ x + vecMul (star y) Bᴴ ⬝ᵥ x + (vecMul (star x) B ⬝ᵥ y + vecMul (star y) D ⬝ᵥ y) + (vecMul (star x) A ⬝ᵥ x - vecMul (star x) (B * (D⁻¹ * Bᴴ)) ⬝ᵥ x) [PROOFSTEP] abel [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 x : m → 𝕜 y : n → 𝕜 inst✝ : Invertible D hD : IsHermitian D ⊢ vecMul (star x) A ⬝ᵥ x + vecMul (star y) Bᴴ ⬝ᵥ x + (vecMul (star x) B ⬝ᵥ y + vecMul (star y) D ⬝ᵥ y) = vecMul (star x) (B * (D⁻¹ * Bᴴ)) ⬝ᵥ x + vecMul (star y) Bᴴ ⬝ᵥ x + (vecMul (star x) B ⬝ᵥ y + vecMul (star y) D ⬝ᵥ y) + (vecMul (star x) A ⬝ᵥ x - vecMul (star x) (B * (D⁻¹ * Bᴴ)) ⬝ᵥ x) [PROOFSTEP] abel [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A ⊢ IsHermitian (Matrix.fromBlocks A B Bᴴ D) ↔ IsHermitian (D - Bᴴ * A⁻¹ * B) [PROOFSTEP] have hBAB : (Bᴴ * A⁻¹ * B).IsHermitian := by apply isHermitian_conjTranspose_mul_mul apply hA.inv [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A ⊢ IsHermitian (Bᴴ * A⁻¹ * B) [PROOFSTEP] apply isHermitian_conjTranspose_mul_mul [GOAL] case hA l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A ⊢ IsHermitian A⁻¹ [PROOFSTEP] apply hA.inv [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) ⊢ IsHermitian (Matrix.fromBlocks A B Bᴴ D) ↔ IsHermitian (D - Bᴴ * A⁻¹ * B) [PROOFSTEP] rw [isHermitian_fromBlocks_iff] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) ⊢ IsHermitian A ∧ Bᴴ = Bᴴ ∧ Bᴴᴴ = B ∧ IsHermitian D ↔ IsHermitian (D - Bᴴ * A⁻¹ * B) [PROOFSTEP] constructor [GOAL] case mp l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) ⊢ IsHermitian A ∧ Bᴴ = Bᴴ ∧ Bᴴᴴ = B ∧ IsHermitian D → IsHermitian (D - Bᴴ * A⁻¹ * B) [PROOFSTEP] intro h [GOAL] case mp l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) h : IsHermitian A ∧ Bᴴ = Bᴴ ∧ Bᴴᴴ = B ∧ IsHermitian D ⊢ IsHermitian (D - Bᴴ * A⁻¹ * B) [PROOFSTEP] apply IsHermitian.sub h.2.2.2 hBAB [GOAL] case mpr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) ⊢ IsHermitian (D - Bᴴ * A⁻¹ * B) → IsHermitian A ∧ Bᴴ = Bᴴ ∧ Bᴴᴴ = B ∧ IsHermitian D [PROOFSTEP] intro h [GOAL] case mpr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) h : IsHermitian (D - Bᴴ * A⁻¹ * B) ⊢ IsHermitian A ∧ Bᴴ = Bᴴ ∧ Bᴴᴴ = B ∧ IsHermitian D [PROOFSTEP] refine' ⟨hA, rfl, conjTranspose_conjTranspose B, _⟩ [GOAL] case mpr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) h : IsHermitian (D - Bᴴ * A⁻¹ * B) ⊢ IsHermitian D [PROOFSTEP] rw [← sub_add_cancel D] [GOAL] case mpr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) h : IsHermitian (D - Bᴴ * A⁻¹ * B) ⊢ IsHermitian (D - ?mpr + ?mpr) case mpr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype m inst✝ : DecidableEq m A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : IsHermitian A hBAB : IsHermitian (Bᴴ * A⁻¹ * B) h : IsHermitian (D - Bᴴ * A⁻¹ * B) ⊢ Matrix n n 𝕜 [PROOFSTEP] apply IsHermitian.add h hBAB [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : IsHermitian D ⊢ IsHermitian (Matrix.fromBlocks A B Bᴴ D) ↔ IsHermitian (A - B * D⁻¹ * Bᴴ) [PROOFSTEP] rw [← isHermitian_submatrix_equiv (Equiv.sumComm n m), Equiv.sumComm_apply, fromBlocks_submatrix_sum_swap_sum_swap] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : IsHermitian D ⊢ IsHermitian (Matrix.fromBlocks D Bᴴ B A) ↔ IsHermitian (A - B * D⁻¹ * Bᴴ) [PROOFSTEP] convert IsHermitian.fromBlocks₁₁ _ _ hD [GOAL] case h.e'_1.h.e'_4.h.e'_8 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : IsHermitian D ⊢ B = Bᴴᴴ [PROOFSTEP] simp [GOAL] case h.e'_2.h.e'_4.h.e'_6.h.e'_5.h.e'_5 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁴ : CommRing 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : Fintype n inst✝ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : IsHermitian D ⊢ B = Bᴴᴴ [PROOFSTEP] simp [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A ⊢ PosSemidef (fromBlocks A B Bᴴ D) ↔ PosSemidef (D - Bᴴ * A⁻¹ * B) [PROOFSTEP] rw [PosSemidef, IsHermitian.fromBlocks₁₁ _ _ hA.1] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A ⊢ (IsHermitian (D - Bᴴ * A⁻¹ * B) ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) x) ↔ PosSemidef (D - Bᴴ * A⁻¹ * B) [PROOFSTEP] constructor [GOAL] case mp l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A ⊢ (IsHermitian (D - Bᴴ * A⁻¹ * B) ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) x) → PosSemidef (D - Bᴴ * A⁻¹ * B) [PROOFSTEP] refine' fun h => ⟨h.1, fun x => _⟩ [GOAL] case mp l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : IsHermitian (D - Bᴴ * A⁻¹ * B) ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) x x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ mulVec (D - Bᴴ * A⁻¹ * B) x [PROOFSTEP] have := h.2 (-(A⁻¹ * B).mulVec x ⊕ᵥ x) [GOAL] case mp l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : IsHermitian (D - Bᴴ * A⁻¹ * B) ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) x x : n → 𝕜 this : 0 ≤ star (-mulVec (A⁻¹ * B) x ⊕ᵥ x) ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) (-mulVec (A⁻¹ * B) x ⊕ᵥ x) ⊢ 0 ≤ star x ⬝ᵥ mulVec (D - Bᴴ * A⁻¹ * B) x [PROOFSTEP] rw [dotProduct_mulVec, schur_complement_eq₁₁ B D _ _ hA.1, neg_add_self, dotProduct_zero, zero_add] at this [GOAL] case mp l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : IsHermitian (D - Bᴴ * A⁻¹ * B) ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) x x : n → 𝕜 this : 0 ≤ vecMul (star x) (D - Bᴴ * A⁻¹ * B) ⬝ᵥ x ⊢ 0 ≤ star x ⬝ᵥ mulVec (D - Bᴴ * A⁻¹ * B) x [PROOFSTEP] rw [dotProduct_mulVec] [GOAL] case mp l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : IsHermitian (D - Bᴴ * A⁻¹ * B) ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) x x : n → 𝕜 this : 0 ≤ vecMul (star x) (D - Bᴴ * A⁻¹ * B) ⬝ᵥ x ⊢ 0 ≤ vecMul (star x) (D - Bᴴ * A⁻¹ * B) ⬝ᵥ x [PROOFSTEP] exact this [GOAL] case mpr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A ⊢ PosSemidef (D - Bᴴ * A⁻¹ * B) → IsHermitian (D - Bᴴ * A⁻¹ * B) ∧ ∀ (x : m ⊕ n → 𝕜), 0 ≤ star x ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) x [PROOFSTEP] refine' fun h => ⟨h.1, fun x => _⟩ [GOAL] case mpr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : PosSemidef (D - Bᴴ * A⁻¹ * B) x : m ⊕ n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ mulVec (fromBlocks A B Bᴴ D) x [PROOFSTEP] rw [dotProduct_mulVec, ← Sum.elim_comp_inl_inr x, schur_complement_eq₁₁ B D _ _ hA.1] [GOAL] case mpr l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : PosSemidef (D - Bᴴ * A⁻¹ * B) x : m ⊕ n → 𝕜 ⊢ 0 ≤ vecMul (star (x ∘ Sum.inl + mulVec (A⁻¹ * B) (x ∘ Sum.inr))) A ⬝ᵥ (x ∘ Sum.inl + mulVec (A⁻¹ * B) (x ∘ Sum.inr)) + vecMul (star (x ∘ Sum.inr)) (D - Bᴴ * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr [PROOFSTEP] apply le_add_of_nonneg_of_le [GOAL] case mpr.ha l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : PosSemidef (D - Bᴴ * A⁻¹ * B) x : m ⊕ n → 𝕜 ⊢ 0 ≤ vecMul (star (x ∘ Sum.inl + mulVec (A⁻¹ * B) (x ∘ Sum.inr))) A ⬝ᵥ (x ∘ Sum.inl + mulVec (A⁻¹ * B) (x ∘ Sum.inr)) [PROOFSTEP] rw [← dotProduct_mulVec] [GOAL] case mpr.ha l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : PosSemidef (D - Bᴴ * A⁻¹ * B) x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inl + mulVec (A⁻¹ * B) (x ∘ Sum.inr)) ⬝ᵥ mulVec A (x ∘ Sum.inl + mulVec (A⁻¹ * B) (x ∘ Sum.inr)) [PROOFSTEP] apply hA.posSemidef.2 [GOAL] case mpr.hbc l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : PosSemidef (D - Bᴴ * A⁻¹ * B) x : m ⊕ n → 𝕜 ⊢ 0 ≤ vecMul (star (x ∘ Sum.inr)) (D - Bᴴ * A⁻¹ * B) ⬝ᵥ x ∘ Sum.inr [PROOFSTEP] rw [← dotProduct_mulVec (star (x ∘ Sum.inr))] [GOAL] case mpr.hbc l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : DecidableEq m inst✝¹ : Fintype n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hA : PosDef A inst✝ : Invertible A h : PosSemidef (D - Bᴴ * A⁻¹ * B) x : m ⊕ n → 𝕜 ⊢ 0 ≤ star (x ∘ Sum.inr) ⬝ᵥ mulVec (D - Bᴴ * A⁻¹ * B) (x ∘ Sum.inr) [PROOFSTEP] apply h.2 [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : PosDef D inst✝ : Invertible D ⊢ PosSemidef (fromBlocks A B Bᴴ D) ↔ PosSemidef (A - B * D⁻¹ * Bᴴ) [PROOFSTEP] rw [← posSemidef_submatrix_equiv (Equiv.sumComm n m), Equiv.sumComm_apply, fromBlocks_submatrix_sum_swap_sum_swap] [GOAL] l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : PosDef D inst✝ : Invertible D ⊢ PosSemidef (fromBlocks D Bᴴ B A) ↔ PosSemidef (A - B * D⁻¹ * Bᴴ) [PROOFSTEP] convert PosSemidef.fromBlocks₁₁ Bᴴ A hD [GOAL] case h.e'_1.h.e'_7.h.e'_8 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : PosDef D inst✝ : Invertible D ⊢ B = Bᴴᴴ [PROOFSTEP] first | infer_instance | simp [GOAL] case h.e'_1.h.e'_7.h.e'_8 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : PosDef D inst✝ : Invertible D ⊢ B = Bᴴᴴ [PROOFSTEP] infer_instance [GOAL] case h.e'_1.h.e'_7.h.e'_8 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : PosDef D inst✝ : Invertible D ⊢ B = Bᴴᴴ [PROOFSTEP] simp [GOAL] case h.e'_2.h.e'_7.h.e'_6.h.e'_5.h.e'_5 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : PosDef D inst✝ : Invertible D ⊢ B = Bᴴᴴ [PROOFSTEP] first | infer_instance | simp [GOAL] case h.e'_2.h.e'_7.h.e'_6.h.e'_5.h.e'_5 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : PosDef D inst✝ : Invertible D ⊢ B = Bᴴᴴ [PROOFSTEP] infer_instance [GOAL] case h.e'_2.h.e'_7.h.e'_6.h.e'_5.h.e'_5 l : Type u_1 m : Type u_2 n : Type u_3 α : Type u_4 𝕜 : Type u_5 inst✝⁶ : CommRing 𝕜 inst✝⁵ : PartialOrder 𝕜 inst✝⁴ : StarOrderedRing 𝕜 inst✝³ : Fintype m inst✝² : Fintype n inst✝¹ : DecidableEq n A : Matrix m m 𝕜 B : Matrix m n 𝕜 D : Matrix n n 𝕜 hD : PosDef D inst✝ : Invertible D ⊢ B = Bᴴᴴ [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.SchurComplement", "llama_tokens": 38573}
[GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 ht : TopologicalSpace α h : PolishSpace α ⊢ CompleteSpace α [PROOFSTEP] convert h.complete.choose_spec.2 [GOAL] case h.e'_2.h.e'_2.h.e'_2 α✝ : Type u_1 β : Type u_2 α : Type u_3 ht : TopologicalSpace α h : PolishSpace α ⊢ polishSpaceMetric α = Exists.choose (_ : ∃ m, UniformSpace.toTopologicalSpace = ht ∧ CompleteSpace α) [PROOFSTEP] exact MetricSpace.replaceTopology_eq _ _ [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α ⊢ T2Space α [PROOFSTEP] letI := upgradePolishSpace α [GOAL] α✝ : Type u_1 β : Type u_2 α : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α this : UpgradedPolishSpace α := upgradePolishSpace α ⊢ T2Space α [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝² : Countable ι E : ι → Type u_4 inst✝¹ : (i : ι) → TopologicalSpace (E i) inst✝ : ∀ (i : ι), PolishSpace (E i) ⊢ PolishSpace ((i : ι) → E i) [PROOFSTEP] cases nonempty_encodable ι [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 inst✝² : Countable ι E : ι → Type u_4 inst✝¹ : (i : ι) → TopologicalSpace (E i) inst✝ : ∀ (i : ι), PolishSpace (E i) val✝ : Encodable ι ⊢ PolishSpace ((i : ι) → E i) [PROOFSTEP] letI := fun i => upgradePolishSpace (E i) [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 inst✝² : Countable ι E : ι → Type u_4 inst✝¹ : (i : ι) → TopologicalSpace (E i) inst✝ : ∀ (i : ι), PolishSpace (E i) val✝ : Encodable ι this : (i : ι) → UpgradedPolishSpace (E i) := fun i => upgradePolishSpace (E i) ⊢ PolishSpace ((i : ι) → E i) [PROOFSTEP] letI : MetricSpace (∀ i, E i) := PiCountable.metricSpace [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 inst✝² : Countable ι E : ι → Type u_4 inst✝¹ : (i : ι) → TopologicalSpace (E i) inst✝ : ∀ (i : ι), PolishSpace (E i) val✝ : Encodable ι this✝ : (i : ι) → UpgradedPolishSpace (E i) := fun i => upgradePolishSpace (E i) this : MetricSpace ((i : ι) → E i) := PiCountable.metricSpace ⊢ PolishSpace ((i : ι) → E i) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : ClosedEmbedding f ⊢ PolishSpace α [PROOFSTEP] letI := upgradePolishSpace β [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : ClosedEmbedding f this : UpgradedPolishSpace β := upgradePolishSpace β ⊢ PolishSpace α [PROOFSTEP] letI : MetricSpace α := hf.toEmbedding.comapMetricSpace f [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : ClosedEmbedding f this✝ : UpgradedPolishSpace β := upgradePolishSpace β this : MetricSpace α := Embedding.comapMetricSpace f (_ : _root_.Embedding f) ⊢ PolishSpace α [PROOFSTEP] haveI : SecondCountableTopology α := hf.toEmbedding.secondCountableTopology [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : ClosedEmbedding f this✝¹ : UpgradedPolishSpace β := upgradePolishSpace β this✝ : MetricSpace α := Embedding.comapMetricSpace f (_ : _root_.Embedding f) this : SecondCountableTopology α ⊢ PolishSpace α [PROOFSTEP] have : CompleteSpace α := by rw [completeSpace_iff_isComplete_range hf.toEmbedding.to_isometry.uniformInducing] exact hf.closed_range.isComplete [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : ClosedEmbedding f this✝¹ : UpgradedPolishSpace β := upgradePolishSpace β this✝ : MetricSpace α := Embedding.comapMetricSpace f (_ : _root_.Embedding f) this : SecondCountableTopology α ⊢ CompleteSpace α [PROOFSTEP] rw [completeSpace_iff_isComplete_range hf.toEmbedding.to_isometry.uniformInducing] [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : ClosedEmbedding f this✝¹ : UpgradedPolishSpace β := upgradePolishSpace β this✝ : MetricSpace α := Embedding.comapMetricSpace f (_ : _root_.Embedding f) this : SecondCountableTopology α ⊢ IsComplete (range f) [PROOFSTEP] exact hf.closed_range.isComplete [GOAL] α : Type u_1 β : Type u_2 inst✝² : TopologicalSpace α inst✝¹ : TopologicalSpace β inst✝ : PolishSpace β f : α → β hf : ClosedEmbedding f this✝² : UpgradedPolishSpace β := upgradePolishSpace β this✝¹ : MetricSpace α := Embedding.comapMetricSpace f (_ : _root_.Embedding f) this✝ : SecondCountableTopology α this : CompleteSpace α ⊢ PolishSpace α [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] rcases isEmpty_or_nonempty ι with (hι | hι) [GOAL] case inl α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : IsEmpty ι ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] exact ⟨t, fun i => (IsEmpty.elim hι i : _), le_rfl, p⟩ [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] inhabit ι [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] letI : ∀ n : ι, TopologicalSpace (AuxCopy α n) := fun n => m n [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] haveI : ∀ n : ι, PolishSpace (AuxCopy α n) := fun n => h'm n [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] letI T : TopologicalSpace (∀ n : ι, AuxCopy α n) := inferInstance [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] let f : α → ∀ n : ι, AuxCopy α n := fun x _ => x [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] have T_le_m : ∀ n, T.induced f ≤ m n := fun n ↦ by rw [induced_to_pi] exact iInf_le_of_le n (@induced_id _ (m n)).le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x n : ι ⊢ induced f T ≤ m n [PROOFSTEP] rw [induced_to_pi] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x n : ι ⊢ ⨅ (i : ι), induced (fun x => f x i) inferInstance ≤ m n [PROOFSTEP] exact iInf_le_of_le n (@induced_id _ (m n)).le [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n ⊢ ∃ t', (∀ (n : ι), t' ≤ m n) ∧ t' ≤ t ∧ PolishSpace α [PROOFSTEP] refine' ⟨T.induced f, fun n => T_le_m n, (T_le_m default).trans (hm default), _⟩ -- show that the new topology is Polish, as the pullback of a Polish topology under a closed -- embedding. [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n ⊢ PolishSpace α [PROOFSTEP] have A : range f = ⋂ n, {x | x n = x default} := by ext x constructor · rintro ⟨y, rfl⟩ exact mem_iInter.2 fun n => by simp only [mem_setOf_eq] · refine fun hx ↦ ⟨x default, ?_⟩ ext1 n symm exact mem_iInter.1 hx n [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n ⊢ range f = ⋂ (n : ι), {x | x n = x default} [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n x : (n : ι) → AuxCopy α n ⊢ x ∈ range f ↔ x ∈ ⋂ (n : ι), {x | x n = x default} [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n x : (n : ι) → AuxCopy α n ⊢ x ∈ range f → x ∈ ⋂ (n : ι), {x | x n = x default} [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case h.mp.intro α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n y : α ⊢ f y ∈ ⋂ (n : ι), {x | x n = x default} [PROOFSTEP] exact mem_iInter.2 fun n => by simp only [mem_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n y : α n : ι ⊢ f y ∈ {x | x n = x default} [PROOFSTEP] simp only [mem_setOf_eq] [GOAL] case h.mpr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n x : (n : ι) → AuxCopy α n ⊢ x ∈ ⋂ (n : ι), {x | x n = x default} → x ∈ range f [PROOFSTEP] refine fun hx ↦ ⟨x default, ?_⟩ [GOAL] case h.mpr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n x : (n : ι) → AuxCopy α n hx : x ∈ ⋂ (n : ι), {x | x n = x default} ⊢ f (x default) = x [PROOFSTEP] ext1 n [GOAL] case h.mpr.h α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n x : (n : ι) → AuxCopy α n hx : x ∈ ⋂ (n : ι), {x | x n = x default} n : ι ⊢ f (x default) n = x n [PROOFSTEP] symm [GOAL] case h.mpr.h α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n x : (n : ι) → AuxCopy α n hx : x ∈ ⋂ (n : ι), {x | x n = x default} n : ι ⊢ x n = f (x default) n [PROOFSTEP] exact mem_iInter.1 hx n [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} ⊢ PolishSpace α [PROOFSTEP] have f_closed : IsClosed (range f) := by rw [A] refine isClosed_iInter fun n => ?_ have C : ∀ i : ι, Continuous fun x : ∀ n, AuxCopy α n => (id (x i) : α) := fun i ↦ have : Continuous (show AuxCopy α i → α from id) := continuous_id_of_le (hm i) this.comp (continuous_apply i) apply isClosed_eq (C n) (C default) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} ⊢ IsClosed (range f) [PROOFSTEP] rw [A] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} ⊢ IsClosed (⋂ (n : ι), {x | x n = x default}) [PROOFSTEP] refine isClosed_iInter fun n => ?_ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} n : ι ⊢ IsClosed {x | x n = x default} [PROOFSTEP] have C : ∀ i : ι, Continuous fun x : ∀ n, AuxCopy α n => (id (x i) : α) := fun i ↦ have : Continuous (show AuxCopy α i → α from id) := continuous_id_of_le (hm i) this.comp (continuous_apply i) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} n : ι C : ∀ (i : ι), Continuous fun x => id (x i) ⊢ IsClosed {x | x n = x default} [PROOFSTEP] apply isClosed_eq (C n) (C default) [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) ⊢ PolishSpace α [PROOFSTEP] have K : @_root_.Embedding _ _ (T.induced f) T f := by refine Function.Injective.embedding_induced fun x y hxy ↦ ?_ have : f x default = f y default := by rw [hxy] exact this [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) ⊢ _root_.Embedding f [PROOFSTEP] refine Function.Injective.embedding_induced fun x y hxy ↦ ?_ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) x y : α hxy : f x = f y ⊢ x = y [PROOFSTEP] have : f x default = f y default := by rw [hxy] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) x y : α hxy : f x = f y ⊢ f x default = f y default [PROOFSTEP] rw [hxy] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝¹ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this✝ : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) x y : α hxy : f x = f y this : f x default = f y default ⊢ x = y [PROOFSTEP] exact this [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) K : _root_.Embedding f ⊢ PolishSpace α [PROOFSTEP] have L : @ClosedEmbedding _ _ (T.induced f) T f := by refine @ClosedEmbedding.mk _ _ (T.induced f) T f ?_ ?_ · exact K · exact f_closed [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) K : _root_.Embedding f ⊢ ClosedEmbedding f [PROOFSTEP] refine @ClosedEmbedding.mk _ _ (T.induced f) T f ?_ ?_ [GOAL] case refine_1 α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) K : _root_.Embedding f ⊢ _root_.Embedding f [PROOFSTEP] exact K [GOAL] case refine_2 α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) K : _root_.Embedding f ⊢ IsClosed (range f) [PROOFSTEP] exact f_closed [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) K : _root_.Embedding f L : ClosedEmbedding f ⊢ PolishSpace α [PROOFSTEP] exact @ClosedEmbedding.polishSpace _ _ (T.induced f) T (by infer_instance) _ L [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 inst✝ : Countable ι t : TopologicalSpace α p : PolishSpace α m : ι → TopologicalSpace α hm : ∀ (n : ι), m n ≤ t h'm : ∀ (n : ι), PolishSpace α hι : Nonempty ι inhabited_h : Inhabited ι this✝ : (n : ι) → TopologicalSpace (AuxCopy α n) := fun n => m n this : ∀ (n : ι), PolishSpace (AuxCopy α n) T : TopologicalSpace ((n : ι) → AuxCopy α n) := inferInstance f : α → (n : ι) → AuxCopy α n := fun x x_1 => x T_le_m : ∀ (n : ι), induced f T ≤ m n A : range f = ⋂ (n : ι), {x | x n = x default} f_closed : IsClosed (range f) K : _root_.Embedding f L : ClosedEmbedding f ⊢ PolishSpace ((n : ι) → AuxCopy α n) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α ⊢ MetricSpace (CompleteCopy s) [PROOFSTEP] refine @MetricSpace.ofT0PseudoMetricSpace (CompleteCopy s) (.ofDistTopology dist (fun _ ↦ ?_) (fun _ _ ↦ ?_) (fun x y z ↦ ?_) fun t ↦ ?_) _ [GOAL] case refine_1 α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α x✝ : CompleteCopy s ⊢ dist x✝ x✝ = 0 [PROOFSTEP] simp only [dist_eq, dist_self, one_div, sub_self, abs_zero, add_zero] [GOAL] case refine_2 α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α x✝¹ x✝ : CompleteCopy s ⊢ dist x✝¹ x✝ = dist x✝ x✝¹ [PROOFSTEP] simp only [dist_eq, dist_comm, abs_sub_comm] [GOAL] case refine_3 α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α x y z : CompleteCopy s ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] calc dist x z = dist x.1 z.1 + |1 / infDist x.1 sᶜ - 1 / infDist z.1 sᶜ| := rfl _ ≤ dist x.1 y.1 + dist y.1 z.1 + (|1 / infDist x.1 sᶜ - 1 / infDist y.1 sᶜ| + |1 / infDist y.1 sᶜ - 1 / infDist z.1 sᶜ|) := (add_le_add (dist_triangle _ _ _) (dist_triangle (1 / infDist _ _) _ _)) _ = dist x y + dist y z := add_add_add_comm .. [GOAL] case refine_4 α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) ⊢ IsOpen t ↔ ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t [PROOFSTEP] refine ⟨fun h x hx ↦ ?_, fun h ↦ isOpen_iff_mem_nhds.2 fun x hx ↦ ?_⟩ [GOAL] case refine_4.refine_1 α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : IsOpen t x : CompleteCopy s hx : x ∈ t ⊢ ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t [PROOFSTEP] rcases(Metric.isOpen_iff (α := s)).1 h x hx with ⟨ε, ε0, hε⟩ [GOAL] case refine_4.refine_1.intro.intro α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : IsOpen t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ball x ε ⊆ t ⊢ ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t [PROOFSTEP] exact ⟨ε, ε0, fun y hy ↦ hε <| (dist_comm _ _).trans_lt <| (dist_val_le_dist _ _).trans_lt hy⟩ [GOAL] case refine_4.refine_2 α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ⊢ t ∈ 𝓝 x [PROOFSTEP] rcases h x hx with ⟨ε, ε0, hε⟩ [GOAL] case refine_4.refine_2.intro.intro α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t ⊢ t ∈ 𝓝 x [PROOFSTEP] simp only [dist_eq, one_div] at hε [GOAL] case refine_4.refine_2.intro.intro α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ∀ (y : CompleteCopy s), dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹| < ε → y ∈ t ⊢ t ∈ 𝓝 x [PROOFSTEP] have : Tendsto (fun y : s ↦ dist x.1 y.1 + |(infDist x.1 sᶜ)⁻¹ - (infDist y.1 sᶜ)⁻¹|) (𝓝 x) (𝓝 (dist x.1 x.1 + |(infDist x.1 sᶜ)⁻¹ - (infDist x.1 sᶜ)⁻¹|)) [GOAL] case this α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ∀ (y : CompleteCopy s), dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹| < ε → y ∈ t ⊢ Tendsto (fun y => dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹|) (𝓝 x) (𝓝 (dist ↑x ↑x + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑x) (↑s)ᶜ)⁻¹|)) [PROOFSTEP] refine (tendsto_const_nhds.dist continuous_subtype_val.continuousAt).add (tendsto_const_nhds.sub <| ?_).abs [GOAL] case this α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ∀ (y : CompleteCopy s), dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹| < ε → y ∈ t ⊢ Tendsto (fun y => (infDist (↑y) (↑s)ᶜ)⁻¹) (𝓝 x) (𝓝 (infDist (↑x) (↑s)ᶜ)⁻¹) [PROOFSTEP] refine (continuousAt_inv_infDist_pt ?_).comp continuous_subtype_val.continuousAt [GOAL] case this α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ∀ (y : CompleteCopy s), dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹| < ε → y ∈ t ⊢ ¬↑x ∈ closure (↑s)ᶜ [PROOFSTEP] rw [s.isOpen.isClosed_compl.closure_eq, mem_compl_iff, not_not] [GOAL] case this α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ∀ (y : CompleteCopy s), dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹| < ε → y ∈ t ⊢ ↑x ∈ ↑s [PROOFSTEP] exact x.2 [GOAL] case refine_4.refine_2.intro.intro α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ∀ (y : CompleteCopy s), dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹| < ε → y ∈ t this : Tendsto (fun y => dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹|) (𝓝 x) (𝓝 (dist ↑x ↑x + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑x) (↑s)ᶜ)⁻¹|)) ⊢ t ∈ 𝓝 x [PROOFSTEP] simp only [dist_self, sub_self, abs_zero, zero_add] at this [GOAL] case refine_4.refine_2.intro.intro α : Type u_1 β : Type u_2 inst✝ : MetricSpace α s : Opens α t : Set (CompleteCopy s) h : ∀ (x : CompleteCopy s), x ∈ t → ∃ ε, ε > 0 ∧ ∀ (y : CompleteCopy s), dist x y < ε → y ∈ t x : CompleteCopy s hx : x ∈ t ε : ℝ ε0 : ε > 0 hε : ∀ (y : CompleteCopy s), dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹| < ε → y ∈ t this : Tendsto (fun y => dist ↑x ↑y + |(infDist (↑x) (↑s)ᶜ)⁻¹ - (infDist (↑y) (↑s)ᶜ)⁻¹|) (𝓝 x) (𝓝 0) ⊢ t ∈ 𝓝 x [PROOFSTEP] exact mem_of_superset (this <| gt_mem_nhds ε0) hε [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α ⊢ CompleteSpace (CompleteCopy s) [PROOFSTEP] refine Metric.complete_of_convergent_controlled_sequences ((1 / 2) ^ ·) (by simp) fun u hu ↦ ?_ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α ⊢ ∀ (n : ℕ), 0 < (fun x => (1 / 2) ^ x) n [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have A : CauchySeq fun n => (u n).1 [GOAL] case A α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N ⊢ CauchySeq fun n => ↑(u n) [PROOFSTEP] refine cauchySeq_of_le_tendsto_0 (fun n : ℕ => (1 / 2) ^ n) (fun n m N hNn hNm => ?_) ?_ [GOAL] case A.refine_1 α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N n m N : ℕ hNn : N ≤ n hNm : N ≤ m ⊢ dist ↑(u n) ↑(u m) ≤ (fun n => (1 / 2) ^ n) N [PROOFSTEP] exact (dist_val_le_dist (u n) (u m)).trans (hu N n m hNn hNm).le [GOAL] case A.refine_2 α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N ⊢ Tendsto (fun n => (1 / 2) ^ n) atTop (𝓝 0) [PROOFSTEP] exact tendsto_pow_atTop_nhds_0_of_lt_1 (by norm_num) (by norm_num) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N ⊢ 0 ≤ 1 / 2 [PROOFSTEP] norm_num [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N ⊢ 1 / 2 < 1 [PROOFSTEP] norm_num [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] obtain ⟨x, xlim⟩ : ∃ x, Tendsto (fun n => (u n).1) atTop (𝓝 x) := cauchySeq_tendsto_of_complete A [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] by_cases xs : x ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : x ∈ s ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] exact ⟨⟨x, xs⟩, tendsto_subtype_rng.2 xlim⟩ [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] obtain ⟨C, hC⟩ : ∃ C, ∀ n, 1 / infDist (u n).1 sᶜ < C [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s ⊢ ∃ C, ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C [PROOFSTEP] refine ⟨(1 / 2) ^ 0 + 1 / infDist (u 0).1 sᶜ, fun n ↦ ?_⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s n : ℕ ⊢ 1 / infDist (↑(u n)) (↑s)ᶜ < (1 / 2) ^ 0 + 1 / infDist (↑(u 0)) (↑s)ᶜ [PROOFSTEP] rw [← sub_lt_iff_lt_add] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s n : ℕ ⊢ 1 / infDist (↑(u n)) (↑s)ᶜ - 1 / infDist (↑(u 0)) (↑s)ᶜ < (1 / 2) ^ 0 [PROOFSTEP] calc _ ≤ |1 / infDist (u n).1 sᶜ - 1 / infDist (u 0).1 sᶜ| := le_abs_self _ _ = |1 / infDist (u 0).1 sᶜ - 1 / infDist (u n).1 sᶜ| := (abs_sub_comm _ _) _ ≤ dist (u 0) (u n) := (le_add_of_nonneg_left dist_nonneg) _ < (1 / 2) ^ 0 := hu 0 0 n le_rfl n.zero_le [GOAL] case neg.intro α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have Cpos : 0 < C := lt_of_le_of_lt (div_nonneg zero_le_one infDist_nonneg) (hC 0) [GOAL] case neg.intro α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have Hmem : ∀ {y}, y ∈ s ↔ 0 < infDist y sᶜ := fun {y} ↦ by rw [← s.isOpen.isClosed_compl.not_mem_iff_infDist_pos ⟨x, xs⟩]; exact not_not.symm [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C y : α ⊢ y ∈ s ↔ 0 < infDist y (↑s)ᶜ [PROOFSTEP] rw [← s.isOpen.isClosed_compl.not_mem_iff_infDist_pos ⟨x, xs⟩] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C y : α ⊢ y ∈ s ↔ ¬y ∈ (↑s)ᶜ [PROOFSTEP] exact not_not.symm [GOAL] case neg.intro α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C Hmem : ∀ {y : α}, y ∈ s ↔ 0 < infDist y (↑s)ᶜ ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have I : ∀ n, 1 / C ≤ infDist (u n).1 sᶜ := fun n ↦ by have : 0 < infDist (u n).1 sᶜ := Hmem.1 (u n).2 rw [div_le_iff' Cpos] exact (div_le_iff this).1 (hC n).le [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C Hmem : ∀ {y : α}, y ∈ s ↔ 0 < infDist y (↑s)ᶜ n : ℕ ⊢ 1 / C ≤ infDist (↑(u n)) (↑s)ᶜ [PROOFSTEP] have : 0 < infDist (u n).1 sᶜ := Hmem.1 (u n).2 [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C Hmem : ∀ {y : α}, y ∈ s ↔ 0 < infDist y (↑s)ᶜ n : ℕ this : 0 < infDist (↑(u n)) (↑s)ᶜ ⊢ 1 / C ≤ infDist (↑(u n)) (↑s)ᶜ [PROOFSTEP] rw [div_le_iff' Cpos] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C Hmem : ∀ {y : α}, y ∈ s ↔ 0 < infDist y (↑s)ᶜ n : ℕ this : 0 < infDist (↑(u n)) (↑s)ᶜ ⊢ 1 ≤ C * infDist (↑(u n)) (↑s)ᶜ [PROOFSTEP] exact (div_le_iff this).1 (hC n).le [GOAL] case neg.intro α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C Hmem : ∀ {y : α}, y ∈ s ↔ 0 < infDist y (↑s)ᶜ I : ∀ (n : ℕ), 1 / C ≤ infDist (↑(u n)) (↑s)ᶜ ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have I' : 1 / C ≤ infDist x sᶜ := have : Tendsto (fun n => infDist (u n).1 sᶜ) atTop (𝓝 (infDist x sᶜ)) := ((continuous_infDist_pt (sᶜ : Set α)).tendsto x).comp xlim ge_of_tendsto' this I [GOAL] case neg.intro α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Opens α inst✝ : CompleteSpace α u : ℕ → CompleteCopy s hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun x => (1 / 2) ^ x) N A : CauchySeq fun n => ↑(u n) x : α xlim : Tendsto (fun n => ↑(u n)) atTop (𝓝 x) xs : ¬x ∈ s C : ℝ hC : ∀ (n : ℕ), 1 / infDist (↑(u n)) (↑s)ᶜ < C Cpos : 0 < C Hmem : ∀ {y : α}, y ∈ s ↔ 0 < infDist y (↑s)ᶜ I : ∀ (n : ℕ), 1 / C ≤ infDist (↑(u n)) (↑s)ᶜ I' : 1 / C ≤ infDist x (↑s)ᶜ ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] exact absurd (Hmem.2 <| lt_of_lt_of_le (div_pos one_pos Cpos) I') xs [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : MetricSpace α✝ s✝ : Opens α✝ α : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsOpen s ⊢ PolishSpace ↑s [PROOFSTEP] letI := upgradePolishSpace α [GOAL] α✝ : Type u_1 β : Type u_2 inst✝² : MetricSpace α✝ s✝ : Opens α✝ α : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsOpen s this : UpgradedPolishSpace α := upgradePolishSpace α ⊢ PolishSpace ↑s [PROOFSTEP] lift s to Opens α using hs [GOAL] case intro α✝ : Type u_1 β : Type u_2 inst✝² : MetricSpace α✝ s✝ : Opens α✝ α : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α this : UpgradedPolishSpace α := upgradePolishSpace α s : Opens α ⊢ PolishSpace ↑↑s [PROOFSTEP] have : SecondCountableTopology s.CompleteCopy := inferInstanceAs (SecondCountableTopology s) [GOAL] case intro α✝ : Type u_1 β : Type u_2 inst✝² : MetricSpace α✝ s✝ : Opens α✝ α : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α this✝ : UpgradedPolishSpace α := upgradePolishSpace α s : Opens α this : SecondCountableTopology (CompleteCopy s) ⊢ PolishSpace ↑↑s [PROOFSTEP] exact inferInstanceAs (PolishSpace s.CompleteCopy) [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s ⊢ IsClopenable s [PROOFSTEP] haveI : PolishSpace s := hs.polishSpace [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this : PolishSpace ↑s ⊢ IsClopenable s [PROOFSTEP] let t : Set α := sᶜ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this : PolishSpace ↑s t : Set α := sᶜ ⊢ IsClopenable s [PROOFSTEP] haveI : PolishSpace t := hs.isOpen_compl.polishSpace [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t ⊢ IsClopenable s [PROOFSTEP] let f : s ⊕ t ≃ α := Equiv.Set.sumCompl s [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s ⊢ IsClopenable s [PROOFSTEP] have hle : TopologicalSpace.coinduced f instTopologicalSpaceSum ≤ ‹_› [GOAL] case hle α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s ⊢ coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ [PROOFSTEP] simp only [instTopologicalSpaceSum, coinduced_sup, coinduced_compose, sup_le_iff, ← continuous_iff_coinduced_le] [GOAL] case hle α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s ⊢ Continuous (↑(Equiv.Set.sumCompl s) ∘ Sum.inl) ∧ Continuous (↑(Equiv.Set.sumCompl s) ∘ Sum.inr) [PROOFSTEP] exact ⟨continuous_subtype_val, continuous_subtype_val⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ ⊢ IsClopenable s [PROOFSTEP] refine ⟨.coinduced f instTopologicalSpaceSum, hle, ?_, hs.mono hle, ?_⟩ [GOAL] case refine_1 α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ ⊢ PolishSpace α [PROOFSTEP] rw [← f.induced_symm] [GOAL] case refine_1 α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ ⊢ PolishSpace α [PROOFSTEP] exact f.symm.polishSpace_induced [GOAL] case refine_2 α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ ⊢ IsOpen s [PROOFSTEP] rw [isOpen_coinduced, isOpen_sum_iff] [GOAL] case refine_2 α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ ⊢ IsOpen (Sum.inl ⁻¹' (↑f ⁻¹' s)) ∧ IsOpen (Sum.inr ⁻¹' (↑f ⁻¹' s)) [PROOFSTEP] convert And.intro (isOpen_univ (α := s)) (isOpen_empty (α := (sᶜ : Set α))) [GOAL] case h.e'_1.h.e'_3 α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ ⊢ Sum.inl ⁻¹' (↑f ⁻¹' s) = univ [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case h.e'_2.h.e'_3 α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ ⊢ Sum.inr ⁻¹' (↑f ⁻¹' s) = ∅ [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case h.e'_1.h.e'_3.h.mk α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ x : α hx : x ∈ s ⊢ { val := x, property := hx } ∈ Sum.inl ⁻¹' (↑f ⁻¹' s) ↔ { val := x, property := hx } ∈ univ [PROOFSTEP] simpa using hx [GOAL] case h.e'_2.h.e'_3.h.mk α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsClosed s this✝ : PolishSpace ↑s t : Set α := sᶜ this : PolishSpace ↑t f : ↑s ⊕ ↑t ≃ α := Equiv.Set.sumCompl s hle : coinduced (↑f) instTopologicalSpaceSum ≤ inst✝¹ x : α hx : x ∈ t ⊢ { val := x, property := hx } ∈ Sum.inr ⁻¹' (↑f ⁻¹' s) ↔ { val := x, property := hx } ∈ ∅ [PROOFSTEP] simpa using hx [GOAL] α : Type u_1 β : Type u_2 inst✝ : TopologicalSpace α s : Set α hs : IsClopenable s ⊢ IsClopenable sᶜ [PROOFSTEP] rcases hs with ⟨t, t_le, t_polish, h, h'⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝ : TopologicalSpace α s : Set α t : TopologicalSpace α t_le : t ≤ inst✝ t_polish : PolishSpace α h : IsClosed s h' : IsOpen s ⊢ IsClopenable sᶜ [PROOFSTEP] exact ⟨t, t_le, t_polish, @IsOpen.isClosed_compl α t s h', @IsClosed.isOpen_compl α t s h⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α s : Set α hs : IsOpen s ⊢ IsClopenable s [PROOFSTEP] simpa using hs.isClosed_compl.isClopenable.compl [GOAL] α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α hs : ∀ (n : ℕ), IsClopenable (s n) ⊢ IsClopenable (⋃ (n : ℕ), s n) [PROOFSTEP] choose m mt m_polish _ m_open using hs [GOAL] α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α m : ℕ → TopologicalSpace α mt : ∀ (n : ℕ), m n ≤ t m_polish : ∀ (n : ℕ), PolishSpace α h✝ : ∀ (n : ℕ), IsClosed (s n) m_open : ∀ (n : ℕ), IsOpen (s n) ⊢ IsClopenable (⋃ (n : ℕ), s n) [PROOFSTEP] obtain ⟨t', t'm, -, t'_polish⟩ : ∃ t' : TopologicalSpace α, (∀ n : ℕ, t' ≤ m n) ∧ t' ≤ t ∧ @PolishSpace α t' := exists_polishSpace_forall_le m mt m_polish [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α m : ℕ → TopologicalSpace α mt : ∀ (n : ℕ), m n ≤ t m_polish : ∀ (n : ℕ), PolishSpace α h✝ : ∀ (n : ℕ), IsClosed (s n) m_open : ∀ (n : ℕ), IsOpen (s n) t' : TopologicalSpace α t'm : ∀ (n : ℕ), t' ≤ m n t'_polish : PolishSpace α ⊢ IsClopenable (⋃ (n : ℕ), s n) [PROOFSTEP] have A : IsOpen[t'] (⋃ n, s n) := by apply isOpen_iUnion intro n apply t'm n exact m_open n [GOAL] α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α m : ℕ → TopologicalSpace α mt : ∀ (n : ℕ), m n ≤ t m_polish : ∀ (n : ℕ), PolishSpace α h✝ : ∀ (n : ℕ), IsClosed (s n) m_open : ∀ (n : ℕ), IsOpen (s n) t' : TopologicalSpace α t'm : ∀ (n : ℕ), t' ≤ m n t'_polish : PolishSpace α ⊢ IsOpen (⋃ (n : ℕ), s n) [PROOFSTEP] apply isOpen_iUnion [GOAL] case h α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α m : ℕ → TopologicalSpace α mt : ∀ (n : ℕ), m n ≤ t m_polish : ∀ (n : ℕ), PolishSpace α h✝ : ∀ (n : ℕ), IsClosed (s n) m_open : ∀ (n : ℕ), IsOpen (s n) t' : TopologicalSpace α t'm : ∀ (n : ℕ), t' ≤ m n t'_polish : PolishSpace α ⊢ ∀ (i : ℕ), IsOpen (s i) [PROOFSTEP] intro n [GOAL] case h α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α m : ℕ → TopologicalSpace α mt : ∀ (n : ℕ), m n ≤ t m_polish : ∀ (n : ℕ), PolishSpace α h✝ : ∀ (n : ℕ), IsClosed (s n) m_open : ∀ (n : ℕ), IsOpen (s n) t' : TopologicalSpace α t'm : ∀ (n : ℕ), t' ≤ m n t'_polish : PolishSpace α n : ℕ ⊢ IsOpen (s n) [PROOFSTEP] apply t'm n [GOAL] case h.a α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α m : ℕ → TopologicalSpace α mt : ∀ (n : ℕ), m n ≤ t m_polish : ∀ (n : ℕ), PolishSpace α h✝ : ∀ (n : ℕ), IsClosed (s n) m_open : ∀ (n : ℕ), IsOpen (s n) t' : TopologicalSpace α t'm : ∀ (n : ℕ), t' ≤ m n t'_polish : PolishSpace α n : ℕ ⊢ IsOpen (s n) [PROOFSTEP] exact m_open n [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α m : ℕ → TopologicalSpace α mt : ∀ (n : ℕ), m n ≤ t m_polish : ∀ (n : ℕ), PolishSpace α h✝ : ∀ (n : ℕ), IsClosed (s n) m_open : ∀ (n : ℕ), IsOpen (s n) t' : TopologicalSpace α t'm : ∀ (n : ℕ), t' ≤ m n t'_polish : PolishSpace α A : IsOpen (⋃ (n : ℕ), s n) ⊢ IsClopenable (⋃ (n : ℕ), s n) [PROOFSTEP] obtain ⟨t'', t''_le, t''_polish, h1, h2⟩ : ∃ t'' : TopologicalSpace α, t'' ≤ t' ∧ @PolishSpace α t'' ∧ IsClosed[t''] (⋃ n, s n) ∧ IsOpen[t''] (⋃ n, s n) := @IsOpen.isClopenable α t' t'_polish _ A [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 t : TopologicalSpace α inst✝ : PolishSpace α s : ℕ → Set α m : ℕ → TopologicalSpace α mt : ∀ (n : ℕ), m n ≤ t m_polish : ∀ (n : ℕ), PolishSpace α h✝ : ∀ (n : ℕ), IsClosed (s n) m_open : ∀ (n : ℕ), IsOpen (s n) t' : TopologicalSpace α t'm : ∀ (n : ℕ), t' ≤ m n t'_polish : PolishSpace α A : IsOpen (⋃ (n : ℕ), s n) t'' : TopologicalSpace α t''_le : t'' ≤ t' t''_polish : PolishSpace α h1 : IsClosed (⋃ (n : ℕ), s n) h2 : IsOpen (⋃ (n : ℕ), s n) ⊢ IsClopenable (⋃ (n : ℕ), s n) [PROOFSTEP] exact ⟨t'', t''_le.trans ((t'm 0).trans (mt 0)), t''_polish, h1, h2⟩
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Polish", "llama_tokens": 27301}
[GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 ⊢ ContinuousWithinAt (toIcoMod hp a) (Ici x) x [PROOFSTEP] intro s h [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 h : s ∈ 𝓝 (toIcoMod hp a x) ⊢ s ∈ Filter.map (toIcoMod hp a) (𝓝[Ici x] x) [PROOFSTEP] rw [Filter.mem_map, mem_nhdsWithin_iff_exists_mem_nhds_inter] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 h : s ∈ 𝓝 (toIcoMod hp a x) ⊢ ∃ u, u ∈ 𝓝 x ∧ u ∩ Ici x ⊆ toIcoMod hp a ⁻¹' s [PROOFSTEP] haveI : Nontrivial 𝕜 := ⟨⟨0, p, hp.ne⟩⟩ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 h : s ∈ 𝓝 (toIcoMod hp a x) this : Nontrivial 𝕜 ⊢ ∃ u, u ∈ 𝓝 x ∧ u ∩ Ici x ⊆ toIcoMod hp a ⁻¹' s [PROOFSTEP] simp_rw [mem_nhds_iff_exists_Ioo_subset] at h ⊢ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 h : ∃ l u, toIcoMod hp a x ∈ Ioo l u ∧ Ioo l u ⊆ s ⊢ ∃ u, (∃ l u_1, x ∈ Ioo l u_1 ∧ Ioo l u_1 ⊆ u) ∧ u ∩ Ici x ⊆ toIcoMod hp a ⁻¹' s [PROOFSTEP] obtain ⟨l, u, hxI, hIs⟩ := h [GOAL] case intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s ⊢ ∃ u, (∃ l u_1, x ∈ Ioo l u_1 ∧ Ioo l u_1 ⊆ u) ∧ u ∩ Ici x ⊆ toIcoMod hp a ⁻¹' s [PROOFSTEP] let d := toIcoDiv hp a x • p [GOAL] case intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p ⊢ ∃ u, (∃ l u_1, x ∈ Ioo l u_1 ∧ Ioo l u_1 ⊆ u) ∧ u ∩ Ici x ⊆ toIcoMod hp a ⁻¹' s [PROOFSTEP] have hd := toIcoMod_mem_Ico hp a x [GOAL] case intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) ⊢ ∃ u, (∃ l u_1, x ∈ Ioo l u_1 ∧ Ioo l u_1 ⊆ u) ∧ u ∩ Ici x ⊆ toIcoMod hp a ⁻¹' s [PROOFSTEP] simp_rw [subset_def, mem_inter_iff] [GOAL] case intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) ⊢ ∃ u, (∃ l u_1, x ∈ Ioo l u_1 ∧ ∀ (x : 𝕜), x ∈ Ioo l u_1 → x ∈ u) ∧ ∀ (x_1 : 𝕜), x_1 ∈ u ∧ x_1 ∈ Ici x → x_1 ∈ toIcoMod hp a ⁻¹' s [PROOFSTEP] refine' ⟨_, ⟨l + d, min (a + p) u + d, _, fun x => id⟩, fun y => _⟩ [GOAL] case intro.intro.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) ⊢ x ∈ Ioo (l + d) (min (a + p) u + d) [PROOFSTEP] simp_rw [← sub_mem_Ioo_iff_left, mem_Ioo, lt_min_iff] [GOAL] case intro.intro.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 ⊢ y ∈ Ioo (l + d) (min (a + p) u + d) ∧ y ∈ Ici x → y ∈ toIcoMod hp a ⁻¹' s [PROOFSTEP] simp_rw [← sub_mem_Ioo_iff_left, mem_Ioo, lt_min_iff] [GOAL] case intro.intro.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) ⊢ l < x - toIcoDiv hp a x • p ∧ x - toIcoDiv hp a x • p < a + p ∧ x - toIcoDiv hp a x • p < u [PROOFSTEP] exact ⟨hxI.1, hd.2, hxI.2⟩ [GOAL] case intro.intro.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 ⊢ (l < y - toIcoDiv hp a x • p ∧ y - toIcoDiv hp a x • p < a + p ∧ y - toIcoDiv hp a x • p < u) ∧ y ∈ Ici x → y ∈ toIcoMod hp a ⁻¹' s [PROOFSTEP] rintro ⟨h, h'⟩ [GOAL] case intro.intro.intro.refine'_2.intro 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 h : l < y - toIcoDiv hp a x • p ∧ y - toIcoDiv hp a x • p < a + p ∧ y - toIcoDiv hp a x • p < u h' : y ∈ Ici x ⊢ y ∈ toIcoMod hp a ⁻¹' s [PROOFSTEP] apply hIs [GOAL] case intro.intro.intro.refine'_2.intro.a 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 h : l < y - toIcoDiv hp a x • p ∧ y - toIcoDiv hp a x • p < a + p ∧ y - toIcoDiv hp a x • p < u h' : y ∈ Ici x ⊢ toIcoMod hp a y ∈ Ioo l u [PROOFSTEP] rw [← toIcoMod_sub_zsmul, (toIcoMod_eq_self _).2] [GOAL] case intro.intro.intro.refine'_2.intro.a 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 h : l < y - toIcoDiv hp a x • p ∧ y - toIcoDiv hp a x • p < a + p ∧ y - toIcoDiv hp a x • p < u h' : y ∈ Ici x ⊢ y - ?intro.intro.intro.refine'_2.intro.a.m • p ∈ Ioo l u case intro.intro.intro.refine'_2.intro.a 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 h : l < y - toIcoDiv hp a x • p ∧ y - toIcoDiv hp a x • p < a + p ∧ y - toIcoDiv hp a x • p < u h' : y ∈ Ici x ⊢ y - ?intro.intro.intro.refine'_2.intro.a.m • p ∈ Ico a (a + p) case intro.intro.intro.refine'_2.intro.a.m 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 h : l < y - toIcoDiv hp a x • p ∧ y - toIcoDiv hp a x • p < a + p ∧ y - toIcoDiv hp a x • p < u h' : y ∈ Ici x ⊢ ℤ case intro.intro.intro.refine'_2.intro.a.m 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 s : Set 𝕜 this : Nontrivial 𝕜 l u : 𝕜 hxI : toIcoMod hp a x ∈ Ioo l u hIs : Ioo l u ⊆ s d : 𝕜 := toIcoDiv hp a x • p hd : toIcoMod hp a x ∈ Ico a (a + p) y : 𝕜 h : l < y - toIcoDiv hp a x • p ∧ y - toIcoDiv hp a x • p < a + p ∧ y - toIcoDiv hp a x • p < u h' : y ∈ Ici x ⊢ ℤ [PROOFSTEP] exacts [⟨h.1, h.2.2⟩, ⟨hd.1.trans (sub_le_sub_right h' _), h.2.1⟩] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 ⊢ ContinuousWithinAt (toIocMod hp a) (Iic x) x [PROOFSTEP] rw [(funext fun y => Eq.trans (by rw [neg_neg]) <| toIocMod_neg _ _ _ : toIocMod hp a = (fun x => p - x) ∘ toIcoMod hp (-a) ∘ Neg.neg)] -- Porting note: added [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x y : 𝕜 ⊢ toIocMod hp a y = toIocMod hp a (- -y) [PROOFSTEP] rw [neg_neg] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 ⊢ ContinuousWithinAt ((fun x => p - x) ∘ toIcoMod hp (-a) ∘ Neg.neg) (Iic x) x [PROOFSTEP] have : ContinuousNeg 𝕜 := TopologicalAddGroup.toContinuousNeg [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 this : ContinuousNeg 𝕜 ⊢ ContinuousWithinAt ((fun x => p - x) ∘ toIcoMod hp (-a) ∘ Neg.neg) (Iic x) x [PROOFSTEP] exact (continuous_sub_left _).continuousAt.comp_continuousWithinAt <| (continuous_right_toIcoMod _ _ _).comp continuous_neg.continuousWithinAt fun y => neg_le_neg [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 hx : ↑x ≠ ↑a ⊢ IsOpen {x | (fun x => toIcoMod hp a x = toIocMod hp a x) x} [PROOFSTEP] rw [Ico_eq_locus_Ioc_eq_iUnion_Ioo] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : Archimedean 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p a x : 𝕜 hx : ↑x ≠ ↑a ⊢ IsOpen (⋃ (z : ℤ), Ioo (a + z • p) (a + p + z • p)) [PROOFSTEP] exact isOpen_iUnion fun i => isOpen_Ioo [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p x : 𝕜 ⊢ ↑x = 0 ↔ ∃ n, n • p = x [PROOFSTEP] simp [AddSubgroup.mem_zmultiples_iff] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p x : 𝕜 hx : 0 < x ⊢ ↑x = 0 ↔ ∃ n, n • p = x [PROOFSTEP] rw [coe_eq_zero_iff] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p x : 𝕜 hx : 0 < x ⊢ (∃ n, n • p = x) ↔ ∃ n, n • p = x [PROOFSTEP] constructor [GOAL] case mp 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p x : 𝕜 hx : 0 < x ⊢ (∃ n, n • p = x) → ∃ n, n • p = x [PROOFSTEP] rintro ⟨n, rfl⟩ [GOAL] case mpr 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p x : 𝕜 hx : 0 < x ⊢ (∃ n, n • p = x) → ∃ n, n • p = x [PROOFSTEP] rintro ⟨n, rfl⟩ [GOAL] case mp.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p n : ℤ hx : 0 < n • p ⊢ ∃ n_1, n_1 • p = n • p [PROOFSTEP] replace hx : 0 < n [GOAL] case hx 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p n : ℤ hx : 0 < n • p ⊢ 0 < n [PROOFSTEP] contrapose! hx [GOAL] case hx 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p n : ℤ hx : n ≤ 0 ⊢ n • p ≤ 0 [PROOFSTEP] simpa only [← neg_nonneg, ← zsmul_neg, zsmul_neg'] using zsmul_nonneg hp.le (neg_nonneg.2 hx) [GOAL] case mp.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p n : ℤ hx : 0 < n ⊢ ∃ n_1, n_1 • p = n • p [PROOFSTEP] exact ⟨n.toNat, by rw [← coe_nat_zsmul, Int.toNat_of_nonneg hx.le]⟩ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p n : ℤ hx : 0 < n ⊢ Int.toNat n • p = n • p [PROOFSTEP] rw [← coe_nat_zsmul, Int.toNat_of_nonneg hx.le] [GOAL] case mpr.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p n : ℕ hx : 0 < n • p ⊢ ∃ n_1, n_1 • p = n • p [PROOFSTEP] exact ⟨(n : ℤ), by simp⟩ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p : 𝕜 hp : 0 < p n : ℕ hx : 0 < n • p ⊢ ↑n • p = n • p [PROOFSTEP] simp [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedAddCommGroup 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p x : 𝕜 ⊢ ↑(x + p) = ↑x [PROOFSTEP] rw [coe_add, ← eq_sub_iff_add_eq', sub_self, coe_period] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x y : 𝕜 hx : x ∈ Ico a (a + p) hy : y ∈ Ico a (a + p) ⊢ ↑x = ↑y ↔ x = y [PROOFSTEP] refine' ⟨fun h => _, by tauto⟩ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x y : 𝕜 hx : x ∈ Ico a (a + p) hy : y ∈ Ico a (a + p) ⊢ x = y → ↑x = ↑y [PROOFSTEP] tauto [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x y : 𝕜 hx : x ∈ Ico a (a + p) hy : y ∈ Ico a (a + p) h : ↑x = ↑y ⊢ x = y [PROOFSTEP] suffices (⟨x, hx⟩ : Ico a (a + p)) = ⟨y, hy⟩ by exact Subtype.mk.inj this [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x y : 𝕜 hx : x ∈ Ico a (a + p) hy : y ∈ Ico a (a + p) h : ↑x = ↑y this : { val := x, property := hx } = { val := y, property := hy } ⊢ x = y [PROOFSTEP] exact Subtype.mk.inj this [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x y : 𝕜 hx : x ∈ Ico a (a + p) hy : y ∈ Ico a (a + p) h : ↑x = ↑y ⊢ { val := x, property := hx } = { val := y, property := hy } [PROOFSTEP] apply_fun equivIco p a at h [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x y : 𝕜 hx : x ∈ Ico a (a + p) hy : y ∈ Ico a (a + p) h : ↑(equivIco p a) ↑x = ↑(equivIco p a) ↑y ⊢ { val := x, property := hx } = { val := y, property := hy } [PROOFSTEP] rw [← (equivIco p a).right_inv ⟨x, hx⟩, ← (equivIco p a).right_inv ⟨y, hy⟩] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x y : 𝕜 hx : x ∈ Ico a (a + p) hy : y ∈ Ico a (a + p) h : ↑(equivIco p a) ↑x = ↑(equivIco p a) ↑y ⊢ Equiv.toFun (equivIco p a) (Equiv.invFun (equivIco p a) { val := x, property := hx }) = Equiv.toFun (equivIco p a) (Equiv.invFun (equivIco p a) { val := y, property := hy }) [PROOFSTEP] exact h [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ico a (a + p) ⊢ liftIco p a f ↑x = f x [PROOFSTEP] have : (equivIco p a) x = ⟨x, hx⟩ := by rw [Equiv.apply_eq_iff_eq_symm_apply] rfl [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ico a (a + p) ⊢ ↑(equivIco p a) ↑x = { val := x, property := hx } [PROOFSTEP] rw [Equiv.apply_eq_iff_eq_symm_apply] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ico a (a + p) ⊢ ↑x = ↑(equivIco p a).symm { val := x, property := hx } [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ico a (a + p) this : ↑(equivIco p a) ↑x = { val := x, property := hx } ⊢ liftIco p a f ↑x = f x [PROOFSTEP] rw [liftIco, comp_apply, this] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ico a (a + p) this : ↑(equivIco p a) ↑x = { val := x, property := hx } ⊢ restrict (Ico a (a + p)) f { val := x, property := hx } = f x [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ioc a (a + p) ⊢ liftIoc p a f ↑x = f x [PROOFSTEP] have : (equivIoc p a) x = ⟨x, hx⟩ := by rw [Equiv.apply_eq_iff_eq_symm_apply] rfl [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ioc a (a + p) ⊢ ↑(equivIoc p a) ↑x = { val := x, property := hx } [PROOFSTEP] rw [Equiv.apply_eq_iff_eq_symm_apply] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ioc a (a + p) ⊢ ↑x = ↑(equivIoc p a).symm { val := x, property := hx } [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ioc a (a + p) this : ↑(equivIoc p a) ↑x = { val := x, property := hx } ⊢ liftIoc p a f ↑x = f x [PROOFSTEP] rw [liftIoc, comp_apply, this] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ioc a (a + p) this : ↑(equivIoc p a) ↑x = { val := x, property := hx } ⊢ restrict (Ioc a (a + p)) f { val := x, property := hx } = f x [PROOFSTEP] rfl [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x : AddCircle p hx : x ≠ ↑a ⊢ ContinuousAt (↑(equivIco p a)) x [PROOFSTEP] induction x using QuotientAddGroup.induction_on' [GOAL] case H 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x : AddCircle p z✝ : 𝕜 hx : ↑z✝ ≠ ↑a ⊢ ContinuousAt ↑(equivIco p a) ↑z✝ [PROOFSTEP] rw [ContinuousAt, Filter.Tendsto, QuotientAddGroup.nhds_eq, Filter.map_map] [GOAL] case H 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x : AddCircle p z✝ : 𝕜 hx : ↑z✝ ≠ ↑a ⊢ Filter.map (↑(equivIco p a) ∘ QuotientAddGroup.mk) (𝓝 z✝) ≤ 𝓝 (↑(equivIco p a) ↑z✝) [PROOFSTEP] exact (continuousAt_toIcoMod hp.out a hx).codRestrict _ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x : AddCircle p hx : x ≠ ↑a ⊢ ContinuousAt (↑(equivIoc p a)) x [PROOFSTEP] induction x using QuotientAddGroup.induction_on' [GOAL] case H 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x : AddCircle p z✝ : 𝕜 hx : ↑z✝ ≠ ↑a ⊢ ContinuousAt ↑(equivIoc p a) ↑z✝ [PROOFSTEP] rw [ContinuousAt, Filter.Tendsto, QuotientAddGroup.nhds_eq, Filter.map_map] [GOAL] case H 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 x : AddCircle p z✝ : 𝕜 hx : ↑z✝ ≠ ↑a ⊢ Filter.map (↑(equivIoc p a) ∘ QuotientAddGroup.mk) (𝓝 z✝) ≤ 𝓝 (↑(equivIoc p a) ↑z✝) [PROOFSTEP] exact (continuousAt_toIocMod hp.out a hx).codRestrict _ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 ⊢ QuotientAddGroup.mk '' Ico a (a + p) = univ [PROOFSTEP] rw [image_eq_range] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 ⊢ (range fun x => ↑↑x) = univ [PROOFSTEP] exact (equivIco p a).symm.range_eq_univ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 ⊢ QuotientAddGroup.mk '' Ioc a (a + p) = univ [PROOFSTEP] rw [image_eq_range] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p : 𝕜 hp : Fact (0 < p) a : 𝕜 inst✝ : Archimedean 𝕜 ⊢ (range fun x => ↑↑x) = univ [PROOFSTEP] exact (equivIoc p a).symm.range_eq_univ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : p ≠ 0 hq : q ≠ 0 ⊢ map (↑(AddAut.mulRight ((Units.mk0 p hp)⁻¹ * Units.mk0 q hq))) (zmultiples p) = zmultiples q [PROOFSTEP] rw [AddMonoidHom.map_zmultiples, AddMonoidHom.coe_coe, AddAut.mulRight_apply, Units.val_mul, Units.val_mk0, Units.val_inv_eq_inv_val, Units.val_mk0, mul_inv_cancel_left₀ hp] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedField 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) inst✝ : FloorRing 𝕜 x : AddCircle p ⊢ (fun x n => ↑((↑n)⁻¹ * ↑(↑(equivIco p 0) x))) x 0 = 0 [PROOFSTEP] simp only [algebraMap.coe_zero, Int.cast_zero, inv_zero, zero_mul, QuotientAddGroup.mk_zero] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedField 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) inst✝ : FloorRing 𝕜 n : ℤ x : AddCircle p hn : n ≠ 0 ⊢ n • (fun x n => ↑((↑n)⁻¹ * ↑(↑(equivIco p 0) x))) x n = x [PROOFSTEP] replace hn : (n : 𝕜) ≠ 0 [GOAL] case hn 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedField 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) inst✝ : FloorRing 𝕜 n : ℤ x : AddCircle p hn : n ≠ 0 ⊢ ↑n ≠ 0 [PROOFSTEP] norm_cast [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedField 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) inst✝ : FloorRing 𝕜 n : ℤ x : AddCircle p hn : ↑n ≠ 0 ⊢ n • (fun x n => ↑((↑n)⁻¹ * ↑(↑(equivIco p 0) x))) x n = x [PROOFSTEP] change n • QuotientAddGroup.mk' _ ((n : 𝕜)⁻¹ * ↑(equivIco p 0 x)) = x [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedField 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) inst✝ : FloorRing 𝕜 n : ℤ x : AddCircle p hn : ↑n ≠ 0 ⊢ n • ↑(QuotientAddGroup.mk' (zmultiples p)) ((↑n)⁻¹ * ↑(↑(equivIco p 0) x)) = x [PROOFSTEP] rw [← map_zsmul, ← smul_mul_assoc, zsmul_eq_mul, mul_inv_cancel hn, one_mul] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedField 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) inst✝ : FloorRing 𝕜 n : ℤ x : AddCircle p hn : ↑n ≠ 0 ⊢ ↑(QuotientAddGroup.mk' (zmultiples p)) ↑(↑(equivIco p 0) x) = x [PROOFSTEP] exact (equivIco p 0).symm_apply_apply x [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < n ⊢ addOrderOf ↑(p / ↑n) = n [PROOFSTEP] rw [addOrderOf_eq_iff h] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < n ⊢ n • ↑(p / ↑n) = 0 ∧ ∀ (m : ℕ), m < n → 0 < m → m • ↑(p / ↑n) ≠ 0 [PROOFSTEP] replace h : 0 < (n : 𝕜) := Nat.cast_pos.2 h [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < ↑n ⊢ n • ↑(p / ↑n) = 0 ∧ ∀ (m : ℕ), m < n → 0 < m → m • ↑(p / ↑n) ≠ 0 [PROOFSTEP] refine' ⟨_, fun m hn h0 => _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < ↑n ⊢ n • ↑(p / ↑n) = 0 [PROOFSTEP] simp only [Ne, ← coe_nsmul, nsmul_eq_mul] [GOAL] case refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < ↑n m : ℕ hn : m < n h0 : 0 < m ⊢ m • ↑(p / ↑n) ≠ 0 [PROOFSTEP] simp only [Ne, ← coe_nsmul, nsmul_eq_mul] [GOAL] case refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < ↑n ⊢ ↑(↑n * (p / ↑n)) = 0 [PROOFSTEP] rw [mul_div_cancel' _ h.ne', coe_period] [GOAL] case refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < ↑n m : ℕ hn : m < n h0 : 0 < m ⊢ ¬↑(↑m * (p / ↑n)) = 0 [PROOFSTEP] rw [coe_eq_zero_of_pos_iff p hp.out (mul_pos (Nat.cast_pos.2 h0) <| div_pos hp.out h)] [GOAL] case refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < ↑n m : ℕ hn : m < n h0 : 0 < m ⊢ ¬∃ n_1, n_1 • p = ↑m * (p / ↑n) [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case refine'_2.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < ↑n m : ℕ hn : m < n h0 : 0 < m k : ℕ hk : k • p = ↑m * (p / ↑n) ⊢ False [PROOFSTEP] rw [mul_div, eq_div_iff h.ne', nsmul_eq_mul, mul_right_comm, ← Nat.cast_mul, (mul_left_injective₀ hp.out.ne').eq_iff, Nat.cast_inj, mul_comm] at hk [GOAL] case refine'_2.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < ↑n m : ℕ hn : m < n h0 : 0 < m k : ℕ hk : n * k = m ⊢ False [PROOFSTEP] exact (Nat.le_of_dvd h0 ⟨_, hk.symm⟩).not_lt hn [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n m : ℕ hn : 0 < n ⊢ Nat.gcd m n * addOrderOf ↑(↑m / ↑n * p) = n [PROOFSTEP] rw [mul_comm_div, ← nsmul_eq_mul, coe_nsmul, addOrderOf_nsmul''] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n m : ℕ hn : 0 < n ⊢ Nat.gcd m n * (addOrderOf ↑(p / ↑n) / Nat.gcd (addOrderOf ↑(p / ↑n)) m) = n [PROOFSTEP] rw [addOrderOf_period_div hn, Nat.gcd_comm, Nat.mul_div_cancel'] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n m : ℕ hn : 0 < n ⊢ Nat.gcd n m ∣ n [PROOFSTEP] exact n.gcd_dvd_left m [GOAL] case h 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n m : ℕ hn : 0 < n ⊢ IsOfFinAddOrder ↑(p / ↑n) [PROOFSTEP] rw [← addOrderOf_pos_iff, addOrderOf_period_div hn] [GOAL] case h 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n m : ℕ hn : 0 < n ⊢ 0 < n [PROOFSTEP] exact hn [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) m n : ℕ hn : 0 < n h : Nat.gcd m n = 1 ⊢ addOrderOf ↑(↑m / ↑n * p) = n [PROOFSTEP] convert gcd_mul_addOrderOf_div_eq p m hn [GOAL] case h.e'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) m n : ℕ hn : 0 < n h : Nat.gcd m n = 1 ⊢ addOrderOf ↑(↑m / ↑n * p) = Nat.gcd m n * addOrderOf ↑(↑m / ↑n * p) [PROOFSTEP] rw [h, one_mul] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) m : ℤ n : ℕ hn : 0 < n h : Nat.gcd (Int.natAbs m) n = 1 ⊢ addOrderOf ↑(↑m / ↑n * p) = n [PROOFSTEP] induction m [GOAL] case ofNat 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n a✝ : ℕ h : Nat.gcd (Int.natAbs (Int.ofNat a✝)) n = 1 ⊢ addOrderOf ↑(↑(Int.ofNat a✝) / ↑n * p) = n [PROOFSTEP] simp only [Int.ofNat_eq_coe, Int.cast_ofNat, Int.natAbs_ofNat] at h ⊢ [GOAL] case ofNat 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n a✝ : ℕ h : Nat.gcd a✝ n = 1 ⊢ addOrderOf ↑(↑a✝ / ↑n * p) = n [PROOFSTEP] exact addOrderOf_div_of_gcd_eq_one hn h [GOAL] case negSucc 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n a✝ : ℕ h : Nat.gcd (Int.natAbs (Int.negSucc a✝)) n = 1 ⊢ addOrderOf ↑(↑(Int.negSucc a✝) / ↑n * p) = n [PROOFSTEP] simp only [Int.cast_negSucc, neg_div, neg_mul, coe_neg, addOrderOf_neg] [GOAL] case negSucc 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n a✝ : ℕ h : Nat.gcd (Int.natAbs (Int.negSucc a✝)) n = 1 ⊢ addOrderOf ↑(↑(a✝ + 1) / ↑n * p) = n [PROOFSTEP] exact addOrderOf_div_of_gcd_eq_one hn h [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q✝ : 𝕜 hp : Fact (0 < p) q : ℚ ⊢ addOrderOf ↑(↑q * p) = q.den [PROOFSTEP] have : (↑(q.den : ℤ) : 𝕜) ≠ 0 := by norm_cast exact q.pos.ne.symm [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q✝ : 𝕜 hp : Fact (0 < p) q : ℚ ⊢ ↑↑q.den ≠ 0 [PROOFSTEP] norm_cast [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q✝ : 𝕜 hp : Fact (0 < p) q : ℚ ⊢ ¬q.den = 0 [PROOFSTEP] exact q.pos.ne.symm [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q✝ : 𝕜 hp : Fact (0 < p) q : ℚ this : ↑↑q.den ≠ 0 ⊢ addOrderOf ↑(↑q * p) = q.den [PROOFSTEP] rw [← @Rat.num_den q, Rat.cast_mk_of_ne_zero _ _ this, Int.cast_ofNat, Rat.num_den, addOrderOf_div_of_gcd_eq_one' q.pos q.reduced] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n ⊢ addOrderOf u = n ↔ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = u [PROOFSTEP] refine' ⟨QuotientAddGroup.induction_on' u fun k hk => _, _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n ⊢ (∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = u) → addOrderOf u = n [PROOFSTEP] rintro ⟨m, _, h₁, rfl⟩ [GOAL] case refine'_1.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ h : 0 < n m : ℕ left✝ : m < n h₁ : Nat.gcd m n = 1 ⊢ addOrderOf ↑(↑m / ↑n * p) = n [PROOFSTEP] exact addOrderOf_div_of_gcd_eq_one h h₁ [GOAL] case refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n ⊢ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = ↑k [PROOFSTEP] have h0 := addOrderOf_nsmul_eq_zero (k : AddCircle p) [GOAL] case refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n h0 : addOrderOf ↑k • ↑k = 0 ⊢ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = ↑k [PROOFSTEP] rw [hk, ← coe_nsmul, coe_eq_zero_iff] at h0 [GOAL] case refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n h0 : ∃ n_1, n_1 • p = n • k ⊢ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = ↑k [PROOFSTEP] obtain ⟨a, ha⟩ := h0 [GOAL] case refine'_2.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : a • p = n • k ⊢ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = ↑k [PROOFSTEP] have h0 : (_ : 𝕜) ≠ 0 := Nat.cast_ne_zero.2 h.ne' [GOAL] case refine'_2.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : a • p = n • k h0 : ↑n ≠ 0 ⊢ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = ↑k [PROOFSTEP] rw [nsmul_eq_mul, mul_comm, ← div_eq_iff h0, ← a.ediv_add_emod' n, add_smul, add_div, zsmul_eq_mul, Int.cast_mul, Int.cast_ofNat, mul_assoc, ← mul_div, mul_comm _ p, mul_div_cancel p h0] at ha [GOAL] case refine'_2.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 ⊢ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = ↑k [PROOFSTEP] have han : _ = a % n := Int.toNat_of_nonneg (Int.emod_nonneg _ <| by exact_mod_cast h.ne') [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 ⊢ ↑n ≠ 0 [PROOFSTEP] exact_mod_cast h.ne' [GOAL] case refine'_2.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n ⊢ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = ↑k [PROOFSTEP] have he : (↑(↑((a % n).toNat) / ↑n * p) : AddCircle p) = k [GOAL] case he 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n ⊢ ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑k [PROOFSTEP] convert congr_arg (QuotientAddGroup.mk : 𝕜 → (AddCircle p)) ha using 1 [GOAL] case h.e'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n ⊢ ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑(↑(a / ↑n) * p + (a % ↑n) • p / ↑n) [PROOFSTEP] rw [coe_add, ← Int.cast_ofNat, han, zsmul_eq_mul, mul_div_right_comm, eq_comm, add_left_eq_self, ← zsmul_eq_mul, coe_zsmul, coe_period, smul_zero] [GOAL] case refine'_2.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n he : ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑k ⊢ ∃ m, m < n ∧ Nat.gcd m n = 1 ∧ ↑(↑m / ↑n * p) = ↑k [PROOFSTEP] refine' ⟨(a % n).toNat, _, _, he⟩ [GOAL] case refine'_2.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n he : ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑k ⊢ Int.toNat (a % ↑n) < n [PROOFSTEP] rw [← Int.ofNat_lt, han] [GOAL] case refine'_2.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n he : ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑k ⊢ a % ↑n < ↑n [PROOFSTEP] exact Int.emod_lt_of_pos _ (Int.ofNat_lt.2 h) [GOAL] case refine'_2.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n he : ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑k ⊢ Nat.gcd (Int.toNat (a % ↑n)) n = 1 [PROOFSTEP] have := (gcd_mul_addOrderOf_div_eq p (Int.toNat (a % ↑n)) h).trans ((congr_arg addOrderOf he).trans hk).symm [GOAL] case refine'_2.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n he : ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑k this : Nat.gcd (Int.toNat (a % ↑n)) n * addOrderOf ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = addOrderOf ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) ⊢ Nat.gcd (Int.toNat (a % ↑n)) n = 1 [PROOFSTEP] rw [he, Nat.mul_left_eq_self_iff] at this [GOAL] case refine'_2.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n he : ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑k this : Nat.gcd (Int.toNat (a % ↑n)) n = 1 ⊢ Nat.gcd (Int.toNat (a % ↑n)) n = 1 [PROOFSTEP] exact this [GOAL] case refine'_2.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p n : ℕ h : 0 < n k : 𝕜 hk : addOrderOf ↑k = n a : ℤ ha : ↑(a / ↑n) * p + (a % ↑n) • p / ↑n = k h0 : ↑n ≠ 0 han : ↑(Int.toNat (a % ↑n)) = a % ↑n he : ↑(↑(Int.toNat (a % ↑n)) / ↑n * p) = ↑k this : Nat.gcd (Int.toNat (a % ↑n)) n * addOrderOf ↑k = addOrderOf ↑k ⊢ 0 < addOrderOf ↑k [PROOFSTEP] rwa [hk] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n ⊢ Bijective fun m => { val := ↑(↑↑m / ↑n * p), property := (_ : addOrderOf ↑(↑↑m / ↑n * p) = n) } [PROOFSTEP] refine' ⟨fun m₁ m₂ h => Subtype.ext _, fun u => _⟩ [GOAL] case refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : (fun m => { val := ↑(↑↑m / ↑n * p), property := (_ : addOrderOf ↑(↑↑m / ↑n * p) = n) }) m₁ = (fun m => { val := ↑(↑↑m / ↑n * p), property := (_ : addOrderOf ↑(↑↑m / ↑n * p) = n) }) m₂ ⊢ ↑m₁ = ↑m₂ [PROOFSTEP] simp_rw [Subtype.ext_iff] at h [GOAL] case refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) ⊢ ↑m₁ = ↑m₂ [PROOFSTEP] rw [← sub_eq_zero, ← coe_sub, ← sub_mul, ← sub_div, ← Int.cast_ofNat m₁, ← Int.cast_ofNat m₂, ← Int.cast_sub, coe_eq_zero_iff] at h [GOAL] case refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h✝ : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) h : ∃ n_1, n_1 • p = ↑(↑↑m₁ - ↑↑m₂) / ↑n * p ⊢ ↑m₁ = ↑m₂ [PROOFSTEP] obtain ⟨m, hm⟩ := h [GOAL] case refine'_1.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : m • p = ↑(↑↑m₁ - ↑↑m₂) / ↑n * p ⊢ ↑m₁ = ↑m₂ [PROOFSTEP] rw [← mul_div_right_comm, eq_div_iff, mul_comm, ← zsmul_eq_mul, mul_smul_comm, ← nsmul_eq_mul, ← coe_nat_zsmul, smul_smul, (zsmul_strictMono_left hp.out).injective.eq_iff, mul_comm] at hm [GOAL] case refine'_1.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : ↑n * m = ↑↑m₁ - ↑↑m₂ ⊢ ↑m₁ = ↑m₂ case refine'_1.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : m • p = ↑(↑↑m₁ - ↑↑m₂) * p / ↑n ⊢ ↑n ≠ 0 [PROOFSTEP] swap [GOAL] case refine'_1.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : m • p = ↑(↑↑m₁ - ↑↑m₂) * p / ↑n ⊢ ↑n ≠ 0 [PROOFSTEP] exact Nat.cast_ne_zero.2 hn.ne' [GOAL] case refine'_1.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : ↑n * m = ↑↑m₁ - ↑↑m₂ ⊢ ↑m₁ = ↑m₂ [PROOFSTEP] rw [← @Nat.cast_inj ℤ, ← sub_eq_zero] [GOAL] case refine'_1.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : ↑n * m = ↑↑m₁ - ↑↑m₂ ⊢ ↑↑m₁ - ↑↑m₂ = 0 [PROOFSTEP] refine' Int.eq_zero_of_abs_lt_dvd ⟨_, hm.symm⟩ (abs_sub_lt_iff.2 ⟨_, _⟩) [GOAL] case refine'_1.intro.refine'_1 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : ↑n * m = ↑↑m₁ - ↑↑m₂ ⊢ ↑↑m₁ - ↑↑m₂ < ↑n [PROOFSTEP] apply (Int.sub_le_self _ <| Nat.cast_nonneg _).trans_lt (Nat.cast_lt.2 _) [GOAL] case refine'_1.intro.refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : ↑n * m = ↑↑m₁ - ↑↑m₂ ⊢ ↑↑m₂ - ↑↑m₁ < ↑n [PROOFSTEP] apply (Int.sub_le_self _ <| Nat.cast_nonneg _).trans_lt (Nat.cast_lt.2 _) [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : ↑n * m = ↑↑m₁ - ↑↑m₂ ⊢ ↑m₁ < n 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n m₁ m₂ : ↑{m | m < n ∧ Nat.gcd m n = 1} h : ↑(↑↑m₁ / ↑n * p) = ↑(↑↑m₂ / ↑n * p) m : ℤ hm : ↑n * m = ↑↑m₁ - ↑↑m₂ ⊢ ↑m₂ < n [PROOFSTEP] exacts [m₁.2.1, m₂.2.1] [GOAL] case refine'_2 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n u : ↑{u | addOrderOf u = n} ⊢ ∃ a, (fun m => { val := ↑(↑↑m / ↑n * p), property := (_ : addOrderOf ↑(↑↑m / ↑n * p) = n) }) a = u [PROOFSTEP] obtain ⟨m, hmn, hg, he⟩ := (addOrderOf_eq_pos_iff hn).mp u.2 [GOAL] case refine'_2.intro.intro.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n u : ↑{u | addOrderOf u = n} m : ℕ hmn : m < n hg : Nat.gcd m n = 1 he : ↑(↑m / ↑n * p) = ↑u ⊢ ∃ a, (fun m => { val := ↑(↑↑m / ↑n * p), property := (_ : addOrderOf ↑(↑↑m / ↑n * p) = n) }) a = u [PROOFSTEP] exact ⟨⟨m, hmn, hg⟩, Subtype.ext he⟩ [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ ⊢ Nat.card { u // addOrderOf u = n } = Nat.totient n [PROOFSTEP] rcases n.eq_zero_or_pos with (rfl | hn) [GOAL] case inl 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) ⊢ Nat.card { u // addOrderOf u = 0 } = Nat.totient 0 [PROOFSTEP] simp only [Nat.totient_zero, addOrderOf_eq_zero_iff] [GOAL] case inl 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) ⊢ Nat.card { u // ¬IsOfFinAddOrder u } = 0 [PROOFSTEP] rcases em (∃ u : AddCircle p, ¬IsOfFinAddOrder u) with (⟨u, hu⟩ | h) [GOAL] case inl.inl.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p hu : ¬IsOfFinAddOrder u ⊢ Nat.card { u // ¬IsOfFinAddOrder u } = 0 [PROOFSTEP] have : Infinite { u : AddCircle p // ¬IsOfFinAddOrder u } := by erw [infinite_coe_iff] exact infinite_not_isOfFinAddOrder hu [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p hu : ¬IsOfFinAddOrder u ⊢ Infinite { u // ¬IsOfFinAddOrder u } [PROOFSTEP] erw [infinite_coe_iff] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p hu : ¬IsOfFinAddOrder u ⊢ Set.Infinite fun u => IsOfFinAddOrder u → False [PROOFSTEP] exact infinite_not_isOfFinAddOrder hu [GOAL] case inl.inl.intro 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) u : AddCircle p hu : ¬IsOfFinAddOrder u this : Infinite { u // ¬IsOfFinAddOrder u } ⊢ Nat.card { u // ¬IsOfFinAddOrder u } = 0 [PROOFSTEP] exact Nat.card_eq_zero_of_infinite [GOAL] case inl.inr 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) h : ¬∃ u, ¬IsOfFinAddOrder u ⊢ Nat.card { u // ¬IsOfFinAddOrder u } = 0 [PROOFSTEP] have : IsEmpty { u : AddCircle p // ¬IsOfFinAddOrder u } := by simpa using h [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) h : ¬∃ u, ¬IsOfFinAddOrder u ⊢ IsEmpty { u // ¬IsOfFinAddOrder u } [PROOFSTEP] simpa using h [GOAL] case inl.inr 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) h : ¬∃ u, ¬IsOfFinAddOrder u this : IsEmpty { u // ¬IsOfFinAddOrder u } ⊢ Nat.card { u // ¬IsOfFinAddOrder u } = 0 [PROOFSTEP] exact Nat.card_of_isEmpty [GOAL] case inr 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : n > 0 ⊢ Nat.card { u // addOrderOf u = n } = Nat.totient n [PROOFSTEP] rw [← coe_setOf, Nat.card_congr (setAddOrderOfEquiv p hn), n.totient_eq_card_lt_and_coprime] [GOAL] case inr 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : n > 0 ⊢ Nat.card ↑{m | m < n ∧ Nat.gcd m n = 1} = Nat.card ↑{m | m < n ∧ Nat.coprime n m} [PROOFSTEP] simp only [Nat.gcd_comm] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝² : LinearOrderedField 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : OrderTopology 𝕜 p q : 𝕜 hp : Fact (0 < p) n : ℕ hn : 0 < n ⊢ Nat.card ↑{u | addOrderOf u = n} ≠ 0 [PROOFSTEP] simpa only [coe_setOf, card_addOrderOf_eq_totient p] using (Nat.totient_pos hn).ne' [GOAL] 𝕜 : Type u_1 B : Type u_2 p : ℝ inst✝ : Fact (0 < p) ⊢ CompactSpace (AddCircle p) [PROOFSTEP] rw [← isCompact_univ_iff, ← coe_image_Icc_eq p 0] [GOAL] 𝕜 : Type u_1 B : Type u_2 p : ℝ inst✝ : Fact (0 < p) ⊢ IsCompact (QuotientAddGroup.mk '' Icc 0 (0 + p)) [PROOFSTEP] exact isCompact_Icc.image (AddCircle.continuous_mk' p) [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : Quot (EndpointIdent p a) ⊢ ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → (fun x => ↑↑x) a_1 = (fun x => ↑↑x) b [PROOFSTEP] rintro _ _ ⟨_⟩ [GOAL] case mk 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : Quot (EndpointIdent p a) ⊢ (fun x => ↑↑x) { val := a, property := (_ : a ∈ Icc a (a + p)) } = (fun x => ↑↑x) { val := a + p, property := (_ : a + p ∈ Icc a (a + p)) } [PROOFSTEP] exact (coe_add_period p a).symm [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 ⊢ ∀ (a_1 : ↑(Icc a (a + p))), (fun x => Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) x))) ((fun x => Quot.liftOn x (fun x => ↑↑x) (_ : ∀ (a_2 b : ↑(Icc a (a + p))), EndpointIdent p a a_2 b → (fun x => ↑↑x) a_2 = (fun x => ↑↑x) b)) (Quot.mk (EndpointIdent p a) a_1)) = Quot.mk (EndpointIdent p a) a_1 [PROOFSTEP] rintro ⟨x, hx⟩ [GOAL] case mk 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 hx : x ∈ Icc a (a + p) ⊢ (fun x => Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) x))) ((fun x => Quot.liftOn x (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → (fun x => ↑↑x) a_1 = (fun x => ↑↑x) b)) (Quot.mk (EndpointIdent p a) { val := x, property := hx })) = Quot.mk (EndpointIdent p a) { val := x, property := hx } [PROOFSTEP] rcases ne_or_eq x (a + p) with (h | rfl) [GOAL] case mk.inl 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 hx : x ∈ Icc a (a + p) h : x ≠ a + p ⊢ (fun x => Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) x))) ((fun x => Quot.liftOn x (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → (fun x => ↑↑x) a_1 = (fun x => ↑↑x) b)) (Quot.mk (EndpointIdent p a) { val := x, property := hx })) = Quot.mk (EndpointIdent p a) { val := x, property := hx } [PROOFSTEP] revert x [GOAL] case mk.inl 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 ⊢ ∀ (x : 𝕜) (hx : x ∈ Icc a (a + p)), x ≠ a + p → (fun x => Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) x))) ((fun x => Quot.liftOn x (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → (fun x => ↑↑x) a_1 = (fun x => ↑↑x) b)) (Quot.mk (EndpointIdent p a) { val := x, property := hx })) = Quot.mk (EndpointIdent p a) { val := x, property := hx } [PROOFSTEP] dsimp only [GOAL] case mk.inl 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 ⊢ ∀ (x : 𝕜) (hx : x ∈ Icc a (a + p)), x ≠ a + p → Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) (Quot.liftOn (Quot.mk (EndpointIdent p a) { val := x, property := hx }) (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → ↑↑a_1 = ↑↑b)))) = Quot.mk (EndpointIdent p a) { val := x, property := hx } [PROOFSTEP] intro x hx h [GOAL] case mk.inl 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 hx : x ∈ Icc a (a + p) h : x ≠ a + p ⊢ Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) (Quot.liftOn (Quot.mk (EndpointIdent p a) { val := x, property := hx }) (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → ↑↑a_1 = ↑↑b)))) = Quot.mk (EndpointIdent p a) { val := x, property := hx } [PROOFSTEP] congr [GOAL] case mk.inl.e_a 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 hx : x ∈ Icc a (a + p) h : x ≠ a + p ⊢ Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) (Quot.liftOn (Quot.mk (EndpointIdent p a) { val := x, property := hx }) (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → ↑↑a_1 = ↑↑b))) = { val := x, property := hx } [PROOFSTEP] ext1 [GOAL] case mk.inl.e_a.a 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 hx : x ∈ Icc a (a + p) h : x ≠ a + p ⊢ ↑(Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) (Quot.liftOn (Quot.mk (EndpointIdent p a) { val := x, property := hx }) (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → ↑↑a_1 = ↑↑b)))) = ↑{ val := x, property := hx } [PROOFSTEP] apply congr_arg Subtype.val ((equivIco p a).right_inv ⟨x, hx.1, hx.2.lt_of_ne h⟩) [GOAL] case mk.inr 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 hx : a + p ∈ Icc a (a + p) ⊢ (fun x => Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) x))) ((fun x => Quot.liftOn x (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → (fun x => ↑↑x) a_1 = (fun x => ↑↑x) b)) (Quot.mk (EndpointIdent p a) { val := a + p, property := hx })) = Quot.mk (EndpointIdent p a) { val := a + p, property := hx } [PROOFSTEP] rw [← Quot.sound EndpointIdent.mk] [GOAL] case mk.inr 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 hx : a + p ∈ Icc a (a + p) ⊢ (fun x => Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) x))) ((fun x => Quot.liftOn x (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → (fun x => ↑↑x) a_1 = (fun x => ↑↑x) b)) (Quot.mk (EndpointIdent p a) { val := a, property := (_ : a ∈ Icc a (a + p)) })) = Quot.mk (EndpointIdent p a) { val := a, property := (_ : a ∈ Icc a (a + p)) } [PROOFSTEP] dsimp only [GOAL] case mk.inr 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 hx : a + p ∈ Icc a (a + p) ⊢ Quot.mk (EndpointIdent p a) (Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) (Quot.liftOn (Quot.mk (EndpointIdent p a) { val := a, property := (_ : a ∈ Icc a (a + p)) }) (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → ↑↑a_1 = ↑↑b)))) = Quot.mk (EndpointIdent p a) { val := a, property := (_ : a ∈ Icc a (a + p)) } [PROOFSTEP] congr [GOAL] case mk.inr.e_a 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 hx : a + p ∈ Icc a (a + p) ⊢ Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) (Quot.liftOn (Quot.mk (EndpointIdent p a) { val := a, property := (_ : a ∈ Icc a (a + p)) }) (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → ↑↑a_1 = ↑↑b))) = { val := a, property := (_ : a ∈ Icc a (a + p)) } [PROOFSTEP] ext1 [GOAL] case mk.inr.e_a.a 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 hx : a + p ∈ Icc a (a + p) ⊢ ↑(Set.inclusion (_ : Ico a (a + p) ⊆ Icc a (a + p)) (↑(equivIco p a) (Quot.liftOn (Quot.mk (EndpointIdent p a) { val := a, property := (_ : a ∈ Icc a (a + p)) }) (fun x => ↑↑x) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → ↑↑a_1 = ↑↑b)))) = ↑{ val := a, property := (_ : a ∈ Icc a (a + p)) } [PROOFSTEP] apply congr_arg Subtype.val ((equivIco p a).right_inv ⟨a, le_refl a, lt_add_of_pos_right a hp.out⟩) [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 ⊢ ↑(equivIccQuot p a) ∘ Quotient.mk'' = fun x => Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) } [PROOFSTEP] rw [equivIccQuot_comp_mk_eq_toIcoMod] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 ⊢ (fun x => Quot.mk (EndpointIdent p a) { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) = fun x => Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) } [PROOFSTEP] funext x [GOAL] case h 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ Quot.mk (EndpointIdent p a) { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) } = Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) } [PROOFSTEP] by_cases a ≡ x [PMOD p] [GOAL] case h 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ Quot.mk (EndpointIdent p a) { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) } = Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) } [PROOFSTEP] by_cases a ≡ x [PMOD p] [GOAL] case pos 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 h : a ≡ x [PMOD p] ⊢ Quot.mk (EndpointIdent p a) { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) } = Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) } [PROOFSTEP] simp_rw [(modEq_iff_toIcoMod_eq_left hp.out).1 h, (modEq_iff_toIocMod_eq_right hp.out).1 h] [GOAL] case pos 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 h : a ≡ x [PMOD p] ⊢ Quot.mk (EndpointIdent p a) { val := a, property := (_ : (fun x => x ∈ Icc a (a + p)) a) } = Quot.mk (EndpointIdent p a) { val := a + p, property := (_ : (fun x => x ∈ Icc a (a + p)) (a + p)) } [PROOFSTEP] exact Quot.sound EndpointIdent.mk [GOAL] case neg 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 h : ¬a ≡ x [PMOD p] ⊢ Quot.mk (EndpointIdent p a) { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) } = Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) } [PROOFSTEP] simp_rw [(not_modEq_iff_toIcoMod_eq_toIocMod hp.out).1 h] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 ⊢ Continuous (equivIccQuot p a).toFun [PROOFSTEP] rw [quotientMap_quotient_mk'.continuous_iff] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 ⊢ Continuous ((equivIccQuot p a).toFun ∘ Quotient.mk') [PROOFSTEP] simp_rw [continuous_iff_continuousAt, continuousAt_iff_continuous_left_right] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 ⊢ ∀ (x : 𝕜), ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Iic x) x ∧ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Ici x) x [PROOFSTEP] intro x [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Iic x) x ∧ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Ici x) x [PROOFSTEP] constructor [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Iic x) x case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Ici x) x [PROOFSTEP] on_goal 1 => erw [equivIccQuot_comp_mk_eq_toIocMod] [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Iic x) x case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Ici x) x [PROOFSTEP] on_goal 1 => erw [equivIccQuot_comp_mk_eq_toIocMod] [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Iic x) x [PROOFSTEP] erw [equivIccQuot_comp_mk_eq_toIocMod] [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (fun x => Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Iic x) x case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Ici x) x [PROOFSTEP] on_goal 2 => erw [equivIccQuot_comp_mk_eq_toIcoMod] [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (fun x => Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Iic x) x case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Ici x) x [PROOFSTEP] on_goal 2 => erw [equivIccQuot_comp_mk_eq_toIcoMod] [GOAL] case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt ((equivIccQuot p a).toFun ∘ Quotient.mk') (Ici x) x [PROOFSTEP] erw [equivIccQuot_comp_mk_eq_toIcoMod] [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (fun x => Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Iic x) x case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (fun x => Quot.mk (EndpointIdent p a) { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Ici x) x [PROOFSTEP] all_goals apply continuous_quot_mk.continuousAt.comp_continuousWithinAt rw [inducing_subtype_val.continuousWithinAt_iff] [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (fun x => Quot.mk (EndpointIdent p a) { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Iic x) x [PROOFSTEP] apply continuous_quot_mk.continuousAt.comp_continuousWithinAt [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (fun x => { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Iic x) x [PROOFSTEP] rw [inducing_subtype_val.continuousWithinAt_iff] [GOAL] case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (fun x => Quot.mk (EndpointIdent p a) { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Ici x) x [PROOFSTEP] apply continuous_quot_mk.continuousAt.comp_continuousWithinAt [GOAL] case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (fun x => { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Ici x) x [PROOFSTEP] rw [inducing_subtype_val.continuousWithinAt_iff] [GOAL] case left 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (Subtype.val ∘ fun x => { val := toIocMod (_ : 0 < p) a x, property := (_ : toIocMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Iic x) x [PROOFSTEP] apply continuous_left_toIocMod [GOAL] case right 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 x : 𝕜 ⊢ ContinuousWithinAt (Subtype.val ∘ fun x => { val := toIcoMod (_ : 0 < p) a x, property := (_ : toIcoMod (_ : 0 < p) a x ∈ Icc a (a + p)) }) (Ici x) x [PROOFSTEP] apply continuous_right_toIcoMod [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 f : 𝕜 → B h : f a = f (a + p) ⊢ ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → restrict (Icc a (a + p)) f a_1 = restrict (Icc a (a + p)) f b [PROOFSTEP] rintro _ _ ⟨_⟩ [GOAL] case mk 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 f : 𝕜 → B h : f a = f (a + p) ⊢ restrict (Icc a (a + p)) f { val := a, property := (_ : a ∈ Icc a (a + p)) } = restrict (Icc a (a + p)) f { val := a + p, property := (_ : a + p ∈ Icc a (a + p)) } [PROOFSTEP] exact h [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝⁴ : LinearOrderedAddCommGroup 𝕜 inst✝³ : TopologicalSpace 𝕜 inst✝² : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝¹ : Archimedean 𝕜 inst✝ : TopologicalSpace B f : 𝕜 → B hf : f a = f (a + p) hc : ContinuousOn f (Icc a (a + p)) ⊢ Continuous (liftIco p a f) [PROOFSTEP] rw [liftIco_eq_lift_Icc hf] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝⁴ : LinearOrderedAddCommGroup 𝕜 inst✝³ : TopologicalSpace 𝕜 inst✝² : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝¹ : Archimedean 𝕜 inst✝ : TopologicalSpace B f : 𝕜 → B hf : f a = f (a + p) hc : ContinuousOn f (Icc a (a + p)) ⊢ Continuous (Quot.lift (restrict (Icc a (a + p)) f) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → restrict (Icc a (a + p)) f a_1 = restrict (Icc a (a + p)) f b) ∘ ↑(equivIccQuot p a)) [PROOFSTEP] refine' Continuous.comp _ (homeoIccQuot p a).continuous_toFun [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝⁴ : LinearOrderedAddCommGroup 𝕜 inst✝³ : TopologicalSpace 𝕜 inst✝² : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝¹ : Archimedean 𝕜 inst✝ : TopologicalSpace B f : 𝕜 → B hf : f a = f (a + p) hc : ContinuousOn f (Icc a (a + p)) ⊢ Continuous (Quot.lift (restrict (Icc a (a + p)) f) (_ : ∀ (a_1 b : ↑(Icc a (a + p))), EndpointIdent p a a_1 b → restrict (Icc a (a + p)) f a_1 = restrict (Icc a (a + p)) f b)) [PROOFSTEP] exact continuous_coinduced_dom.mpr (continuousOn_iff_continuous_restrict.mp hc) [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝³ : LinearOrderedAddCommGroup 𝕜 inst✝² : TopologicalSpace 𝕜 inst✝¹ : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝ : Archimedean 𝕜 f : 𝕜 → B x : 𝕜 hx : x ∈ Ico 0 p ⊢ x ∈ Ico 0 (0 + p) [PROOFSTEP] rwa [zero_add] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝⁴ : LinearOrderedAddCommGroup 𝕜 inst✝³ : TopologicalSpace 𝕜 inst✝² : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝¹ : Archimedean 𝕜 inst✝ : TopologicalSpace B f : 𝕜 → B hf : f 0 = f p hc : ContinuousOn f (Icc 0 p) ⊢ f 0 = f (0 + p) [PROOFSTEP] rwa [zero_add] [GOAL] 𝕜 : Type u_1 B : Type u_2 inst✝⁴ : LinearOrderedAddCommGroup 𝕜 inst✝³ : TopologicalSpace 𝕜 inst✝² : OrderTopology 𝕜 p a : 𝕜 hp : Fact (0 < p) inst✝¹ : Archimedean 𝕜 inst✝ : TopologicalSpace B f : 𝕜 → B hf : f 0 = f p hc : ContinuousOn f (Icc 0 p) ⊢ ContinuousOn f (Icc 0 (0 + p)) [PROOFSTEP] rwa [zero_add]
{"mathlib_filename": "Mathlib.Topology.Instances.AddCircle", "llama_tokens": 38456}
[GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set X ⊢ ℝ≥0∞ [PROOFSTEP] borelize X [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set X this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X ⊢ ℝ≥0∞ [PROOFSTEP] exact ⨆ (d : ℝ≥0) (_ : @hausdorffMeasure X _ _ ⟨rfl⟩ d s = ∞), d [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X ⊢ dimH s = ⨆ (d : ℝ≥0) (_ : ↑↑μH[↑d] s = ⊤), ↑d [PROOFSTEP] borelize X [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y s : Set X inst✝ : BorelSpace X this✝ : MeasurableSpace X := borel X ⊢ dimH s = ⨆ (d : ℝ≥0) (_ : ↑↑μH[↑d] s = ⊤), ↑d [PROOFSTEP] rw [dimH] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d : ℝ≥0 h : ↑d < dimH s ⊢ ↑↑μH[↑d] s = ⊤ [PROOFSTEP] simp only [dimH_def, lt_iSup_iff] at h [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d : ℝ≥0 h : ∃ i i_1, ↑d < ↑i ⊢ ↑↑μH[↑d] s = ⊤ [PROOFSTEP] rcases h with ⟨d', hsd', hdd'⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d d' : ℝ≥0 hsd' : ↑↑μH[↑d'] s = ⊤ hdd' : ↑d < ↑d' ⊢ ↑↑μH[↑d] s = ⊤ [PROOFSTEP] rw [ENNReal.coe_lt_coe, ← NNReal.coe_lt_coe] at hdd' [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d d' : ℝ≥0 hsd' : ↑↑μH[↑d'] s = ⊤ hdd' : ↑d < ↑d' ⊢ ↑↑μH[↑d] s = ⊤ [PROOFSTEP] exact top_unique (hsd' ▸ hausdorffMeasure_mono hdd'.le _) [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d : ℝ≥0 h : ↑↑μH[↑d] s = ⊤ ⊢ ↑d ≤ dimH s [PROOFSTEP] rw [dimH_def] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d : ℝ≥0 h : ↑↑μH[↑d] s = ⊤ ⊢ ↑d ≤ ⨆ (d : ℝ≥0) (_ : ↑↑μH[↑d] s = ⊤), ↑d [PROOFSTEP] exact le_iSup₂ (α := ℝ≥0∞) d h [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d : ℝ≥0 h : dimH s < ↑d ⊢ ↑↑μH[↑d] s = 0 [PROOFSTEP] rw [dimH_def] at h [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d : ℝ≥0 h✝ : dimH s < ↑d h : ⨆ (d : ℝ≥0) (_ : ↑↑μH[↑d] s = ⊤), ↑d < ↑d ⊢ ↑↑μH[↑d] s = 0 [PROOFSTEP] rcases ENNReal.lt_iff_exists_nnreal_btwn.1 h with ⟨d', hsd', hd'd⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d : ℝ≥0 h✝ : dimH s < ↑d h : ⨆ (d : ℝ≥0) (_ : ↑↑μH[↑d] s = ⊤), ↑d < ↑d d' : ℝ≥0 hsd' : ⨆ (d : ℝ≥0) (_ : ↑↑μH[↑d] s = ⊤), ↑d < ↑d' hd'd : ↑d' < ↑d ⊢ ↑↑μH[↑d] s = 0 [PROOFSTEP] rw [ENNReal.coe_lt_coe, ← NNReal.coe_lt_coe] at hd'd [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝³ : EMetricSpace X inst✝² : EMetricSpace Y inst✝¹ : MeasurableSpace X inst✝ : BorelSpace X s : Set X d : ℝ≥0 h✝ : dimH s < ↑d h : ⨆ (d : ℝ≥0) (_ : ↑↑μH[↑d] s = ⊤), ↑d < ↑d d' : ℝ≥0 hsd' : ⨆ (d : ℝ≥0) (_ : ↑↑μH[↑d] s = ⊤), ↑d < ↑d' hd'd : ↑d' < ↑d ⊢ ↑↑μH[↑d] s = 0 [PROOFSTEP] exact (hausdorffMeasure_zero_or_top hd'd s).resolve_right fun h₂ => hsd'.not_le <| le_iSup₂ (α := ℝ≥0∞) d' h₂ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s t : Set X h : s ⊆ t ⊢ dimH s ≤ dimH t [PROOFSTEP] borelize X [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s t : Set X h : s ⊆ t this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X ⊢ dimH s ≤ dimH t [PROOFSTEP] exact dimH_le fun d hd => le_dimH_of_hausdorffMeasure_eq_top <| top_unique <| hd ▸ measure_mono h [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set X h : Set.Subsingleton s ⊢ dimH s = 0 [PROOFSTEP] borelize X [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set X h : Set.Subsingleton s this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X ⊢ dimH s = 0 [PROOFSTEP] apply le_antisymm _ (zero_le _) [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set X h : Set.Subsingleton s this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X ⊢ dimH s ≤ 0 [PROOFSTEP] refine dimH_le_of_hausdorffMeasure_ne_top ?_ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set X h : Set.Subsingleton s this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X ⊢ ↑↑μH[↑0] s ≠ ⊤ [PROOFSTEP] exact ((hausdorffMeasure_le_one_of_subsingleton h le_rfl).trans_lt ENNReal.one_lt_top).ne [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : Encodable ι s : ι → Set X ⊢ dimH (⋃ (i : ι), s i) = ⨆ (i : ι), dimH (s i) [PROOFSTEP] borelize X [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : Encodable ι s : ι → Set X this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X ⊢ dimH (⋃ (i : ι), s i) = ⨆ (i : ι), dimH (s i) [PROOFSTEP] refine le_antisymm (dimH_le fun d hd => ?_) (iSup_le fun i => dimH_mono <| subset_iUnion _ _) [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : Encodable ι s : ι → Set X this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X d : ℝ≥0 hd : ↑↑μH[↑d] (⋃ (i : ι), s i) = ⊤ ⊢ ↑d ≤ ⨆ (i : ι), dimH (s i) [PROOFSTEP] contrapose! hd [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : Encodable ι s : ι → Set X this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X d : ℝ≥0 hd : ⨆ (i : ι), dimH (s i) < ↑d ⊢ ↑↑μH[↑d] (⋃ (i : ι), s i) ≠ ⊤ [PROOFSTEP] have : ∀ i, μH[d] (s i) = 0 := fun i => hausdorffMeasure_of_dimH_lt ((le_iSup (fun i => dimH (s i)) i).trans_lt hd) [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : Encodable ι s : ι → Set X this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X d : ℝ≥0 hd : ⨆ (i : ι), dimH (s i) < ↑d this : ∀ (i : ι), ↑↑μH[↑d] (s i) = 0 ⊢ ↑↑μH[↑d] (⋃ (i : ι), s i) ≠ ⊤ [PROOFSTEP] rw [measure_iUnion_null this] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : Encodable ι s : ι → Set X this✝¹ : MeasurableSpace X := borel X this✝ : BorelSpace X d : ℝ≥0 hd : ⨆ (i : ι), dimH (s i) < ↑d this : ∀ (i : ι), ↑↑μH[↑d] (s i) = 0 ⊢ 0 ≠ ⊤ [PROOFSTEP] exact ENNReal.zero_ne_top [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set ι hs : Set.Countable s t : ι → Set X ⊢ dimH (⋃ (i : ι) (_ : i ∈ s), t i) = ⨆ (i : ι) (_ : i ∈ s), dimH (t i) [PROOFSTEP] haveI := hs.toEncodable [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set ι hs : Set.Countable s t : ι → Set X this : Encodable ↑s ⊢ dimH (⋃ (i : ι) (_ : i ∈ s), t i) = ⨆ (i : ι) (_ : i ∈ s), dimH (t i) [PROOFSTEP] rw [biUnion_eq_iUnion, dimH_iUnion, ← iSup_subtype''] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y S : Set (Set X) hS : Set.Countable S ⊢ dimH (⋃₀ S) = ⨆ (s : Set X) (_ : s ∈ S), dimH s [PROOFSTEP] rw [sUnion_eq_biUnion, dimH_bUnion hS] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s t : Set X ⊢ dimH (s ∪ t) = max (dimH s) (dimH t) [PROOFSTEP] rw [union_eq_iUnion, dimH_iUnion, iSup_bool_eq, cond, cond, ENNReal.sup_eq_max] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y s : Set X hs : Set.Countable s ⊢ dimH (⋃ (x : X) (_ : x ∈ s), {x}) = 0 [PROOFSTEP] simp only [dimH_bUnion hs, dimH_singleton, ENNReal.iSup_zero_eq_zero] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ h : r < dimH s ⊢ ∃ x, x ∈ s ∧ ∀ (t : Set X), t ∈ 𝓝[s] x → r < dimH t [PROOFSTEP] contrapose! h [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ h : ∀ (x : X), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ dimH t ≤ r ⊢ dimH s ≤ r [PROOFSTEP] choose! t htx htr using h [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ t : X → Set X htx : ∀ (x : X), x ∈ s → t x ∈ 𝓝[s] x htr : ∀ (x : X), x ∈ s → dimH (t x) ≤ r ⊢ dimH s ≤ r [PROOFSTEP] rcases countable_cover_nhdsWithin htx with ⟨S, hSs, hSc, hSU⟩ [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ t : X → Set X htx : ∀ (x : X), x ∈ s → t x ∈ 𝓝[s] x htr : ∀ (x : X), x ∈ s → dimH (t x) ≤ r S : Set X hSs : S ⊆ s hSc : Set.Countable S hSU : s ⊆ ⋃ (x : X) (_ : x ∈ S), t x ⊢ dimH s ≤ r [PROOFSTEP] calc dimH s ≤ dimH (⋃ x ∈ S, t x) := dimH_mono hSU _ = ⨆ x ∈ S, dimH (t x) := (dimH_bUnion hSc _) _ ≤ r := iSup₂_le fun x hx => htr x <| hSs hx [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X ⊢ ⨆ (x : X) (_ : x ∈ s), limsup dimH (smallSets (𝓝[s] x)) = dimH s [PROOFSTEP] refine le_antisymm (iSup₂_le fun x _ => ?_) ?_ [GOAL] case refine_1 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X x : X x✝ : x ∈ s ⊢ limsup dimH (smallSets (𝓝[s] x)) ≤ dimH s [PROOFSTEP] refine limsup_le_of_le isCobounded_le_of_bot ?_ [GOAL] case refine_1 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X x : X x✝ : x ∈ s ⊢ ∀ᶠ (n : Set X) in smallSets (𝓝[s] x), dimH n ≤ dimH s [PROOFSTEP] exact eventually_smallSets.2 ⟨s, self_mem_nhdsWithin, fun t => dimH_mono⟩ [GOAL] case refine_2 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X ⊢ dimH s ≤ ⨆ (x : X) (_ : x ∈ s), limsup dimH (smallSets (𝓝[s] x)) [PROOFSTEP] refine le_of_forall_ge_of_dense fun r hr => ?_ [GOAL] case refine_2 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ hr : r < dimH s ⊢ r ≤ ⨆ (x : X) (_ : x ∈ s), limsup dimH (smallSets (𝓝[s] x)) [PROOFSTEP] rcases exists_mem_nhdsWithin_lt_dimH_of_lt_dimH hr with ⟨x, hxs, hxr⟩ [GOAL] case refine_2.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ hr : r < dimH s x : X hxs : x ∈ s hxr : ∀ (t : Set X), t ∈ 𝓝[s] x → r < dimH t ⊢ r ≤ ⨆ (x : X) (_ : x ∈ s), limsup dimH (smallSets (𝓝[s] x)) [PROOFSTEP] refine le_iSup₂_of_le x hxs ?_ [GOAL] case refine_2.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ hr : r < dimH s x : X hxs : x ∈ s hxr : ∀ (t : Set X), t ∈ 𝓝[s] x → r < dimH t ⊢ r ≤ limsup dimH (smallSets (𝓝[s] x)) [PROOFSTEP] rw [limsup_eq] [GOAL] case refine_2.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ hr : r < dimH s x : X hxs : x ∈ s hxr : ∀ (t : Set X), t ∈ 𝓝[s] x → r < dimH t ⊢ r ≤ sInf {a | ∀ᶠ (n : Set X) in smallSets (𝓝[s] x), dimH n ≤ a} [PROOFSTEP] refine le_sInf fun b hb => ?_ [GOAL] case refine_2.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ hr : r < dimH s x : X hxs : x ∈ s hxr : ∀ (t : Set X), t ∈ 𝓝[s] x → r < dimH t b : ℝ≥0∞ hb : b ∈ {a | ∀ᶠ (n : Set X) in smallSets (𝓝[s] x), dimH n ≤ a} ⊢ r ≤ b [PROOFSTEP] rcases eventually_smallSets.1 hb with ⟨t, htx, ht⟩ [GOAL] case refine_2.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X r : ℝ≥0∞ hr : r < dimH s x : X hxs : x ∈ s hxr : ∀ (t : Set X), t ∈ 𝓝[s] x → r < dimH t b : ℝ≥0∞ hb : b ∈ {a | ∀ᶠ (n : Set X) in smallSets (𝓝[s] x), dimH n ≤ a} t : Set X htx : t ∈ 𝓝[s] x ht : ∀ (t_1 : Set X), t_1 ⊆ t → dimH t_1 ≤ b ⊢ r ≤ b [PROOFSTEP] exact (hxr t htx).le.trans (ht t Subset.rfl) [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X ⊢ ⨆ (x : X), limsup dimH (smallSets (𝓝[s] x)) = dimH s [PROOFSTEP] refine le_antisymm (iSup_le fun x => ?_) ?_ [GOAL] case refine_1 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X x : X ⊢ limsup dimH (smallSets (𝓝[s] x)) ≤ dimH s [PROOFSTEP] refine limsup_le_of_le isCobounded_le_of_bot ?_ [GOAL] case refine_1 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X x : X ⊢ ∀ᶠ (n : Set X) in smallSets (𝓝[s] x), dimH n ≤ dimH s [PROOFSTEP] exact eventually_smallSets.2 ⟨s, self_mem_nhdsWithin, fun t => dimH_mono⟩ [GOAL] case refine_2 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X ⊢ dimH s ≤ ⨆ (x : X), limsup dimH (smallSets (𝓝[s] x)) [PROOFSTEP] rw [← bsupr_limsup_dimH] [GOAL] case refine_2 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y inst✝ : SecondCountableTopology X s : Set X ⊢ ⨆ (x : X) (_ : x ∈ s), limsup dimH (smallSets (𝓝[s] x)) ≤ ⨆ (x : X), limsup dimH (smallSets (𝓝[s] x)) [PROOFSTEP] exact iSup₂_le_iSup _ _ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r ⊢ dimH (f '' s) ≤ dimH s / ↑r [PROOFSTEP] borelize X Y [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y ⊢ dimH (f '' s) ≤ dimH s / ↑r [PROOFSTEP] refine dimH_le fun d hd => ?_ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ ⊢ ↑d ≤ dimH s / ↑r [PROOFSTEP] have := h.hausdorffMeasure_image_le hr d.coe_nonneg [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ this : ↑↑μH[↑d] (f '' s) ≤ ↑C ^ ↑d * ↑↑μH[↑r * ↑d] s ⊢ ↑d ≤ dimH s / ↑r [PROOFSTEP] rw [hd, ENNReal.coe_rpow_of_nonneg _ d.coe_nonneg, top_le_iff] at this [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ this : ↑(C ^ ↑d) * ↑↑μH[↑r * ↑d] s = ⊤ ⊢ ↑d ≤ dimH s / ↑r [PROOFSTEP] have Hrd : μH[(r * d : ℝ≥0)] s = ⊤ := by contrapose this exact ENNReal.mul_ne_top ENNReal.coe_ne_top this [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ this : ↑(C ^ ↑d) * ↑↑μH[↑r * ↑d] s = ⊤ ⊢ ↑↑μH[↑(r * d)] s = ⊤ [PROOFSTEP] contrapose this [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ this : ¬↑↑μH[↑(r * d)] s = ⊤ ⊢ ¬↑(C ^ ↑d) * ↑↑μH[↑r * ↑d] s = ⊤ [PROOFSTEP] exact ENNReal.mul_ne_top ENNReal.coe_ne_top this [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ this : ↑(C ^ ↑d) * ↑↑μH[↑r * ↑d] s = ⊤ Hrd : ↑↑μH[↑(r * d)] s = ⊤ ⊢ ↑d ≤ dimH s / ↑r [PROOFSTEP] rw [ENNReal.le_div_iff_mul_le, mul_comm, ← ENNReal.coe_mul] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ this : ↑(C ^ ↑d) * ↑↑μH[↑r * ↑d] s = ⊤ Hrd : ↑↑μH[↑(r * d)] s = ⊤ ⊢ ↑(r * d) ≤ dimH s case h0 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ this : ↑(C ^ ↑d) * ↑↑μH[↑r * ↑d] s = ⊤ Hrd : ↑↑μH[↑(r * d)] s = ⊤ ⊢ ↑r ≠ 0 ∨ dimH s ≠ 0 case ht ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : HolderOnWith C r f s hr : 0 < r this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f '' s) = ⊤ this : ↑(C ^ ↑d) * ↑↑μH[↑r * ↑d] s = ⊤ Hrd : ↑↑μH[↑(r * d)] s = ⊤ ⊢ ↑r ≠ ⊤ ∨ dimH s ≠ ⊤ [PROOFSTEP] exacts [le_dimH_of_hausdorffMeasure_eq_top Hrd, Or.inl (mt ENNReal.coe_eq_zero.1 hr.ne'), Or.inl ENNReal.coe_ne_top] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r✝ : ℝ≥0 f✝ : X → Y s✝ t : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r s : Set X hf : ∀ (x : X), x ∈ s → ∃ C t, t ∈ 𝓝[s] x ∧ HolderOnWith C r f t ⊢ dimH (f '' s) ≤ dimH s / ↑r [PROOFSTEP] choose! C t htn hC using hf [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C✝ K r✝ : ℝ≥0 f✝ : X → Y s✝ t✝ : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r s : Set X C : X → ℝ≥0 t : X → Set X htn : ∀ (x : X), x ∈ s → t x ∈ 𝓝[s] x hC : ∀ (x : X), x ∈ s → HolderOnWith (C x) r f (t x) ⊢ dimH (f '' s) ≤ dimH s / ↑r [PROOFSTEP] rcases countable_cover_nhdsWithin htn with ⟨u, hus, huc, huU⟩ [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C✝ K r✝ : ℝ≥0 f✝ : X → Y s✝ t✝ : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r s : Set X C : X → ℝ≥0 t : X → Set X htn : ∀ (x : X), x ∈ s → t x ∈ 𝓝[s] x hC : ∀ (x : X), x ∈ s → HolderOnWith (C x) r f (t x) u : Set X hus : u ⊆ s huc : Set.Countable u huU : s ⊆ ⋃ (x : X) (_ : x ∈ u), t x ⊢ dimH (f '' s) ≤ dimH s / ↑r [PROOFSTEP] replace huU := inter_eq_self_of_subset_left huU [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C✝ K r✝ : ℝ≥0 f✝ : X → Y s✝ t✝ : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r s : Set X C : X → ℝ≥0 t : X → Set X htn : ∀ (x : X), x ∈ s → t x ∈ 𝓝[s] x hC : ∀ (x : X), x ∈ s → HolderOnWith (C x) r f (t x) u : Set X hus : u ⊆ s huc : Set.Countable u huU : s ∩ ⋃ (x : X) (_ : x ∈ u), t x = s ⊢ dimH (f '' s) ≤ dimH s / ↑r [PROOFSTEP] rw [inter_iUnion₂] at huU [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C✝ K r✝ : ℝ≥0 f✝ : X → Y s✝ t✝ : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r s : Set X C : X → ℝ≥0 t : X → Set X htn : ∀ (x : X), x ∈ s → t x ∈ 𝓝[s] x hC : ∀ (x : X), x ∈ s → HolderOnWith (C x) r f (t x) u : Set X hus : u ⊆ s huc : Set.Countable u huU : ⋃ (i : X) (_ : i ∈ u), s ∩ t i = s ⊢ dimH (f '' s) ≤ dimH s / ↑r [PROOFSTEP] rw [← huU, image_iUnion₂, dimH_bUnion huc, dimH_bUnion huc] [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C✝ K r✝ : ℝ≥0 f✝ : X → Y s✝ t✝ : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r s : Set X C : X → ℝ≥0 t : X → Set X htn : ∀ (x : X), x ∈ s → t x ∈ 𝓝[s] x hC : ∀ (x : X), x ∈ s → HolderOnWith (C x) r f (t x) u : Set X hus : u ⊆ s huc : Set.Countable u huU : ⋃ (i : X) (_ : i ∈ u), s ∩ t i = s ⊢ ⨆ (i : X) (_ : i ∈ u), dimH (f '' (s ∩ t i)) ≤ (⨆ (i : X) (_ : i ∈ u), dimH (s ∩ t i)) / ↑r [PROOFSTEP] simp only [ENNReal.iSup_div] [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C✝ K r✝ : ℝ≥0 f✝ : X → Y s✝ t✝ : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r s : Set X C : X → ℝ≥0 t : X → Set X htn : ∀ (x : X), x ∈ s → t x ∈ 𝓝[s] x hC : ∀ (x : X), x ∈ s → HolderOnWith (C x) r f (t x) u : Set X hus : u ⊆ s huc : Set.Countable u huU : ⋃ (i : X) (_ : i ∈ u), s ∩ t i = s ⊢ ⨆ (i : X) (_ : i ∈ u), dimH (f '' (s ∩ t i)) ≤ ⨆ (i : X) (_ : i ∈ u), dimH (s ∩ t i) / ↑r [PROOFSTEP] exact iSup₂_mono fun x hx => ((hC x (hus hx)).mono (inter_subset_right _ _)).dimH_image_le hr [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r✝ : ℝ≥0 f✝ : X → Y s t : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r hf : ∀ (x : X), ∃ C s, s ∈ 𝓝 x ∧ HolderOnWith C r f s ⊢ dimH (range f) ≤ dimH univ / ↑r [PROOFSTEP] rw [← image_univ] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r✝ : ℝ≥0 f✝ : X → Y s t : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r hf : ∀ (x : X), ∃ C s, s ∈ 𝓝 x ∧ HolderOnWith C r f s ⊢ dimH (f '' univ) ≤ dimH univ / ↑r [PROOFSTEP] refine dimH_image_le_of_locally_holder_on hr fun x _ => ?_ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r✝ : ℝ≥0 f✝ : X → Y s t : Set X inst✝ : SecondCountableTopology X r : ℝ≥0 f : X → Y hr : 0 < r hf : ∀ (x : X), ∃ C s, s ∈ 𝓝 x ∧ HolderOnWith C r f s x : X x✝ : x ∈ univ ⊢ ∃ C t, t ∈ 𝓝[univ] x ∧ HolderOnWith C r f t [PROOFSTEP] simpa only [exists_prop, nhdsWithin_univ] using hf x [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X h : LipschitzOnWith K f s ⊢ dimH (f '' s) ≤ dimH s [PROOFSTEP] simpa using h.holderOnWith.dimH_image_le zero_lt_one [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r : ℝ≥0 f✝ : X → Y s✝ t : Set X inst✝ : SecondCountableTopology X f : X → Y s : Set X hf : ∀ (x : X), x ∈ s → ∃ C t, t ∈ 𝓝[s] x ∧ LipschitzOnWith C f t ⊢ dimH (f '' s) ≤ dimH s [PROOFSTEP] have : ∀ x ∈ s, ∃ C : ℝ≥0, ∃ t ∈ 𝓝[s] x, HolderOnWith C 1 f t := by simpa only [holderOnWith_one] using hf [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r : ℝ≥0 f✝ : X → Y s✝ t : Set X inst✝ : SecondCountableTopology X f : X → Y s : Set X hf : ∀ (x : X), x ∈ s → ∃ C t, t ∈ 𝓝[s] x ∧ LipschitzOnWith C f t ⊢ ∀ (x : X), x ∈ s → ∃ C t, t ∈ 𝓝[s] x ∧ HolderOnWith C 1 f t [PROOFSTEP] simpa only [holderOnWith_one] using hf [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r : ℝ≥0 f✝ : X → Y s✝ t : Set X inst✝ : SecondCountableTopology X f : X → Y s : Set X hf : ∀ (x : X), x ∈ s → ∃ C t, t ∈ 𝓝[s] x ∧ LipschitzOnWith C f t this : ∀ (x : X), x ∈ s → ∃ C t, t ∈ 𝓝[s] x ∧ HolderOnWith C 1 f t ⊢ dimH (f '' s) ≤ dimH s [PROOFSTEP] simpa only [ENNReal.coe_one, div_one] using dimH_image_le_of_locally_holder_on zero_lt_one this [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r : ℝ≥0 f✝ : X → Y s t : Set X inst✝ : SecondCountableTopology X f : X → Y hf : ∀ (x : X), ∃ C s, s ∈ 𝓝 x ∧ LipschitzOnWith C f s ⊢ dimH (range f) ≤ dimH univ [PROOFSTEP] rw [← image_univ] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r : ℝ≥0 f✝ : X → Y s t : Set X inst✝ : SecondCountableTopology X f : X → Y hf : ∀ (x : X), ∃ C s, s ∈ 𝓝 x ∧ LipschitzOnWith C f s ⊢ dimH (f '' univ) ≤ dimH univ [PROOFSTEP] refine dimH_image_le_of_locally_lipschitz_on fun x _ => ?_ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝² : EMetricSpace X inst✝¹ : EMetricSpace Y C K r : ℝ≥0 f✝ : X → Y s t : Set X inst✝ : SecondCountableTopology X f : X → Y hf : ∀ (x : X), ∃ C s, s ∈ 𝓝 x ∧ LipschitzOnWith C f s x : X x✝ : x ∈ univ ⊢ ∃ C t, t ∈ 𝓝[univ] x ∧ LipschitzOnWith C f t [PROOFSTEP] simpa only [exists_prop, nhdsWithin_univ] using hf x [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X hf : AntilipschitzWith K f s : Set Y ⊢ dimH (f ⁻¹' s) ≤ dimH s [PROOFSTEP] borelize X Y [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X hf : AntilipschitzWith K f s : Set Y this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y ⊢ dimH (f ⁻¹' s) ≤ dimH s [PROOFSTEP] refine dimH_le fun d hd => le_dimH_of_hausdorffMeasure_eq_top ?_ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X hf : AntilipschitzWith K f s : Set Y this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f ⁻¹' s) = ⊤ ⊢ ↑↑μH[↑d] s = ⊤ [PROOFSTEP] have := hf.hausdorffMeasure_preimage_le d.coe_nonneg s [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X hf : AntilipschitzWith K f s : Set Y this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f ⁻¹' s) = ⊤ this : ↑↑μH[↑d] (f ⁻¹' s) ≤ ↑K ^ ↑d * ↑↑μH[↑d] s ⊢ ↑↑μH[↑d] s = ⊤ [PROOFSTEP] rw [hd, top_le_iff] at this [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X hf : AntilipschitzWith K f s : Set Y this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f ⁻¹' s) = ⊤ this : ↑K ^ ↑d * ↑↑μH[↑d] s = ⊤ ⊢ ↑↑μH[↑d] s = ⊤ [PROOFSTEP] contrapose! this [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X hf : AntilipschitzWith K f s : Set Y this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f ⁻¹' s) = ⊤ this : ↑↑μH[↑d] s ≠ ⊤ ⊢ ↑K ^ ↑d * ↑↑μH[↑d] s ≠ ⊤ [PROOFSTEP] exact ENNReal.mul_ne_top (by simp) this [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X hf : AntilipschitzWith K f s : Set Y this✝³ : MeasurableSpace X := borel X this✝² : BorelSpace X this✝¹ : MeasurableSpace Y := borel Y this✝ : BorelSpace Y d : ℝ≥0 hd : ↑↑μH[↑d] (f ⁻¹' s) = ⊤ this : ↑↑μH[↑d] s ≠ ⊤ ⊢ ↑K ^ ↑d ≠ ⊤ [PROOFSTEP] simp [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X e : X ≃ᵢ Y s : Set Y ⊢ dimH (↑e ⁻¹' s) = dimH s [PROOFSTEP] rw [← e.image_symm, e.symm.dimH_image] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝¹ : EMetricSpace X inst✝ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X e : X ≃ᵢ Y ⊢ dimH univ = dimH univ [PROOFSTEP] rw [← e.dimH_preimage univ, preimage_univ] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X 𝕜 : Type u_4 E : Type u_5 F : Type u_6 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F e : E ≃L[𝕜] F s : Set E ⊢ dimH s ≤ dimH (↑e '' s) [PROOFSTEP] simpa only [e.symm_image_image] using e.symm.lipschitz.dimH_image_le (e '' s) [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X 𝕜 : Type u_4 E : Type u_5 F : Type u_6 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F e : E ≃L[𝕜] F s : Set F ⊢ dimH (↑e ⁻¹' s) = dimH s [PROOFSTEP] rw [← e.image_symm_eq_preimage, e.symm.dimH_image] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X 𝕜 : Type u_4 E : Type u_5 F : Type u_6 inst✝⁴ : NontriviallyNormedField 𝕜 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace 𝕜 F e : E ≃L[𝕜] F ⊢ dimH univ = dimH univ [PROOFSTEP] rw [← e.dimH_preimage, preimage_univ] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r ⊢ dimH (Metric.ball x r) = ↑(Fintype.card ι) [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : IsEmpty ι ⊢ dimH (Metric.ball x r) = ↑(Fintype.card ι) [PROOFSTEP] rwa [dimH_subsingleton, eq_comm, Nat.cast_eq_zero, Fintype.card_eq_zero_iff] [GOAL] case inl ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : IsEmpty ι ⊢ Set.Subsingleton (Metric.ball x r) [PROOFSTEP] exact fun x _ y _ => Subsingleton.elim x y [GOAL] case inr ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : Nonempty ι ⊢ dimH (Metric.ball x r) = ↑(Fintype.card ι) [PROOFSTEP] rw [← ENNReal.coe_nat] [GOAL] case inr ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : Nonempty ι ⊢ dimH (Metric.ball x r) = ↑↑(Fintype.card ι) [PROOFSTEP] have : μH[Fintype.card ι] (Metric.ball x r) = ENNReal.ofReal ((2 * r) ^ Fintype.card ι) := by rw [hausdorffMeasure_pi_real, Real.volume_pi_ball _ hr, rpow_nat_cast] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : Nonempty ι ⊢ ↑↑μH[↑(Fintype.card ι)] (Metric.ball x r) = ENNReal.ofReal ((2 * r) ^ ↑(Fintype.card ι)) [PROOFSTEP] rw [hausdorffMeasure_pi_real, Real.volume_pi_ball _ hr, rpow_nat_cast] [GOAL] case inr ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : Nonempty ι this : ↑↑μH[↑(Fintype.card ι)] (Metric.ball x r) = ENNReal.ofReal ((2 * r) ^ ↑(Fintype.card ι)) ⊢ dimH (Metric.ball x r) = ↑↑(Fintype.card ι) [PROOFSTEP] refine dimH_of_hausdorffMeasure_ne_zero_ne_top ?_ ?_ [GOAL] case inr.refine_1 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : Nonempty ι this : ↑↑μH[↑(Fintype.card ι)] (Metric.ball x r) = ENNReal.ofReal ((2 * r) ^ ↑(Fintype.card ι)) ⊢ ↑↑μH[↑↑(Fintype.card ι)] (Metric.ball x r) ≠ 0 [PROOFSTEP] rw [NNReal.coe_nat_cast, this] [GOAL] case inr.refine_2 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : Nonempty ι this : ↑↑μH[↑(Fintype.card ι)] (Metric.ball x r) = ENNReal.ofReal ((2 * r) ^ ↑(Fintype.card ι)) ⊢ ↑↑μH[↑↑(Fintype.card ι)] (Metric.ball x r) ≠ ⊤ [PROOFSTEP] rw [NNReal.coe_nat_cast, this] [GOAL] case inr.refine_1 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : Nonempty ι this : ↑↑μH[↑(Fintype.card ι)] (Metric.ball x r) = ENNReal.ofReal ((2 * r) ^ ↑(Fintype.card ι)) ⊢ ENNReal.ofReal ((2 * r) ^ ↑(Fintype.card ι)) ≠ 0 [PROOFSTEP] simp [pow_pos (mul_pos (zero_lt_two' ℝ) hr)] [GOAL] case inr.refine_2 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : ι → ℝ r : ℝ hr : 0 < r h✝ : Nonempty ι this : ↑↑μH[↑(Fintype.card ι)] (Metric.ball x r) = ENNReal.ofReal ((2 * r) ^ ↑(Fintype.card ι)) ⊢ ENNReal.ofReal ((2 * r) ^ ↑(Fintype.card ι)) ≠ ⊤ [PROOFSTEP] exact ENNReal.ofReal_ne_top [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E n : ℕ x : Fin n → ℝ r : ℝ hr : 0 < r ⊢ dimH (Metric.ball x r) = ↑n [PROOFSTEP] rw [dimH_ball_pi x hr, Fintype.card_fin] [GOAL] ι✝ : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝⁴ : Fintype ι✝ inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : FiniteDimensional ℝ E ι : Type u_5 inst✝ : Fintype ι ⊢ dimH univ = ↑(Fintype.card ι) [PROOFSTEP] simp only [← Metric.iUnion_ball_nat_succ (0 : ι → ℝ), dimH_iUnion, dimH_ball_pi _ (Nat.cast_add_one_pos _), iSup_const] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E n : ℕ ⊢ dimH univ = ↑n [PROOFSTEP] rw [dimH_univ_pi, Fintype.card_fin] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x ⊢ dimH s = ↑(finrank ℝ E) [PROOFSTEP] have e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ := ContinuousLinearEquiv.ofFinrankEq (FiniteDimensional.finrank_fin_fun ℝ).symm [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ ⊢ dimH s = ↑(finrank ℝ E) [PROOFSTEP] rw [← e.dimH_image] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ ⊢ dimH (↑e '' s) = ↑(finrank ℝ E) [PROOFSTEP] refine le_antisymm ?_ ?_ [GOAL] case refine_1 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ ⊢ dimH (↑e '' s) ≤ ↑(finrank ℝ E) [PROOFSTEP] exact (dimH_mono (subset_univ _)).trans_eq (dimH_univ_pi_fin _) [GOAL] case refine_2 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ ⊢ ↑(finrank ℝ E) ≤ dimH (↑e '' s) [PROOFSTEP] have : e '' s ∈ 𝓝 (e x) := by rw [← e.map_nhds_eq]; exact image_mem_map h [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ ⊢ ↑e '' s ∈ 𝓝 (↑e x) [PROOFSTEP] rw [← e.map_nhds_eq] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ ⊢ ↑e '' s ∈ Filter.map (↑e) (𝓝 x) [PROOFSTEP] exact image_mem_map h [GOAL] case refine_2 ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ this : ↑e '' s ∈ 𝓝 (↑e x) ⊢ ↑(finrank ℝ E) ≤ dimH (↑e '' s) [PROOFSTEP] rcases Metric.nhds_basis_ball.mem_iff.1 this with ⟨r, hr0, hr⟩ [GOAL] case refine_2.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r✝ : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s : Set E h : s ∈ 𝓝 x e : E ≃L[ℝ] Fin (finrank ℝ E) → ℝ this : ↑e '' s ∈ 𝓝 (↑e x) r : ℝ hr0 : 0 < r hr : Metric.ball (↑e x) r ⊆ ↑e '' s ⊢ ↑(finrank ℝ E) ≤ dimH (↑e '' s) [PROOFSTEP] simpa only [dimH_ball_pi_fin (e x) hr0] using dimH_mono hr [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁵ : EMetricSpace X inst✝⁴ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s t : Set X E : Type u_4 inst✝³ : Fintype ι inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E ⊢ dimH univ = 1 [PROOFSTEP] rw [dimH_univ_eq_finrank ℝ, FiniteDimensional.finrank_self, Nat.cast_one] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t : Set X E : Type u_4 F : Type u_5 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set E hs : dimH s < ↑(finrank ℝ E) ⊢ Dense sᶜ [PROOFSTEP] refine fun x => mem_closure_iff_nhds.2 fun t ht => nonempty_iff_ne_empty.2 fun he => hs.not_le ?_ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t✝ : Set X E : Type u_4 F : Type u_5 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set E hs : dimH s < ↑(finrank ℝ E) x : E t : Set E ht : t ∈ 𝓝 x he : t ∩ sᶜ = ∅ ⊢ ↑(finrank ℝ E) ≤ dimH s [PROOFSTEP] rw [← diff_eq, diff_eq_empty] at he [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t✝ : Set X E : Type u_4 F : Type u_5 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set E hs : dimH s < ↑(finrank ℝ E) x : E t : Set E ht : t ∈ 𝓝 x he : t ⊆ s ⊢ ↑(finrank ℝ E) ≤ dimH s [PROOFSTEP] rw [← Real.dimH_of_mem_nhds ht] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f : X → Y s✝ t✝ : Set X E : Type u_4 F : Type u_5 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F s : Set E hs : dimH s < ↑(finrank ℝ E) x : E t : Set E ht : t ∈ 𝓝 x he : t ⊆ s ⊢ dimH t ≤ dimH s [PROOFSTEP] exact dimH_mono he [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 inst✝⁶ : EMetricSpace X inst✝⁵ : EMetricSpace Y C K r : ℝ≥0 f✝ : X → Y s t : Set X E : Type u_4 F : Type u_5 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : FiniteDimensional ℝ E inst✝¹ : NormedAddCommGroup F inst✝ : NormedSpace ℝ F f : E → F h : ContDiff ℝ 1 f ⊢ dimH (range f) = dimH (f '' univ) [PROOFSTEP] rw [image_univ]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.HausdorffDimension", "llama_tokens": 23482}
[GOAL] β : Type u_1 α : Type u_2 A : List β → Set α x : ↑(inducedMap A).fst n : ℕ ⊢ Sigma.snd (inducedMap A) x ∈ A (res (↑x) n) [PROOFSTEP] have := x.property.some_mem [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α x : ↑(inducedMap A).fst n : ℕ this : Set.Nonempty.some (_ : ↑x ∈ (inducedMap A).fst) ∈ ⋂ (n : ℕ), A (res (↑x) n) ⊢ Sigma.snd (inducedMap A) x ∈ A (res (↑x) n) [PROOFSTEP] rw [mem_iInter] at this [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α x : ↑(inducedMap A).fst n : ℕ this : ∀ (i : ℕ), Set.Nonempty.some (_ : ↑x ∈ (inducedMap A).fst) ∈ A (res (↑x) i) ⊢ Sigma.snd (inducedMap A) x ∈ A (res (↑x) n) [PROOFSTEP] exact this n [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A ⊢ Injective (inducedMap A).snd [PROOFSTEP] rintro ⟨x, hx⟩ ⟨y, hy⟩ hxy [GOAL] case mk.mk β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } ⊢ { val := x, property := hx } = { val := y, property := hy } [PROOFSTEP] refine' Subtype.coe_injective (res_injective _) [GOAL] case mk.mk β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } ⊢ res ((fun a => ↑a) { val := x, property := hx }) = res ((fun a => ↑a) { val := y, property := hy }) [PROOFSTEP] dsimp [GOAL] case mk.mk β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } ⊢ res x = res y [PROOFSTEP] ext n : 1 [GOAL] case mk.mk.h β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ⊢ res x n = res y n [PROOFSTEP] induction' n with n ih [GOAL] case mk.mk.h.zero β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } ⊢ res x Nat.zero = res y Nat.zero [PROOFSTEP] simp [GOAL] case mk.mk.h.succ β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n ⊢ res x (Nat.succ n) = res y (Nat.succ n) [PROOFSTEP] simp only [res_succ, cons.injEq] [GOAL] case mk.mk.h.succ β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n ⊢ x n = y n ∧ res x n = res y n [PROOFSTEP] refine' ⟨_, ih⟩ [GOAL] case mk.mk.h.succ β : Type u_1 α : Type u_2 A : List β → Set α hA : CantorScheme.Disjoint A x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n ⊢ x n = y n [PROOFSTEP] contrapose hA [GOAL] case mk.mk.h.succ β : Type u_1 α : Type u_2 A : List β → Set α x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n hA : ¬x n = y n ⊢ ¬CantorScheme.Disjoint A [PROOFSTEP] simp only [CantorScheme.Disjoint, _root_.Pairwise, Ne.def, not_forall, exists_prop] [GOAL] case mk.mk.h.succ β : Type u_1 α : Type u_2 A : List β → Set α x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n hA : ¬x n = y n ⊢ ∃ x x_1 x_2, ¬x_1 = x_2 ∧ ¬_root_.Disjoint (A (x_1 :: x)) (A (x_2 :: x)) [PROOFSTEP] refine' ⟨res x n, _, _, hA, _⟩ [GOAL] case mk.mk.h.succ β : Type u_1 α : Type u_2 A : List β → Set α x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n hA : ¬x n = y n ⊢ ¬_root_.Disjoint (A (x n :: res x n)) (A (y n :: res x n)) [PROOFSTEP] rw [not_disjoint_iff] [GOAL] case mk.mk.h.succ β : Type u_1 α : Type u_2 A : List β → Set α x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n hA : ¬x n = y n ⊢ ∃ x_1, x_1 ∈ A (x n :: res x n) ∧ x_1 ∈ A (y n :: res x n) [PROOFSTEP] refine' ⟨(inducedMap A).2 ⟨x, hx⟩, _, _⟩ [GOAL] case mk.mk.h.succ.refine'_1 β : Type u_1 α : Type u_2 A : List β → Set α x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n hA : ¬x n = y n ⊢ Sigma.snd (inducedMap A) { val := x, property := hx } ∈ A (x n :: res x n) [PROOFSTEP] rw [← res_succ] [GOAL] case mk.mk.h.succ.refine'_1 β : Type u_1 α : Type u_2 A : List β → Set α x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n hA : ¬x n = y n ⊢ Sigma.snd (inducedMap A) { val := x, property := hx } ∈ A (res x (Nat.succ n)) [PROOFSTEP] apply map_mem [GOAL] case mk.mk.h.succ.refine'_2 β : Type u_1 α : Type u_2 A : List β → Set α x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n hA : ¬x n = y n ⊢ Sigma.snd (inducedMap A) { val := x, property := hx } ∈ A (y n :: res x n) [PROOFSTEP] rw [hxy, ih, ← res_succ] [GOAL] case mk.mk.h.succ.refine'_2 β : Type u_1 α : Type u_2 A : List β → Set α x : ℕ → β hx : x ∈ (inducedMap A).fst y : ℕ → β hy : y ∈ (inducedMap A).fst hxy : Sigma.snd (inducedMap A) { val := x, property := hx } = Sigma.snd (inducedMap A) { val := y, property := hy } n : ℕ ih : res x n = res y n hA : ¬x n = y n ⊢ Sigma.snd (inducedMap A) { val := y, property := hy } ∈ A (res y (Nat.succ n)) [PROOFSTEP] apply map_mem [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α hA : VanishingDiam A ε : ℝ ε_pos : 0 < ε x : ℕ → β ⊢ ∃ n, ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε [PROOFSTEP] specialize hA x [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : Tendsto (fun n => EMetric.diam (A (res x n))) atTop (𝓝 0) ⊢ ∃ n, ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε [PROOFSTEP] rw [ENNReal.tendsto_atTop_zero] at hA [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε ⊢ ∃ n, ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε [PROOFSTEP] cases' hA (ENNReal.ofReal (ε / 2)) (by simp only [gt_iff_lt, ENNReal.ofReal_pos] linarith) with n hn [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε ⊢ ENNReal.ofReal (ε / 2) > 0 [PROOFSTEP] simp only [gt_iff_lt, ENNReal.ofReal_pos] [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε ⊢ 0 < ε / 2 [PROOFSTEP] linarith [GOAL] case intro β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → EMetric.diam (A (res x n_1)) ≤ ENNReal.ofReal (ε / 2) ⊢ ∃ n, ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε [PROOFSTEP] use n [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → EMetric.diam (A (res x n_1)) ≤ ENNReal.ofReal (ε / 2) ⊢ ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε [PROOFSTEP] intro y hy z hz [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → EMetric.diam (A (res x n_1)) ≤ ENNReal.ofReal (ε / 2) y : α hy : y ∈ A (res x n) z : α hz : z ∈ A (res x n) ⊢ dist y z < ε [PROOFSTEP] rw [← ENNReal.ofReal_lt_ofReal_iff ε_pos, ← edist_dist] [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → EMetric.diam (A (res x n_1)) ≤ ENNReal.ofReal (ε / 2) y : α hy : y ∈ A (res x n) z : α hz : z ∈ A (res x n) ⊢ edist y z < ENNReal.ofReal ε [PROOFSTEP] apply lt_of_le_of_lt (EMetric.edist_le_diam_of_mem hy hz) [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → EMetric.diam (A (res x n_1)) ≤ ENNReal.ofReal (ε / 2) y : α hy : y ∈ A (res x n) z : α hz : z ∈ A (res x n) ⊢ EMetric.diam (A (res x n)) < ENNReal.ofReal ε [PROOFSTEP] apply lt_of_le_of_lt (hn _ (le_refl _)) [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → EMetric.diam (A (res x n_1)) ≤ ENNReal.ofReal (ε / 2) y : α hy : y ∈ A (res x n) z : α hz : z ∈ A (res x n) ⊢ ENNReal.ofReal (ε / 2) < ENNReal.ofReal ε [PROOFSTEP] rw [ENNReal.ofReal_lt_ofReal_iff ε_pos] [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝ : PseudoMetricSpace α ε : ℝ ε_pos : 0 < ε x : ℕ → β hA : ∀ (ε : ENNReal), ε > 0 → ∃ N, ∀ (n : ℕ), n ≥ N → EMetric.diam (A (res x n)) ≤ ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → EMetric.diam (A (res x n_1)) ≤ ENNReal.ofReal (ε / 2) y : α hy : y ∈ A (res x n) z : α hz : z ∈ A (res x n) ⊢ ε / 2 < ε [PROOFSTEP] linarith [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A ⊢ Continuous (inducedMap A).snd [PROOFSTEP] rw [Metric.continuous_iff'] [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A ⊢ ∀ (a : ↑(inducedMap A).fst) (ε : ℝ), ε > 0 → ∀ᶠ (x : ↑(inducedMap A).fst) in 𝓝 a, dist (Sigma.snd (inducedMap A) x) (Sigma.snd (inducedMap A) a) < ε [PROOFSTEP] rintro ⟨x, hx⟩ ε ε_pos [GOAL] case mk β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 ⊢ ∀ᶠ (x_1 : ↑(inducedMap A).fst) in 𝓝 { val := x, property := hx }, dist (Sigma.snd (inducedMap A) x_1) (Sigma.snd (inducedMap A) { val := x, property := hx }) < ε [PROOFSTEP] cases' hA.dist_lt _ ε_pos x with n hn [GOAL] case mk.intro β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε ⊢ ∀ᶠ (x_1 : ↑(inducedMap A).fst) in 𝓝 { val := x, property := hx }, dist (Sigma.snd (inducedMap A) x_1) (Sigma.snd (inducedMap A) { val := x, property := hx }) < ε [PROOFSTEP] rw [_root_.eventually_nhds_iff] [GOAL] case mk.intro β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε ⊢ ∃ t, (∀ (x_1 : ↑(inducedMap A).fst), x_1 ∈ t → dist (Sigma.snd (inducedMap A) x_1) (Sigma.snd (inducedMap A) { val := x, property := hx }) < ε) ∧ IsOpen t ∧ { val := x, property := hx } ∈ t [PROOFSTEP] refine' ⟨(↑) ⁻¹' cylinder x n, _, _, by simp⟩ [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε ⊢ { val := x, property := hx } ∈ Subtype.val ⁻¹' cylinder x n [PROOFSTEP] simp [GOAL] case mk.intro.refine'_1 β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε ⊢ ∀ (x_1 : ↑(inducedMap A).fst), x_1 ∈ Subtype.val ⁻¹' cylinder x n → dist (Sigma.snd (inducedMap A) x_1) (Sigma.snd (inducedMap A) { val := x, property := hx }) < ε [PROOFSTEP] rintro ⟨y, hy⟩ hyx [GOAL] case mk.intro.refine'_1.mk β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε y : ℕ → β hy : y ∈ (inducedMap A).fst hyx : { val := y, property := hy } ∈ Subtype.val ⁻¹' cylinder x n ⊢ dist (Sigma.snd (inducedMap A) { val := y, property := hy }) (Sigma.snd (inducedMap A) { val := x, property := hx }) < ε [PROOFSTEP] rw [mem_preimage, Subtype.coe_mk, cylinder_eq_res, mem_setOf] at hyx [GOAL] case mk.intro.refine'_1.mk β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε y : ℕ → β hy : y ∈ (inducedMap A).fst hyx : res y n = res x n ⊢ dist (Sigma.snd (inducedMap A) { val := y, property := hy }) (Sigma.snd (inducedMap A) { val := x, property := hx }) < ε [PROOFSTEP] apply hn [GOAL] case mk.intro.refine'_1.mk.x β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε y : ℕ → β hy : y ∈ (inducedMap A).fst hyx : res y n = res x n ⊢ Sigma.snd (inducedMap A) { val := y, property := hy } ∈ A (res x n) [PROOFSTEP] rw [← hyx] [GOAL] case mk.intro.refine'_1.mk.x β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε y : ℕ → β hy : y ∈ (inducedMap A).fst hyx : res y n = res x n ⊢ Sigma.snd (inducedMap A) { val := y, property := hy } ∈ A (res y n) [PROOFSTEP] apply map_mem [GOAL] case mk.intro.refine'_1.mk.x β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε y : ℕ → β hy : y ∈ (inducedMap A).fst hyx : res y n = res x n ⊢ Sigma.snd (inducedMap A) { val := x, property := hx } ∈ A (res x n) [PROOFSTEP] apply map_mem [GOAL] case mk.intro.refine'_2 β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε ⊢ IsOpen (Subtype.val ⁻¹' cylinder x n) [PROOFSTEP] apply continuous_subtype_val.isOpen_preimage [GOAL] case mk.intro.refine'_2.a β : Type u_1 α : Type u_2 A : List β → Set α inst✝² : PseudoMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : DiscreteTopology β hA : VanishingDiam A x : ℕ → β hx : x ∈ (inducedMap A).fst ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε ⊢ IsOpen (cylinder x n) [PROOFSTEP] apply isOpen_cylinder [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) ⊢ (inducedMap A).fst = univ [PROOFSTEP] rw [eq_univ_iff_forall] [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) ⊢ ∀ (x : ℕ → β), x ∈ (inducedMap A).fst [PROOFSTEP] intro x [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β ⊢ x ∈ (inducedMap A).fst [PROOFSTEP] choose u hu using fun n => hnonempty (res x n) [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) ⊢ x ∈ (inducedMap A).fst [PROOFSTEP] have umem : ∀ n m : ℕ, n ≤ m → u m ∈ A (res x n) := by have : Antitone fun n : ℕ => A (res x n) := by refine' antitone_nat_of_succ_le _ intro n apply hanti.antitone intro n m hnm exact this hnm (hu _) [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) ⊢ ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) [PROOFSTEP] have : Antitone fun n : ℕ => A (res x n) := by refine' antitone_nat_of_succ_le _ intro n apply hanti.antitone [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) ⊢ Antitone fun n => A (res x n) [PROOFSTEP] refine' antitone_nat_of_succ_le _ [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) ⊢ ∀ (n : ℕ), A (res x (n + 1)) ≤ A (res x n) [PROOFSTEP] intro n [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) n : ℕ ⊢ A (res x (n + 1)) ≤ A (res x n) [PROOFSTEP] apply hanti.antitone [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) this : Antitone fun n => A (res x n) ⊢ ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) [PROOFSTEP] intro n m hnm [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) this : Antitone fun n => A (res x n) n m : ℕ hnm : n ≤ m ⊢ u m ∈ A (res x n) [PROOFSTEP] exact this hnm (hu _) [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ⊢ x ∈ (inducedMap A).fst [PROOFSTEP] have : CauchySeq u := by rw [Metric.cauchySeq_iff] intro ε ε_pos cases' hdiam.dist_lt _ ε_pos x with n hn use n intro m₀ hm₀ m₁ hm₁ apply hn <;> apply umem <;> assumption [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ⊢ CauchySeq u [PROOFSTEP] rw [Metric.cauchySeq_iff] [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ⊢ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : ℕ), m ≥ N → ∀ (n : ℕ), n ≥ N → dist (u m) (u n) < ε [PROOFSTEP] intro ε ε_pos [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ε : ℝ ε_pos : ε > 0 ⊢ ∃ N, ∀ (m : ℕ), m ≥ N → ∀ (n : ℕ), n ≥ N → dist (u m) (u n) < ε [PROOFSTEP] cases' hdiam.dist_lt _ ε_pos x with n hn [GOAL] case intro β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε ⊢ ∃ N, ∀ (m : ℕ), m ≥ N → ∀ (n : ℕ), n ≥ N → dist (u m) (u n) < ε [PROOFSTEP] use n [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε ⊢ ∀ (m : ℕ), m ≥ n → ∀ (n_1 : ℕ), n_1 ≥ n → dist (u m) (u n_1) < ε [PROOFSTEP] intro m₀ hm₀ m₁ hm₁ [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε m₀ : ℕ hm₀ : m₀ ≥ n m₁ : ℕ hm₁ : m₁ ≥ n ⊢ dist (u m₀) (u m₁) < ε [PROOFSTEP] apply hn [GOAL] case h.x β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε m₀ : ℕ hm₀ : m₀ ≥ n m₁ : ℕ hm₁ : m₁ ≥ n ⊢ u m₀ ∈ A (res x n) [PROOFSTEP] apply umem [GOAL] case h.x β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε m₀ : ℕ hm₀ : m₀ ≥ n m₁ : ℕ hm₁ : m₁ ≥ n ⊢ u m₁ ∈ A (res x n) [PROOFSTEP] apply umem [GOAL] case h.x.a β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε m₀ : ℕ hm₀ : m₀ ≥ n m₁ : ℕ hm₁ : m₁ ≥ n ⊢ n ≤ m₀ [PROOFSTEP] assumption [GOAL] case h.x.a β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) ε : ℝ ε_pos : ε > 0 n : ℕ hn : ∀ (y : α), y ∈ A (res x n) → ∀ (z : α), z ∈ A (res x n) → dist y z < ε m₀ : ℕ hm₀ : m₀ ≥ n m₁ : ℕ hm₁ : m₁ ≥ n ⊢ n ≤ m₁ [PROOFSTEP] assumption [GOAL] β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) this : CauchySeq u ⊢ x ∈ (inducedMap A).fst [PROOFSTEP] cases' cauchySeq_tendsto_of_complete this with y hy [GOAL] case intro β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) this : CauchySeq u y : α hy : Tendsto u atTop (𝓝 y) ⊢ x ∈ (inducedMap A).fst [PROOFSTEP] use y [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) this : CauchySeq u y : α hy : Tendsto u atTop (𝓝 y) ⊢ y ∈ ⋂ (n : ℕ), A (res x n) [PROOFSTEP] rw [mem_iInter] [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) this : CauchySeq u y : α hy : Tendsto u atTop (𝓝 y) ⊢ ∀ (i : ℕ), y ∈ A (res x i) [PROOFSTEP] intro n [GOAL] case h β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) this : CauchySeq u y : α hy : Tendsto u atTop (𝓝 y) n : ℕ ⊢ y ∈ A (res x n) [PROOFSTEP] apply hanti _ (x n) [GOAL] case h.a β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) this : CauchySeq u y : α hy : Tendsto u atTop (𝓝 y) n : ℕ ⊢ y ∈ closure (A (x n :: res x n)) [PROOFSTEP] apply mem_closure_of_tendsto hy [GOAL] case h.a β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) this : CauchySeq u y : α hy : Tendsto u atTop (𝓝 y) n : ℕ ⊢ ∀ᶠ (x_1 : ℕ) in atTop, u x_1 ∈ A (x n :: res x n) [PROOFSTEP] rw [eventually_atTop] [GOAL] case h.a β : Type u_1 α : Type u_2 A : List β → Set α inst✝¹ : PseudoMetricSpace α inst✝ : CompleteSpace α hdiam : VanishingDiam A hanti : ClosureAntitone A hnonempty : ∀ (l : List β), Set.Nonempty (A l) x : ℕ → β u : ℕ → α hu : ∀ (n : ℕ), u n ∈ A (res x n) umem : ∀ (n m : ℕ), n ≤ m → u m ∈ A (res x n) this : CauchySeq u y : α hy : Tendsto u atTop (𝓝 y) n : ℕ ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → u b ∈ A (x n :: res x n) [PROOFSTEP] exact ⟨n.succ, umem _⟩
{"mathlib_filename": "Mathlib.Topology.MetricSpace.CantorScheme", "llama_tokens": 15679}
[GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ p₁ : Path x₀ x₁ F : Homotopy p₀ p₁ t : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk ↑(↑(ContinuousMap.Homotopy.curry F.toHomotopy) t)) 0 = x₀ [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ p₁ : Path x₀ x₁ F : Homotopy p₀ p₁ t : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk ↑(↑(ContinuousMap.Homotopy.curry F.toHomotopy) t)) 1 = x₁ [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ p₁ : Path x₀ x₁ F : Homotopy p₀ p₁ ⊢ eval F 0 = p₀ [PROOFSTEP] ext t [GOAL] case a.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ p₁ : Path x₀ x₁ F : Homotopy p₀ p₁ t : ↑I ⊢ ↑(eval F 0) t = ↑p₀ t [PROOFSTEP] simp [eval] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ p₁ : Path x₀ x₁ F : Homotopy p₀ p₁ ⊢ eval F 1 = p₁ [PROOFSTEP] ext t [GOAL] case a.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ p₁ : Path x₀ x₁ F : Homotopy p₀ p₁ t : ↑I ⊢ ↑(eval F 1) t = ↑p₁ t [PROOFSTEP] simp [eval] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ ⊢ Continuous fun x => (x.fst, Set.projIcc 0 1 extend.proof_1 (2 * ↑x.snd)) [PROOFSTEP] continuity [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ ⊢ Continuous fun x => (x.fst, Set.projIcc 0 1 extend.proof_1 (2 * ↑x.snd - 1)) [PROOFSTEP] continuity [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x : ↑I × ↑I hx : ↑x.snd = 1 / 2 ⊢ extend (eval F x.fst) (2 * ↑x.snd) = extend (eval G x.fst) (2 * ↑x.snd - 1) [PROOFSTEP] rw [hx] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x : ↑I × ↑I hx : ↑x.snd = 1 / 2 ⊢ extend (eval F x.fst) (2 * (1 / 2)) = extend (eval G x.fst) (2 * (1 / 2) - 1) [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1)) (0, x) = ↑(Path.trans p₀ p₁).toContinuousMap x [PROOFSTEP] simp [Path.trans] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1)) (1, x) = ↑(Path.trans q₀ q₁).toContinuousMap x [PROOFSTEP] simp [Path.trans] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x t : ↑I ht : t ∈ {0, 1} ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) t = ↑(Path.trans p₀ p₁).toContinuousMap t ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) t = ↑(Path.trans q₀ q₁).toContinuousMap t [PROOFSTEP] cases' ht with ht ht [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x t : ↑I ht : t = 0 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) t = ↑(Path.trans p₀ p₁).toContinuousMap t ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) t = ↑(Path.trans q₀ q₁).toContinuousMap t [PROOFSTEP] rw [ht] [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x t : ↑I ht : t = 0 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) 0 = ↑(Path.trans p₀ p₁).toContinuousMap 0 ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) 0 = ↑(Path.trans q₀ q₁).toContinuousMap 0 [PROOFSTEP] norm_num [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x t : ↑I ht : t ∈ {1} ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) t = ↑(Path.trans p₀ p₁).toContinuousMap t ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) t = ↑(Path.trans q₀ q₁).toContinuousMap t [PROOFSTEP] rw [Set.mem_singleton_iff] at ht [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x t : ↑I ht : t = 1 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) t = ↑(Path.trans p₀ p₁).toContinuousMap t ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) t = ↑(Path.trans q₀ q₁).toContinuousMap t [PROOFSTEP] rw [ht] [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x t : ↑I ht : t = 1 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) 1 = ↑(Path.trans p₀ p₁).toContinuousMap 1 ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1), map_zero_left := (_ : ∀ (x : ↑I), (if ↑(0, x).snd ≤ 1 / 2 then extend (eval F (0, x).fst) (2 * ↑(0, x).snd) else extend (eval G (0, x).fst) (2 * ↑(0, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p₀ (2 * t) else extend p₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend p₀ (2 * x) else extend p₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x), map_one_left := (_ : ∀ (x : ↑I), (if ↑(1, x).snd ≤ 1 / 2 then extend (eval F (1, x).fst) (2 * ↑(1, x).snd) else extend (eval G (1, x).fst) (2 * ↑(1, x).snd - 1)) = ↑{ toContinuousMap := ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend q₀ (2 * t) else extend q₁ (2 * t - 1)) ∘ Subtype.val), source' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 0 = x₀), target' := (_ : ((fun x => if x ≤ 1 / 2 then extend q₀ (2 * x) else extend q₁ (2 * x - 1)) ∘ Subtype.val) 1 = x₂) }.toContinuousMap x) }.toContinuousMap (x, x_1)) 1 = ↑(Path.trans q₀ q₁).toContinuousMap 1 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x : ↑I × ↑I ⊢ (if ↑x.snd ≤ 1 / 2 then extend (eval F x.fst) (2 * ↑x.snd) else extend (eval G x.fst) (2 * ↑x.snd - 1)) = if h : ↑x.snd ≤ 1 / 2 then ↑(eval F x.fst) { val := 2 * ↑x.snd, property := (_ : 2 * ↑x.snd ∈ I) } else ↑(eval G x.fst) { val := 2 * ↑x.snd - 1, property := (_ : 2 * ↑x.snd - 1 ∈ I) } [PROOFSTEP] split_ifs [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ extend (eval F x.fst) (2 * ↑x.snd) = ↑(eval F x.fst) { val := 2 * ↑x.snd, property := (_ : 2 * ↑x.snd ∈ I) } [PROOFSTEP] exact Path.extend_extends _ _ [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ extend (eval G x.fst) (2 * ↑x.snd - 1) = ↑(eval G x.fst) { val := 2 * ↑x.snd - 1, property := (_ : 2 * ↑x.snd - 1 ∈ I) } [PROOFSTEP] exact Path.extend_extends _ _ [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ t : ↑I ⊢ 0 ≤ 1 / 2 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ t : ↑I ⊢ 1 / 2 ≤ 1 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₀ q₀ : Path x₀ x₁ p₁ q₁ : Path x₁ x₂ F : Homotopy p₀ q₀ G : Homotopy p₁ q₁ t : ↑I ⊢ (if ↑(t, { val := 1 / 2, property := (_ : 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1) }).snd ≤ 1 / 2 then extend (eval F (t, { val := 1 / 2, property := (_ : 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1) }).fst) (2 * ↑(t, { val := 1 / 2, property := (_ : 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1) }).snd) else extend (eval G (t, { val := 1 / 2, property := (_ : 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1) }).fst) (2 * ↑(t, { val := 1 / 2, property := (_ : 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1) }).snd - 1)) = x₁ [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 x : ↑I × ↑I ⊢ 0 ≤ ↑(σ x.fst) [PROOFSTEP] unit_interval [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 x : ↑I × ↑I ⊢ 0 ≤ ↑x.fst [PROOFSTEP] unit_interval [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 x : ↑I × ↑I ⊢ ↑(σ x.fst) + ↑x.fst = 1 [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) } [PROOFSTEP] refine continuous_const.path_eval ?_ [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) } [PROOFSTEP] apply Continuous.subtype_mk [GOAL] case h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd) [PROOFSTEP] apply Continuous.add [GOAL] case h.hf X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => ↑(σ x.fst) * ↑x.snd [PROOFSTEP] apply Continuous.mul [GOAL] case h.hg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => ↑x.fst * ↑(f x.snd) [PROOFSTEP] apply Continuous.mul [GOAL] case h.hf.hf X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => ↑(σ x.fst) [PROOFSTEP] exact continuous_induced_dom.comp (unitInterval.continuous_symm.comp continuous_fst) [GOAL] case h.hf.hg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => ↑x.snd [PROOFSTEP] continuity [GOAL] case h.hg.hf X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => ↑x.fst [PROOFSTEP] continuity [GOAL] case h.hg.hg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 ⊢ Continuous fun x => ↑(f x.snd) [PROOFSTEP] continuity [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 x : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }) (0, x) = ↑p.toContinuousMap x [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 x : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }) (1, x) = ↑(Path.reparam p f hf hf₀ hf₁).toContinuousMap x [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t x : ↑I hx : x ∈ {0, 1} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) x = ↑p.toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) x = ↑(Path.reparam p f hf hf₀ hf₁).toContinuousMap x [PROOFSTEP] cases' hx with hx hx [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t x : ↑I hx : x = 0 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) x = ↑p.toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) x = ↑(Path.reparam p f hf hf₀ hf₁).toContinuousMap x [PROOFSTEP] rw [hx] [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t x : ↑I hx : x = 0 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) 0 = ↑p.toContinuousMap 0 ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) 0 = ↑(Path.reparam p f hf hf₀ hf₁).toContinuousMap 0 [PROOFSTEP] simp [hf₀] -- Porting note: Originally `norm_num [hf₀]` [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t x : ↑I hx : x ∈ {1} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) x = ↑p.toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) x = ↑(Path.reparam p f hf hf₀ hf₁).toContinuousMap x [PROOFSTEP] rw [Set.mem_singleton_iff] at hx [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t x : ↑I hx : x = 1 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) x = ↑p.toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) x = ↑(Path.reparam p f hf hf₀ hf₁).toContinuousMap x [PROOFSTEP] rw [hx] [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ f : ↑I → ↑I hf : Continuous f hf₀ : f 0 = 0 hf₁ : f 1 = 1 t x : ↑I hx : x = 1 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) 1 = ↑p.toContinuousMap 1 ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := ↑(σ x.fst) * ↑x.snd + ↑x.fst * ↑(f x.snd), property := (_ : ↑(σ x.fst) • ↑x.snd + ↑x.fst • ↑(f x.snd) ∈ I) }, map_zero_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (0, x).fst) * ↑(0, x).snd + ↑(0, x).fst * ↑(f (0, x).snd), property := (_ : ↑(σ (0, x).fst) • ↑(0, x).snd + ↑(0, x).fst • ↑(f (0, x).snd) ∈ I) } = ↑p x), map_one_left := (_ : ∀ (x : ↑I), ↑p { val := ↑(σ (1, x).fst) * ↑(1, x).snd + ↑(1, x).fst * ↑(f (1, x).snd), property := (_ : ↑(σ (1, x).fst) • ↑(1, x).snd + ↑(1, x).fst • ↑(f (1, x).snd) ∈ I) } = ↑p (f x)) }.toContinuousMap (t, x)) 1 = ↑(Path.reparam p f hf hf₀ hf₁).toContinuousMap 1 [PROOFSTEP] simp [hf₁] -- Porting note: Originally `norm_num [hf₀]` [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q ⊢ ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd)) (0, x) = ↑(Path.symm p).toContinuousMap x [PROOFSTEP] simp [Path.symm] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q ⊢ ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd)) (1, x) = ↑(Path.symm q).toContinuousMap x [PROOFSTEP] simp [Path.symm] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q t x : ↑I hx : x ∈ {0, 1} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) x = ↑(Path.symm p).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) x = ↑(Path.symm q).toContinuousMap x [PROOFSTEP] cases' hx with hx hx [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q t x : ↑I hx : x = 0 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) x = ↑(Path.symm p).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) x = ↑(Path.symm q).toContinuousMap x [PROOFSTEP] rw [hx] [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q t x : ↑I hx : x = 0 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) 0 = ↑(Path.symm p).toContinuousMap 0 ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) 0 = ↑(Path.symm q).toContinuousMap 0 [PROOFSTEP] simp [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q t x : ↑I hx : x ∈ {1} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) x = ↑(Path.symm p).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) x = ↑(Path.symm q).toContinuousMap x [PROOFSTEP] rw [Set.mem_singleton_iff] at hx [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q t x : ↑I hx : x = 1 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) x = ↑(Path.symm p).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) x = ↑(Path.symm q).toContinuousMap x [PROOFSTEP] rw [hx] [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q t x : ↑I hx : x = 1 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) 1 = ↑(Path.symm p).toContinuousMap 1 ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑F (x.fst, σ x.snd), map_zero_left := (_ : ∀ (a : ↑I), ↑F (0, σ a) = ↑p (σ a)), map_one_left := (_ : ∀ (a : ↑I), ↑F (1, σ a) = ↑q (σ a)) }.toContinuousMap (t, x)) 1 = ↑(Path.symm q).toContinuousMap 1 [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q f : C(X, Y) ⊢ ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk (↑f ∘ ↑F)) (0, x) = ↑(Path.map p (_ : Continuous ↑f)).toContinuousMap x [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q f : C(X, Y) ⊢ ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk (↑f ∘ ↑F)) (1, x) = ↑(Path.map q (_ : Continuous ↑f)).toContinuousMap x [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q f : C(X, Y) t x : ↑I hx : x ∈ {0, 1} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk (↑f ∘ ↑F), map_zero_left := (_ : ∀ (a : ↑I), ↑f (↑F (0, a)) = ↑(Path.map p (_ : Continuous ↑f)) a), map_one_left := (_ : ∀ (a : ↑I), ↑f (↑F (1, a)) = ↑(Path.map q (_ : Continuous ↑f)) a) }.toContinuousMap (t, x)) x = ↑(Path.map p (_ : Continuous ↑f)).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk (↑f ∘ ↑F), map_zero_left := (_ : ∀ (a : ↑I), ↑f (↑F (0, a)) = ↑(Path.map p (_ : Continuous ↑f)) a), map_one_left := (_ : ∀ (a : ↑I), ↑f (↑F (1, a)) = ↑(Path.map q (_ : Continuous ↑f)) a) }.toContinuousMap (t, x)) x = ↑(Path.map q (_ : Continuous ↑f)).toContinuousMap x [PROOFSTEP] cases' hx with hx hx [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q f : C(X, Y) t x : ↑I hx : x = 0 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk (↑f ∘ ↑F), map_zero_left := (_ : ∀ (a : ↑I), ↑f (↑F (0, a)) = ↑(Path.map p (_ : Continuous ↑f)) a), map_one_left := (_ : ∀ (a : ↑I), ↑f (↑F (1, a)) = ↑(Path.map q (_ : Continuous ↑f)) a) }.toContinuousMap (t, x)) x = ↑(Path.map p (_ : Continuous ↑f)).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk (↑f ∘ ↑F), map_zero_left := (_ : ∀ (a : ↑I), ↑f (↑F (0, a)) = ↑(Path.map p (_ : Continuous ↑f)) a), map_one_left := (_ : ∀ (a : ↑I), ↑f (↑F (1, a)) = ↑(Path.map q (_ : Continuous ↑f)) a) }.toContinuousMap (t, x)) x = ↑(Path.map q (_ : Continuous ↑f)).toContinuousMap x [PROOFSTEP] simp [hx] [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q f : C(X, Y) t x : ↑I hx : x ∈ {1} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk (↑f ∘ ↑F), map_zero_left := (_ : ∀ (a : ↑I), ↑f (↑F (0, a)) = ↑(Path.map p (_ : Continuous ↑f)) a), map_one_left := (_ : ∀ (a : ↑I), ↑f (↑F (1, a)) = ↑(Path.map q (_ : Continuous ↑f)) a) }.toContinuousMap (t, x)) x = ↑(Path.map p (_ : Continuous ↑f)).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk (↑f ∘ ↑F), map_zero_left := (_ : ∀ (a : ↑I), ↑f (↑F (0, a)) = ↑(Path.map p (_ : Continuous ↑f)) a), map_one_left := (_ : ∀ (a : ↑I), ↑f (↑F (1, a)) = ↑(Path.map q (_ : Continuous ↑f)) a) }.toContinuousMap (t, x)) x = ↑(Path.map q (_ : Continuous ↑f)).toContinuousMap x [PROOFSTEP] rw [Set.mem_singleton_iff] at hx [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p q : Path x₀ x₁ F : Homotopy p q f : C(X, Y) t x : ↑I hx : x = 1 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk (↑f ∘ ↑F), map_zero_left := (_ : ∀ (a : ↑I), ↑f (↑F (0, a)) = ↑(Path.map p (_ : Continuous ↑f)) a), map_one_left := (_ : ∀ (a : ↑I), ↑f (↑F (1, a)) = ↑(Path.map q (_ : Continuous ↑f)) a) }.toContinuousMap (t, x)) x = ↑(Path.map p (_ : Continuous ↑f)).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk (↑f ∘ ↑F), map_zero_left := (_ : ∀ (a : ↑I), ↑f (↑F (0, a)) = ↑(Path.map p (_ : Continuous ↑f)) a), map_one_left := (_ : ∀ (a : ↑I), ↑f (↑F (1, a)) = ↑(Path.map q (_ : Continuous ↑f)) a) }.toContinuousMap (t, x)) x = ↑(Path.map q (_ : Continuous ↑f)).toContinuousMap x [PROOFSTEP] simp [hx] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₁ : Path x₀ x₁ p₂ : Path x₂ x₃ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ HEq (Quotient.mk (Homotopic.setoid x₀ x₁) p₁) (Quotient.mk (Homotopic.setoid x₂ x₃) p₂) [PROOFSTEP] obtain rfl : x₀ = x₂ := by convert hp 0 <;> simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₁ : Path x₀ x₁ p₂ : Path x₂ x₃ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ x₀ = x₂ [PROOFSTEP] convert hp 0 [GOAL] case h.e'_2 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₁ : Path x₀ x₁ p₂ : Path x₂ x₃ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ x₀ = ↑p₁ 0 [PROOFSTEP] simp [GOAL] case h.e'_3 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X p₁ : Path x₀ x₁ p₂ : Path x₂ x₃ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ x₂ = ↑p₂ 0 [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₃ : X p₁ : Path x₀ x₁ p₂ : Path x₀ x₃ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ HEq (Quotient.mk (Homotopic.setoid x₀ x₁) p₁) (Quotient.mk (Homotopic.setoid x₀ x₃) p₂) [PROOFSTEP] obtain rfl : x₁ = x₃ := by convert hp 1 <;> simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₃ : X p₁ : Path x₀ x₁ p₂ : Path x₀ x₃ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ x₁ = x₃ [PROOFSTEP] convert hp 1 [GOAL] case h.e'_2 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₃ : X p₁ : Path x₀ x₁ p₂ : Path x₀ x₃ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ x₁ = ↑p₁ 1 [PROOFSTEP] simp [GOAL] case h.e'_3 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ x₃ : X p₁ : Path x₀ x₁ p₂ : Path x₀ x₃ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ x₃ = ↑p₂ 1 [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p₁ p₂ : Path x₀ x₁ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ HEq (Quotient.mk (Homotopic.setoid x₀ x₁) p₁) (Quotient.mk (Homotopic.setoid x₀ x₁) p₂) [PROOFSTEP] rw [heq_iff_eq] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p₁ p₂ : Path x₀ x₁ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ Quotient.mk (Homotopic.setoid x₀ x₁) p₁ = Quotient.mk (Homotopic.setoid x₀ x₁) p₂ [PROOFSTEP] congr [GOAL] case e_a X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p₁ p₂ : Path x₀ x₁ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t ⊢ p₁ = p₂ [PROOFSTEP] ext t [GOAL] case e_a.a.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p₁ p₂ : Path x₀ x₁ hp : ∀ (t : ↑I), ↑p₁ t = ↑p₂ t t : ↑I ⊢ ↑p₁ t = ↑p₂ t [PROOFSTEP] exact hp t [GOAL] X : Type u Y : Type v inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X inst✝ : Nonempty Y ⊢ Homotopic (const Y x₀) (const Y x₁) ↔ Joined x₀ x₁ [PROOFSTEP] inhabit Y [GOAL] X : Type u Y : Type v inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X inst✝ : Nonempty Y inhabited_h : Inhabited Y ⊢ Homotopic (const Y x₀) (const Y x₁) ↔ Joined x₀ x₁ [PROOFSTEP] refine ⟨fun ⟨H⟩ ↦ ⟨⟨(H.toContinuousMap.comp .prodSwap).curry default, ?_, ?_⟩⟩, fun ⟨p⟩ ↦ ⟨p.toHomotopyConst⟩⟩ [GOAL] case refine_1 X : Type u Y : Type v inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X inst✝ : Nonempty Y inhabited_h : Inhabited Y x✝ : Homotopic (const Y x₀) (const Y x₁) H : Homotopy (const Y x₀) (const Y x₁) ⊢ ContinuousMap.toFun (↑(curry (comp H.toContinuousMap prodSwap)) default) 0 = x₀ [PROOFSTEP] simp [GOAL] case refine_2 X : Type u Y : Type v inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y x₀ x₁ x₂ x₃ : X inst✝ : Nonempty Y inhabited_h : Inhabited Y x✝ : Homotopic (const Y x₀) (const Y x₁) H : Homotopy (const Y x₀) (const Y x₁) ⊢ ContinuousMap.toFun (↑(curry (comp H.toContinuousMap prodSwap)) default) 1 = x₁ [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Topology.Homotopy.Path", "llama_tokens": 29610}
[GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α ⊢ ParacompactSpace α [PROOFSTEP] have pow_pos : ∀ k : ℕ, (0 : ℝ≥0∞) < 2⁻¹ ^ k := fun k => ENNReal.pow_pos (ENNReal.inv_pos.2 ENNReal.two_ne_top) _ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k ⊢ ParacompactSpace α [PROOFSTEP] have hpow_le : ∀ {m n : ℕ}, m ≤ n → (2⁻¹ : ℝ≥0∞) ^ n ≤ 2⁻¹ ^ m := @fun m n h => pow_le_pow_of_le_one' (ENNReal.inv_le_one.2 ENNReal.one_lt_two.le) h [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m ⊢ ParacompactSpace α [PROOFSTEP] have h2pow : ∀ n : ℕ, 2 * (2⁻¹ : ℝ≥0∞) ^ (n + 1) = 2⁻¹ ^ n := fun n => by simp [pow_succ, ← mul_assoc, ENNReal.mul_inv_cancel] -- Consider an open covering `S : Set (Set α)` [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m n : ℕ ⊢ 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n [PROOFSTEP] simp [pow_succ, ← mul_assoc, ENNReal.mul_inv_cancel] -- Consider an open covering `S : Set (Set α)` [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ⊢ ParacompactSpace α [PROOFSTEP] refine' ⟨fun ι s ho hcov => _⟩ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ⋃ (a : ι), s a = univ ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] simp only [iUnion_eq_univ_iff] at hcov [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] let _ : LinearOrder ι := by classical exact linearOrderOfSTO WellOrderingRel [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i ⊢ LinearOrder ι [PROOFSTEP] classical exact linearOrderOfSTO WellOrderingRel [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i ⊢ LinearOrder ι [PROOFSTEP] exact linearOrderOfSTO WellOrderingRel [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] have wf : WellFounded ((· < ·) : ι → ι → Prop) := @IsWellFounded.wf ι WellOrderingRel _ -- Let `ind x` be the minimal index `s : S` such that `x ∈ s`. [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] set ind : α → ι := fun x => wf.min {i : ι | x ∈ s i} (hcov x) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] have mem_ind : ∀ x, x ∈ s (ind x) := fun x => wf.min_mem _ (hcov x) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] have nmem_of_lt_ind : ∀ {x i}, i < ind x → x ∉ s i := @fun x i hlt hxi => wf.not_lt_min _ (hcov x) hxi hlt [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] set D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (hxs : ind x = i) (hb : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (hlt : ∀ (m : ℕ) (H : m < n), ∀ (j : ι), x ∉ D' m H j), ball x (2⁻¹ ^ n) with hD [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] have Dn : ∀ n i, D n i = ⋃ (x : α) (hxs : ind x = i) (hb : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (hlt : ∀ m < n, ∀ (j : ι), x ∉ D m j), ball x (2⁻¹ ^ n) := fun n s => by simp only [hD] rw [Nat.strongRecOn'_beta] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s✝ : ι → Set α ho : ∀ (a : ι), IsOpen (s✝ a) hcov : ∀ (x : α), ∃ i, x ∈ s✝ i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s✝ i} (_ : ∃ i, x ∈ s✝ i) mem_ind : ∀ (x : α), x ∈ s✝ (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s✝ i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s✝ i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s✝ i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) n : ℕ s : ι ⊢ D n s = ⋃ (x : α) (_ : ind x = s) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s✝ s) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) [PROOFSTEP] simp only [hD] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s✝ : ι → Set α ho : ∀ (a : ι), IsOpen (s✝ a) hcov : ∀ (x : α), ∃ i, x ∈ s✝ i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s✝ i} (_ : ∃ i, x ∈ s✝ i) mem_ind : ∀ (x : α), x ∈ s✝ (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s✝ i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s✝ i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s✝ i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) n : ℕ s : ι ⊢ Nat.strongRecOn' n (fun n D' i => ⋃ (x : α) (_ : WellFounded.min wf {i | x ∈ s✝ i} (_ : ∃ i, x ∈ s✝ i) = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s✝ i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n)) s = ⋃ (x : α) (_ : WellFounded.min wf {i | x ∈ s✝ i} (_ : ∃ i, x ∈ s✝ i) = s) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s✝ s) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ Nat.strongRecOn' m (fun n D' i => ⋃ (x : α) (_ : WellFounded.min wf {i | x ∈ s✝ i} (_ : ∃ i, x ∈ s✝ i) = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s✝ i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n)) j), ball x (2⁻¹ ^ n) [PROOFSTEP] rw [Nat.strongRecOn'_beta] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] have memD : ∀ {n i y}, y ∈ D n i ↔ ∃ x : α, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ m < n, ∀ (j : ι), x ∉ D m j) ∧ edist y x < 2⁻¹ ^ n := by intro n i y rw [Dn n i] simp only [mem_iUnion, mem_ball, exists_prop] -- The sets `D n i` cover the whole space. Indeed, for each `x` we can choose `n` such that -- `ball x (3 / 2 ^ n) ⊆ s (ind x)`, then either `x ∈ D n i`, or `x ∈ D m i` for some `m < n`. [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) ⊢ ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n [PROOFSTEP] intro n i y [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) n : ℕ i : ι y : α ⊢ y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n [PROOFSTEP] rw [Dn n i] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) n : ℕ i : ι y : α ⊢ y ∈ ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n [PROOFSTEP] simp only [mem_iUnion, mem_ball, exists_prop] -- The sets `D n i` cover the whole space. Indeed, for each `x` we can choose `n` such that -- `ball x (3 / 2 ^ n) ⊆ s (ind x)`, then either `x ∈ D n i`, or `x ∈ D m i` for some `m < n`. [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] have Dcov : ∀ x, ∃ n i, x ∈ D n i := fun x => by obtain ⟨n, hn⟩ : ∃ n : ℕ, ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) := by -- This proof takes 5 lines because we can't import `specific_limits` here rcases isOpen_iff.1 (ho <| ind x) x (mem_ind x) with ⟨ε, ε0, hε⟩ have : 0 < ε / 3 := ENNReal.div_pos_iff.2 ⟨ε0.lt.ne', ENNReal.coe_ne_top⟩ rcases ENNReal.exists_inv_two_pow_lt this.ne' with ⟨n, hn⟩ refine' ⟨n, Subset.trans (ball_subset_ball _) hε⟩ simpa only [div_eq_mul_inv, mul_comm] using (ENNReal.mul_lt_of_lt_div hn).le by_contra' h apply h n (ind x) exact memD.2 ⟨x, rfl, hn, fun _ _ _ => h _ _, mem_ball_self (pow_pos _)⟩ -- Each `D n i` is a union of open balls, hence it is an open set [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α ⊢ ∃ n i, x ∈ D n i [PROOFSTEP] obtain ⟨n, hn⟩ : ∃ n : ℕ, ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) := by -- This proof takes 5 lines because we can't import `specific_limits` here rcases isOpen_iff.1 (ho <| ind x) x (mem_ind x) with ⟨ε, ε0, hε⟩ have : 0 < ε / 3 := ENNReal.div_pos_iff.2 ⟨ε0.lt.ne', ENNReal.coe_ne_top⟩ rcases ENNReal.exists_inv_two_pow_lt this.ne' with ⟨n, hn⟩ refine' ⟨n, Subset.trans (ball_subset_ball _) hε⟩ simpa only [div_eq_mul_inv, mul_comm] using (ENNReal.mul_lt_of_lt_div hn).le [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α ⊢ ∃ n, ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) [PROOFSTEP] rcases isOpen_iff.1 (ho <| ind x) x (mem_ind x) with ⟨ε, ε0, hε⟩ [GOAL] case intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α ε : ℝ≥0∞ ε0 : ε > 0 hε : ball x ε ⊆ s (ind x) ⊢ ∃ n, ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) [PROOFSTEP] have : 0 < ε / 3 := ENNReal.div_pos_iff.2 ⟨ε0.lt.ne', ENNReal.coe_ne_top⟩ [GOAL] case intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α ε : ℝ≥0∞ ε0 : ε > 0 hε : ball x ε ⊆ s (ind x) this : 0 < ε / 3 ⊢ ∃ n, ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) [PROOFSTEP] rcases ENNReal.exists_inv_two_pow_lt this.ne' with ⟨n, hn⟩ [GOAL] case intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α ε : ℝ≥0∞ ε0 : ε > 0 hε : ball x ε ⊆ s (ind x) this : 0 < ε / 3 n : ℕ hn : 2⁻¹ ^ n < ε / 3 ⊢ ∃ n, ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) [PROOFSTEP] refine' ⟨n, Subset.trans (ball_subset_ball _) hε⟩ [GOAL] case intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α ε : ℝ≥0∞ ε0 : ε > 0 hε : ball x ε ⊆ s (ind x) this : 0 < ε / 3 n : ℕ hn : 2⁻¹ ^ n < ε / 3 ⊢ 3 * 2⁻¹ ^ n ≤ ε [PROOFSTEP] simpa only [div_eq_mul_inv, mul_comm] using (ENNReal.mul_lt_of_lt_div hn).le [GOAL] case intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α n : ℕ hn : ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) ⊢ ∃ n i, x ∈ D n i [PROOFSTEP] by_contra' h [GOAL] case intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α n : ℕ hn : ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) h : ∀ (n : ℕ) (i : ι), ¬x ∈ (fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n)) n i ⊢ False [PROOFSTEP] apply h n (ind x) [GOAL] case intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n x : α n : ℕ hn : ball x (3 * 2⁻¹ ^ n) ⊆ s (ind x) h : ∀ (n : ℕ) (i : ι), ¬x ∈ (fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n)) n i ⊢ x ∈ (fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n)) n (ind x) [PROOFSTEP] exact memD.2 ⟨x, rfl, hn, fun _ _ _ => h _ _, mem_ball_self (pow_pos _)⟩ -- Each `D n i` is a union of open balls, hence it is an open set [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] have Dopen : ∀ n i, IsOpen (D n i) := fun n i => by rw [Dn] iterate 4 refine' isOpen_iUnion fun _ => _ exact isOpen_ball [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i n : ℕ i : ι ⊢ IsOpen (D n i) [PROOFSTEP] rw [Dn] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i n : ℕ i : ι ⊢ IsOpen (⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n)) [PROOFSTEP] iterate 4 refine' isOpen_iUnion fun _ => _ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i n : ℕ i : ι ⊢ IsOpen (⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n)) [PROOFSTEP] refine' isOpen_iUnion fun _ => _ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝¹ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i n : ℕ i : ι x✝ : α ⊢ IsOpen (⋃ (_ : ind x✝ = i) (_ : ball x✝ (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x✝ ∈ D m j), ball x✝ (2⁻¹ ^ n)) [PROOFSTEP] refine' isOpen_iUnion fun _ => _ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝² : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i n : ℕ i : ι x✝¹ : α x✝ : ind x✝¹ = i ⊢ IsOpen (⋃ (_ : ball x✝¹ (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x✝¹ ∈ D m j), ball x✝¹ (2⁻¹ ^ n)) [PROOFSTEP] refine' isOpen_iUnion fun _ => _ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝³ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i n : ℕ i : ι x✝² : α x✝¹ : ind x✝² = i x✝ : ball x✝² (3 * 2⁻¹ ^ n) ⊆ s i ⊢ IsOpen (⋃ (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x✝² ∈ D m j), ball x✝² (2⁻¹ ^ n)) [PROOFSTEP] refine' isOpen_iUnion fun _ => _ [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝⁴ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i n : ℕ i : ι x✝³ : α x✝² : ind x✝³ = i x✝¹ : ball x✝³ (3 * 2⁻¹ ^ n) ⊆ s i x✝ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x✝³ ∈ D m j ⊢ IsOpen (ball x✝³ (2⁻¹ ^ n)) [PROOFSTEP] exact isOpen_ball [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] have HDS : ∀ n i, D n i ⊆ s i := fun n i x => by rw [memD] rintro ⟨y, rfl, hsub, -, hyx⟩ refine hsub (hyx.trans_le <| le_mul_of_one_le_left' ?_) norm_num1 -- Let us show the rest of the properties. Since the definition expects a family indexed -- by a single parameter, we use `ℕ × ι` as the domain. [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) n : ℕ i : ι x : α ⊢ x ∈ D n i → x ∈ s i [PROOFSTEP] rw [memD] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) n : ℕ i : ι x : α ⊢ (∃ x_1, ind x_1 = i ∧ ball x_1 (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x_1 ∈ D m j) ∧ edist x x_1 < 2⁻¹ ^ n) → x ∈ s i [PROOFSTEP] rintro ⟨y, rfl, hsub, -, hyx⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) n : ℕ x y : α hsub : ball y (3 * 2⁻¹ ^ n) ⊆ s (ind y) hyx : edist x y < 2⁻¹ ^ n ⊢ x ∈ s (ind y) [PROOFSTEP] refine hsub (hyx.trans_le <| le_mul_of_one_le_left' ?_) [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) n : ℕ x y : α hsub : ball y (3 * 2⁻¹ ^ n) ⊆ s (ind y) hyx : edist x y < 2⁻¹ ^ n ⊢ 1 ≤ 3 [PROOFSTEP] norm_num1 -- Let us show the rest of the properties. Since the definition expects a family indexed -- by a single parameter, we use `ℕ × ι` as the domain. [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i ⊢ ∃ β t x x, LocallyFinite t ∧ ∀ (b : β), ∃ a, t b ⊆ s a [PROOFSTEP] refine' ⟨ℕ × ι, fun ni => D ni.1 ni.2, fun _ => Dopen _ _, _, _, fun ni => ⟨ni.2, HDS _ _⟩⟩ -- The sets `D n i` cover the whole space as we proved earlier [GOAL] case refine'_1 α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i ⊢ ⋃ (b : ℕ × ι), (fun ni => D ni.fst ni.snd) b = univ [PROOFSTEP] refine' iUnion_eq_univ_iff.2 fun x => _ [GOAL] case refine'_1 α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α ⊢ ∃ i, x ∈ (fun ni => D ni.fst ni.snd) i [PROOFSTEP] rcases Dcov x with ⟨n, i, h⟩ [GOAL] case refine'_1.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι h : x ∈ D n i ⊢ ∃ i, x ∈ (fun ni => D ni.fst ni.snd) i [PROOFSTEP] exact ⟨⟨n, i⟩, h⟩ /- Let us prove that the covering `D n i` is locally finite. Take a point `x` and choose `n`, `i` so that `x ∈ D n i`. Since `D n i` is an open set, we can choose `k` so that `B = ball x (1 / 2 ^ (n + k + 1)) ⊆ D n i`. -/ [GOAL] case refine'_2 α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i ⊢ LocallyFinite fun ni => D ni.fst ni.snd [PROOFSTEP] intro x [GOAL] case refine'_2 α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α ⊢ ∃ t, t ∈ 𝓝 x ∧ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ t)} [PROOFSTEP] rcases Dcov x with ⟨n, i, hn⟩ [GOAL] case refine'_2.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i ⊢ ∃ t, t ∈ 𝓝 x ∧ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ t)} [PROOFSTEP] have : D n i ∈ 𝓝 x := IsOpen.mem_nhds (Dopen _ _) hn [GOAL] case refine'_2.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x ⊢ ∃ t, t ∈ 𝓝 x ∧ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ t)} [PROOFSTEP] rcases(nhds_basis_uniformity uniformity_basis_edist_inv_two_pow).mem_iff.1 this with ⟨k, -, hsub : ball x (2⁻¹ ^ k) ⊆ D n i⟩ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i ⊢ ∃ t, t ∈ 𝓝 x ∧ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ t)} [PROOFSTEP] set B := ball x (2⁻¹ ^ (n + k + 1)) [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) ⊢ ∃ t, t ∈ 𝓝 x ∧ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ t)} [PROOFSTEP] refine' ⟨B, ball_mem_nhds _ (pow_pos _), _⟩ -- The sets `D m i`, `m > n + k`, are disjoint with `B` [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) ⊢ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ B)} [PROOFSTEP] have Hgt : ∀ m ≥ n + k + 1, ∀ (i : ι), Disjoint (D m i) B := fun m hm i => by rw [disjoint_iff_inf_le] rintro y ⟨hym, hyx⟩ rcases memD.1 hym with ⟨z, rfl, _hzi, H, hz⟩ have : z ∉ ball x (2⁻¹ ^ k) := fun hz' => H n (by linarith) i (hsub hz') apply this calc edist z x ≤ edist y z + edist y x := edist_triangle_left _ _ _ _ < 2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1) := (ENNReal.add_lt_add hz hyx) _ ≤ 2⁻¹ ^ (k + 1) + 2⁻¹ ^ (k + 1) := (add_le_add (hpow_le <| by linarith) (hpow_le <| by linarith)) _ = 2⁻¹ ^ k := by rw [← two_mul, h2pow] -- For each `m ≤ n + k` there is at most one `j` such that `D m j ∩ B` is nonempty. [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i✝ : ι hn : x ∈ D n i✝ this : D n i✝ ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i✝ B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 i : ι ⊢ Disjoint (D m i) B [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i✝ : ι hn : x ∈ D n i✝ this : D n i✝ ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i✝ B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 i : ι ⊢ D m i ⊓ B ≤ ⊥ [PROOFSTEP] rintro y ⟨hym, hyx⟩ [GOAL] case intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i✝ : ι hn : x ∈ D n i✝ this : D n i✝ ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i✝ B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 i : ι y : α hym : y ∈ D m i hyx : y ∈ B ⊢ y ∈ ⊥ [PROOFSTEP] rcases memD.1 hym with ⟨z, rfl, _hzi, H, hz⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 y : α hyx : y ∈ B z : α hym : y ∈ D m (ind z) _hzi : ball z (3 * 2⁻¹ ^ m) ⊆ s (ind z) H : ∀ (m_1 : ℕ), m_1 < m → ∀ (j : ι), ¬z ∈ D m_1 j hz : edist y z < 2⁻¹ ^ m ⊢ y ∈ ⊥ [PROOFSTEP] have : z ∉ ball x (2⁻¹ ^ k) := fun hz' => H n (by linarith) i (hsub hz') [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 y : α hyx : y ∈ B z : α hym : y ∈ D m (ind z) _hzi : ball z (3 * 2⁻¹ ^ m) ⊆ s (ind z) H : ∀ (m_1 : ℕ), m_1 < m → ∀ (j : ι), ¬z ∈ D m_1 j hz : edist y z < 2⁻¹ ^ m hz' : z ∈ ball x (2⁻¹ ^ k) ⊢ n < m [PROOFSTEP] linarith [GOAL] case intro.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 y : α hyx : y ∈ B z : α hym : y ∈ D m (ind z) _hzi : ball z (3 * 2⁻¹ ^ m) ⊆ s (ind z) H : ∀ (m_1 : ℕ), m_1 < m → ∀ (j : ι), ¬z ∈ D m_1 j hz : edist y z < 2⁻¹ ^ m this : ¬z ∈ ball x (2⁻¹ ^ k) ⊢ y ∈ ⊥ [PROOFSTEP] apply this [GOAL] case intro.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 y : α hyx : y ∈ B z : α hym : y ∈ D m (ind z) _hzi : ball z (3 * 2⁻¹ ^ m) ⊆ s (ind z) H : ∀ (m_1 : ℕ), m_1 < m → ∀ (j : ι), ¬z ∈ D m_1 j hz : edist y z < 2⁻¹ ^ m this : ¬z ∈ ball x (2⁻¹ ^ k) ⊢ z ∈ ball x (2⁻¹ ^ k) [PROOFSTEP] calc edist z x ≤ edist y z + edist y x := edist_triangle_left _ _ _ _ < 2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1) := (ENNReal.add_lt_add hz hyx) _ ≤ 2⁻¹ ^ (k + 1) + 2⁻¹ ^ (k + 1) := (add_le_add (hpow_le <| by linarith) (hpow_le <| by linarith)) _ = 2⁻¹ ^ k := by rw [← two_mul, h2pow] -- For each `m ≤ n + k` there is at most one `j` such that `D m j ∩ B` is nonempty. [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 y : α hyx : y ∈ B z : α hym : y ∈ D m (ind z) _hzi : ball z (3 * 2⁻¹ ^ m) ⊆ s (ind z) H : ∀ (m_1 : ℕ), m_1 < m → ∀ (j : ι), ¬z ∈ D m_1 j hz : edist y z < 2⁻¹ ^ m this : ¬z ∈ ball x (2⁻¹ ^ k) ⊢ k + 1 ≤ m [PROOFSTEP] linarith [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 y : α hyx : y ∈ B z : α hym : y ∈ D m (ind z) _hzi : ball z (3 * 2⁻¹ ^ m) ⊆ s (ind z) H : ∀ (m_1 : ℕ), m_1 < m → ∀ (j : ι), ¬z ∈ D m_1 j hz : edist y z < 2⁻¹ ^ m this : ¬z ∈ ball x (2⁻¹ ^ k) ⊢ k + 1 ≤ n + k + 1 [PROOFSTEP] linarith [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) m : ℕ hm : m ≥ n + k + 1 y : α hyx : y ∈ B z : α hym : y ∈ D m (ind z) _hzi : ball z (3 * 2⁻¹ ^ m) ⊆ s (ind z) H : ∀ (m_1 : ℕ), m_1 < m → ∀ (j : ι), ¬z ∈ D m_1 j hz : edist y z < 2⁻¹ ^ m this : ¬z ∈ ball x (2⁻¹ ^ k) ⊢ 2⁻¹ ^ (k + 1) + 2⁻¹ ^ (k + 1) = 2⁻¹ ^ k [PROOFSTEP] rw [← two_mul, h2pow] -- For each `m ≤ n + k` there is at most one `j` such that `D m j ∩ B` is nonempty. [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B ⊢ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ B)} [PROOFSTEP] have Hle : ∀ m ≤ n + k, Set.Subsingleton {j | (D m j ∩ B).Nonempty} := by rintro m hm j₁ ⟨y, hyD, hyB⟩ j₂ ⟨z, hzD, hzB⟩ by_contra' h' : j₁ ≠ j₂ wlog h : j₁ < j₂ generalizing j₁ j₂ y z · exact this z hzD hzB y hyD hyB h'.symm (h'.lt_or_lt.resolve_left h) rcases memD.1 hyD with ⟨y', rfl, hsuby, -, hdisty⟩ rcases memD.1 hzD with ⟨z', rfl, -, -, hdistz⟩ suffices : edist z' y' < 3 * 2⁻¹ ^ m exact nmem_of_lt_ind h (hsuby this) calc edist z' y' ≤ edist z' x + edist x y' := edist_triangle _ _ _ _ ≤ edist z z' + edist z x + (edist y x + edist y y') := (add_le_add (edist_triangle_left _ _ _) (edist_triangle_left _ _ _)) _ < 2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1) + (2⁻¹ ^ (n + k + 1) + 2⁻¹ ^ m) := by apply_rules [ENNReal.add_lt_add] _ = 2 * (2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1)) := by simp only [two_mul, add_comm] _ ≤ 2 * (2⁻¹ ^ m + 2⁻¹ ^ (m + 1)) := by gcongr 2 * (_ + ?_); exact hpow_le (add_le_add hm le_rfl) _ = 3 * 2⁻¹ ^ m := by rw [mul_add, h2pow, ← two_add_one_eq_three, add_mul, one_mul] -- Finally, we glue `Hgt` and `Hle` [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B ⊢ ∀ (m : ℕ), m ≤ n + k → Set.Subsingleton {j | Set.Nonempty (D m j ∩ B)} [PROOFSTEP] rintro m hm j₁ ⟨y, hyD, hyB⟩ j₂ ⟨z, hzD, hzB⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k j₁ : ι y : α hyD : y ∈ D m j₁ hyB : y ∈ B j₂ : ι z : α hzD : z ∈ D m j₂ hzB : z ∈ B ⊢ j₁ = j₂ [PROOFSTEP] by_contra' h' : j₁ ≠ j₂ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k j₁ : ι y : α hyD : y ∈ D m j₁ hyB : y ∈ B j₂ : ι z : α hzD : z ∈ D m j₂ hzB : z ∈ B h' : j₁ ≠ j₂ ⊢ False [PROOFSTEP] wlog h : j₁ < j₂ generalizing j₁ j₂ y z [GOAL] case intro.intro.intro.intro.inr α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k j₁ : ι y : α hyD : y ∈ D m j₁ hyB : y ∈ B j₂ : ι z : α hzD : z ∈ D m j₂ hzB : z ∈ B h' : j₁ ≠ j₂ this : ∀ ⦃j₁ : ι⦄ (y : α), y ∈ D m j₁ → y ∈ B → ∀ ⦃j₂ : ι⦄ (z : α), z ∈ D m j₂ → z ∈ B → j₁ ≠ j₂ → j₁ < j₂ → False h : ¬j₁ < j₂ ⊢ False [PROOFSTEP] exact this z hzD hzB y hyD hyB h'.symm (h'.lt_or_lt.resolve_left h) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k j₁ : ι y : α hyD : y ∈ D m j₁ hyB : y ∈ B j₂ : ι z : α hzD : z ∈ D m j₂ hzB : z ∈ B h' : j₁ ≠ j₂ h : j₁ < j₂ ⊢ False [PROOFSTEP] rcases memD.1 hyD with ⟨y', rfl, hsuby, -, hdisty⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B j₂ : ι z : α hzD : z ∈ D m j₂ hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') h' : ind y' ≠ j₂ h : ind y' < j₂ hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m ⊢ False [PROOFSTEP] rcases memD.1 hzD with ⟨z', rfl, -, -, hdistz⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m ⊢ False [PROOFSTEP] suffices : edist z' y' < 3 * 2⁻¹ ^ m [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m this : edist z' y' < 3 * 2⁻¹ ^ m ⊢ False case this α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m ⊢ edist z' y' < 3 * 2⁻¹ ^ m [PROOFSTEP] exact nmem_of_lt_ind h (hsuby this) [GOAL] case this α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m ⊢ edist z' y' < 3 * 2⁻¹ ^ m [PROOFSTEP] calc edist z' y' ≤ edist z' x + edist x y' := edist_triangle _ _ _ _ ≤ edist z z' + edist z x + (edist y x + edist y y') := (add_le_add (edist_triangle_left _ _ _) (edist_triangle_left _ _ _)) _ < 2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1) + (2⁻¹ ^ (n + k + 1) + 2⁻¹ ^ m) := by apply_rules [ENNReal.add_lt_add] _ = 2 * (2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1)) := by simp only [two_mul, add_comm] _ ≤ 2 * (2⁻¹ ^ m + 2⁻¹ ^ (m + 1)) := by gcongr 2 * (_ + ?_); exact hpow_le (add_le_add hm le_rfl) _ = 3 * 2⁻¹ ^ m := by rw [mul_add, h2pow, ← two_add_one_eq_three, add_mul, one_mul] -- Finally, we glue `Hgt` and `Hle` [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m ⊢ edist z z' + edist z x + (edist y x + edist y y') < 2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1) + (2⁻¹ ^ (n + k + 1) + 2⁻¹ ^ m) [PROOFSTEP] apply_rules [ENNReal.add_lt_add] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m ⊢ 2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1) + (2⁻¹ ^ (n + k + 1) + 2⁻¹ ^ m) = 2 * (2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1)) [PROOFSTEP] simp only [two_mul, add_comm] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m ⊢ 2 * (2⁻¹ ^ m + 2⁻¹ ^ (n + k + 1)) ≤ 2 * (2⁻¹ ^ m + 2⁻¹ ^ (m + 1)) [PROOFSTEP] gcongr 2 * (_ + ?_) [GOAL] case bc.bc α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m ⊢ 2⁻¹ ^ (n + k + 1) ≤ 2⁻¹ ^ (m + 1) [PROOFSTEP] exact hpow_le (add_le_add hm le_rfl) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B m : ℕ hm : m ≤ n + k y : α hyB : y ∈ B z : α hzB : z ∈ B y' : α hyD : y ∈ D m (ind y') hsuby : ball y' (3 * 2⁻¹ ^ m) ⊆ s (ind y') hdisty : edist y y' < 2⁻¹ ^ m z' : α hzD : z ∈ D m (ind z') h' : ind y' ≠ ind z' h : ind y' < ind z' hdistz : edist z z' < 2⁻¹ ^ m ⊢ 2 * (2⁻¹ ^ m + 2⁻¹ ^ (m + 1)) = 3 * 2⁻¹ ^ m [PROOFSTEP] rw [mul_add, h2pow, ← two_add_one_eq_three, add_mul, one_mul] -- Finally, we glue `Hgt` and `Hle` [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B Hle : ∀ (m : ℕ), m ≤ n + k → Set.Subsingleton {j | Set.Nonempty (D m j ∩ B)} ⊢ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ B)} [PROOFSTEP] have : (⋃ (m ≤ n + k) (i ∈ {i : ι | (D m i ∩ B).Nonempty}), {(m, i)}).Finite := (finite_le_nat _).biUnion' fun i hi => (Hle i hi).finite.biUnion' fun _ _ => finite_singleton _ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B Hle : ∀ (m : ℕ), m ≤ n + k → Set.Subsingleton {j | Set.Nonempty (D m j ∩ B)} this : Set.Finite (⋃ (m : ℕ) (_ : m ≤ n + k) (i : ι) (_ : i ∈ {i | Set.Nonempty (D m i ∩ B)}), {(m, i)}) ⊢ Set.Finite {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ B)} [PROOFSTEP] refine' this.subset fun I hI => _ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B Hle : ∀ (m : ℕ), m ≤ n + k → Set.Subsingleton {j | Set.Nonempty (D m j ∩ B)} this : Set.Finite (⋃ (m : ℕ) (_ : m ≤ n + k) (i : ι) (_ : i ∈ {i | Set.Nonempty (D m i ∩ B)}), {(m, i)}) I : ℕ × ι hI : I ∈ {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ B)} ⊢ I ∈ ⋃ (m : ℕ) (_ : m ≤ n + k) (i : ι) (_ : i ∈ {i | Set.Nonempty (D m i ∩ B)}), {(m, i)} [PROOFSTEP] simp only [mem_iUnion] [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B Hle : ∀ (m : ℕ), m ≤ n + k → Set.Subsingleton {j | Set.Nonempty (D m j ∩ B)} this : Set.Finite (⋃ (m : ℕ) (_ : m ≤ n + k) (i : ι) (_ : i ∈ {i | Set.Nonempty (D m i ∩ B)}), {(m, i)}) I : ℕ × ι hI : I ∈ {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ B)} ⊢ ∃ i h i_1 i_2, I ∈ {(i, i_1)} [PROOFSTEP] refine' ⟨I.1, _, I.2, hI, Prod.mk.eta.symm⟩ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α pow_pos : ∀ (k : ℕ), 0 < 2⁻¹ ^ k hpow_le : ∀ {m n : ℕ}, m ≤ n → 2⁻¹ ^ n ≤ 2⁻¹ ^ m h2pow : ∀ (n : ℕ), 2 * 2⁻¹ ^ (n + 1) = 2⁻¹ ^ n ι : Type u_1 s : ι → Set α ho : ∀ (a : ι), IsOpen (s a) hcov : ∀ (x : α), ∃ i, x ∈ s i x✝ : LinearOrder ι := linearOrderOfSTO WellOrderingRel wf : WellFounded fun x x_1 => x < x_1 ind : α → ι := fun x => WellFounded.min wf {i | x ∈ s i} (_ : ∃ i, x ∈ s i) mem_ind : ∀ (x : α), x ∈ s (ind x) nmem_of_lt_ind : ∀ {x : α} {i : ι}, i < ind x → ¬x ∈ s i D : ℕ → ι → Set α := fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) hD : D = fun n => Nat.strongRecOn' n fun n D' i => ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ) (H : m < n) (j : ι), ¬x ∈ D' m H j), ball x (2⁻¹ ^ n) Dn : ∀ (n : ℕ) (i : ι), D n i = ⋃ (x : α) (_ : ind x = i) (_ : ball x (3 * 2⁻¹ ^ n) ⊆ s i) (_ : ∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j), ball x (2⁻¹ ^ n) memD : ∀ {n : ℕ} {i : ι} {y : α}, y ∈ D n i ↔ ∃ x, ind x = i ∧ ball x (3 * 2⁻¹ ^ n) ⊆ s i ∧ (∀ (m : ℕ), m < n → ∀ (j : ι), ¬x ∈ D m j) ∧ edist y x < 2⁻¹ ^ n Dcov : ∀ (x : α), ∃ n i, x ∈ D n i Dopen : ∀ (n : ℕ) (i : ι), IsOpen (D n i) HDS : ∀ (n : ℕ) (i : ι), D n i ⊆ s i x : α n : ℕ i : ι hn : x ∈ D n i this✝ : D n i ∈ 𝓝 x k : ℕ hsub : ball x (2⁻¹ ^ k) ⊆ D n i B : Set α := ball x (2⁻¹ ^ (n + k + 1)) Hgt : ∀ (m : ℕ), m ≥ n + k + 1 → ∀ (i : ι), Disjoint (D m i) B Hle : ∀ (m : ℕ), m ≤ n + k → Set.Subsingleton {j | Set.Nonempty (D m j ∩ B)} this : Set.Finite (⋃ (m : ℕ) (_ : m ≤ n + k) (i : ι) (_ : i ∈ {i | Set.Nonempty (D m i ∩ B)}), {(m, i)}) I : ℕ × ι hI : I ∈ {i | Set.Nonempty ((fun ni => D ni.fst ni.snd) i ∩ B)} ⊢ I.fst ≤ n + k [PROOFSTEP] exact not_lt.1 fun hlt => (Hgt I.1 hlt I.2).le_bot hI.choose_spec
{"mathlib_filename": "Mathlib.Topology.MetricSpace.EMetricParacompact", "llama_tokens": 73889}
[GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a b : α ⊢ (fun n => dist a (x n) - dist (x 0) (x n)) ∈ lp (fun i => ℝ) ⊤ [PROOFSTEP] apply memℓp_infty [GOAL] case hf α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a b : α ⊢ BddAbove (range fun i => ‖(fun n => dist a (x n) - dist (x 0) (x n)) i‖) [PROOFSTEP] use dist a (x 0) [GOAL] case h α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a b : α ⊢ dist a (x 0) ∈ upperBounds (range fun i => ‖(fun n => dist a (x n) - dist (x 0) (x n)) i‖) [PROOFSTEP] rintro - ⟨n, rfl⟩ [GOAL] case h.intro α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a b : α n : ℕ ⊢ (fun i => ‖(fun n => dist a (x n) - dist (x 0) (x n)) i‖) n ≤ dist a (x 0) [PROOFSTEP] exact abs_dist_sub_le _ _ _ [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ a b : α ⊢ dist (embeddingOfSubset x a) (embeddingOfSubset x b) ≤ dist a b [PROOFSTEP] refine' lp.norm_le_of_forall_le dist_nonneg fun n => _ [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ a b : α n : ℕ ⊢ ‖↑(embeddingOfSubset x a - embeddingOfSubset x b) n‖ ≤ dist a b [PROOFSTEP] simp only [lp.coeFn_sub, Pi.sub_apply, embeddingOfSubset_coe, Real.dist_eq] [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ a b : α n : ℕ ⊢ ‖dist a (x n) - dist (x 0) (x n) - (dist b (x n) - dist (x 0) (x n))‖ ≤ dist a b [PROOFSTEP] convert abs_dist_sub_le a b (x n) using 2 [GOAL] case h.e'_3.h.e'_1 α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ a b : α n : ℕ ⊢ dist a (x n) - dist (x 0) (x n) - (dist b (x n) - dist (x 0) (x n)) = dist a (x n) - dist b (x n) [PROOFSTEP] ring [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a b : α H : DenseRange x ⊢ Isometry (embeddingOfSubset x) [PROOFSTEP] refine' Isometry.of_dist_eq fun a b => _ [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α ⊢ dist (embeddingOfSubset x a) (embeddingOfSubset x b) = dist a b [PROOFSTEP] refine' (embeddingOfSubset_dist_le x a b).antisymm (le_of_forall_pos_le_add fun e epos => _) -- First step: find n with dist a (x n) < e [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e ⊢ dist a b ≤ dist (embeddingOfSubset x a) (embeddingOfSubset x b) + e [PROOFSTEP] rcases Metric.mem_closure_range_iff.1 (H a) (e / 2) (half_pos epos) with ⟨n, hn⟩ -- Second step: use the norm control at index n to conclude [GOAL] case intro α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 ⊢ dist a b ≤ dist (embeddingOfSubset x a) (embeddingOfSubset x b) + e [PROOFSTEP] have C : dist b (x n) - dist a (x n) = embeddingOfSubset x b n - embeddingOfSubset x a n := by simp only [embeddingOfSubset_coe, sub_sub_sub_cancel_right] [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 ⊢ dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n [PROOFSTEP] simp only [embeddingOfSubset_coe, sub_sub_sub_cancel_right] [GOAL] case intro α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ dist a b ≤ dist (embeddingOfSubset x a) (embeddingOfSubset x b) + e [PROOFSTEP] have := calc dist a b ≤ dist a (x n) + dist (x n) b := dist_triangle _ _ _ _ = 2 * dist a (x n) + (dist b (x n) - dist a (x n)) := by simp [dist_comm]; ring _ ≤ 2 * dist a (x n) + |dist b (x n) - dist a (x n)| := by apply_rules [add_le_add_left, le_abs_self] _ ≤ 2 * (e / 2) + |embeddingOfSubset x b n - embeddingOfSubset x a n| := by rw [C] apply_rules [add_le_add, mul_le_mul_of_nonneg_left, hn.le, le_refl] norm_num _ ≤ 2 * (e / 2) + dist (embeddingOfSubset x b) (embeddingOfSubset x a) := by have : |embeddingOfSubset x b n - embeddingOfSubset x a n| ≤ dist (embeddingOfSubset x b) (embeddingOfSubset x a) := by simp only [dist_eq_norm] exact lp.norm_apply_le_norm ENNReal.top_ne_zero (embeddingOfSubset x b - embeddingOfSubset x a) n nlinarith _ = dist (embeddingOfSubset x b) (embeddingOfSubset x a) + e := by ring [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ dist a (x n) + dist (x n) b = 2 * dist a (x n) + (dist b (x n) - dist a (x n)) [PROOFSTEP] simp [dist_comm] [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ dist a (x n) + dist b (x n) = 2 * dist a (x n) + (dist b (x n) - dist a (x n)) [PROOFSTEP] ring [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ 2 * dist a (x n) + (dist b (x n) - dist a (x n)) ≤ 2 * dist a (x n) + |dist b (x n) - dist a (x n)| [PROOFSTEP] apply_rules [add_le_add_left, le_abs_self] [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ 2 * dist a (x n) + |dist b (x n) - dist a (x n)| ≤ 2 * (e / 2) + |↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n| [PROOFSTEP] rw [C] [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ 2 * dist a (x n) + |↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n| ≤ 2 * (e / 2) + |↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n| [PROOFSTEP] apply_rules [add_le_add, mul_le_mul_of_nonneg_left, hn.le, le_refl] [GOAL] case h₁.a0 α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n C_symm : ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n = dist b (x n) - dist a (x n) ⊢ 0 ≤ 2 [PROOFSTEP] norm_num [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ 2 * (e / 2) + |↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n| ≤ 2 * (e / 2) + dist (embeddingOfSubset x b) (embeddingOfSubset x a) [PROOFSTEP] have : |embeddingOfSubset x b n - embeddingOfSubset x a n| ≤ dist (embeddingOfSubset x b) (embeddingOfSubset x a) := by simp only [dist_eq_norm] exact lp.norm_apply_le_norm ENNReal.top_ne_zero (embeddingOfSubset x b - embeddingOfSubset x a) n [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ |↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n| ≤ dist (embeddingOfSubset x b) (embeddingOfSubset x a) [PROOFSTEP] simp only [dist_eq_norm] [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ |↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n| ≤ ‖embeddingOfSubset x b - embeddingOfSubset x a‖ [PROOFSTEP] exact lp.norm_apply_le_norm ENNReal.top_ne_zero (embeddingOfSubset x b - embeddingOfSubset x a) n [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n this : |↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n| ≤ dist (embeddingOfSubset x b) (embeddingOfSubset x a) ⊢ 2 * (e / 2) + |↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n| ≤ 2 * (e / 2) + dist (embeddingOfSubset x b) (embeddingOfSubset x a) [PROOFSTEP] nlinarith [GOAL] α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n ⊢ 2 * (e / 2) + dist (embeddingOfSubset x b) (embeddingOfSubset x a) = dist (embeddingOfSubset x b) (embeddingOfSubset x a) + e [PROOFSTEP] ring [GOAL] case intro α : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n✝ : ℕ C✝ : ℝ inst✝ : MetricSpace α x : ℕ → α a✝ b✝ : α H : DenseRange x a b : α e : ℝ epos : 0 < e n : ℕ hn : dist a (x n) < e / 2 C : dist b (x n) - dist a (x n) = ↑(embeddingOfSubset x b) n - ↑(embeddingOfSubset x a) n this : dist a b ≤ dist (embeddingOfSubset x b) (embeddingOfSubset x a) + e ⊢ dist a b ≤ dist (embeddingOfSubset x a) (embeddingOfSubset x b) + e [PROOFSTEP] simpa [dist_comm] using this [GOAL] α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α ⊢ ∃ f, Isometry f [PROOFSTEP] cases' (univ : Set α).eq_empty_or_nonempty with h h [GOAL] case inl α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α h : univ = ∅ ⊢ ∃ f, Isometry f [PROOFSTEP] use fun _ => 0 [GOAL] case h α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α h : univ = ∅ ⊢ Isometry fun x => 0 [PROOFSTEP] intro x [GOAL] case h α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x✝ : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α h : univ = ∅ x : α ⊢ ∀ (x2 : α), edist ((fun x => 0) x) ((fun x => 0) x2) = edist x x2 [PROOFSTEP] exact absurd h (Nonempty.ne_empty ⟨x, mem_univ x⟩) [GOAL] case inr α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α h : Set.Nonempty univ ⊢ ∃ f, Isometry f [PROOFSTEP] rcases h with ⟨basepoint⟩ [GOAL] case inr.intro α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α basepoint : α h✝ : basepoint ∈ univ ⊢ ∃ f, Isometry f [PROOFSTEP] haveI : Inhabited α := ⟨basepoint⟩ [GOAL] case inr.intro α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α basepoint : α h✝ : basepoint ∈ univ this : Inhabited α ⊢ ∃ f, Isometry f [PROOFSTEP] have : ∃ s : Set α, s.Countable ∧ Dense s := exists_countable_dense α [GOAL] case inr.intro α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α basepoint : α h✝ : basepoint ∈ univ this✝ : Inhabited α this : ∃ s, Set.Countable s ∧ Dense s ⊢ ∃ f, Isometry f [PROOFSTEP] rcases this with ⟨S, ⟨S_countable, S_dense⟩⟩ [GOAL] case inr.intro.intro.intro α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α basepoint : α h✝ : basepoint ∈ univ this : Inhabited α S : Set α S_countable : Set.Countable S S_dense : Dense S ⊢ ∃ f, Isometry f [PROOFSTEP] rcases Set.countable_iff_exists_subset_range.1 S_countable with ⟨x, x_range⟩ -- Use embeddingOfSubset to construct the desired isometry [GOAL] case inr.intro.intro.intro.intro α✝ : Type u β : Type v γ : Type w f g : { x // x ∈ lp (fun i => ℝ) ⊤ } n : ℕ C : ℝ inst✝² : MetricSpace α✝ x✝ : ℕ → α✝ a b : α✝ α : Type u inst✝¹ : MetricSpace α inst✝ : SeparableSpace α basepoint : α h✝ : basepoint ∈ univ this : Inhabited α S : Set α S_countable : Set.Countable S S_dense : Dense S x : ℕ → α x_range : S ⊆ range x ⊢ ∃ f, Isometry f [PROOFSTEP] exact ⟨embeddingOfSubset x, embeddingOfSubset_isometry x (S_dense.mono x_range)⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : LipschitzOnWith K f s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] rw [LipschitzOnWith.coordinate] at hfl [GOAL] α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] have : ∀ i : ι, ∃ g : α → ℝ, LipschitzWith K g ∧ EqOn (fun x => f x i) g s [GOAL] case this α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s ⊢ ∀ (i : ι), ∃ g, LipschitzWith K g ∧ EqOn (fun x => ↑(f x) i) g s [PROOFSTEP] intro i [GOAL] case this α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s i : ι ⊢ ∃ g, LipschitzWith K g ∧ EqOn (fun x => ↑(f x) i) g s [PROOFSTEP] exact LipschitzOnWith.extend_real (hfl i) -- use the nonlinear Hahn-Banach theorem here! [GOAL] α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s this : ∀ (i : ι), ∃ g, LipschitzWith K g ∧ EqOn (fun x => ↑(f x) i) g s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] choose g hgl hgeq using this [GOAL] α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] rcases s.eq_empty_or_nonempty with rfl | ⟨a₀, ha₀_in_s⟩ [GOAL] case inl α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) ∅ hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) ∅ ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g ∅ [PROOFSTEP] exact ⟨0, LipschitzWith.const' 0, by simp⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) ∅ hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) ∅ ⊢ EqOn f 0 ∅ [PROOFSTEP] simp [GOAL] case inr.intro α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] have hf_extb : ∀ a : α, Memℓp (swap g a) ∞ [GOAL] case hf_extb α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s ⊢ ∀ (a : α), Memℓp (swap g a) ⊤ [PROOFSTEP] apply LipschitzWith.uniformly_bounded (swap g) hgl a₀ [GOAL] case hf_extb α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s ⊢ Memℓp (swap g a₀) ⊤ [PROOFSTEP] use‖f a₀‖ [GOAL] case h α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s ⊢ ‖f a₀‖ ∈ upperBounds (range fun i => ‖swap g a₀ i‖) [PROOFSTEP] rintro - ⟨i, rfl⟩ [GOAL] case h.intro α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s i : ι ⊢ (fun i => ‖swap g a₀ i‖) i ≤ ‖f a₀‖ [PROOFSTEP] simp_rw [← hgeq i ha₀_in_s] [GOAL] case h.intro α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s i : ι ⊢ ‖↑(f a₀) i‖ ≤ ‖f a₀‖ [PROOFSTEP] exact lp.norm_apply_le_norm top_ne_zero (f a₀) i [GOAL] case inr.intro α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s hf_extb : ∀ (a : α), Memℓp (swap g a) ⊤ ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] let f_ext' : α → ℓ^∞(ι) := fun i ↦ ⟨swap g i, hf_extb i⟩ [GOAL] case inr.intro α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s hf_extb : ∀ (a : α), Memℓp (swap g a) ⊤ f_ext' : α → { x // x ∈ lp (fun i => ℝ) ⊤ } := fun i => { val := swap g i, property := (_ : Memℓp (swap g i) ⊤) } ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] refine ⟨f_ext', ?_, ?_⟩ [GOAL] case inr.intro.refine_1 α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s hf_extb : ∀ (a : α), Memℓp (swap g a) ⊤ f_ext' : α → { x // x ∈ lp (fun i => ℝ) ⊤ } := fun i => { val := swap g i, property := (_ : Memℓp (swap g i) ⊤) } ⊢ LipschitzWith K f_ext' [PROOFSTEP] rw [LipschitzWith.coordinate] [GOAL] case inr.intro.refine_1 α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s hf_extb : ∀ (a : α), Memℓp (swap g a) ⊤ f_ext' : α → { x // x ∈ lp (fun i => ℝ) ⊤ } := fun i => { val := swap g i, property := (_ : Memℓp (swap g i) ⊤) } ⊢ ∀ (i : ι), LipschitzWith K fun a => ↑(f_ext' a) i [PROOFSTEP] exact hgl [GOAL] case inr.intro.refine_2 α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s hf_extb : ∀ (a : α), Memℓp (swap g a) ⊤ f_ext' : α → { x // x ∈ lp (fun i => ℝ) ⊤ } := fun i => { val := swap g i, property := (_ : Memℓp (swap g i) ⊤) } ⊢ EqOn f f_ext' s [PROOFSTEP] intro a hyp [GOAL] case inr.intro.refine_2 α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s hf_extb : ∀ (a : α), Memℓp (swap g a) ⊤ f_ext' : α → { x // x ∈ lp (fun i => ℝ) ⊤ } := fun i => { val := swap g i, property := (_ : Memℓp (swap g i) ⊤) } a : α hyp : a ∈ s ⊢ f a = f_ext' a [PROOFSTEP] ext i [GOAL] case inr.intro.refine_2.h.h α : Type u β : Type v γ : Type w ι : Type u_1 inst✝ : PseudoMetricSpace α s : Set α f : α → { x // x ∈ lp (fun i => ℝ) ⊤ } K : ℝ≥0 hfl : ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s g : ι → α → ℝ hgl : ∀ (i : ι), LipschitzWith K (g i) hgeq : ∀ (i : ι), EqOn (fun x => ↑(f x) i) (g i) s a₀ : α ha₀_in_s : a₀ ∈ s hf_extb : ∀ (a : α), Memℓp (swap g a) ⊤ f_ext' : α → { x // x ∈ lp (fun i => ℝ) ⊤ } := fun i => { val := swap g i, property := (_ : Memℓp (swap g i) ⊤) } a : α hyp : a ∈ s i : ι ⊢ ↑(f a) i = ↑(f_ext' a) i [PROOFSTEP] exact (hgeq i) hyp
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Kuratowski", "llama_tokens": 12656}
[GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f ⊢ 0 < 1 - ↑K [PROOFSTEP] simp [hf.1] [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α ⊢ 1 - ↑K ≠ ⊤ [PROOFSTEP] norm_cast [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α ⊢ ¬1 - ↑K = ⊤ [PROOFSTEP] exact ENNReal.coe_ne_top [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x y : α h : edist x y ≠ ⊤ ⊢ edist x (f x) + edist (f x) (f y) + edist (f y) y = edist x (f x) + edist y (f y) + edist (f x) (f y) [PROOFSTEP] rw [edist_comm y, add_right_comm] [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x y : α h : edist x y ≠ ⊤ this : edist x y ≤ edist x (f x) + edist y (f y) + ↑K * edist x y ⊢ edist x y ≤ (edist x (f x) + edist y (f y)) / (1 - ↑K) [PROOFSTEP] rwa [ENNReal.le_div_iff_mul_le (Or.inl hf.one_sub_K_ne_zero) (Or.inl one_sub_K_ne_top), mul_comm, ENNReal.sub_mul fun _ _ ↦ h, one_mul, tsub_le_iff_right] [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x y : α h : edist x y ≠ ⊤ hy : IsFixedPt f y ⊢ edist x y ≤ edist x (f x) / (1 - ↑K) [PROOFSTEP] simpa only [hy.eq, edist_self, add_zero] using hf.edist_inequality h [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x y : α hx : IsFixedPt f x hy : IsFixedPt f y ⊢ x = y ∨ edist x y = ⊤ [PROOFSTEP] refine' or_iff_not_imp_right.2 fun h ↦ edist_le_zero.1 _ [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x y : α hx : IsFixedPt f x hy : IsFixedPt f y h : ¬edist x y = ⊤ ⊢ edist x y ≤ 0 [PROOFSTEP] simpa only [hx.eq, edist_self, add_zero, ENNReal.zero_div] using hf.edist_le_of_fixedPoint h hy [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ ⊢ edist x (efixedPoint f hf x hx) ≤ edist x (f x) / (1 - ↑K) [PROOFSTEP] convert hf.apriori_edist_iterate_efixedPoint_le hx 0 [GOAL] case h.e'_4.h.e'_5 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ ⊢ edist x (f x) = edist x (f x) * ↑K ^ 0 [PROOFSTEP] simp only [pow_zero, mul_one] [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ ⊢ efixedPoint f hf x hx = efixedPoint f hf y hy [PROOFSTEP] refine' (hf.eq_or_edist_eq_top_of_fixedPoints _ _).elim id fun h' ↦ False.elim (ne_of_lt _ h') [GOAL] case refine'_1 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ ⊢ IsFixedPt f (efixedPoint f hf x hx) [PROOFSTEP] try apply efixedPoint_isFixedPt [GOAL] case refine'_1 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ ⊢ IsFixedPt f (efixedPoint f hf x hx) [PROOFSTEP] apply efixedPoint_isFixedPt [GOAL] case refine'_2 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ ⊢ IsFixedPt f (efixedPoint f hf y hy) [PROOFSTEP] try apply efixedPoint_isFixedPt [GOAL] case refine'_2 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ ⊢ IsFixedPt f (efixedPoint f hf y hy) [PROOFSTEP] apply efixedPoint_isFixedPt [GOAL] case refine'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) < ⊤ [PROOFSTEP] try apply efixedPoint_isFixedPt [GOAL] case refine'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) < ⊤ [PROOFSTEP] apply efixedPoint_isFixedPt [GOAL] case refine'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) < ⊤ [PROOFSTEP] change edistLtTopSetoid.Rel _ _ [GOAL] case refine'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid (efixedPoint f hf x hx) (efixedPoint f hf y hy) [PROOFSTEP] trans x [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid (efixedPoint f hf x hx) x [PROOFSTEP] apply Setoid.symm' [GOAL] case a α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid x (efixedPoint f hf x hx) [PROOFSTEP] exact hf.edist_efixedPoint_lt_top hx [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid x (efixedPoint f hf y hy) [PROOFSTEP] trans y [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid x y α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x : α hx : edist x (f x) ≠ ⊤ y : α hy : edist y (f y) ≠ ⊤ h : edist x y ≠ ⊤ h' : edist (efixedPoint f hf x hx) (efixedPoint f hf y hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid y (efixedPoint f hf y hy) [PROOFSTEP] exacts [lt_top_iff_ne_top.2 h, hf.edist_efixedPoint_lt_top hy] [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ ⊢ ∃ y, y ∈ s ∧ IsFixedPt f y ∧ Tendsto (fun n => f^[n] x) atTop (𝓝 y) ∧ ∀ (n : ℕ), edist (f^[n] x) y ≤ edist x (f x) * ↑K ^ n / (1 - ↑K) [PROOFSTEP] haveI := hsc.completeSpace_coe [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ this : CompleteSpace ↑s ⊢ ∃ y, y ∈ s ∧ IsFixedPt f y ∧ Tendsto (fun n => f^[n] x) atTop (𝓝 y) ∧ ∀ (n : ℕ), edist (f^[n] x) y ≤ edist x (f x) * ↑K ^ n / (1 - ↑K) [PROOFSTEP] rcases hf.exists_fixedPoint ⟨x, hxs⟩ hx with ⟨y, hfy, h_tendsto, hle⟩ [GOAL] case intro.intro.intro α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ this : CompleteSpace ↑s y : ↑s hfy : IsFixedPt (MapsTo.restrict f s s hsf) y h_tendsto : Tendsto (fun n => (MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) atTop (𝓝 y) hle : ∀ (n : ℕ), edist ((MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) y ≤ edist { val := x, property := hxs } (MapsTo.restrict f s s hsf { val := x, property := hxs }) * ↑K ^ n / (1 - ↑K) ⊢ ∃ y, y ∈ s ∧ IsFixedPt f y ∧ Tendsto (fun n => f^[n] x) atTop (𝓝 y) ∧ ∀ (n : ℕ), edist (f^[n] x) y ≤ edist x (f x) * ↑K ^ n / (1 - ↑K) [PROOFSTEP] refine' ⟨y, y.2, Subtype.ext_iff_val.1 hfy, _, fun n ↦ _⟩ [GOAL] case intro.intro.intro.refine'_1 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ this : CompleteSpace ↑s y : ↑s hfy : IsFixedPt (MapsTo.restrict f s s hsf) y h_tendsto : Tendsto (fun n => (MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) atTop (𝓝 y) hle : ∀ (n : ℕ), edist ((MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) y ≤ edist { val := x, property := hxs } (MapsTo.restrict f s s hsf { val := x, property := hxs }) * ↑K ^ n / (1 - ↑K) ⊢ Tendsto (fun n => f^[n] x) atTop (𝓝 ↑y) [PROOFSTEP] convert (continuous_subtype_val.tendsto _).comp h_tendsto [GOAL] case h.e'_3.h α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ this : CompleteSpace ↑s y : ↑s hfy : IsFixedPt (MapsTo.restrict f s s hsf) y h_tendsto : Tendsto (fun n => (MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) atTop (𝓝 y) hle : ∀ (n : ℕ), edist ((MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) y ≤ edist { val := x, property := hxs } (MapsTo.restrict f s s hsf { val := x, property := hxs }) * ↑K ^ n / (1 - ↑K) x✝ : ℕ ⊢ f^[x✝] x = (Subtype.val ∘ fun n => (MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) x✝ [PROOFSTEP] simp only [(· ∘ ·), MapsTo.iterate_restrict, MapsTo.val_restrict_apply] [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ this : CompleteSpace ↑s y : ↑s hfy : IsFixedPt (MapsTo.restrict f s s hsf) y h_tendsto : Tendsto (fun n => (MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) atTop (𝓝 y) hle : ∀ (n : ℕ), edist ((MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) y ≤ edist { val := x, property := hxs } (MapsTo.restrict f s s hsf { val := x, property := hxs }) * ↑K ^ n / (1 - ↑K) n : ℕ ⊢ edist (f^[n] x) ↑y ≤ edist x (f x) * ↑K ^ n / (1 - ↑K) [PROOFSTEP] convert hle n [GOAL] case h.e'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ this : CompleteSpace ↑s y : ↑s hfy : IsFixedPt (MapsTo.restrict f s s hsf) y h_tendsto : Tendsto (fun n => (MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) atTop (𝓝 y) hle : ∀ (n : ℕ), edist ((MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) y ≤ edist { val := x, property := hxs } (MapsTo.restrict f s s hsf { val := x, property := hxs }) * ↑K ^ n / (1 - ↑K) n : ℕ ⊢ edist (f^[n] x) ↑y = edist ((MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) y [PROOFSTEP] rw [MapsTo.iterate_restrict] [GOAL] case h.e'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ this : CompleteSpace ↑s y : ↑s hfy : IsFixedPt (MapsTo.restrict f s s hsf) y h_tendsto : Tendsto (fun n => (MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) atTop (𝓝 y) hle : ∀ (n : ℕ), edist ((MapsTo.restrict f s s hsf)^[n] { val := x, property := hxs }) y ≤ edist { val := x, property := hxs } (MapsTo.restrict f s s hsf { val := x, property := hxs }) * ↑K ^ n / (1 - ↑K) n : ℕ ⊢ edist (f^[n] x) ↑y = edist (MapsTo.restrict f^[n] s s (_ : MapsTo f^[n] s s) { val := x, property := hxs }) y [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ ⊢ edist x (efixedPoint' f hsc hsf hf x hxs hx) ≤ edist x (f x) / (1 - ↑K) [PROOFSTEP] convert hf.apriori_edist_iterate_efixedPoint_le' hsc hsf hxs hx 0 [GOAL] case h.e'_4.h.e'_5 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α s : Set α hsc : IsComplete s hsf : MapsTo f s s hf : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ ⊢ edist x (f x) = edist x (f x) * ↑K ^ 0 [PROOFSTEP] rw [pow_zero, mul_one] [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ ⊢ efixedPoint' f hsc hsf hfs x hxs hx = efixedPoint' f htc htf hft y hyt hy [PROOFSTEP] refine' (hf.eq_or_edist_eq_top_of_fixedPoints _ _).elim id fun h' ↦ False.elim (ne_of_lt _ h') [GOAL] case refine'_1 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ ⊢ IsFixedPt f (efixedPoint' f hsc hsf hfs x hxs hx) [PROOFSTEP] try apply efixedPoint_isFixedPt' [GOAL] case refine'_1 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ ⊢ IsFixedPt f (efixedPoint' f hsc hsf hfs x hxs hx) [PROOFSTEP] apply efixedPoint_isFixedPt' [GOAL] case refine'_2 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ ⊢ IsFixedPt f (efixedPoint' f htc htf hft y hyt hy) [PROOFSTEP] try apply efixedPoint_isFixedPt' [GOAL] case refine'_2 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ ⊢ IsFixedPt f (efixedPoint' f htc htf hft y hyt hy) [PROOFSTEP] apply efixedPoint_isFixedPt' [GOAL] case refine'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) < ⊤ [PROOFSTEP] try apply efixedPoint_isFixedPt' [GOAL] case refine'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) < ⊤ [PROOFSTEP] apply efixedPoint_isFixedPt' [GOAL] case refine'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) < ⊤ [PROOFSTEP] change edistLtTopSetoid.Rel _ _ [GOAL] case refine'_3 α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) [PROOFSTEP] trans x [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid (efixedPoint' f hsc hsf hfs x hxs hx) x [PROOFSTEP] apply Setoid.symm' [GOAL] case a α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid x (efixedPoint' f hsc hsf hfs x hxs hx) [PROOFSTEP] apply edist_efixedPoint_lt_top' [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid x (efixedPoint' f htc htf hft y hyt hy) [PROOFSTEP] trans y [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid x y α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid y (efixedPoint' f htc htf hft y hyt hy) [PROOFSTEP] exact lt_top_iff_ne_top.2 hxy [GOAL] α : Type u_1 inst✝ : EMetricSpace α cs : CompleteSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f s : Set α hsc : IsComplete s hsf : MapsTo f s s hfs : ContractingWith K (MapsTo.restrict f s s hsf) x : α hxs : x ∈ s hx : edist x (f x) ≠ ⊤ t : Set α htc : IsComplete t htf : MapsTo f t t hft : ContractingWith K (MapsTo.restrict f t t htf) y : α hyt : y ∈ t hy : edist y (f y) ≠ ⊤ hxy : edist x y ≠ ⊤ h' : edist (efixedPoint' f hsc hsf hfs x hxs hx) (efixedPoint' f htc htf hft y hyt hy) = ⊤ ⊢ Setoid.Rel edistLtTopSetoid y (efixedPoint' f htc htf hft y hyt hy) [PROOFSTEP] apply edist_efixedPoint_lt_top' [GOAL] α : Type u_1 inst✝ : MetricSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x y : α this : dist x y ≤ dist x (f x) + dist y (f y) + ↑K * dist x y ⊢ dist x y ≤ (dist x (f x) + dist y (f y)) / (1 - ↑K) [PROOFSTEP] rwa [le_div_iff hf.one_sub_K_pos, mul_comm, _root_.sub_mul, one_mul, sub_le_iff_le_add] [GOAL] α : Type u_1 inst✝ : MetricSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f x y : α hy : IsFixedPt f y ⊢ dist x y ≤ dist x (f x) / (1 - ↑K) [PROOFSTEP] simpa only [hy.eq, dist_self, add_zero] using hf.dist_inequality x y [GOAL] α : Type u_1 inst✝ : MetricSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f g : α → α x y : α hx : IsFixedPt f x hy : IsFixedPt g y C : ℝ hfg : ∀ (z : α), dist (f z) (g z) ≤ C ⊢ dist y (f y) / (1 - ↑K) = dist (f y) (g y) / (1 - ↑K) [PROOFSTEP] rw [hy.eq, dist_comm] [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α x : α n : ℕ ⊢ dist (f^[n] x) (fixedPoint f hf) ≤ dist (f^[n] x) (f^[n + 1] x) / (1 - ↑K) [PROOFSTEP] rw [iterate_succ'] [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α x : α n : ℕ ⊢ dist (f^[n] x) (fixedPoint f hf) ≤ dist (f^[n] x) ((f ∘ f^[n]) x) / (1 - ↑K) [PROOFSTEP] apply hf.dist_fixedPoint_le [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α x : α ⊢ Tendsto (fun n => f^[n] x) atTop (𝓝 (fixedPoint f hf)) [PROOFSTEP] convert tendsto_iterate_efixedPoint hf (edist_ne_top x _) [GOAL] case h.e'_5.h.e'_3 α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α x : α ⊢ fixedPoint f hf = efixedPoint f hf x (_ : edist x (f x) ≠ ⊤) [PROOFSTEP] refine' (fixedPoint_unique _ _).symm [GOAL] case h.e'_5.h.e'_3 α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α x : α ⊢ IsFixedPt f (efixedPoint f hf x (_ : edist x (f x) ≠ ⊤)) [PROOFSTEP] apply efixedPoint_isFixedPt [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] ⊢ IsFixedPt f (fixedPoint f^[n] hf) [PROOFSTEP] set x := hf.fixedPoint f^[n] [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf ⊢ IsFixedPt f x [PROOFSTEP] have hx : f^[n] x = x := hf.fixedPoint_isFixedPt [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf hx : f^[n] x = x ⊢ IsFixedPt f x [PROOFSTEP] have := hf.toLipschitzWith.dist_le_mul x (f x) [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf hx : f^[n] x = x this : dist (f^[n] x) (f^[n] (f x)) ≤ ↑K * dist x (f x) ⊢ IsFixedPt f x [PROOFSTEP] rw [← iterate_succ_apply, iterate_succ_apply', hx] at this [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf hx : f^[n] x = x this : dist x (f x) ≤ ↑K * dist x (f x) ⊢ IsFixedPt f x [PROOFSTEP] revert this [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf hx : f^[n] x = x ⊢ dist x (f x) ≤ ↑K * dist x (f x) → IsFixedPt f x [PROOFSTEP] contrapose! [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf hx : f^[n] x = x ⊢ ¬IsFixedPt f (fixedPoint f^[n] hf) → ↑K * dist (fixedPoint f^[n] hf) (f (fixedPoint f^[n] hf)) < dist (fixedPoint f^[n] hf) (f (fixedPoint f^[n] hf)) [PROOFSTEP] intro this [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf hx : f^[n] x = x this : ¬IsFixedPt f (fixedPoint f^[n] hf) ⊢ ↑K * dist (fixedPoint f^[n] hf) (f (fixedPoint f^[n] hf)) < dist (fixedPoint f^[n] hf) (f (fixedPoint f^[n] hf)) [PROOFSTEP] have := dist_pos.2 (Ne.symm this) [GOAL] α : Type u_1 inst✝² : MetricSpace α K : ℝ≥0 f : α → α hf✝ : ContractingWith K f inst✝¹ : Nonempty α inst✝ : CompleteSpace α n : ℕ hf : ContractingWith K f^[n] x : α := fixedPoint f^[n] hf hx : f^[n] x = x this✝ : ¬IsFixedPt f (fixedPoint f^[n] hf) this : 0 < dist (fixedPoint f^[n] hf) (f (fixedPoint f^[n] hf)) ⊢ ↑K * dist (fixedPoint f^[n] hf) (f (fixedPoint f^[n] hf)) < dist (fixedPoint f^[n] hf) (f (fixedPoint f^[n] hf)) [PROOFSTEP] simpa only [NNReal.coe_one, one_mul, NNReal.val_eq_coe] using (mul_lt_mul_right this).mpr hf.left
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Contracting", "llama_tokens": 13668}
[GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β ⊢ ∀ (p q : β × β), dist (p.fst * p.snd) (q.fst * q.snd) ≤ ↑(LipschitzMul.C β) * dist p q [PROOFSTEP] rw [← lipschitzWith_iff_dist_le_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β ⊢ LipschitzWith (LipschitzMul.C β) fun p => p.fst * p.snd [PROOFSTEP] exact lipschitzWith_lipschitz_const_mul_edist [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β s : Submonoid β ⊢ LipschitzWith (LipschitzMul.C β) fun p => p.fst * p.snd [PROOFSTEP] rintro ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β s : Submonoid β x₁ x₂ y₁ y₂ : { x // x ∈ s } ⊢ edist ((fun p => p.fst * p.snd) (x₁, x₂)) ((fun p => p.fst * p.snd) (y₁, y₂)) ≤ ↑(LipschitzMul.C β) * edist (x₁, x₂) (y₁, y₂) [PROOFSTEP] convert lipschitzWith_lipschitz_const_mul_edist ⟨(x₁ : β), x₂⟩ ⟨y₁, y₂⟩ using 1 [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β p q : ℝ × ℝ ⊢ dist (p.fst + p.snd) (q.fst + q.snd) ≤ ↑2 * dist p q [PROOFSTEP] simp only [Real.dist_eq, Prod.dist_eq, Prod.fst_sub, Prod.snd_sub, NNReal.coe_ofNat, add_sub_add_comm, two_mul] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β p q : ℝ × ℝ ⊢ |p.fst - q.fst + (p.snd - q.snd)| ≤ max |p.fst - q.fst| |p.snd - q.snd| + max |p.fst - q.fst| |p.snd - q.snd| [PROOFSTEP] refine le_trans (abs_add (p.1 - q.1) (p.2 - q.2)) ?_ [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β p q : ℝ × ℝ ⊢ |p.fst - q.fst| + |p.snd - q.snd| ≤ max |p.fst - q.fst| |p.snd - q.snd| + max |p.fst - q.fst| |p.snd - q.snd| [PROOFSTEP] exact add_le_add (le_max_left _ _) (le_max_right _ _) [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β ⊢ LipschitzWith (LipschitzAdd.C ℝ) fun p => p.fst + p.snd [PROOFSTEP] rintro ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ [GOAL] case mk.mk α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : Monoid β inst✝ : LipschitzMul β x₁ x₂ y₁ y₂ : ℝ≥0 ⊢ edist ((fun p => p.fst + p.snd) (x₁, x₂)) ((fun p => p.fst + p.snd) (y₁, y₂)) ≤ ↑(LipschitzAdd.C ℝ) * edist (x₁, x₂) (y₁, y₂) [PROOFSTEP] exact lipschitzWith_lipschitz_const_add_edist ⟨(x₁ : ℝ), x₂⟩ ⟨y₁, y₂⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] rw [Metric.continuous_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β ⊢ ∀ (b : α × β) (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (a : α × β), dist a b < δ → dist (a.fst • a.snd) (b.fst • b.snd) < ε [PROOFSTEP] rintro ⟨a, b⟩ ε ε0 [GOAL] case mk α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 ⊢ ∃ δ, δ > 0 ∧ ∀ (a_1 : α × β), dist a_1 (a, b) < δ → dist (a_1.fst • a_1.snd) ((a, b).fst • (a, b).snd) < ε [PROOFSTEP] obtain ⟨δ, δ0, hδε⟩ : ∃ δ > 0, δ * (δ + dist b 0) + dist a 0 * δ < ε [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 ⊢ ∃ δ, δ > 0 ∧ δ * (δ + dist b 0) + dist a 0 * δ < ε [PROOFSTEP] have : Continuous fun δ ↦ δ * (δ + dist b 0) + dist a 0 * δ := by continuity [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 ⊢ Continuous fun δ => δ * (δ + dist b 0) + dist a 0 * δ [PROOFSTEP] continuity [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 this : Continuous fun δ => δ * (δ + dist b 0) + dist a 0 * δ ⊢ ∃ δ, δ > 0 ∧ δ * (δ + dist b 0) + dist a 0 * δ < ε [PROOFSTEP] refine ((this.tendsto' _ _ ?_).eventually (gt_mem_nhds ε0)).exists_gt [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 this : Continuous fun δ => δ * (δ + dist b 0) + dist a 0 * δ ⊢ 0 * (0 + dist b 0) + dist a 0 * 0 = 0 [PROOFSTEP] simp [GOAL] case mk.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε ⊢ ∃ δ, δ > 0 ∧ ∀ (a_1 : α × β), dist a_1 (a, b) < δ → dist (a_1.fst • a_1.snd) ((a, b).fst • (a, b).snd) < ε [PROOFSTEP] refine ⟨δ, δ0, fun (a', b') hab' => ?_⟩ [GOAL] case mk.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ⊢ dist ((a', b').fst • (a', b').snd) ((a, b).fst • (a, b).snd) < ε [PROOFSTEP] obtain ⟨ha, hb⟩ := max_lt_iff.1 hab' [GOAL] case mk.intro.intro.intro α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ ⊢ dist ((a', b').fst • (a', b').snd) ((a, b).fst • (a, b).snd) < ε [PROOFSTEP] calc dist (a' • b') (a • b) ≤ dist (a' • b') (a • b') + dist (a • b') (a • b) := dist_triangle .. _ ≤ dist a' a * dist b' 0 + dist a 0 * dist b' b := (add_le_add (dist_pair_smul _ _ _) (dist_smul_pair _ _ _)) _ ≤ δ * (δ + dist b 0) + dist a 0 * δ := by have : dist b' 0 ≤ δ + dist b 0 := (dist_triangle _ _ _).trans <| add_le_add_right hb.le _ mono* <;> apply_rules [dist_nonneg, le_of_lt] _ < ε := hδε [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ ⊢ dist a' a * dist b' 0 + dist a 0 * dist b' b ≤ δ * (δ + dist b 0) + dist a 0 * δ [PROOFSTEP] have : dist b' 0 ≤ δ + dist b 0 := (dist_triangle _ _ _).trans <| add_le_add_right hb.le _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ this : dist b' 0 ≤ δ + dist b 0 ⊢ dist a' a * dist b' 0 + dist a 0 * dist b' b ≤ δ * (δ + dist b 0) + dist a 0 * δ [PROOFSTEP] mono* [GOAL] case h₁.h₁ α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ this : dist b' 0 ≤ δ + dist b 0 ⊢ dist a' a ≤ δ [PROOFSTEP] apply_rules [dist_nonneg, le_of_lt] [GOAL] case h₁.c0 α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ this : dist b' 0 ≤ δ + dist b 0 ⊢ 0 ≤ dist b' 0 [PROOFSTEP] apply_rules [dist_nonneg, le_of_lt] [GOAL] case h₁.b0 α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ this : dist b' 0 ≤ δ + dist b 0 ⊢ 0 ≤ δ [PROOFSTEP] apply_rules [dist_nonneg, le_of_lt] [GOAL] case h₂.h₂ α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ this : dist b' 0 ≤ δ + dist b 0 ⊢ dist b' b ≤ δ [PROOFSTEP] apply_rules [dist_nonneg, le_of_lt] [GOAL] case h₂.c0 α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ this : dist b' 0 ≤ δ + dist b 0 ⊢ 0 ≤ dist b' b [PROOFSTEP] apply_rules [dist_nonneg, le_of_lt] [GOAL] case h₂.b0 α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β a : α b : β ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδε : δ * (δ + dist b 0) + dist a 0 * δ < ε x✝ : α × β a' : α b' : β hab' : dist (a', b') (a, b) < δ ha : dist (a', b').fst (a, b).fst < δ hb : dist (a', b').snd (a, b).snd < δ this : dist b' 0 ≤ δ + dist b 0 ⊢ 0 ≤ dist a 0 [PROOFSTEP] apply_rules [dist_nonneg, le_of_lt] [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β x y₁ y₂ : ℝ ⊢ dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ [PROOFSTEP] simpa [Real.dist_eq, mul_sub] using (abs_mul x (y₁ - y₂)).le [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β x₁ x₂ y : ℝ ⊢ dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 [PROOFSTEP] simpa [Real.dist_eq, sub_mul] using (abs_mul (x₁ - x₂) y).le [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β x y₁ y₂ : ℝ≥0 ⊢ dist (x • y₁) (x • y₂) ≤ dist x 0 * dist y₁ y₂ [PROOFSTEP] convert dist_smul_pair (x : ℝ) (y₁ : ℝ) y₂ using 1 [GOAL] α : Type u_1 β : Type u_2 inst✝⁵ : PseudoMetricSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero α inst✝² : Zero β inst✝¹ : SMul α β inst✝ : BoundedSMul α β x₁ x₂ y : ℝ≥0 ⊢ dist (x₁ • y) (x₂ • y) ≤ dist x₁ x₂ * dist y 0 [PROOFSTEP] convert dist_pair_smul (x₁ : ℝ) x₂ (y : ℝ) using 1 [GOAL] α : Type u_1 β : Type u_2 inst✝⁷ : PseudoMetricSpace α inst✝⁶ : PseudoMetricSpace β inst✝⁵ : Zero α inst✝⁴ : Zero β inst✝³ : SMul α β inst✝² : BoundedSMul α β inst✝¹ : SMul αᵐᵒᵖ β inst✝ : IsCentralScalar α β x : α y₁ y₂ : β ⊢ dist (MulOpposite.op x • y₁) (MulOpposite.op x • y₂) ≤ dist (MulOpposite.op x) 0 * dist y₁ y₂ [PROOFSTEP] simpa only [op_smul_eq_smul] using dist_smul_pair x y₁ y₂ [GOAL] α : Type u_1 β : Type u_2 inst✝⁷ : PseudoMetricSpace α inst✝⁶ : PseudoMetricSpace β inst✝⁵ : Zero α inst✝⁴ : Zero β inst✝³ : SMul α β inst✝² : BoundedSMul α β inst✝¹ : SMul αᵐᵒᵖ β inst✝ : IsCentralScalar α β x₁ x₂ : α y : β ⊢ dist (MulOpposite.op x₁ • y) (MulOpposite.op x₂ • y) ≤ dist (MulOpposite.op x₁) (MulOpposite.op x₂) * dist y 0 [PROOFSTEP] simpa only [op_smul_eq_smul] using dist_pair_smul x₁ x₂ y
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Algebra", "llama_tokens": 7361}
[GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β ⊢ EquicontinuousAt F x₀ ↔ ∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε [PROOFSTEP] rw [equicontinuousAt_iff_pair] [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β ⊢ (∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U) ↔ ∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β ⊢ (∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U) → ∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε [PROOFSTEP] intro H [GOAL] case mpr α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β ⊢ (∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε) → ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] intro H [GOAL] case mp α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β H : ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U ⊢ ∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε [PROOFSTEP] intro ε hε [GOAL] case mp α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β H : ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U ε : ℝ hε : ε > 0 ⊢ ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε [PROOFSTEP] exact H _ (dist_mem_uniformity hε) [GOAL] case mpr α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β H : ∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε ⊢ ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] intro U hU [GOAL] case mpr α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β H : ∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε U : Set (α × α) hU : U ∈ 𝓤 α ⊢ ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] rcases mem_uniformity_dist.mp hU with ⟨ε, hε, hεU⟩ [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β H : ∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε U : Set (α × α) hU : U ∈ 𝓤 α ε : ℝ hε : ε > 0 hεU : ∀ {a b : α}, dist a b < ε → (a, b) ∈ U ⊢ ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] refine' Exists.imp (fun V => And.imp_right fun h => _) (H _ hε) [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β F : ι → β → α x₀ : β H : ∀ (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : β), x ∈ U → ∀ (x' : β), x' ∈ U → ∀ (i : ι), dist (F i x) (F i x') < ε U : Set (α × α) hU : U ∈ 𝓤 α ε : ℝ hε : ε > 0 hεU : ∀ {a b : α}, dist a b < ε → (a, b) ∈ U V : Set β h : ∀ (x : β), x ∈ V → ∀ (x' : β), x' ∈ V → ∀ (i : ι), dist (F i x) (F i x') < ε ⊢ ∀ (x : β), x ∈ V → ∀ (y : β), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] exact fun x hx x' hx' i => hεU (h _ hx _ hx' i) [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β x₀ : β b : β → ℝ b_lim : Tendsto b (𝓝 x₀) (𝓝 0) F : ι → β → α H : ∀ᶠ (x : β) in 𝓝 x₀, ∀ (i : ι), dist (F i x₀) (F i x) ≤ b x ⊢ EquicontinuousAt F x₀ [PROOFSTEP] rw [Metric.equicontinuousAt_iff_right] [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β x₀ : β b : β → ℝ b_lim : Tendsto b (𝓝 x₀) (𝓝 0) F : ι → β → α H : ∀ᶠ (x : β) in 𝓝 x₀, ∀ (i : ι), dist (F i x₀) (F i x) ≤ b x ⊢ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : β) in 𝓝 x₀, ∀ (i : ι), dist (F i x₀) (F i x) < ε [PROOFSTEP] intro ε ε0 [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : TopologicalSpace β x₀ : β b : β → ℝ b_lim : Tendsto b (𝓝 x₀) (𝓝 0) F : ι → β → α H : ∀ᶠ (x : β) in 𝓝 x₀, ∀ (i : ι), dist (F i x₀) (F i x) ≤ b x ε : ℝ ε0 : ε > 0 ⊢ ∀ᶠ (x : β) in 𝓝 x₀, ∀ (i : ι), dist (F i x₀) (F i x) < ε [PROOFSTEP] filter_upwards [Filter.mem_map.mp <| b_lim (Iio_mem_nhds ε0), H] using fun x hx₁ hx₂ i => (hx₂ i).trans_lt hx₁ [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : PseudoMetricSpace β b : ℝ → ℝ b_lim : Tendsto b (𝓝 0) (𝓝 0) F : ι → β → α H : ∀ (x y : β) (i : ι), dist (F i x) (F i y) ≤ b (dist x y) ⊢ UniformEquicontinuous F [PROOFSTEP] rw [Metric.uniformEquicontinuous_iff] [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : PseudoMetricSpace β b : ℝ → ℝ b_lim : Tendsto b (𝓝 0) (𝓝 0) F : ι → β → α H : ∀ (x y : β) (i : ι), dist (F i x) (F i y) ≤ b (dist x y) ⊢ ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x y : β), dist x y < δ → ∀ (i : ι), dist (F i x) (F i y) < ε [PROOFSTEP] intro ε ε0 [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : PseudoMetricSpace β b : ℝ → ℝ b_lim : Tendsto b (𝓝 0) (𝓝 0) F : ι → β → α H : ∀ (x y : β) (i : ι), dist (F i x) (F i y) ≤ b (dist x y) ε : ℝ ε0 : ε > 0 ⊢ ∃ δ, δ > 0 ∧ ∀ (x y : β), dist x y < δ → ∀ (i : ι), dist (F i x) (F i y) < ε [PROOFSTEP] rcases tendsto_nhds_nhds.1 b_lim ε ε0 with ⟨δ, δ0, hδ⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : PseudoMetricSpace β b : ℝ → ℝ b_lim : Tendsto b (𝓝 0) (𝓝 0) F : ι → β → α H : ∀ (x y : β) (i : ι), dist (F i x) (F i y) ≤ b (dist x y) ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδ : ∀ {x : ℝ}, dist x 0 < δ → dist (b x) 0 < ε ⊢ ∃ δ, δ > 0 ∧ ∀ (x y : β), dist x y < δ → ∀ (i : ι), dist (F i x) (F i y) < ε [PROOFSTEP] refine' ⟨δ, δ0, fun x y hxy i => _⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : PseudoMetricSpace β b : ℝ → ℝ b_lim : Tendsto b (𝓝 0) (𝓝 0) F : ι → β → α H : ∀ (x y : β) (i : ι), dist (F i x) (F i y) ≤ b (dist x y) ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδ : ∀ {x : ℝ}, dist x 0 < δ → dist (b x) 0 < ε x y : β hxy : dist x y < δ i : ι ⊢ dist (F i x) (F i y) < ε [PROOFSTEP] calc dist (F i x) (F i y) ≤ b (dist x y) := H x y i _ ≤ |b (dist x y)| := (le_abs_self _) _ = dist (b (dist x y)) 0 := by simp [Real.dist_eq] _ < ε := hδ (by simpa only [Real.dist_eq, tsub_zero, abs_dist] using hxy) [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : PseudoMetricSpace β b : ℝ → ℝ b_lim : Tendsto b (𝓝 0) (𝓝 0) F : ι → β → α H : ∀ (x y : β) (i : ι), dist (F i x) (F i y) ≤ b (dist x y) ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδ : ∀ {x : ℝ}, dist x 0 < δ → dist (b x) 0 < ε x y : β hxy : dist x y < δ i : ι ⊢ |b (dist x y)| = dist (b (dist x y)) 0 [PROOFSTEP] simp [Real.dist_eq] [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 inst✝¹ : PseudoMetricSpace α ι : Type u_4 inst✝ : PseudoMetricSpace β b : ℝ → ℝ b_lim : Tendsto b (𝓝 0) (𝓝 0) F : ι → β → α H : ∀ (x y : β) (i : ι), dist (F i x) (F i y) ≤ b (dist x y) ε : ℝ ε0 : ε > 0 δ : ℝ δ0 : δ > 0 hδ : ∀ {x : ℝ}, dist x 0 < δ → dist (b x) 0 < ε x y : β hxy : dist x y < δ i : ι ⊢ dist (dist x y) 0 < δ [PROOFSTEP] simpa only [Real.dist_eq, tsub_zero, abs_dist] using hxy
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Equicontinuity", "llama_tokens": 5108}
[GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Finite ι inst✝ : (i : ι) → TopologicalSpace (π i) h : PseudoMetrizableSpace X ⊢ FirstCountableTopology X [PROOFSTEP] rcases h with ⟨_, hm⟩ [GOAL] case mk.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Finite ι inst✝ : (i : ι) → TopologicalSpace (π i) w✝ : PseudoMetricSpace X hm : UniformSpace.toTopologicalSpace = inst✝³ ⊢ FirstCountableTopology X [PROOFSTEP] rw [← hm] [GOAL] case mk.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : Finite ι inst✝ : (i : ι) → TopologicalSpace (π i) w✝ : PseudoMetricSpace X hm : UniformSpace.toTopologicalSpace = inst✝³ ⊢ FirstCountableTopology X [PROOFSTEP] exact @UniformSpace.firstCountableTopology X PseudoMetricSpace.toUniformSpace EMetric.instIsCountablyGeneratedUniformity [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : ∀ (i : ι), PseudoMetrizableSpace (π i) ⊢ PseudoMetrizableSpace ((i : ι) → π i) [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : ∀ (i : ι), PseudoMetrizableSpace (π i) val✝ : Fintype ι ⊢ PseudoMetrizableSpace ((i : ι) → π i) [PROOFSTEP] letI := fun i => pseudoMetrizableSpacePseudoMetric (π i) [GOAL] case intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : ∀ (i : ι), PseudoMetrizableSpace (π i) val✝ : Fintype ι this : (i : ι) → PseudoMetricSpace (π i) := fun i => pseudoMetrizableSpacePseudoMetric (π i) ⊢ PseudoMetrizableSpace ((i : ι) → π i) [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : ∀ (i : ι), MetrizableSpace (π i) ⊢ MetrizableSpace ((i : ι) → π i) [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : ∀ (i : ι), MetrizableSpace (π i) val✝ : Fintype ι ⊢ MetrizableSpace ((i : ι) → π i) [PROOFSTEP] letI := fun i => metrizableSpaceMetric (π i) [GOAL] case intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : ∀ (i : ι), MetrizableSpace (π i) val✝ : Fintype ι this : (i : ι) → MetricSpace (π i) := fun i => metrizableSpaceMetric (π i) ⊢ MetrizableSpace ((i : ι) → π i) [PROOFSTEP] infer_instance [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : PseudoMetrizableSpace X s : Set X hs : IsSeparable s ⊢ SecondCountableTopology ↑s [PROOFSTEP] letI := pseudoMetrizableSpacePseudoMetric X [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : PseudoMetrizableSpace X s : Set X hs : IsSeparable s this : PseudoMetricSpace X := pseudoMetrizableSpacePseudoMetric X ⊢ SecondCountableTopology ↑s [PROOFSTEP] have := hs.separableSpace [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁴ : TopologicalSpace X inst✝³ : TopologicalSpace Y inst✝² : Finite ι inst✝¹ : (i : ι) → TopologicalSpace (π i) inst✝ : PseudoMetrizableSpace X s : Set X hs : IsSeparable s this✝ : PseudoMetricSpace X := pseudoMetrizableSpacePseudoMetric X this : SeparableSpace ↑s ⊢ SecondCountableTopology ↑s [PROOFSTEP] exact UniformSpace.secondCountable_of_separable s [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X ⊢ ∃ f, Embedding f [PROOFSTEP] haveI : NormalSpace X := normalSpaceOfT3SecondCountable X [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this : NormalSpace X ⊢ ∃ f, Embedding f [PROOFSTEP] rcases exists_countable_basis X with ⟨B, hBc, -, hB⟩ [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B ⊢ ∃ f, Embedding f [PROOFSTEP] let s : Set (Set X × Set X) := {UV ∈ B ×ˢ B | closure UV.1 ⊆ UV.2} -- `s` is a countable set. [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} ⊢ ∃ f, Embedding f [PROOFSTEP] haveI : Encodable s := ((hBc.prod hBc).mono (inter_subset_left _ _)).toEncodable [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝ : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this : Encodable ↑s ⊢ ∃ f, Embedding f [PROOFSTEP] letI : TopologicalSpace s := ⊥ [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝¹ : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝ : Encodable ↑s this : TopologicalSpace ↑s := ⊥ ⊢ ∃ f, Embedding f [PROOFSTEP] haveI : DiscreteTopology s := ⟨rfl⟩ [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s ⊢ ∃ f, Embedding f [PROOFSTEP] rsuffices ⟨f, hf⟩ : ∃ f : X → s →ᵇ ℝ, Embedding f [GOAL] case intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s f : X → ↑s →ᵇ ℝ hf : Embedding f ⊢ ∃ f, Embedding f [PROOFSTEP] exact ⟨fun x => (f x).extend (Encodable.encode' s) 0, (BoundedContinuousFunction.isometry_extend (Encodable.encode' s) (0 : ℕ →ᵇ ℝ)).embedding.comp hf⟩ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s ⊢ ∃ f, Embedding f [PROOFSTEP] have hd : ∀ UV : s, Disjoint (closure UV.1.1) UV.1.2ᶜ := fun UV => disjoint_compl_right.mono_right (compl_subset_compl.2 UV.2.2) -- Choose a sequence of `εₙ > 0`, `n : s`, that is bounded above by `1` and tends to zero -- along the `cofinite` filter. [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ⊢ ∃ f, Embedding f [PROOFSTEP] obtain ⟨ε, ε01, hε⟩ : ∃ ε : s → ℝ, (∀ UV, ε UV ∈ Ioc (0 : ℝ) 1) ∧ Tendsto ε cofinite (𝓝 0) := by rcases posSumOfEncodable zero_lt_one s with ⟨ε, ε0, c, hεc, hc1⟩ refine' ⟨ε, fun UV => ⟨ε0 UV, _⟩, hεc.summable.tendsto_cofinite_zero⟩ exact (le_hasSum hεc UV fun _ _ => (ε0 _).le).trans hc1 [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ⊢ ∃ ε, (∀ (UV : ↑s), ε UV ∈ Ioc 0 1) ∧ Tendsto ε cofinite (𝓝 0) [PROOFSTEP] rcases posSumOfEncodable zero_lt_one s with ⟨ε, ε0, c, hεc, hc1⟩ [GOAL] case mk.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε0 : ∀ (i : ↑s), 0 < ε i c : ℝ hεc : HasSum ε c hc1 : c ≤ 1 ⊢ ∃ ε, (∀ (UV : ↑s), ε UV ∈ Ioc 0 1) ∧ Tendsto ε cofinite (𝓝 0) [PROOFSTEP] refine' ⟨ε, fun UV => ⟨ε0 UV, _⟩, hεc.summable.tendsto_cofinite_zero⟩ [GOAL] case mk.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε0 : ∀ (i : ↑s), 0 < ε i c : ℝ hεc : HasSum ε c hc1 : c ≤ 1 UV : ↑s ⊢ ε UV ≤ 1 [PROOFSTEP] exact (le_hasSum hεc UV fun _ _ => (ε0 _).le).trans hc1 [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) ⊢ ∃ f, Embedding f [PROOFSTEP] have : ∀ UV : s, ∃ f : C(X, ℝ), EqOn f 0 UV.1.1 ∧ EqOn f (fun _ => ε UV) UV.1.2ᶜ ∧ ∀ x, f x ∈ Icc 0 (ε UV) := by intro UV rcases exists_continuous_zero_one_of_closed isClosed_closure (hB.isOpen UV.2.1.2).isClosed_compl (hd UV) with ⟨f, hf₀, hf₁, hf01⟩ exact ⟨ε UV • f, fun x hx => by simp [hf₀ (subset_closure hx)], fun x hx => by simp [hf₁ hx], fun x => ⟨mul_nonneg (ε01 _).1.le (hf01 _).1, mul_le_of_le_one_right (ε01 _).1.le (hf01 _).2⟩⟩ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) ⊢ ∀ (UV : ↑s), ∃ f, EqOn (↑f) 0 (↑UV).fst ∧ EqOn (↑f) (fun x => ε UV) (↑UV).sndᶜ ∧ ∀ (x : X), ↑f x ∈ Icc 0 (ε UV) [PROOFSTEP] intro UV [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) UV : ↑s ⊢ ∃ f, EqOn (↑f) 0 (↑UV).fst ∧ EqOn (↑f) (fun x => ε UV) (↑UV).sndᶜ ∧ ∀ (x : X), ↑f x ∈ Icc 0 (ε UV) [PROOFSTEP] rcases exists_continuous_zero_one_of_closed isClosed_closure (hB.isOpen UV.2.1.2).isClosed_compl (hd UV) with ⟨f, hf₀, hf₁, hf01⟩ [GOAL] case intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) UV : ↑s f : C(X, ℝ) hf₀ : EqOn (↑f) 0 (closure (↑UV).fst) hf₁ : EqOn (↑f) 1 (↑UV).sndᶜ hf01 : ∀ (x : X), ↑f x ∈ Icc 0 1 ⊢ ∃ f, EqOn (↑f) 0 (↑UV).fst ∧ EqOn (↑f) (fun x => ε UV) (↑UV).sndᶜ ∧ ∀ (x : X), ↑f x ∈ Icc 0 (ε UV) [PROOFSTEP] exact ⟨ε UV • f, fun x hx => by simp [hf₀ (subset_closure hx)], fun x hx => by simp [hf₁ hx], fun x => ⟨mul_nonneg (ε01 _).1.le (hf01 _).1, mul_le_of_le_one_right (ε01 _).1.le (hf01 _).2⟩⟩ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) UV : ↑s f : C(X, ℝ) hf₀ : EqOn (↑f) 0 (closure (↑UV).fst) hf₁ : EqOn (↑f) 1 (↑UV).sndᶜ hf01 : ∀ (x : X), ↑f x ∈ Icc 0 1 x : X hx : x ∈ (↑UV).fst ⊢ ↑(ε UV • f) x = OfNat.ofNat 0 x [PROOFSTEP] simp [hf₀ (subset_closure hx)] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) UV : ↑s f : C(X, ℝ) hf₀ : EqOn (↑f) 0 (closure (↑UV).fst) hf₁ : EqOn (↑f) 1 (↑UV).sndᶜ hf01 : ∀ (x : X), ↑f x ∈ Icc 0 1 x : X hx : x ∈ (↑UV).sndᶜ ⊢ ↑(ε UV • f) x = (fun x => ε UV) x [PROOFSTEP] simp [hf₁ hx] [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝³ : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝² : Encodable ↑s this✝¹ : TopologicalSpace ↑s := ⊥ this✝ : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) this : ∀ (UV : ↑s), ∃ f, EqOn (↑f) 0 (↑UV).fst ∧ EqOn (↑f) (fun x => ε UV) (↑UV).sndᶜ ∧ ∀ (x : X), ↑f x ∈ Icc 0 (ε UV) ⊢ ∃ f, Embedding f [PROOFSTEP] choose f hf0 hfε hf0ε using this [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) ⊢ ∃ f, Embedding f [PROOFSTEP] have hf01 : ∀ UV x, f UV x ∈ Icc (0 : ℝ) 1 := fun UV x => Icc_subset_Icc_right (ε01 _).2 (hf0ε _ _) -- The embedding is given by `F x UV = f UV x`. [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 ⊢ ∃ f, Embedding f [PROOFSTEP] set F : X → s →ᵇ ℝ := fun x => ⟨⟨fun UV => f UV x, continuous_of_discreteTopology⟩, 1, fun UV₁ UV₂ => Real.dist_le_of_mem_Icc_01 (hf01 _ _) (hf01 _ _)⟩ [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } ⊢ ∃ f, Embedding f [PROOFSTEP] have hF : ∀ x UV, F x UV = f UV x := fun _ _ => rfl [GOAL] case intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x ⊢ ∃ f, Embedding f [PROOFSTEP] refine' ⟨F, Embedding.mk' _ (fun x y hxy => _) fun x => le_antisymm _ _⟩ [GOAL] case intro.intro.refine'_1 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x y : X hxy : F x = F y ⊢ x = y [PROOFSTEP] by_contra Hne [GOAL] case intro.intro.refine'_1 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x y : X hxy : F x = F y Hne : ¬x = y ⊢ False [PROOFSTEP] rcases hB.mem_nhds_iff.1 (isOpen_ne.mem_nhds Hne) with ⟨V, hVB, hxV, hVy⟩ [GOAL] case intro.intro.refine'_1.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x y : X hxy : F x = F y Hne : ¬x = y V : Set X hVB : V ∈ B hxV : x ∈ V hVy : V ⊆ {y_1 | y_1 ≠ y} ⊢ False [PROOFSTEP] rcases hB.exists_closure_subset (hB.mem_nhds hVB hxV) with ⟨U, hUB, hxU, hUV⟩ [GOAL] case intro.intro.refine'_1.intro.intro.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x y : X hxy : F x = F y Hne : ¬x = y V : Set X hVB : V ∈ B hxV : x ∈ V hVy : V ⊆ {y_1 | y_1 ≠ y} U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V ⊢ False [PROOFSTEP] set UV : ↥s := ⟨(U, V), ⟨hUB, hVB⟩, hUV⟩ [GOAL] case intro.intro.refine'_1.intro.intro.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x y : X hxy : F x = F y Hne : ¬x = y V : Set X hVB : V ∈ B hxV : x ∈ V hVy : V ⊆ {y_1 | y_1 ≠ y} U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } ⊢ False [PROOFSTEP] apply (ε01 UV).1.ne [GOAL] case intro.intro.refine'_1.intro.intro.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x y : X hxy : F x = F y Hne : ¬x = y V : Set X hVB : V ∈ B hxV : x ∈ V hVy : V ⊆ {y_1 | y_1 ≠ y} U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } ⊢ 0 = ε UV [PROOFSTEP] calc (0 : ℝ) = F x UV := (hf0 UV hxU).symm _ = F y UV := by rw [hxy] _ = ε UV := hfε UV fun h : y ∈ V => hVy h rfl [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x y : X hxy : F x = F y Hne : ¬x = y V : Set X hVB : V ∈ B hxV : x ∈ V hVy : V ⊆ {y_1 | y_1 ≠ y} U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } ⊢ ↑(F x) UV = ↑(F y) UV [PROOFSTEP] rw [hxy] [GOAL] case intro.intro.refine'_2 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X ⊢ comap F (𝓝 (F x)) ≤ 𝓝 x [PROOFSTEP] refine' ((nhds_basis_ball.comap _).le_basis_iff hB.nhds_hasBasis).2 _ [GOAL] case intro.intro.refine'_2 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X ⊢ ∀ (i' : Set X), i' ∈ B ∧ x ∈ i' → ∃ i, 0 < i ∧ F ⁻¹' ball (F x) i ⊆ i' [PROOFSTEP] rintro V ⟨hVB, hxV⟩ [GOAL] case intro.intro.refine'_2.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V ⊢ ∃ i, 0 < i ∧ F ⁻¹' ball (F x) i ⊆ V [PROOFSTEP] rcases hB.exists_closure_subset (hB.mem_nhds hVB hxV) with ⟨U, hUB, hxU, hUV⟩ [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V ⊢ ∃ i, 0 < i ∧ F ⁻¹' ball (F x) i ⊆ V [PROOFSTEP] set UV : ↥s := ⟨(U, V), ⟨hUB, hVB⟩, hUV⟩ [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } ⊢ ∃ i, 0 < i ∧ F ⁻¹' ball (F x) i ⊆ V [PROOFSTEP] refine' ⟨ε UV, (ε01 UV).1, fun y (hy : dist (F y) (F x) < ε UV) => _⟩ [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } y : X hy : dist (F y) (F x) < ε UV ⊢ y ∈ V [PROOFSTEP] replace hy : dist (F y UV) (F x UV) < ε UV [GOAL] case hy ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } y : X hy : dist (F y) (F x) < ε UV ⊢ dist (↑(F y) UV) (↑(F x) UV) < ε UV case intro.intro.refine'_2.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } y : X hy : dist (↑(F y) UV) (↑(F x) UV) < ε UV ⊢ y ∈ V [PROOFSTEP] exact (BoundedContinuousFunction.dist_coe_le_dist _).trans_lt hy [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } y : X hy : dist (↑(F y) UV) (↑(F x) UV) < ε UV ⊢ y ∈ V [PROOFSTEP] contrapose! hy [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } y : X hy : ¬y ∈ V ⊢ ε { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } ≤ dist (↑((fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) }) y) { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) }) (↑((fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) }) x) { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) }) [PROOFSTEP] rw [hF, hF, hfε UV hy, hf0 UV hxU, Pi.zero_apply, dist_zero_right] [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X V : Set X hVB : V ∈ B hxV : x ∈ V U : Set X hUB : U ∈ B hxU : x ∈ U hUV : closure U ⊆ V UV : ↑s := { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } y : X hy : ¬y ∈ V ⊢ ε { val := (U, V), property := (_ : (U, V) ∈ B ×ˢ B ∧ closure (U, V).fst ⊆ (U, V).snd) } ≤ ‖(fun x => ε UV) y‖ [PROOFSTEP] exact le_abs_self _ [GOAL] case intro.intro.refine'_3 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X ⊢ 𝓝 x ≤ comap F (𝓝 (F x)) [PROOFSTEP] refine' (nhds_basis_closedBall.comap _).ge_iff.2 fun δ δ0 => _ [GOAL] case intro.intro.refine'_3 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ ⊢ F ⁻¹' closedBall (F x) δ ∈ 𝓝 x [PROOFSTEP] have h_fin : {UV : s | δ ≤ ε UV}.Finite := by simpa only [← not_lt] using hε (gt_mem_nhds δ0) [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ ⊢ Set.Finite {UV | δ ≤ ε UV} [PROOFSTEP] simpa only [← not_lt] using hε (gt_mem_nhds δ0) [GOAL] case intro.intro.refine'_3 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : Set.Finite {UV | δ ≤ ε UV} ⊢ F ⁻¹' closedBall (F x) δ ∈ 𝓝 x [PROOFSTEP] have : ∀ᶠ y in 𝓝 x, ∀ UV, δ ≤ ε UV → dist (F y UV) (F x UV) ≤ δ := by refine' (eventually_all_finite h_fin).2 fun UV _ => _ exact (f UV).continuous.tendsto x (closedBall_mem_nhds _ δ0) [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : Set.Finite {UV | δ ≤ ε UV} ⊢ ∀ᶠ (y : X) in 𝓝 x, ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ [PROOFSTEP] refine' (eventually_all_finite h_fin).2 fun UV _ => _ [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝² : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝¹ : Encodable ↑s this✝ : TopologicalSpace ↑s := ⊥ this : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : Set.Finite {UV | δ ≤ ε UV} UV : ↑s x✝ : UV ∈ {UV | δ ≤ ε UV} ⊢ ∀ᶠ (x_1 : X) in 𝓝 x, dist (↑(F x_1) UV) (↑(F x) UV) ≤ δ [PROOFSTEP] exact (f UV).continuous.tendsto x (closedBall_mem_nhds _ δ0) [GOAL] case intro.intro.refine'_3 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝³ : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝² : Encodable ↑s this✝¹ : TopologicalSpace ↑s := ⊥ this✝ : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : Set.Finite {UV | δ ≤ ε UV} this : ∀ᶠ (y : X) in 𝓝 x, ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ ⊢ F ⁻¹' closedBall (F x) δ ∈ 𝓝 x [PROOFSTEP] refine' this.mono fun y hy => (BoundedContinuousFunction.dist_le δ0.le).2 fun UV => _ [GOAL] case intro.intro.refine'_3 ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝³ : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝² : Encodable ↑s this✝¹ : TopologicalSpace ↑s := ⊥ this✝ : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : Set.Finite {UV | δ ≤ ε UV} this : ∀ᶠ (y : X) in 𝓝 x, ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ y : X hy : ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ UV : ↑s ⊢ dist (↑(F y) UV) (↑(F x) UV) ≤ δ [PROOFSTEP] cases' le_total δ (ε UV) with hle hle [GOAL] case intro.intro.refine'_3.inl ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝³ : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝² : Encodable ↑s this✝¹ : TopologicalSpace ↑s := ⊥ this✝ : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : Set.Finite {UV | δ ≤ ε UV} this : ∀ᶠ (y : X) in 𝓝 x, ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ y : X hy : ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ UV : ↑s hle : δ ≤ ε UV ⊢ dist (↑(F y) UV) (↑(F x) UV) ≤ δ case intro.intro.refine'_3.inr ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝³ : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝² : Encodable ↑s this✝¹ : TopologicalSpace ↑s := ⊥ this✝ : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : Set.Finite {UV | δ ≤ ε UV} this : ∀ᶠ (y : X) in 𝓝 x, ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ y : X hy : ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ UV : ↑s hle : ε UV ≤ δ ⊢ dist (↑(F y) UV) (↑(F x) UV) ≤ δ [PROOFSTEP] exacts [hy _ hle, (Real.dist_le_of_mem_Icc (hf0ε _ _) (hf0ε _ _)).trans (by rwa [sub_zero])] [GOAL] ι : Type u_1 X : Type u_2 Y : Type u_3 π : ι → Type u_4 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : Finite ι inst✝² : (i : ι) → TopologicalSpace (π i) inst✝¹ : T3Space X inst✝ : SecondCountableTopology X this✝³ : NormalSpace X B : Set (Set X) hBc : Set.Countable B hB : IsTopologicalBasis B s : Set (Set X × Set X) := {UV | UV ∈ B ×ˢ B ∧ closure UV.fst ⊆ UV.snd} this✝² : Encodable ↑s this✝¹ : TopologicalSpace ↑s := ⊥ this✝ : DiscreteTopology ↑s hd : ∀ (UV : ↑s), Disjoint (closure (↑UV).fst) (↑UV).sndᶜ ε : ↑s → ℝ ε01 : ∀ (UV : ↑s), ε UV ∈ Ioc 0 1 hε : Tendsto ε cofinite (𝓝 0) f : ↑s → C(X, ℝ) hf0 : ∀ (UV : ↑s), EqOn (↑(f UV)) 0 (↑UV).fst hfε : ∀ (UV : ↑s), EqOn (↑(f UV)) (fun x => ε UV) (↑UV).sndᶜ hf0ε : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 (ε UV) hf01 : ∀ (UV : ↑s) (x : X), ↑(f UV) x ∈ Icc 0 1 F : X → ↑s →ᵇ ℝ := fun x => { toContinuousMap := ContinuousMap.mk fun UV => ↑(f UV) x, map_bounded' := (_ : ∃ C, ∀ (x_1 y : ↑s), dist (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) x_1) (ContinuousMap.toFun (ContinuousMap.mk fun UV => ↑(f UV) x) y) ≤ C) } hF : ∀ (x : X) (UV : ↑s), ↑(F x) UV = ↑(f UV) x x : X δ : ℝ δ0 : 0 < δ h_fin : Set.Finite {UV | δ ≤ ε UV} this : ∀ᶠ (y : X) in 𝓝 x, ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ y : X hy : ∀ (UV : ↑s), δ ≤ ε UV → dist (↑(F y) UV) (↑(F x) UV) ≤ δ UV : ↑s hle : ε UV ≤ δ ⊢ ε UV - 0 ≤ δ [PROOFSTEP] rwa [sub_zero]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Metrizable", "llama_tokens": 36399}
[GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β d : ℝ≥0∞ ⊢ d ≤ infEdist x s ↔ ∀ (y : α), y ∈ s → d ≤ edist x y [PROOFSTEP] simp only [infEdist, le_iInf_iff] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β r : ℝ≥0∞ ⊢ infEdist x s < r ↔ ∃ y, y ∈ s ∧ edist x y < r [PROOFSTEP] simp_rw [infEdist, iInf_lt_iff, exists_prop] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ⊢ ⨅ (z : α) (_ : z ∈ s), edist y z + edist x y = (⨅ (z : α) (_ : z ∈ s), edist y z) + edist x y [PROOFSTEP] simp only [ENNReal.iInf_add] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ⊢ infEdist x s ≤ edist x y + infEdist y s [PROOFSTEP] rw [add_comm] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ⊢ infEdist x s ≤ infEdist y s + edist x y [PROOFSTEP] exact infEdist_le_infEdist_add_edist [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β hy : y ∈ s ⊢ edist x y ≤ infEdist x s + diam s [PROOFSTEP] simp_rw [infEdist, ENNReal.iInf_add] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β hy : y ∈ s ⊢ edist x y ≤ ⨅ (i : α) (_ : i ∈ s), edist x i + diam s [PROOFSTEP] refine le_iInf₂ fun i hi => ?_ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β hy : y ∈ s i : α hi : i ∈ s ⊢ edist x y ≤ edist x i + diam s [PROOFSTEP] calc edist x y ≤ edist x i + edist i y := edist_triangle _ _ _ _ ≤ edist x i + diam s := add_le_add le_rfl (edist_le_diam_of_mem hi hy) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ⊢ 1 ≠ ⊤ [PROOFSTEP] simp [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ⊢ ∀ (x y : α), infEdist x s ≤ infEdist y s + 1 * edist x y [PROOFSTEP] simp only [one_mul, infEdist_le_infEdist_add_edist, forall₂_true_iff] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ⊢ infEdist x (closure s) = infEdist x s [PROOFSTEP] refine' le_antisymm (infEdist_anti subset_closure) _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ⊢ infEdist x s ≤ infEdist x (closure s) [PROOFSTEP] refine' ENNReal.le_of_forall_pos_le_add fun ε εpos h => _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x (closure s) < ⊤ ⊢ infEdist x s ≤ infEdist x (closure s) + ↑ε [PROOFSTEP] have ε0 : 0 < (ε / 2 : ℝ≥0∞) := by simpa [pos_iff_ne_zero] using εpos [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x (closure s) < ⊤ ⊢ 0 < ↑ε / 2 [PROOFSTEP] simpa [pos_iff_ne_zero] using εpos [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x (closure s) < ⊤ ε0 : 0 < ↑ε / 2 ⊢ infEdist x s ≤ infEdist x (closure s) + ↑ε [PROOFSTEP] have : infEdist x (closure s) < infEdist x (closure s) + ε / 2 := ENNReal.lt_add_right h.ne ε0.ne' [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x (closure s) < ⊤ ε0 : 0 < ↑ε / 2 this : infEdist x (closure s) < infEdist x (closure s) + ↑ε / 2 ⊢ infEdist x s ≤ infEdist x (closure s) + ↑ε [PROOFSTEP] rcases infEdist_lt_iff.mp this with ⟨y, ycs, hy⟩ -- y : α, ycs : y ∈ closure s, hy : edist x y < infEdist x (closure s) + ↑ε / 2 [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x (closure s) < ⊤ ε0 : 0 < ↑ε / 2 this : infEdist x (closure s) < infEdist x (closure s) + ↑ε / 2 y : α ycs : y ∈ closure s hy : edist x y < infEdist x (closure s) + ↑ε / 2 ⊢ infEdist x s ≤ infEdist x (closure s) + ↑ε [PROOFSTEP] rcases EMetric.mem_closure_iff.1 ycs (ε / 2) ε0 with ⟨z, zs, dyz⟩ -- z : α, zs : z ∈ s, dyz : edist y z < ↑ε / 2 [GOAL] case intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x (closure s) < ⊤ ε0 : 0 < ↑ε / 2 this : infEdist x (closure s) < infEdist x (closure s) + ↑ε / 2 y : α ycs : y ∈ closure s hy : edist x y < infEdist x (closure s) + ↑ε / 2 z : α zs : z ∈ s dyz : edist y z < ↑ε / 2 ⊢ infEdist x s ≤ infEdist x (closure s) + ↑ε [PROOFSTEP] calc infEdist x s ≤ edist x z := infEdist_le_edist_of_mem zs _ ≤ edist x y + edist y z := (edist_triangle _ _ _) _ ≤ infEdist x (closure s) + ε / 2 + ε / 2 := (add_le_add (le_of_lt hy) (le_of_lt dyz)) _ = infEdist x (closure s) + ↑ε := by rw [add_assoc, ENNReal.add_halves] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x (closure s) < ⊤ ε0 : 0 < ↑ε / 2 this : infEdist x (closure s) < infEdist x (closure s) + ↑ε / 2 y : α ycs : y ∈ closure s hy : edist x y < infEdist x (closure s) + ↑ε / 2 z : α zs : z ∈ s dyz : edist y z < ↑ε / 2 ⊢ infEdist x (closure s) + ↑ε / 2 + ↑ε / 2 = infEdist x (closure s) + ↑ε [PROOFSTEP] rw [add_assoc, ENNReal.add_halves] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β h : x ∈ closure s ⊢ infEdist x s = 0 [PROOFSTEP] rw [← infEdist_closure] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β h : x ∈ closure s ⊢ infEdist x (closure s) = 0 [PROOFSTEP] exact infEdist_zero_of_mem h [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β h : infEdist x s = 0 ε : ℝ≥0∞ εpos : ε > 0 ⊢ infEdist x s < ε [PROOFSTEP] rwa [h] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β h : IsClosed s ⊢ x ∈ s ↔ infEdist x s = 0 [PROOFSTEP] rw [← mem_closure_iff_infEdist_zero, h.closure_eq] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β x : α E : Set α ⊢ 0 < infEdist x E ↔ ¬x ∈ closure E [PROOFSTEP] rw [mem_closure_iff_infEdist_zero, pos_iff_ne_zero] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β x : α E : Set α ⊢ 0 < infEdist x (closure E) ↔ ¬x ∈ closure E [PROOFSTEP] rw [infEdist_closure, infEdist_pos_iff_not_mem_closure] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β x : α E : Set α h : ¬x ∈ closure E ⊢ ∃ ε, 0 < ε ∧ ENNReal.ofReal ε < infEdist x E [PROOFSTEP] rw [← infEdist_pos_iff_not_mem_closure, ENNReal.lt_iff_exists_real_btwn] at h [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β x : α E : Set α h : ∃ r, 0 ≤ r ∧ 0 < ENNReal.ofReal r ∧ ENNReal.ofReal r < infEdist x E ⊢ ∃ ε, 0 < ε ∧ ENNReal.ofReal ε < infEdist x E [PROOFSTEP] rcases h with ⟨ε, ⟨_, ⟨ε_pos, ε_lt⟩⟩⟩ [GOAL] case intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β x : α E : Set α ε : ℝ left✝ : 0 ≤ ε ε_pos : 0 < ENNReal.ofReal ε ε_lt : ENNReal.ofReal ε < infEdist x E ⊢ ∃ ε, 0 < ε ∧ ENNReal.ofReal ε < infEdist x E [PROOFSTEP] exact ⟨ε, ⟨ENNReal.ofReal_pos.mp ε_pos, ε_lt⟩⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β r : ℝ≥0∞ h : r < infEdist x s ⊢ Disjoint (closedBall x r) s [PROOFSTEP] rw [disjoint_left] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β r : ℝ≥0∞ h : r < infEdist x s ⊢ ∀ ⦃a : α⦄, a ∈ closedBall x r → ¬a ∈ s [PROOFSTEP] intro y hy h'y [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t : Set α Φ : α → β r : ℝ≥0∞ h : r < infEdist x s y : α hy : y ∈ closedBall x r h'y : y ∈ s ⊢ False [PROOFSTEP] apply lt_irrefl (infEdist x s) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t : Set α Φ : α → β r : ℝ≥0∞ h : r < infEdist x s y : α hy : y ∈ closedBall x r h'y : y ∈ s ⊢ infEdist x s < infEdist x s [PROOFSTEP] calc infEdist x s ≤ edist x y := infEdist_le_edist_of_mem h'y _ ≤ r := by rwa [mem_closedBall, edist_comm] at hy _ < infEdist x s := h [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t : Set α Φ : α → β r : ℝ≥0∞ h : r < infEdist x s y : α hy : y ∈ closedBall x r h'y : y ∈ s ⊢ edist x y ≤ r [PROOFSTEP] rwa [mem_closedBall, edist_comm] at hy [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β hΦ : Isometry Φ ⊢ infEdist (Φ x) (Φ '' t) = infEdist x t [PROOFSTEP] simp only [infEdist, iInf_image, hΦ.edist_eq] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U ⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ ⋃ (n : ℕ), F n = U ∧ Monotone F [PROOFSTEP] obtain ⟨a, a_pos, a_lt_one⟩ : ∃ a : ℝ≥0∞, 0 < a ∧ a < 1 := exists_between zero_lt_one [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 ⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ ⋃ (n : ℕ), F n = U ∧ Monotone F [PROOFSTEP] let F := fun n : ℕ => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) ⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ ⋃ (n : ℕ), F n = U ∧ Monotone F [PROOFSTEP] have F_subset : ∀ n, F n ⊆ U := fun n x hx ↦ by by_contra h have : infEdist x Uᶜ ≠ 0 := ((ENNReal.pow_pos a_pos _).trans_le hx).ne' exact this (infEdist_zero_of_mem h) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) n : ℕ x : α hx : x ∈ F n ⊢ x ∈ U [PROOFSTEP] by_contra h [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) n : ℕ x : α hx : x ∈ F n h : ¬x ∈ U ⊢ False [PROOFSTEP] have : infEdist x Uᶜ ≠ 0 := ((ENNReal.pow_pos a_pos _).trans_le hx).ne' [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) n : ℕ x : α hx : x ∈ F n h : ¬x ∈ U this : infEdist x Uᶜ ≠ 0 ⊢ False [PROOFSTEP] exact this (infEdist_zero_of_mem h) [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U ⊢ ∃ F, (∀ (n : ℕ), IsClosed (F n)) ∧ (∀ (n : ℕ), F n ⊆ U) ∧ ⋃ (n : ℕ), F n = U ∧ Monotone F [PROOFSTEP] refine ⟨F, fun n => IsClosed.preimage continuous_infEdist isClosed_Ici, F_subset, ?_, ?_⟩ [GOAL] case intro.intro.refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U ⊢ ⋃ (n : ℕ), F n = U case intro.intro.refine_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U ⊢ Monotone F [PROOFSTEP] show ⋃ n, F n = U [GOAL] case intro.intro.refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U ⊢ ⋃ (n : ℕ), F n = U [PROOFSTEP] refine' Subset.antisymm (by simp only [iUnion_subset_iff, F_subset, forall_const]) fun x hx => _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U ⊢ ⋃ (n : ℕ), F n ⊆ U [PROOFSTEP] simp only [iUnion_subset_iff, F_subset, forall_const] [GOAL] case intro.intro.refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U ⊢ x ∈ ⋃ (n : ℕ), F n [PROOFSTEP] have : ¬x ∈ Uᶜ := by simpa using hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U ⊢ ¬x ∈ Uᶜ [PROOFSTEP] simpa using hx [GOAL] case intro.intro.refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U this : ¬x ∈ Uᶜ ⊢ x ∈ ⋃ (n : ℕ), F n [PROOFSTEP] rw [mem_iff_infEdist_zero_of_closed hU.isClosed_compl] at this [GOAL] case intro.intro.refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U this : ¬infEdist x Uᶜ = 0 ⊢ x ∈ ⋃ (n : ℕ), F n [PROOFSTEP] have B : 0 < infEdist x Uᶜ := by simpa [pos_iff_ne_zero] using this [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U this : ¬infEdist x Uᶜ = 0 ⊢ 0 < infEdist x Uᶜ [PROOFSTEP] simpa [pos_iff_ne_zero] using this [GOAL] case intro.intro.refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U this : ¬infEdist x Uᶜ = 0 B : 0 < infEdist x Uᶜ ⊢ x ∈ ⋃ (n : ℕ), F n [PROOFSTEP] have : Filter.Tendsto (fun n => a ^ n) atTop (𝓝 0) := ENNReal.tendsto_pow_atTop_nhds_0_of_lt_1 a_lt_one [GOAL] case intro.intro.refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U this✝ : ¬infEdist x Uᶜ = 0 B : 0 < infEdist x Uᶜ this : Tendsto (fun n => a ^ n) atTop (𝓝 0) ⊢ x ∈ ⋃ (n : ℕ), F n [PROOFSTEP] rcases((tendsto_order.1 this).2 _ B).exists with ⟨n, hn⟩ [GOAL] case intro.intro.refine_1.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U this✝ : ¬infEdist x Uᶜ = 0 B : 0 < infEdist x Uᶜ this : Tendsto (fun n => a ^ n) atTop (𝓝 0) n : ℕ hn : a ^ n < infEdist x Uᶜ ⊢ x ∈ ⋃ (n : ℕ), F n [PROOFSTEP] simp only [mem_iUnion, mem_Ici, mem_preimage] [GOAL] case intro.intro.refine_1.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U x : α hx : x ∈ U this✝ : ¬infEdist x Uᶜ = 0 B : 0 < infEdist x Uᶜ this : Tendsto (fun n => a ^ n) atTop (𝓝 0) n : ℕ hn : a ^ n < infEdist x Uᶜ ⊢ ∃ i, a ^ i ≤ infEdist x Uᶜ [PROOFSTEP] exact ⟨n, hn.le⟩ [GOAL] case intro.intro.refine_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U ⊢ Monotone F [PROOFSTEP] show Monotone F [GOAL] case intro.intro.refine_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U ⊢ Monotone F [PROOFSTEP] intro m n hmn x hx [GOAL] case intro.intro.refine_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U m n : ℕ hmn : m ≤ n x : α hx : x ∈ F m ⊢ x ∈ F n [PROOFSTEP] simp only [mem_Ici, mem_preimage] at hx ⊢ [GOAL] case intro.intro.refine_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β U : Set α hU : IsOpen U a : ℝ≥0∞ a_pos : 0 < a a_lt_one : a < 1 F : ℕ → Set α := fun n => (fun x => infEdist x Uᶜ) ⁻¹' Ici (a ^ n) F_subset : ∀ (n : ℕ), F n ⊆ U m n : ℕ hmn : m ≤ n x : α hx : a ^ m ≤ infEdist x Uᶜ ⊢ a ^ n ≤ infEdist x Uᶜ [PROOFSTEP] apply le_trans (pow_le_pow_of_le_one' a_lt_one.le hmn) hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β hs : IsCompact s hne : Set.Nonempty s x : α ⊢ ∃ y, y ∈ s ∧ infEdist x s = edist x y [PROOFSTEP] have A : Continuous fun y => edist x y := continuous_const.edist continuous_id [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β hs : IsCompact s hne : Set.Nonempty s x : α A : Continuous fun y => edist x y ⊢ ∃ y, y ∈ s ∧ infEdist x s = edist x y [PROOFSTEP] obtain ⟨y, ys, hy⟩ : ∃ y ∈ s, ∀ z, z ∈ s → edist x y ≤ edist x z := hs.exists_forall_le hne A.continuousOn [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t : Set α Φ : α → β hs : IsCompact s hne : Set.Nonempty s x : α A : Continuous fun y => edist x y y : α ys : y ∈ s hy : ∀ (z : α), z ∈ s → edist x y ≤ edist x z ⊢ ∃ y, y ∈ s ∧ infEdist x s = edist x y [PROOFSTEP] exact ⟨y, ys, le_antisymm (infEdist_le_edist_of_mem ys) (by rwa [le_infEdist])⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t : Set α Φ : α → β hs : IsCompact s hne : Set.Nonempty s x : α A : Continuous fun y => edist x y y : α ys : y ∈ s hy : ∀ (z : α), z ∈ s → edist x y ≤ edist x z ⊢ edist x y ≤ infEdist x s [PROOFSTEP] rwa [le_infEdist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β hs : IsCompact s ht : IsClosed t hst : Disjoint s t ⊢ ∃ r, 0 < r ∧ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | hne) [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α t : Set α Φ : α → β ht : IsClosed t hs : IsCompact ∅ hst : Disjoint ∅ t ⊢ ∃ r, 0 < r ∧ ∀ (x : α), x ∈ ∅ → ∀ (y : α), y ∈ t → ↑r < edist x y [PROOFSTEP] use 1 [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α t : Set α Φ : α → β ht : IsClosed t hs : IsCompact ∅ hst : Disjoint ∅ t ⊢ 0 < 1 ∧ ∀ (x : α), x ∈ ∅ → ∀ (y : α), y ∈ t → ↑1 < edist x y [PROOFSTEP] simp [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t : Set α Φ : α → β hs : IsCompact s ht : IsClosed t hst : Disjoint s t hne : Set.Nonempty s ⊢ ∃ r, 0 < r ∧ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y [PROOFSTEP] obtain ⟨x, hx, h⟩ : ∃ x ∈ s, ∀ y ∈ s, infEdist x t ≤ infEdist y t := hs.exists_forall_le hne continuous_infEdist.continuousOn [GOAL] case inr.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β hs : IsCompact s ht : IsClosed t hst : Disjoint s t hne : Set.Nonempty s x : α hx : x ∈ s h : ∀ (y : α), y ∈ s → infEdist x t ≤ infEdist y t ⊢ ∃ r, 0 < r ∧ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y [PROOFSTEP] have : 0 < infEdist x t := pos_iff_ne_zero.2 fun H => hst.le_bot ⟨hx, (mem_iff_infEdist_zero_of_closed ht).mpr H⟩ [GOAL] case inr.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β hs : IsCompact s ht : IsClosed t hst : Disjoint s t hne : Set.Nonempty s x : α hx : x ∈ s h : ∀ (y : α), y ∈ s → infEdist x t ≤ infEdist y t this : 0 < infEdist x t ⊢ ∃ r, 0 < r ∧ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y [PROOFSTEP] rcases ENNReal.lt_iff_exists_nnreal_btwn.1 this with ⟨r, h₀, hr⟩ [GOAL] case inr.intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t : Set α Φ : α → β hs : IsCompact s ht : IsClosed t hst : Disjoint s t hne : Set.Nonempty s x : α hx : x ∈ s h : ∀ (y : α), y ∈ s → infEdist x t ≤ infEdist y t this : 0 < infEdist x t r : ℝ≥0 h₀ : 0 < ↑r hr : ↑r < infEdist x t ⊢ ∃ r, 0 < r ∧ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y [PROOFSTEP] exact ⟨r, ENNReal.coe_pos.mp h₀, fun y hy z hz => hr.trans_le <| le_infEdist.1 (h y hy) z hz⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist s s = 0 [PROOFSTEP] simp only [hausdorffEdist_def, sup_idem, ENNReal.iSup_eq_zero] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ ∀ (i : α), i ∈ s → infEdist i s = 0 [PROOFSTEP] exact fun x hx => infEdist_zero_of_mem hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist s t = hausdorffEdist t s [PROOFSTEP] simp only [hausdorffEdist_def] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ (⨆ (x : α) (_ : x ∈ s), infEdist x t) ⊔ ⨆ (y : α) (_ : y ∈ t), infEdist y s = (⨆ (y : α) (_ : y ∈ t), infEdist y s) ⊔ ⨆ (x : α) (_ : x ∈ s), infEdist x t [PROOFSTEP] apply sup_comm [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β r : ℝ≥0∞ H1 : ∀ (x : α), x ∈ s → infEdist x t ≤ r H2 : ∀ (x : α), x ∈ t → infEdist x s ≤ r ⊢ hausdorffEdist s t ≤ r [PROOFSTEP] simp only [hausdorffEdist_def, sup_le_iff, iSup_le_iff] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β r : ℝ≥0∞ H1 : ∀ (x : α), x ∈ s → infEdist x t ≤ r H2 : ∀ (x : α), x ∈ t → infEdist x s ≤ r ⊢ (∀ (i : α), i ∈ s → infEdist i t ≤ r) ∧ ∀ (i : α), i ∈ t → infEdist i s ≤ r [PROOFSTEP] exact ⟨H1, H2⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β r : ℝ≥0∞ H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ edist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ edist x y ≤ r ⊢ hausdorffEdist s t ≤ r [PROOFSTEP] refine hausdorffEdist_le_of_infEdist (fun x xs ↦ ?_) (fun x xt ↦ ?_) [GOAL] case refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t u : Set α Φ : α → β r : ℝ≥0∞ H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ edist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ edist x y ≤ r x : α xs : x ∈ s ⊢ infEdist x t ≤ r [PROOFSTEP] rcases H1 x xs with ⟨y, yt, hy⟩ [GOAL] case refine_1.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t u : Set α Φ : α → β r : ℝ≥0∞ H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ edist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ edist x y ≤ r x : α xs : x ∈ s y : α yt : y ∈ t hy : edist x y ≤ r ⊢ infEdist x t ≤ r [PROOFSTEP] exact le_trans (infEdist_le_edist_of_mem yt) hy [GOAL] case refine_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t u : Set α Φ : α → β r : ℝ≥0∞ H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ edist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ edist x y ≤ r x : α xt : x ∈ t ⊢ infEdist x s ≤ r [PROOFSTEP] rcases H2 x xt with ⟨y, ys, hy⟩ [GOAL] case refine_2.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t u : Set α Φ : α → β r : ℝ≥0∞ H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ edist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ edist x y ≤ r x : α xt : x ∈ t y : α ys : y ∈ s hy : edist x y ≤ r ⊢ infEdist x s ≤ r [PROOFSTEP] exact le_trans (infEdist_le_edist_of_mem ys) hy [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β h : x ∈ s ⊢ infEdist x t ≤ hausdorffEdist s t [PROOFSTEP] rw [hausdorffEdist_def] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β h : x ∈ s ⊢ infEdist x t ≤ (⨆ (x : α) (_ : x ∈ s), infEdist x t) ⊔ ⨆ (y : α) (_ : y ∈ t), infEdist y s [PROOFSTEP] refine le_trans ?_ le_sup_left [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β h : x ∈ s ⊢ infEdist x t ≤ ⨆ (x : α) (_ : x ∈ s), infEdist x t [PROOFSTEP] exact le_iSup₂ (α := ℝ≥0∞) x h [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x s + hausdorffEdist s t < ⊤ ⊢ infEdist x t ≤ infEdist x s + hausdorffEdist s t + ↑ε [PROOFSTEP] have ε0 : (ε / 2 : ℝ≥0∞) ≠ 0 := by simpa [pos_iff_ne_zero] using εpos [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x s + hausdorffEdist s t < ⊤ ⊢ ↑ε / 2 ≠ 0 [PROOFSTEP] simpa [pos_iff_ne_zero] using εpos [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x s + hausdorffEdist s t < ⊤ ε0 : ↑ε / 2 ≠ 0 ⊢ infEdist x t ≤ infEdist x s + hausdorffEdist s t + ↑ε [PROOFSTEP] have : infEdist x s < infEdist x s + ε / 2 := ENNReal.lt_add_right (ENNReal.add_lt_top.1 h).1.ne ε0 [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x s + hausdorffEdist s t < ⊤ ε0 : ↑ε / 2 ≠ 0 this : infEdist x s < infEdist x s + ↑ε / 2 ⊢ infEdist x t ≤ infEdist x s + hausdorffEdist s t + ↑ε [PROOFSTEP] rcases infEdist_lt_iff.mp this with ⟨y, ys, dxy⟩ -- y : α, ys : y ∈ s, dxy : edist x y < infEdist x s + ↑ε / 2 [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t u : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x s + hausdorffEdist s t < ⊤ ε0 : ↑ε / 2 ≠ 0 this : infEdist x s < infEdist x s + ↑ε / 2 y : α ys : y ∈ s dxy : edist x y < infEdist x s + ↑ε / 2 ⊢ infEdist x t ≤ infEdist x s + hausdorffEdist s t + ↑ε [PROOFSTEP] have : hausdorffEdist s t < hausdorffEdist s t + ε / 2 := ENNReal.lt_add_right (ENNReal.add_lt_top.1 h).2.ne ε0 [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t u : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x s + hausdorffEdist s t < ⊤ ε0 : ↑ε / 2 ≠ 0 this✝ : infEdist x s < infEdist x s + ↑ε / 2 y : α ys : y ∈ s dxy : edist x y < infEdist x s + ↑ε / 2 this : hausdorffEdist s t < hausdorffEdist s t + ↑ε / 2 ⊢ infEdist x t ≤ infEdist x s + hausdorffEdist s t + ↑ε [PROOFSTEP] rcases exists_edist_lt_of_hausdorffEdist_lt ys this with ⟨z, zt, dyz⟩ -- z : α, zt : z ∈ t, dyz : edist y z < Hausdorff_edist s t + ↑ε / 2 [GOAL] case intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t u : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x s + hausdorffEdist s t < ⊤ ε0 : ↑ε / 2 ≠ 0 this✝ : infEdist x s < infEdist x s + ↑ε / 2 y : α ys : y ∈ s dxy : edist x y < infEdist x s + ↑ε / 2 this : hausdorffEdist s t < hausdorffEdist s t + ↑ε / 2 z : α zt : z ∈ t dyz : edist y z < hausdorffEdist s t + ↑ε / 2 ⊢ infEdist x t ≤ infEdist x s + hausdorffEdist s t + ↑ε [PROOFSTEP] calc infEdist x t ≤ edist x z := infEdist_le_edist_of_mem zt _ ≤ edist x y + edist y z := (edist_triangle _ _ _) _ ≤ infEdist x s + ε / 2 + (hausdorffEdist s t + ε / 2) := (add_le_add dxy.le dyz.le) _ = infEdist x s + hausdorffEdist s t + ε := by simp [ENNReal.add_halves, add_comm, add_left_comm] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y✝ : α s t u : Set α Φ : α → β ε : ℝ≥0 εpos : 0 < ε h : infEdist x s + hausdorffEdist s t < ⊤ ε0 : ↑ε / 2 ≠ 0 this✝ : infEdist x s < infEdist x s + ↑ε / 2 y : α ys : y ∈ s dxy : edist x y < infEdist x s + ↑ε / 2 this : hausdorffEdist s t < hausdorffEdist s t + ↑ε / 2 z : α zt : z ∈ t dyz : edist y z < hausdorffEdist s t + ↑ε / 2 ⊢ infEdist x s + ↑ε / 2 + (hausdorffEdist s t + ↑ε / 2) = infEdist x s + hausdorffEdist s t + ↑ε [PROOFSTEP] simp [ENNReal.add_halves, add_comm, add_left_comm] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β h : Isometry Φ ⊢ hausdorffEdist (Φ '' s) (Φ '' t) = hausdorffEdist s t [PROOFSTEP] simp only [hausdorffEdist_def, iSup_image, infEdist_image h] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β hs : Set.Nonempty s ht : Set.Nonempty t ⊢ hausdorffEdist s t ≤ diam (s ∪ t) [PROOFSTEP] rcases hs with ⟨x, xs⟩ [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t u : Set α Φ : α → β ht : Set.Nonempty t x : α xs : x ∈ s ⊢ hausdorffEdist s t ≤ diam (s ∪ t) [PROOFSTEP] rcases ht with ⟨y, yt⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t u : Set α Φ : α → β x : α xs : x ∈ s y : α yt : y ∈ t ⊢ hausdorffEdist s t ≤ diam (s ∪ t) [PROOFSTEP] refine' hausdorffEdist_le_of_mem_edist _ _ [GOAL] case intro.intro.refine'_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t u : Set α Φ : α → β x : α xs : x ∈ s y : α yt : y ∈ t ⊢ ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ edist x y ≤ diam (s ∪ t) [PROOFSTEP] intro z hz [GOAL] case intro.intro.refine'_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t u : Set α Φ : α → β x : α xs : x ∈ s y : α yt : y ∈ t z : α hz : z ∈ s ⊢ ∃ y, y ∈ t ∧ edist z y ≤ diam (s ∪ t) [PROOFSTEP] exact ⟨y, yt, edist_le_diam_of_mem (subset_union_left _ _ hz) (subset_union_right _ _ yt)⟩ [GOAL] case intro.intro.refine'_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t u : Set α Φ : α → β x : α xs : x ∈ s y : α yt : y ∈ t ⊢ ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ edist x y ≤ diam (s ∪ t) [PROOFSTEP] intro z hz [GOAL] case intro.intro.refine'_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y✝ : α s t u : Set α Φ : α → β x : α xs : x ∈ s y : α yt : y ∈ t z : α hz : z ∈ t ⊢ ∃ y, y ∈ s ∧ edist z y ≤ diam (s ∪ t) [PROOFSTEP] exact ⟨x, xs, edist_le_diam_of_mem (subset_union_right _ _ hz) (subset_union_left _ _ xs)⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist s u ≤ hausdorffEdist s t + hausdorffEdist t u [PROOFSTEP] rw [hausdorffEdist_def] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ (⨆ (x : α) (_ : x ∈ s), infEdist x u) ⊔ ⨆ (y : α) (_ : y ∈ u), infEdist y s ≤ hausdorffEdist s t + hausdorffEdist t u [PROOFSTEP] simp only [sup_le_iff, iSup_le_iff] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ (∀ (i : α), i ∈ s → infEdist i u ≤ hausdorffEdist s t + hausdorffEdist t u) ∧ ∀ (i : α), i ∈ u → infEdist i s ≤ hausdorffEdist s t + hausdorffEdist t u [PROOFSTEP] constructor [GOAL] case left ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ ∀ (i : α), i ∈ s → infEdist i u ≤ hausdorffEdist s t + hausdorffEdist t u [PROOFSTEP] show ∀ x ∈ s, infEdist x u ≤ hausdorffEdist s t + hausdorffEdist t u [GOAL] case left ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ ∀ (x : α), x ∈ s → infEdist x u ≤ hausdorffEdist s t + hausdorffEdist t u [PROOFSTEP] exact fun x xs => calc infEdist x u ≤ infEdist x t + hausdorffEdist t u := infEdist_le_infEdist_add_hausdorffEdist _ ≤ hausdorffEdist s t + hausdorffEdist t u := add_le_add_right (infEdist_le_hausdorffEdist_of_mem xs) _ [GOAL] case right ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ ∀ (i : α), i ∈ u → infEdist i s ≤ hausdorffEdist s t + hausdorffEdist t u [PROOFSTEP] show ∀ x ∈ u, infEdist x s ≤ hausdorffEdist s t + hausdorffEdist t u [GOAL] case right ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ ∀ (x : α), x ∈ u → infEdist x s ≤ hausdorffEdist s t + hausdorffEdist t u [PROOFSTEP] exact fun x xu => calc infEdist x s ≤ infEdist x t + hausdorffEdist t s := infEdist_le_infEdist_add_hausdorffEdist _ ≤ hausdorffEdist u t + hausdorffEdist t s := (add_le_add_right (infEdist_le_hausdorffEdist_of_mem xu) _) _ = hausdorffEdist s t + hausdorffEdist t u := by simp [hausdorffEdist_comm, add_comm] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t u : Set α Φ : α → β x : α xu : x ∈ u ⊢ hausdorffEdist u t + hausdorffEdist t s = hausdorffEdist s t + hausdorffEdist t u [PROOFSTEP] simp [hausdorffEdist_comm, add_comm] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist s t = 0 ↔ closure s = closure t [PROOFSTEP] simp only [hausdorffEdist_def, ENNReal.sup_eq_zero, ENNReal.iSup_eq_zero, ← subset_def, ← mem_closure_iff_infEdist_zero, subset_antisymm_iff, isClosed_closure.closure_subset_iff] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist s (closure s) = 0 [PROOFSTEP] rw [hausdorffEdist_zero_iff_closure_eq_closure, closure_closure] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist (closure s) t = hausdorffEdist s t [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist (closure s) t ≤ hausdorffEdist s t [PROOFSTEP] calc _ ≤ hausdorffEdist (closure s) s + hausdorffEdist s t := hausdorffEdist_triangle _ = hausdorffEdist s t := by simp [hausdorffEdist_comm] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist (closure s) s + hausdorffEdist s t = hausdorffEdist s t [PROOFSTEP] simp [hausdorffEdist_comm] [GOAL] case refine'_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist s t ≤ hausdorffEdist (closure s) t [PROOFSTEP] calc _ ≤ hausdorffEdist s (closure s) + hausdorffEdist (closure s) t := hausdorffEdist_triangle _ = hausdorffEdist (closure s) t := by simp [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist s (closure s) + hausdorffEdist (closure s) t = hausdorffEdist (closure s) t [PROOFSTEP] simp [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist s (closure t) = hausdorffEdist s t [PROOFSTEP] simp [@hausdorffEdist_comm _ _ s _] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ⊢ hausdorffEdist (closure s) (closure t) = hausdorffEdist s t [PROOFSTEP] simp [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β hs : IsClosed s ht : IsClosed t ⊢ hausdorffEdist s t = 0 ↔ s = t [PROOFSTEP] rw [hausdorffEdist_zero_iff_closure_eq_closure, hs.closure_eq, ht.closure_eq] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β ne : Set.Nonempty s ⊢ hausdorffEdist s ∅ = ⊤ [PROOFSTEP] rcases ne with ⟨x, xs⟩ [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t u : Set α Φ : α → β x : α xs : x ∈ s ⊢ hausdorffEdist s ∅ = ⊤ [PROOFSTEP] have : infEdist x ∅ ≤ hausdorffEdist s ∅ := infEdist_le_hausdorffEdist_of_mem xs [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x✝ y : α s t u : Set α Φ : α → β x : α xs : x ∈ s this : infEdist x ∅ ≤ hausdorffEdist s ∅ ⊢ hausdorffEdist s ∅ = ⊤ [PROOFSTEP] simpa using this [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ ⊢ s = ∅ ∧ t = ∅ ∨ Set.Nonempty s ∧ Set.Nonempty t [PROOFSTEP] cases' s.eq_empty_or_nonempty with hs hs [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ hs : s = ∅ ⊢ s = ∅ ∧ t = ∅ ∨ Set.Nonempty s ∧ Set.Nonempty t [PROOFSTEP] cases' t.eq_empty_or_nonempty with ht ht [GOAL] case inl.inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ hs : s = ∅ ht : t = ∅ ⊢ s = ∅ ∧ t = ∅ ∨ Set.Nonempty s ∧ Set.Nonempty t [PROOFSTEP] exact Or.inl ⟨hs, ht⟩ [GOAL] case inl.inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ hs : s = ∅ ht : Set.Nonempty t ⊢ s = ∅ ∧ t = ∅ ∨ Set.Nonempty s ∧ Set.Nonempty t [PROOFSTEP] rw [hausdorffEdist_comm] at fin [GOAL] case inl.inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β fin : hausdorffEdist t s ≠ ⊤ hs : s = ∅ ht : Set.Nonempty t ⊢ s = ∅ ∧ t = ∅ ∨ Set.Nonempty s ∧ Set.Nonempty t [PROOFSTEP] exact Or.inr ⟨nonempty_of_hausdorffEdist_ne_top ht fin, ht⟩ [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α s t u : Set α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ hs : Set.Nonempty s ⊢ s = ∅ ∧ t = ∅ ∨ Set.Nonempty s ∧ Set.Nonempty t [PROOFSTEP] exact Or.inr ⟨hs, nonempty_of_hausdorffEdist_ne_top hs fin⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ infDist x s = ⨅ (y : ↑s), dist x ↑y [PROOFSTEP] rw [infDist, infEdist, iInf_subtype', ENNReal.toReal_iInf] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ ⨅ (i : { y // y ∈ s }), ENNReal.toReal (edist x ↑i) = ⨅ (y : ↑s), dist x ↑y [PROOFSTEP] simp only [dist_edist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ ∀ (i : { y // y ∈ s }), edist x ↑i ≠ ⊤ [PROOFSTEP] exact fun _ ↦ edist_ne_top _ _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ infDist x ∅ = 0 [PROOFSTEP] simp [infDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : Set.Nonempty s ⊢ infEdist x s ≠ ⊤ [PROOFSTEP] rcases h with ⟨y, hy⟩ [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y✝ : α Φ : α → β y : α hy : y ∈ s ⊢ infEdist x s ≠ ⊤ [PROOFSTEP] exact ne_top_of_le_ne_top (edist_ne_top _ _) (infEdist_le_edist_of_mem hy) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ infEdist x s = ⊤ ↔ s = ∅ [PROOFSTEP] rcases s.eq_empty_or_nonempty with rfl | hs [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β t u : Set α x y : α Φ : α → β ⊢ infEdist x ∅ = ⊤ ↔ ∅ = ∅ [PROOFSTEP] simp [*, Nonempty.ne_empty, infEdist_ne_top] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hs : Set.Nonempty s ⊢ infEdist x s = ⊤ ↔ s = ∅ [PROOFSTEP] simp [*, Nonempty.ne_empty, infEdist_ne_top] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : x ∈ s ⊢ infDist x s = 0 [PROOFSTEP] simp [infEdist_zero_of_mem h, infDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ infDist x {y} = dist x y [PROOFSTEP] simp [infDist, dist_edist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ⊢ infDist x s ≤ dist x y [PROOFSTEP] rw [dist_edist, infDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ⊢ ENNReal.toReal (infEdist x s) ≤ ENNReal.toReal (edist x y) [PROOFSTEP] exact ENNReal.toReal_mono (edist_ne_top _ _) (infEdist_le_edist_of_mem h) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hs : Set.Nonempty s ⊢ infDist x s < r ↔ ∃ y, y ∈ s ∧ dist x y < r [PROOFSTEP] simp_rw [infDist, ← ENNReal.lt_ofReal_iff_toReal_lt (infEdist_ne_top hs), infEdist_lt_iff, ENNReal.lt_ofReal_iff_toReal_lt (edist_ne_top _ _), ← dist_edist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ infDist x s ≤ infDist y s + dist x y [PROOFSTEP] rw [infDist, infDist, dist_edist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ ENNReal.toReal (infEdist x s) ≤ ENNReal.toReal (infEdist y s) + ENNReal.toReal (edist x y) [PROOFSTEP] refine ENNReal.toReal_le_add' infEdist_le_infEdist_add_edist ?_ (flip absurd (edist_ne_top _ _)) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ infEdist y s = ⊤ → infEdist x s = ⊤ [PROOFSTEP] simp only [infEdist_eq_top_iff, imp_self] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hs : Bounded s hy : y ∈ s ⊢ dist x y ≤ infDist x s + diam s [PROOFSTEP] rw [infDist, diam, dist_edist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hs : Bounded s hy : y ∈ s ⊢ ENNReal.toReal (edist x y) ≤ ENNReal.toReal (infEdist x s) + ENNReal.toReal (EMetric.diam s) [PROOFSTEP] exact toReal_le_add (edist_le_infEdist_add_ediam hy) (infEdist_ne_top ⟨y, hy⟩) hs.ediam_ne_top [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ infDist x (closure s) = infDist x s [PROOFSTEP] simp [infDist, infEdist_closure] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hx : x ∈ closure s ⊢ infDist x s = 0 [PROOFSTEP] rw [← infDist_closure] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hx : x ∈ closure s ⊢ infDist x (closure s) = 0 [PROOFSTEP] exact infDist_zero_of_mem hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : Set.Nonempty s ⊢ x ∈ closure s ↔ infDist x s = 0 [PROOFSTEP] simp [mem_closure_iff_infEdist_zero, infDist, ENNReal.toReal_eq_zero_iff, infEdist_ne_top h] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : IsClosed s hs : Set.Nonempty s ⊢ x ∈ s ↔ infDist x s = 0 [PROOFSTEP] rw [← mem_closure_iff_infDist_zero hs, h.closure_eq] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : IsClosed s hs : Set.Nonempty s ⊢ ¬x ∈ s ↔ 0 < infDist x s [PROOFSTEP] simp [h.mem_iff_infDist_zero hs, infDist_nonneg.gt_iff_ne] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : ¬x ∈ closure s ⊢ ContinuousAt (fun x => (infDist x s)⁻¹) x [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | hs) [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β t u : Set α x y : α Φ : α → β h : ¬x ∈ closure ∅ ⊢ ContinuousAt (fun x => (infDist x ∅)⁻¹) x [PROOFSTEP] simp only [infDist_empty, continuousAt_const] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : ¬x ∈ closure s hs : Set.Nonempty s ⊢ ContinuousAt (fun x => (infDist x s)⁻¹) x [PROOFSTEP] refine (continuous_infDist_pt s).continuousAt.inv₀ ?_ [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : ¬x ∈ closure s hs : Set.Nonempty s ⊢ infDist x s ≠ 0 [PROOFSTEP] rwa [Ne.def, ← mem_closure_iff_infDist_zero hs] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hΦ : Isometry Φ ⊢ infDist (Φ x) (Φ '' t) = infDist x t [PROOFSTEP] simp [infDist, infEdist_image hΦ] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ⊢ infDist x (s ∩ closedBall x (dist y x)) = infDist x s [PROOFSTEP] replace h : y ∈ s ∩ closedBall x (dist y x) := ⟨h, mem_closedBall.2 le_rfl⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ∩ closedBall x (dist y x) ⊢ infDist x (s ∩ closedBall x (dist y x)) = infDist x s [PROOFSTEP] refine le_antisymm ?_ (infDist_le_infDist_of_subset (inter_subset_left _ _) ⟨y, h⟩) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ∩ closedBall x (dist y x) ⊢ infDist x (s ∩ closedBall x (dist y x)) ≤ infDist x s [PROOFSTEP] refine' not_lt.1 fun hlt => _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ∩ closedBall x (dist y x) hlt : infDist x s < infDist x (s ∩ closedBall x (dist y x)) ⊢ False [PROOFSTEP] rcases(infDist_lt_iff ⟨y, h.1⟩).mp hlt with ⟨z, hzs, hz⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ∩ closedBall x (dist y x) hlt : infDist x s < infDist x (s ∩ closedBall x (dist y x)) z : α hzs : z ∈ s hz : dist x z < infDist x (s ∩ closedBall x (dist y x)) ⊢ False [PROOFSTEP] cases' le_or_lt (dist z x) (dist y x) with hle hlt [GOAL] case intro.intro.inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ∩ closedBall x (dist y x) hlt : infDist x s < infDist x (s ∩ closedBall x (dist y x)) z : α hzs : z ∈ s hz : dist x z < infDist x (s ∩ closedBall x (dist y x)) hle : dist z x ≤ dist y x ⊢ False [PROOFSTEP] exact hz.not_le (infDist_le_dist_of_mem ⟨hzs, hle⟩) [GOAL] case intro.intro.inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ∩ closedBall x (dist y x) hlt✝ : infDist x s < infDist x (s ∩ closedBall x (dist y x)) z : α hzs : z ∈ s hz : dist x z < infDist x (s ∩ closedBall x (dist y x)) hlt : dist y x < dist z x ⊢ False [PROOFSTEP] rw [dist_comm z, dist_comm y] at hlt [GOAL] case intro.intro.inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : y ∈ s ∩ closedBall x (dist y x) hlt✝ : infDist x s < infDist x (s ∩ closedBall x (dist y x)) z : α hzs : z ∈ s hz : dist x z < infDist x (s ∩ closedBall x (dist y x)) hlt : dist x y < dist x z ⊢ False [PROOFSTEP] exact (hlt.trans hz).not_le (infDist_le_dist_of_mem h) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y✝ : α Φ : α → β h : IsCompact s hne : Set.Nonempty s x y : α hys : y ∈ s hy : infEdist x s = edist x y ⊢ infDist x s = dist x y [PROOFSTEP] rw [infDist, dist_edist, hy] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β inst✝ : ProperSpace α h : IsClosed s hne : Set.Nonempty s x : α ⊢ ∃ y, y ∈ s ∧ infDist x s = dist x y [PROOFSTEP] rcases hne with ⟨z, hz⟩ [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β inst✝ : ProperSpace α h : IsClosed s x z : α hz : z ∈ s ⊢ ∃ y, y ∈ s ∧ infDist x s = dist x y [PROOFSTEP] rw [← infDist_inter_closedBall_of_mem hz] [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β inst✝ : ProperSpace α h : IsClosed s x z : α hz : z ∈ s ⊢ ∃ y, y ∈ s ∧ infDist x (s ∩ closedBall x (dist z x)) = dist x y [PROOFSTEP] set t := s ∩ closedBall x (dist z x) [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β s t✝ u : Set α x✝ y : α Φ : α → β inst✝ : ProperSpace α h : IsClosed s x z : α hz : z ∈ s t : Set α := s ∩ closedBall x (dist z x) ⊢ ∃ y, y ∈ s ∧ infDist x t = dist x y [PROOFSTEP] have htc : IsCompact t := (isCompact_closedBall x (dist z x)).inter_left h [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β s t✝ u : Set α x✝ y : α Φ : α → β inst✝ : ProperSpace α h : IsClosed s x z : α hz : z ∈ s t : Set α := s ∩ closedBall x (dist z x) htc : IsCompact t ⊢ ∃ y, y ∈ s ∧ infDist x t = dist x y [PROOFSTEP] have htne : t.Nonempty := ⟨z, hz, mem_closedBall.2 le_rfl⟩ [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β s t✝ u : Set α x✝ y : α Φ : α → β inst✝ : ProperSpace α h : IsClosed s x z : α hz : z ∈ s t : Set α := s ∩ closedBall x (dist z x) htc : IsCompact t htne : Set.Nonempty t ⊢ ∃ y, y ∈ s ∧ infDist x t = dist x y [PROOFSTEP] obtain ⟨y, ⟨hys, -⟩, hyd⟩ : ∃ y ∈ t, infDist x t = dist x y := htc.exists_infDist_eq_dist htne x [GOAL] case intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β s t✝ u : Set α x✝ y✝ : α Φ : α → β inst✝ : ProperSpace α h : IsClosed s x z : α hz : z ∈ s t : Set α := s ∩ closedBall x (dist z x) htc : IsCompact t htne : Set.Nonempty t y : α hyd : infDist x t = dist x y hys : y ∈ s ⊢ ∃ y, y ∈ s ∧ infDist x t = dist x y [PROOFSTEP] exact ⟨y, hys, hyd⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β inst✝ : ProperSpace α hne : Set.Nonempty s x : α ⊢ ∃ y, y ∈ closure s ∧ infDist x s = dist x y [PROOFSTEP] simpa only [infDist_closure] using isClosed_closure.exists_infDist_eq_dist hne.closure x [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ 0 ≤ hausdorffDist s t [PROOFSTEP] simp [hausdorffDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hs : Set.Nonempty s ht : Set.Nonempty t bs : Bounded s bt : Bounded t ⊢ hausdorffEdist s t ≠ ⊤ [PROOFSTEP] rcases hs with ⟨cs, hcs⟩ [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ht : Set.Nonempty t bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ⊢ hausdorffEdist s t ≠ ⊤ [PROOFSTEP] rcases ht with ⟨ct, hct⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t ⊢ hausdorffEdist s t ≠ ⊤ [PROOFSTEP] rcases(bounded_iff_subset_ball ct).1 bs with ⟨rs, hrs⟩ [GOAL] case intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs ⊢ hausdorffEdist s t ≠ ⊤ [PROOFSTEP] rcases(bounded_iff_subset_ball cs).1 bt with ⟨rt, hrt⟩ [GOAL] case intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt ⊢ hausdorffEdist s t ≠ ⊤ [PROOFSTEP] have : hausdorffEdist s t ≤ ENNReal.ofReal (max rs rt) := by apply hausdorffEdist_le_of_mem_edist · intro x xs exists ct, hct have : dist x ct ≤ max rs rt := le_trans (hrs xs) (le_max_left _ _) rwa [edist_dist, ENNReal.ofReal_le_ofReal_iff] exact le_trans dist_nonneg this · intro x xt exists cs, hcs have : dist x cs ≤ max rs rt := le_trans (hrt xt) (le_max_right _ _) rwa [edist_dist, ENNReal.ofReal_le_ofReal_iff] exact le_trans dist_nonneg this [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt ⊢ hausdorffEdist s t ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] apply hausdorffEdist_le_of_mem_edist [GOAL] case H1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt ⊢ ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ edist x y ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] intro x xs [GOAL] case H1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt x : α xs : x ∈ s ⊢ ∃ y, y ∈ t ∧ edist x y ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] exists ct, hct [GOAL] case H1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt x : α xs : x ∈ s ⊢ edist x ct ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] have : dist x ct ≤ max rs rt := le_trans (hrs xs) (le_max_left _ _) [GOAL] case H1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt x : α xs : x ∈ s this : dist x ct ≤ max rs rt ⊢ edist x ct ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] rwa [edist_dist, ENNReal.ofReal_le_ofReal_iff] [GOAL] case H1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt x : α xs : x ∈ s this : dist x ct ≤ max rs rt ⊢ 0 ≤ max rs rt [PROOFSTEP] exact le_trans dist_nonneg this [GOAL] case H2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt ⊢ ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ edist x y ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] intro x xt [GOAL] case H2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt x : α xt : x ∈ t ⊢ ∃ y, y ∈ s ∧ edist x y ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] exists cs, hcs [GOAL] case H2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt x : α xt : x ∈ t ⊢ edist x cs ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] have : dist x cs ≤ max rs rt := le_trans (hrt xt) (le_max_right _ _) [GOAL] case H2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt x : α xt : x ∈ t this : dist x cs ≤ max rs rt ⊢ edist x cs ≤ ENNReal.ofReal (max rs rt) [PROOFSTEP] rwa [edist_dist, ENNReal.ofReal_le_ofReal_iff] [GOAL] case H2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt x : α xt : x ∈ t this : dist x cs ≤ max rs rt ⊢ 0 ≤ max rs rt [PROOFSTEP] exact le_trans dist_nonneg this [GOAL] case intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β bs : Bounded s bt : Bounded t cs : α hcs : cs ∈ s ct : α hct : ct ∈ t rs : ℝ hrs : s ⊆ closedBall ct rs rt : ℝ hrt : t ⊆ closedBall cs rt this : hausdorffEdist s t ≤ ENNReal.ofReal (max rs rt) ⊢ hausdorffEdist s t ≠ ⊤ [PROOFSTEP] exact ne_top_of_le_ne_top ENNReal.ofReal_ne_top this [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ hausdorffDist s s = 0 [PROOFSTEP] simp [hausdorffDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ hausdorffDist s t = hausdorffDist t s [PROOFSTEP] simp [hausdorffDist, hausdorffEdist_comm] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ hausdorffDist s ∅ = 0 [PROOFSTEP] cases' s.eq_empty_or_nonempty with h h [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : s = ∅ ⊢ hausdorffDist s ∅ = 0 [PROOFSTEP] simp [h] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : Set.Nonempty s ⊢ hausdorffDist s ∅ = 0 [PROOFSTEP] simp [hausdorffDist, hausdorffEdist_empty h] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ hausdorffDist ∅ s = 0 [PROOFSTEP] simp [hausdorffDist_comm] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r ⊢ hausdorffDist s t ≤ r [PROOFSTEP] by_cases h1 : hausdorffEdist s t = ⊤ [GOAL] case pos ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : hausdorffEdist s t = ⊤ ⊢ hausdorffDist s t ≤ r [PROOFSTEP] rwa [hausdorffDist, h1, ENNReal.top_toReal] [GOAL] case neg ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ ⊢ hausdorffDist s t ≤ r [PROOFSTEP] cases' s.eq_empty_or_nonempty with hs hs [GOAL] case neg.inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : s = ∅ ⊢ hausdorffDist s t ≤ r [PROOFSTEP] rwa [hs, hausdorffDist_empty'] [GOAL] case neg.inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ⊢ hausdorffDist s t ≤ r [PROOFSTEP] cases' t.eq_empty_or_nonempty with ht ht [GOAL] case neg.inr.inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : t = ∅ ⊢ hausdorffDist s t ≤ r [PROOFSTEP] rwa [ht, hausdorffDist_empty] [GOAL] case neg.inr.inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t ⊢ hausdorffDist s t ≤ r [PROOFSTEP] have : hausdorffEdist s t ≤ ENNReal.ofReal r := by apply hausdorffEdist_le_of_infEdist _ _ · intro x hx have I := H1 x hx rwa [infDist, ← ENNReal.toReal_ofReal hr, ENNReal.toReal_le_toReal (infEdist_ne_top ht) ENNReal.ofReal_ne_top] at I · intro x hx have I := H2 x hx rwa [infDist, ← ENNReal.toReal_ofReal hr, ENNReal.toReal_le_toReal (infEdist_ne_top hs) ENNReal.ofReal_ne_top] at I [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t ⊢ hausdorffEdist s t ≤ ENNReal.ofReal r [PROOFSTEP] apply hausdorffEdist_le_of_infEdist _ _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t ⊢ ∀ (x : α), x ∈ s → infEdist x t ≤ ENNReal.ofReal r [PROOFSTEP] intro x hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t x : α hx : x ∈ s ⊢ infEdist x t ≤ ENNReal.ofReal r [PROOFSTEP] have I := H1 x hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t x : α hx : x ∈ s I : infDist x t ≤ r ⊢ infEdist x t ≤ ENNReal.ofReal r [PROOFSTEP] rwa [infDist, ← ENNReal.toReal_ofReal hr, ENNReal.toReal_le_toReal (infEdist_ne_top ht) ENNReal.ofReal_ne_top] at I [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t ⊢ ∀ (x : α), x ∈ t → infEdist x s ≤ ENNReal.ofReal r [PROOFSTEP] intro x hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t x : α hx : x ∈ t ⊢ infEdist x s ≤ ENNReal.ofReal r [PROOFSTEP] have I := H2 x hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t x : α hx : x ∈ t I : infDist x s ≤ r ⊢ infEdist x s ≤ ENNReal.ofReal r [PROOFSTEP] rwa [infDist, ← ENNReal.toReal_ofReal hr, ENNReal.toReal_le_toReal (infEdist_ne_top hs) ENNReal.ofReal_ne_top] at I [GOAL] case neg.inr.inr ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → infDist x t ≤ r H2 : ∀ (x : α), x ∈ t → infDist x s ≤ r h1 : ¬hausdorffEdist s t = ⊤ hs : Set.Nonempty s ht : Set.Nonempty t this : hausdorffEdist s t ≤ ENNReal.ofReal r ⊢ hausdorffDist s t ≤ r [PROOFSTEP] rwa [hausdorffDist, ← ENNReal.toReal_ofReal hr, ENNReal.toReal_le_toReal h1 ENNReal.ofReal_ne_top] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ dist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ dist x y ≤ r ⊢ hausdorffDist s t ≤ r [PROOFSTEP] apply hausdorffDist_le_of_infDist hr [GOAL] case H1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ dist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ dist x y ≤ r ⊢ ∀ (x : α), x ∈ s → infDist x t ≤ r [PROOFSTEP] intro x xs [GOAL] case H1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ dist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ dist x y ≤ r x : α xs : x ∈ s ⊢ infDist x t ≤ r [PROOFSTEP] rcases H1 x xs with ⟨y, yt, hy⟩ [GOAL] case H1.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y✝ : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ dist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ dist x y ≤ r x : α xs : x ∈ s y : α yt : y ∈ t hy : dist x y ≤ r ⊢ infDist x t ≤ r [PROOFSTEP] exact le_trans (infDist_le_dist_of_mem yt) hy [GOAL] case H2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ dist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ dist x y ≤ r ⊢ ∀ (x : α), x ∈ t → infDist x s ≤ r [PROOFSTEP] intro x xt [GOAL] case H2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ dist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ dist x y ≤ r x : α xt : x ∈ t ⊢ infDist x s ≤ r [PROOFSTEP] rcases H2 x xt with ⟨y, ys, hy⟩ [GOAL] case H2.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y✝ : α Φ : α → β r : ℝ hr : 0 ≤ r H1 : ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ dist x y ≤ r H2 : ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ dist x y ≤ r x : α xt : x ∈ t y : α ys : y ∈ s hy : dist x y ≤ r ⊢ infDist x s ≤ r [PROOFSTEP] exact le_trans (infDist_le_dist_of_mem ys) hy [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hs : Set.Nonempty s bs : Bounded s ht : Set.Nonempty t bt : Bounded t ⊢ hausdorffDist s t ≤ diam (s ∪ t) [PROOFSTEP] rcases hs with ⟨x, xs⟩ [GOAL] case intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y : α Φ : α → β bs : Bounded s ht : Set.Nonempty t bt : Bounded t x : α xs : x ∈ s ⊢ hausdorffDist s t ≤ diam (s ∪ t) [PROOFSTEP] rcases ht with ⟨y, yt⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y✝ : α Φ : α → β bs : Bounded s bt : Bounded t x : α xs : x ∈ s y : α yt : y ∈ t ⊢ hausdorffDist s t ≤ diam (s ∪ t) [PROOFSTEP] refine hausdorffDist_le_of_mem_dist diam_nonneg ?_ ?_ [GOAL] case intro.intro.refine_1 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y✝ : α Φ : α → β bs : Bounded s bt : Bounded t x : α xs : x ∈ s y : α yt : y ∈ t ⊢ ∀ (x : α), x ∈ s → ∃ y, y ∈ t ∧ dist x y ≤ diam (s ∪ t) [PROOFSTEP] exact fun z hz => ⟨y, yt, dist_le_diam_of_mem (bounded_union.2 ⟨bs, bt⟩) (subset_union_left _ _ hz) (subset_union_right _ _ yt)⟩ [GOAL] case intro.intro.refine_2 ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x✝ y✝ : α Φ : α → β bs : Bounded s bt : Bounded t x : α xs : x ∈ s y : α yt : y ∈ t ⊢ ∀ (x : α), x ∈ t → ∃ y, y ∈ s ∧ dist x y ≤ diam (s ∪ t) [PROOFSTEP] exact fun z hz => ⟨x, xs, dist_le_diam_of_mem (bounded_union.2 ⟨bs, bt⟩) (subset_union_right _ _ hz) (subset_union_left _ _ xs)⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ h : x ∈ s H : hausdorffDist s t < r fin : hausdorffEdist s t ≠ ⊤ ⊢ ∃ y, y ∈ t ∧ dist x y < r [PROOFSTEP] have r0 : 0 < r := lt_of_le_of_lt hausdorffDist_nonneg H [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ h : x ∈ s H : hausdorffDist s t < r fin : hausdorffEdist s t ≠ ⊤ r0 : 0 < r ⊢ ∃ y, y ∈ t ∧ dist x y < r [PROOFSTEP] have : hausdorffEdist s t < ENNReal.ofReal r := by rwa [hausdorffDist, ← ENNReal.toReal_ofReal (le_of_lt r0), ENNReal.toReal_lt_toReal fin ENNReal.ofReal_ne_top] at H [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ h : x ∈ s H : hausdorffDist s t < r fin : hausdorffEdist s t ≠ ⊤ r0 : 0 < r ⊢ hausdorffEdist s t < ENNReal.ofReal r [PROOFSTEP] rwa [hausdorffDist, ← ENNReal.toReal_ofReal (le_of_lt r0), ENNReal.toReal_lt_toReal fin ENNReal.ofReal_ne_top] at H [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ h : x ∈ s H : hausdorffDist s t < r fin : hausdorffEdist s t ≠ ⊤ r0 : 0 < r this : hausdorffEdist s t < ENNReal.ofReal r ⊢ ∃ y, y ∈ t ∧ dist x y < r [PROOFSTEP] rcases exists_edist_lt_of_hausdorffEdist_lt h this with ⟨y, hy, yr⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y✝ : α Φ : α → β r : ℝ h : x ∈ s H : hausdorffDist s t < r fin : hausdorffEdist s t ≠ ⊤ r0 : 0 < r this : hausdorffEdist s t < ENNReal.ofReal r y : α hy : y ∈ t yr : edist x y < ENNReal.ofReal r ⊢ ∃ y, y ∈ t ∧ dist x y < r [PROOFSTEP] rw [edist_dist, ENNReal.ofReal_lt_ofReal_iff r0] at yr [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y✝ : α Φ : α → β r : ℝ h : x ∈ s H : hausdorffDist s t < r fin : hausdorffEdist s t ≠ ⊤ r0 : 0 < r this : hausdorffEdist s t < ENNReal.ofReal r y : α hy : y ∈ t yr : dist x y < r ⊢ ∃ y, y ∈ t ∧ dist x y < r [PROOFSTEP] exact ⟨y, hy, yr⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ h : y ∈ t H : hausdorffDist s t < r fin : hausdorffEdist s t ≠ ⊤ ⊢ ∃ x, x ∈ s ∧ dist x y < r [PROOFSTEP] rw [hausdorffDist_comm] at H [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ h : y ∈ t H : hausdorffDist t s < r fin : hausdorffEdist s t ≠ ⊤ ⊢ ∃ x, x ∈ s ∧ dist x y < r [PROOFSTEP] rw [hausdorffEdist_comm] at fin [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β r : ℝ h : y ∈ t H : hausdorffDist t s < r fin : hausdorffEdist t s ≠ ⊤ ⊢ ∃ x, x ∈ s ∧ dist x y < r [PROOFSTEP] simpa [dist_comm] using exists_dist_lt_of_hausdorffDist_lt h H fin [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ ⊢ infDist x t ≤ infDist x s + hausdorffDist s t [PROOFSTEP] refine toReal_le_add' infEdist_le_infEdist_add_hausdorffEdist (fun h ↦ ?_) (flip absurd fin) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ h : infEdist x s = ⊤ ⊢ infEdist x t = ⊤ [PROOFSTEP] rw [infEdist_eq_top_iff, ← not_nonempty_iff_eq_empty] at h ⊢ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ h : ¬Set.Nonempty s ⊢ ¬Set.Nonempty t [PROOFSTEP] rw [hausdorffEdist_comm] at fin [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist t s ≠ ⊤ h : ¬Set.Nonempty s ⊢ ¬Set.Nonempty t [PROOFSTEP] exact mt (nonempty_of_hausdorffEdist_ne_top · fin) h [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β h : Isometry Φ ⊢ hausdorffDist (Φ '' s) (Φ '' t) = hausdorffDist s t [PROOFSTEP] simp [hausdorffDist, hausdorffEdist_image h] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ ⊢ hausdorffDist s u ≤ hausdorffDist s t + hausdorffDist t u [PROOFSTEP] refine toReal_le_add' hausdorffEdist_triangle (flip absurd fin) (not_imp_not.1 fun h ↦ ?_) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ h : ¬hausdorffEdist s u = ⊤ ⊢ ¬hausdorffEdist t u = ⊤ [PROOFSTEP] rw [hausdorffEdist_comm] at fin [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist t s ≠ ⊤ h : ¬hausdorffEdist s u = ⊤ ⊢ ¬hausdorffEdist t u = ⊤ [PROOFSTEP] exact ne_top_of_le_ne_top (add_ne_top.2 ⟨fin, h⟩) hausdorffEdist_triangle [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist t u ≠ ⊤ ⊢ hausdorffDist s u ≤ hausdorffDist s t + hausdorffDist t u [PROOFSTEP] rw [hausdorffEdist_comm] at fin [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist u t ≠ ⊤ ⊢ hausdorffDist s u ≤ hausdorffDist s t + hausdorffDist t u [PROOFSTEP] have I : hausdorffDist u s ≤ hausdorffDist u t + hausdorffDist t s := hausdorffDist_triangle fin [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist u t ≠ ⊤ I : hausdorffDist u s ≤ hausdorffDist u t + hausdorffDist t s ⊢ hausdorffDist s u ≤ hausdorffDist s t + hausdorffDist t u [PROOFSTEP] simpa [add_comm, hausdorffDist_comm] using I [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ hausdorffDist s (closure s) = 0 [PROOFSTEP] simp [hausdorffDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ hausdorffDist (closure s) t = hausdorffDist s t [PROOFSTEP] simp [hausdorffDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ hausdorffDist s (closure t) = hausdorffDist s t [PROOFSTEP] simp [hausdorffDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β ⊢ hausdorffDist (closure s) (closure t) = hausdorffDist s t [PROOFSTEP] simp [hausdorffDist] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β fin : hausdorffEdist s t ≠ ⊤ ⊢ hausdorffDist s t = 0 ↔ closure s = closure t [PROOFSTEP] simp [← hausdorffEdist_zero_iff_closure_eq_closure, hausdorffDist, ENNReal.toReal_eq_zero_iff, fin] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s t u : Set α x y : α Φ : α → β hs : IsClosed s ht : IsClosed t fin : hausdorffEdist s t ≠ ⊤ ⊢ hausdorffDist s t = 0 ↔ s = t [PROOFSTEP] simp [← hausdorffEdist_zero_iff_eq_of_closed hs ht, hausdorffDist, ENNReal.toReal_eq_zero_iff, fin] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ : ℝ s : Set α x✝ : α E : Set α x : α h : ¬x ∈ closure E ⊢ ∀ᶠ (δ : ℝ) in 𝓝 0, ¬x ∈ thickening δ E [PROOFSTEP] obtain ⟨ε, ⟨ε_pos, ε_lt⟩⟩ := exists_real_pos_lt_infEdist_of_not_mem_closure h [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ : ℝ s : Set α x✝ : α E : Set α x : α h : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E ⊢ ∀ᶠ (δ : ℝ) in 𝓝 0, ¬x ∈ thickening δ E [PROOFSTEP] filter_upwards [eventually_lt_nhds ε_pos] with δ hδ [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝ : α E : Set α x : α h : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E δ : ℝ hδ : δ < ε ⊢ ¬x ∈ thickening δ E [PROOFSTEP] simp only [thickening, mem_setOf_eq, not_lt] [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝ : α E : Set α x : α h : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E δ : ℝ hδ : δ < ε ⊢ ENNReal.ofReal δ ≤ infEdist x E [PROOFSTEP] exact (ENNReal.ofReal_le_ofReal hδ.le).trans ε_lt.le [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x : α δ : ℝ ⊢ thickening δ ∅ = ∅ [PROOFSTEP] simp only [thickening, setOf_false, infEdist_empty, not_top_lt] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ : ℝ s : Set α x : α A : Set α ⊢ Pairwise (Disjoint on fun r => frontier (thickening r A)) [PROOFSTEP] refine' (pairwise_disjoint_on _).2 fun r₁ r₂ hr => _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ : ℝ s : Set α x : α A : Set α r₁ r₂ : ℝ hr : r₁ < r₂ ⊢ Disjoint (frontier (thickening r₁ A)) (frontier (thickening r₂ A)) [PROOFSTEP] cases' le_total r₁ 0 with h₁ h₁ [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ : ℝ s : Set α x : α A : Set α r₁ r₂ : ℝ hr : r₁ < r₂ h₁ : r₁ ≤ 0 ⊢ Disjoint (frontier (thickening r₁ A)) (frontier (thickening r₂ A)) [PROOFSTEP] simp [thickening_of_nonpos h₁] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ : ℝ s : Set α x : α A : Set α r₁ r₂ : ℝ hr : r₁ < r₂ h₁ : 0 ≤ r₁ ⊢ Disjoint (frontier (thickening r₁ A)) (frontier (thickening r₂ A)) [PROOFSTEP] refine' ((disjoint_singleton.2 fun h => hr.ne _).preimage _).mono (frontier_thickening_subset _) (frontier_thickening_subset _) [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ : ℝ s : Set α x : α A : Set α r₁ r₂ : ℝ hr : r₁ < r₂ h₁ : 0 ≤ r₁ h : ENNReal.ofReal r₁ = ENNReal.ofReal r₂ ⊢ r₁ = r₂ [PROOFSTEP] apply_fun ENNReal.toReal at h [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ : ℝ s : Set α x : α A : Set α r₁ r₂ : ℝ hr : r₁ < r₂ h₁ : 0 ≤ r₁ h : ENNReal.toReal (ENNReal.ofReal r₁) = ENNReal.toReal (ENNReal.ofReal r₂) ⊢ r₁ = r₂ [PROOFSTEP] rwa [ENNReal.toReal_ofReal h₁, ENNReal.toReal_ofReal (h₁.trans hr.le)] at h [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X E : Set X x : X ⊢ x ∈ thickening δ E ↔ ∃ z, z ∈ E ∧ dist x z < δ [PROOFSTEP] have key_iff : ∀ z : X, edist x z < ENNReal.ofReal δ ↔ dist x z < δ := fun z ↦ by rw [dist_edist, lt_ofReal_iff_toReal_lt (edist_ne_top _ _)] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X E : Set X x z : X ⊢ edist x z < ENNReal.ofReal δ ↔ dist x z < δ [PROOFSTEP] rw [dist_edist, lt_ofReal_iff_toReal_lt (edist_ne_top _ _)] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X E : Set X x : X key_iff : ∀ (z : X), edist x z < ENNReal.ofReal δ ↔ dist x z < δ ⊢ x ∈ thickening δ E ↔ ∃ z, z ∈ E ∧ dist x z < δ [PROOFSTEP] simp_rw [mem_thickening_iff_exists_edist_lt, key_iff] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ x : X ⊢ thickening δ {x} = ball x δ [PROOFSTEP] ext [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝¹ : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ x x✝ : X ⊢ x✝ ∈ thickening δ {x} ↔ x✝ ∈ ball x δ [PROOFSTEP] simp [mem_thickening_iff] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X x : X E : Set X hx : x ∈ E δ : ℝ ⊢ ball x δ ⊆ thickening δ {x} [PROOFSTEP] simp [Subset.rfl] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ E : Set X ⊢ thickening δ E = ⋃ (x : X) (_ : x ∈ E), ball x δ [PROOFSTEP] ext x [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ E : Set X x : X ⊢ x ∈ thickening δ E ↔ x ∈ ⋃ (x : X) (_ : x ∈ E), ball x δ [PROOFSTEP] simp only [mem_iUnion₂, exists_prop] [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ E : Set X x : X ⊢ x ∈ thickening δ E ↔ ∃ i, i ∈ E ∧ x ∈ ball i δ [PROOFSTEP] exact mem_thickening_iff [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ E : Set X h : Bounded E ⊢ Bounded (thickening δ E) [PROOFSTEP] rcases E.eq_empty_or_nonempty with rfl | ⟨x, hx⟩ [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ h : Bounded ∅ ⊢ Bounded (thickening δ ∅) [PROOFSTEP] simp [GOAL] case inr.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ E : Set X h : Bounded E x : X hx : x ∈ E ⊢ Bounded (thickening δ E) [PROOFSTEP] refine (bounded_iff_subset_ball x).2 ⟨δ + diam E, fun y hy ↦ ?_⟩ [GOAL] case inr.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ : ℝ s : Set α x✝ : α X : Type u inst✝ : PseudoMetricSpace X δ : ℝ E : Set X h : Bounded E x : X hx : x ∈ E y : X hy : y ∈ thickening δ E ⊢ y ∈ closedBall x (δ + diam E) [PROOFSTEP] calc dist y x ≤ infDist y E + diam E := dist_le_infDist_add_diam (x := y) h hx _ ≤ δ + diam E := add_le_add_right ((mem_thickening_iff_infDist_lt ⟨x, hx⟩).1 hy).le _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x✝ : α E : Set α x : α h : ¬x ∈ closure E ⊢ ∀ᶠ (δ : ℝ) in 𝓝 0, ¬x ∈ cthickening δ E [PROOFSTEP] obtain ⟨ε, ⟨ε_pos, ε_lt⟩⟩ := exists_real_pos_lt_infEdist_of_not_mem_closure h [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε✝ : ℝ s t : Set α x✝ : α E : Set α x : α h : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E ⊢ ∀ᶠ (δ : ℝ) in 𝓝 0, ¬x ∈ cthickening δ E [PROOFSTEP] filter_upwards [eventually_lt_nhds ε_pos] with δ hδ [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝ : α E : Set α x : α h : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E δ : ℝ hδ : δ < ε ⊢ ¬x ∈ cthickening δ E [PROOFSTEP] simp only [cthickening, mem_setOf_eq, not_le] [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝ : α E : Set α x : α h : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E δ : ℝ hδ : δ < ε ⊢ ENNReal.ofReal δ < infEdist x E [PROOFSTEP] exact ((ofReal_lt_ofReal_iff ε_pos).mpr hδ).trans ε_lt [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x y : α δ : ℝ E : Set α h : y ∈ E h' : dist x y ≤ δ ⊢ x ∈ cthickening δ E [PROOFSTEP] apply mem_cthickening_of_edist_le x y δ E h [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x y : α δ : ℝ E : Set α h : y ∈ E h' : dist x y ≤ δ ⊢ edist x y ≤ ENNReal.ofReal δ [PROOFSTEP] rw [edist_dist] [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x y : α δ : ℝ E : Set α h : y ∈ E h' : dist x y ≤ δ ⊢ ENNReal.ofReal (dist x y) ≤ ENNReal.ofReal δ [PROOFSTEP] exact ENNReal.ofReal_le_ofReal h' [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ ⊢ cthickening δ ∅ = ∅ [PROOFSTEP] simp only [cthickening, ENNReal.ofReal_ne_top, setOf_false, infEdist_empty, top_le_iff] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ hδ : δ ≤ 0 E : Set α ⊢ cthickening δ E = closure E [PROOFSTEP] ext x [GOAL] case h ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x✝ : α δ : ℝ hδ : δ ≤ 0 E : Set α x : α ⊢ x ∈ cthickening δ E ↔ x ∈ closure E [PROOFSTEP] simp [mem_closure_iff_infEdist_zero, cthickening, ENNReal.ofReal_eq_zero.2 hδ] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ cthickening (max 0 δ) E = cthickening δ E [PROOFSTEP] cases le_total δ 0 [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α h✝ : δ ≤ 0 ⊢ cthickening (max 0 δ) E = cthickening δ E [PROOFSTEP] simp [cthickening_of_nonpos, *] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α h✝ : 0 ≤ δ ⊢ cthickening (max 0 δ) E = cthickening δ E [PROOFSTEP] simp [cthickening_of_nonpos, *] [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x : α δ : ℝ hδ : 0 ≤ δ ⊢ cthickening δ {x} = closedBall x δ [PROOFSTEP] ext y [GOAL] case h ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x : α δ : ℝ hδ : 0 ≤ δ y : α ⊢ y ∈ cthickening δ {x} ↔ y ∈ closedBall x δ [PROOFSTEP] simp [cthickening, edist_dist, ENNReal.ofReal_le_ofReal_iff hδ] [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x : α δ : ℝ ⊢ closedBall x δ ⊆ cthickening δ {x} [PROOFSTEP] rcases lt_or_le δ 0 with (hδ | hδ) [GOAL] case inl ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x : α δ : ℝ hδ : δ < 0 ⊢ closedBall x δ ⊆ cthickening δ {x} [PROOFSTEP] simp only [closedBall_eq_empty.mpr hδ, empty_subset] [GOAL] case inr ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x : α δ : ℝ hδ : 0 ≤ δ ⊢ closedBall x δ ⊆ cthickening δ {x} [PROOFSTEP] simp only [cthickening_singleton x hδ, Subset.rfl] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ thickening δ E ⊆ cthickening δ E [PROOFSTEP] intro x hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x✝ : α δ : ℝ E : Set α x : α hx : x ∈ thickening δ E ⊢ x ∈ cthickening δ E [PROOFSTEP] rw [thickening, mem_setOf_eq] at hx [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x✝ : α δ : ℝ E : Set α x : α hx : infEdist x E < ENNReal.ofReal δ ⊢ x ∈ cthickening δ E [PROOFSTEP] exact hx.le [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α h : Bounded E ⊢ Bounded (Metric.cthickening δ E) [PROOFSTEP] have : Bounded (thickening (max (δ + 1) 1) E) := h.thickening [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α h : Bounded E this : Bounded (thickening (max (δ + 1) 1) E) ⊢ Bounded (Metric.cthickening δ E) [PROOFSTEP] apply Bounded.mono _ this [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α h : Bounded E this : Bounded (thickening (max (δ + 1) 1) E) ⊢ Metric.cthickening δ E ⊆ thickening (max (δ + 1) 1) E [PROOFSTEP] exact cthickening_subset_thickening' (zero_lt_one.trans_le (le_max_right _ _)) ((lt_add_one _).trans_le (le_max_left _ _)) _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ closure E ⊆ cthickening δ E [PROOFSTEP] rw [← cthickening_of_nonpos (min_le_right δ 0)] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ cthickening (min δ 0) E ⊆ cthickening δ E [PROOFSTEP] exact cthickening_mono (min_le_left δ 0) E [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ closure E ⊆ thickening δ E [PROOFSTEP] rw [← cthickening_zero] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ cthickening 0 E ⊆ thickening δ E [PROOFSTEP] exact cthickening_subset_thickening' δ_pos δ_pos E [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t✝ : Set α x : α δ : ℝ s t : Set α ⊢ thickening δ (s ∪ t) = thickening δ s ∪ thickening δ t [PROOFSTEP] simp_rw [thickening, infEdist_union, inf_eq_min, min_lt_iff, setOf_or] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t✝ : Set α x : α δ : ℝ s t : Set α ⊢ cthickening δ (s ∪ t) = cthickening δ s ∪ cthickening δ t [PROOFSTEP] simp_rw [cthickening, infEdist_union, inf_eq_min, min_le_iff, setOf_or] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ f : ι → Set α ⊢ thickening δ (⋃ (i : ι), f i) = ⋃ (i : ι), thickening δ (f i) [PROOFSTEP] simp_rw [thickening, infEdist_iUnion, iInf_lt_iff, setOf_exists] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε✝ : ℝ s t : Set α x : α ε : ℝ≥0 ⊢ EMetric.diam (cthickening (↑ε) s) ≤ EMetric.diam s + 2 * ↑ε [PROOFSTEP] refine' diam_le fun x hx y hy => ENNReal.le_of_forall_pos_le_add fun δ hδ _ => _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝¹ : α ε : ℝ≥0 x : α hx : x ∈ cthickening (↑ε) s y : α hy : y ∈ cthickening (↑ε) s δ : ℝ≥0 hδ : 0 < δ x✝ : EMetric.diam s + 2 * ↑ε < ⊤ ⊢ edist x y ≤ EMetric.diam s + 2 * ↑ε + ↑δ [PROOFSTEP] rw [mem_cthickening_iff, ENNReal.ofReal_coe_nnreal] at hx hy [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝¹ : α ε : ℝ≥0 x : α hx : infEdist x s ≤ ↑ε y : α hy : infEdist y s ≤ ↑ε δ : ℝ≥0 hδ : 0 < δ x✝ : EMetric.diam s + 2 * ↑ε < ⊤ ⊢ edist x y ≤ EMetric.diam s + 2 * ↑ε + ↑δ [PROOFSTEP] have hε : (ε : ℝ≥0∞) < ε + δ := ENNReal.coe_lt_coe.2 (lt_add_of_pos_right _ hδ) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝¹ : α ε : ℝ≥0 x : α hx : infEdist x s ≤ ↑ε y : α hy : infEdist y s ≤ ↑ε δ : ℝ≥0 hδ : 0 < δ x✝ : EMetric.diam s + 2 * ↑ε < ⊤ hε : ↑ε < ↑ε + ↑δ ⊢ edist x y ≤ EMetric.diam s + 2 * ↑ε + ↑δ [PROOFSTEP] replace hx := hx.trans_lt hε [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝¹ : α ε : ℝ≥0 x y : α hy : infEdist y s ≤ ↑ε δ : ℝ≥0 hδ : 0 < δ x✝ : EMetric.diam s + 2 * ↑ε < ⊤ hε : ↑ε < ↑ε + ↑δ hx : infEdist x s < ↑ε + ↑δ ⊢ edist x y ≤ EMetric.diam s + 2 * ↑ε + ↑δ [PROOFSTEP] obtain ⟨x', hx', hxx'⟩ := infEdist_lt_iff.mp hx [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝¹ : α ε : ℝ≥0 x y : α hy : infEdist y s ≤ ↑ε δ : ℝ≥0 hδ : 0 < δ x✝ : EMetric.diam s + 2 * ↑ε < ⊤ hε : ↑ε < ↑ε + ↑δ hx : infEdist x s < ↑ε + ↑δ x' : α hx' : x' ∈ s hxx' : edist x x' < ↑ε + ↑δ ⊢ edist x y ≤ EMetric.diam s + 2 * ↑ε + ↑δ [PROOFSTEP] calc edist x y ≤ edist x x' + edist y x' := edist_triangle_right _ _ _ _ ≤ ε + δ + (infEdist y s + EMetric.diam s) := (add_le_add hxx'.le (edist_le_infEdist_add_ediam hx')) _ ≤ ε + δ + (ε + EMetric.diam s) := (add_le_add_left (add_le_add_right hy _) _) _ = _ := by rw [two_mul]; ac_rfl [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝¹ : α ε : ℝ≥0 x y : α hy : infEdist y s ≤ ↑ε δ : ℝ≥0 hδ : 0 < δ x✝ : EMetric.diam s + 2 * ↑ε < ⊤ hε : ↑ε < ↑ε + ↑δ hx : infEdist x s < ↑ε + ↑δ x' : α hx' : x' ∈ s hxx' : edist x x' < ↑ε + ↑δ ⊢ ↑ε + ↑δ + (↑ε + EMetric.diam s) = EMetric.diam s + 2 * ↑ε + ↑δ [PROOFSTEP] rw [two_mul] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s t : Set α x✝¹ : α ε : ℝ≥0 x y : α hy : infEdist y s ≤ ↑ε δ : ℝ≥0 hδ : 0 < δ x✝ : EMetric.diam s + 2 * ↑ε < ⊤ hε : ↑ε < ↑ε + ↑δ hx : infEdist x s < ↑ε + ↑δ x' : α hx' : x' ∈ s hxx' : edist x x' < ↑ε + ↑δ ⊢ ↑ε + ↑δ + (↑ε + EMetric.diam s) = EMetric.diam s + (↑ε + ↑ε) + ↑δ [PROOFSTEP] ac_rfl [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ ε : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hε : 0 ≤ ε ⊢ diam (cthickening ε s) ≤ diam s + 2 * ε [PROOFSTEP] lift ε to ℝ≥0 using hε [GOAL] case intro ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α ε : ℝ≥0 ⊢ diam (cthickening (↑ε) s) ≤ diam s + 2 * ↑ε [PROOFSTEP] refine (toReal_le_add' (ediam_cthickening_le _) ?_ ?_).trans_eq ?_ [GOAL] case intro.refine_1 ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α ε : ℝ≥0 ⊢ EMetric.diam s = ⊤ → EMetric.diam (cthickening (↑ε) s) = ⊤ [PROOFSTEP] exact fun h ↦ top_unique <| h ▸ EMetric.diam_mono (self_subset_cthickening _) [GOAL] case intro.refine_2 ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α ε : ℝ≥0 ⊢ 2 * ↑ε = ⊤ → EMetric.diam (cthickening (↑ε) s) = ⊤ [PROOFSTEP] simp [mul_eq_top] [GOAL] case intro.refine_3 ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α ε : ℝ≥0 ⊢ ENNReal.toReal (EMetric.diam s) + ENNReal.toReal (2 * ↑ε) = diam s + 2 * ↑ε [PROOFSTEP] simp [diam] [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ ε : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hε : 0 ≤ ε ⊢ diam (thickening ε s) ≤ diam s + 2 * ε [PROOFSTEP] by_cases hs : Bounded s [GOAL] case pos ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ ε : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hε : 0 ≤ ε hs : Bounded s ⊢ diam (thickening ε s) ≤ diam s + 2 * ε [PROOFSTEP] exact (diam_mono (thickening_subset_cthickening _ _) hs.cthickening).trans (diam_cthickening_le _ hε) [GOAL] case neg ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ ε : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hε : 0 ≤ ε hs : ¬Bounded s ⊢ diam (thickening ε s) ≤ diam s + 2 * ε [PROOFSTEP] obtain rfl | hε := hε.eq_or_lt [GOAL] case neg.inl ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : ¬Bounded s hε : 0 ≤ 0 ⊢ diam (thickening 0 s) ≤ diam s + 2 * 0 [PROOFSTEP] simp [thickening_of_nonpos, diam_nonneg] [GOAL] case neg.inr ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ ε : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hε✝ : 0 ≤ ε hs : ¬Bounded s hε : 0 < ε ⊢ diam (thickening ε s) ≤ diam s + 2 * ε [PROOFSTEP] rw [diam_eq_zero_of_unbounded (mt (Bounded.mono <| self_subset_thickening hε _) hs)] [GOAL] case neg.inr ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ ε : ℝ s✝ t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hε✝ : 0 ≤ ε hs : ¬Bounded s hε : 0 < ε ⊢ 0 ≤ diam s + 2 * ε [PROOFSTEP] positivity [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α ⊢ thickening δ (closure s) = thickening δ s [PROOFSTEP] simp_rw [thickening, infEdist_closure] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α ⊢ cthickening δ (closure s) = cthickening δ s [PROOFSTEP] simp_rw [cthickening, infEdist_closure] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t ⊢ ∃ δ, 0 < δ ∧ Disjoint (thickening δ s) (thickening δ t) [PROOFSTEP] obtain ⟨r, hr, h⟩ := exists_pos_forall_lt_edist hs ht hst [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y ⊢ ∃ δ, 0 < δ ∧ Disjoint (thickening δ s) (thickening δ t) [PROOFSTEP] refine' ⟨r / 2, half_pos (NNReal.coe_pos.2 hr), _⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y ⊢ Disjoint (thickening (↑r / 2) s) (thickening (↑r / 2) t) [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y ⊢ thickening (↑r / 2) s ⊓ thickening (↑r / 2) t ≤ ⊥ [PROOFSTEP] rintro z ⟨hzs, hzt⟩ [GOAL] case intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y z : α hzs : z ∈ thickening (↑r / 2) s hzt : z ∈ thickening (↑r / 2) t ⊢ z ∈ ⊥ [PROOFSTEP] rw [mem_thickening_iff_exists_edist_lt] at hzs hzt [GOAL] case intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y z : α hzs : ∃ z_1, z_1 ∈ s ∧ edist z z_1 < ENNReal.ofReal (↑r / 2) hzt : ∃ z_1, z_1 ∈ t ∧ edist z z_1 < ENNReal.ofReal (↑r / 2) ⊢ z ∈ ⊥ [PROOFSTEP] rw [← NNReal.coe_two, ← NNReal.coe_div, ENNReal.ofReal_coe_nnreal] at hzs hzt [GOAL] case intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y z : α hzs : ∃ z_1, z_1 ∈ s ∧ edist z z_1 < ↑(r / 2) hzt : ∃ z_1, z_1 ∈ t ∧ edist z z_1 < ↑(r / 2) ⊢ z ∈ ⊥ [PROOFSTEP] obtain ⟨x, hx, hzx⟩ := hzs [GOAL] case intro.intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x✝ : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y z : α hzt : ∃ z_1, z_1 ∈ t ∧ edist z z_1 < ↑(r / 2) x : α hx : x ∈ s hzx : edist z x < ↑(r / 2) ⊢ z ∈ ⊥ [PROOFSTEP] obtain ⟨y, hy, hzy⟩ := hzt [GOAL] case intro.intro.intro.intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x✝ : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y z x : α hx : x ∈ s hzx : edist z x < ↑(r / 2) y : α hy : y ∈ t hzy : edist z y < ↑(r / 2) ⊢ z ∈ ⊥ [PROOFSTEP] refine' (h x hx y hy).not_le _ [GOAL] case intro.intro.intro.intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x✝ : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y z x : α hx : x ∈ s hzx : edist z x < ↑(r / 2) y : α hy : y ∈ t hzy : edist z y < ↑(r / 2) ⊢ edist x y ≤ ↑r [PROOFSTEP] calc edist x y ≤ edist z x + edist z y := edist_triangle_left _ _ _ _ ≤ ↑(r / 2) + ↑(r / 2) := (add_le_add hzx.le hzy.le) _ = r := by rw [← ENNReal.coe_add, add_halves] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x✝ : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t r : ℝ≥0 hr : 0 < r h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ t → ↑r < edist x y z x : α hx : x ∈ s hzx : edist z x < ↑(r / 2) y : α hy : y ∈ t hzy : edist z y < ↑(r / 2) ⊢ ↑(r / 2) + ↑(r / 2) = ↑r [PROOFSTEP] rw [← ENNReal.coe_add, add_halves] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t ⊢ ∃ δ, 0 < δ ∧ Disjoint (cthickening δ s) (cthickening δ t) [PROOFSTEP] obtain ⟨δ, hδ, h⟩ := hst.exists_thickenings hs ht [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t δ : ℝ hδ : 0 < δ h : Disjoint (thickening δ s) (thickening δ t) ⊢ ∃ δ, 0 < δ ∧ Disjoint (cthickening δ s) (cthickening δ t) [PROOFSTEP] refine' ⟨δ / 2, half_pos hδ, h.mono _ _⟩ [GOAL] case intro.intro.refine'_1 ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t δ : ℝ hδ : 0 < δ h : Disjoint (thickening δ s) (thickening δ t) ⊢ cthickening (δ / 2) s ≤ thickening δ s [PROOFSTEP] exact cthickening_subset_thickening' hδ (half_lt_self hδ) _ [GOAL] case intro.intro.refine'_2 ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α hst : Disjoint s t hs : IsCompact s ht : IsClosed t δ : ℝ hδ : 0 < δ h : Disjoint (thickening δ s) (thickening δ t) ⊢ cthickening (δ / 2) t ≤ thickening δ t [PROOFSTEP] exact cthickening_subset_thickening' hδ (half_lt_self hδ) _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α inst✝ : LocallyCompactSpace α hs : IsCompact s ⊢ ∃ δ, 0 < δ ∧ IsCompact (cthickening δ s) [PROOFSTEP] rcases exists_compact_superset hs with ⟨K, K_compact, hK⟩ [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α inst✝ : LocallyCompactSpace α hs : IsCompact s K : Set α K_compact : IsCompact K hK : s ⊆ interior K ⊢ ∃ δ, 0 < δ ∧ IsCompact (cthickening δ s) [PROOFSTEP] rcases hs.exists_cthickening_subset_open isOpen_interior hK with ⟨δ, δpos, hδ⟩ [GOAL] case intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α inst✝ : LocallyCompactSpace α hs : IsCompact s K : Set α K_compact : IsCompact K hK : s ⊆ interior K δ : ℝ δpos : 0 < δ hδ : cthickening δ s ⊆ interior K ⊢ ∃ δ, 0 < δ ∧ IsCompact (cthickening δ s) [PROOFSTEP] refine ⟨δ, δpos, ?_⟩ [GOAL] case intro.intro.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝¹ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α inst✝ : LocallyCompactSpace α hs : IsCompact s K : Set α K_compact : IsCompact K hK : s ⊆ interior K δ : ℝ δpos : 0 < δ hδ : cthickening δ s ⊆ interior K ⊢ IsCompact (cthickening δ s) [PROOFSTEP] exact isCompact_of_isClosed_subset K_compact isClosed_cthickening (hδ.trans interior_subset) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ⊢ cthickening δ E = ⋂ (ε : ℝ) (_ : ε ∈ s), cthickening ε E [PROOFSTEP] apply Subset.antisymm [GOAL] case h₁ ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ⊢ cthickening δ E ⊆ ⋂ (ε : ℝ) (_ : ε ∈ s), cthickening ε E [PROOFSTEP] exact subset_iInter₂ fun _ hε => cthickening_mono (le_of_lt (hsδ hε)) E [GOAL] case h₂ ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ⊢ ⋂ (ε : ℝ) (_ : ε ∈ s), cthickening ε E ⊆ cthickening δ E [PROOFSTEP] unfold cthickening [GOAL] case h₂ ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ⊢ ⋂ (ε : ℝ) (_ : ε ∈ s), {x | infEdist x E ≤ ENNReal.ofReal ε} ⊆ {x | infEdist x E ≤ ENNReal.ofReal δ} [PROOFSTEP] intro x hx [GOAL] case h₂ ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x✝ : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α x : α hx : x ∈ ⋂ (ε : ℝ) (_ : ε ∈ s), {x | infEdist x E ≤ ENNReal.ofReal ε} ⊢ x ∈ {x | infEdist x E ≤ ENNReal.ofReal δ} [PROOFSTEP] simp only [mem_iInter, mem_setOf_eq] at * [GOAL] case h₂ ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x✝ : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α x : α hx : ∀ (i : ℝ), i ∈ s → infEdist x E ≤ ENNReal.ofReal i ⊢ infEdist x E ≤ ENNReal.ofReal δ [PROOFSTEP] apply ENNReal.le_of_forall_pos_le_add [GOAL] case h₂.h ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x✝ : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α x : α hx : ∀ (i : ℝ), i ∈ s → infEdist x E ≤ ENNReal.ofReal i ⊢ ∀ (ε : ℝ≥0), 0 < ε → ENNReal.ofReal δ < ⊤ → infEdist x E ≤ ENNReal.ofReal δ + ↑ε [PROOFSTEP] intro η η_pos _ [GOAL] case h₂.h ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x✝ : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α x : α hx : ∀ (i : ℝ), i ∈ s → infEdist x E ≤ ENNReal.ofReal i η : ℝ≥0 η_pos : 0 < η a✝ : ENNReal.ofReal δ < ⊤ ⊢ infEdist x E ≤ ENNReal.ofReal δ + ↑η [PROOFSTEP] rcases hs (δ + η) (lt_add_of_pos_right _ (NNReal.coe_pos.mpr η_pos)) with ⟨ε, ⟨hsε, hε⟩⟩ [GOAL] case h₂.h.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x✝ : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α x : α hx : ∀ (i : ℝ), i ∈ s → infEdist x E ≤ ENNReal.ofReal i η : ℝ≥0 η_pos : 0 < η a✝ : ENNReal.ofReal δ < ⊤ ε : ℝ hsε : ε ∈ s hε : ε ∈ Ioc δ (δ + ↑η) ⊢ infEdist x E ≤ ENNReal.ofReal δ + ↑η [PROOFSTEP] apply ((hx ε hsε).trans (ENNReal.ofReal_le_ofReal hε.2)).trans [GOAL] case h₂.h.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x✝ : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α x : α hx : ∀ (i : ℝ), i ∈ s → infEdist x E ≤ ENNReal.ofReal i η : ℝ≥0 η_pos : 0 < η a✝ : ENNReal.ofReal δ < ⊤ ε : ℝ hsε : ε ∈ s hε : ε ∈ Ioc δ (δ + ↑η) ⊢ ENNReal.ofReal (δ + ↑η) ≤ ENNReal.ofReal δ + ↑η [PROOFSTEP] rw [ENNReal.coe_nnreal_eq η] [GOAL] case h₂.h.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x✝ : α δ : ℝ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α x : α hx : ∀ (i : ℝ), i ∈ s → infEdist x E ≤ ENNReal.ofReal i η : ℝ≥0 η_pos : 0 < η a✝ : ENNReal.ofReal δ < ⊤ ε : ℝ hsε : ε ∈ s hε : ε ∈ Ioc δ (δ + ↑η) ⊢ ENNReal.ofReal (δ + ↑η) ≤ ENNReal.ofReal δ + ENNReal.ofReal ↑η [PROOFSTEP] exact ENNReal.ofReal_add_le [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ cthickening δ E = ⋂ (ε : ℝ) (_ : δ < ε), cthickening ε E [PROOFSTEP] apply cthickening_eq_iInter_cthickening' (Ioi δ) rfl.subset [GOAL] case hs ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ ∀ (ε : ℝ), δ < ε → Set.Nonempty (Ioi δ ∩ Ioc δ ε) [PROOFSTEP] simp_rw [inter_eq_right_iff_subset.mpr Ioc_subset_Ioi_self] [GOAL] case hs ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ ∀ (ε : ℝ), δ < ε → Set.Nonempty (Ioc δ ε) [PROOFSTEP] exact fun _ hε => nonempty_Ioc.mpr hε [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ⊢ cthickening δ E = ⋂ (ε : ℝ) (_ : ε ∈ s), thickening ε E [PROOFSTEP] refine' (subset_iInter₂ fun ε hε => _).antisymm _ [GOAL] case refine'_1 ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ε : ℝ hε : ε ∈ s ⊢ cthickening δ E ⊆ thickening ε E [PROOFSTEP] obtain ⟨ε', -, hε'⟩ := hs ε (hsδ hε) [GOAL] case refine'_1.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ε : ℝ hε : ε ∈ s ε' : ℝ hε' : ε' ∈ Ioc δ ε ⊢ cthickening δ E ⊆ thickening ε E [PROOFSTEP] have ss := cthickening_subset_thickening' (lt_of_le_of_lt δ_nn hε'.1) hε'.1 E [GOAL] case refine'_1.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ε : ℝ hε : ε ∈ s ε' : ℝ hε' : ε' ∈ Ioc δ ε ss : cthickening δ E ⊆ thickening ε' E ⊢ cthickening δ E ⊆ thickening ε E [PROOFSTEP] exact ss.trans (thickening_mono hε'.2 E) [GOAL] case refine'_2 ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ⊢ ⋂ (i : ℝ) (_ : i ∈ s), thickening i E ⊆ cthickening δ E [PROOFSTEP] rw [cthickening_eq_iInter_cthickening' s hsδ hs E] [GOAL] case refine'_2 ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ s : Set ℝ hsδ : s ⊆ Ioi δ hs : ∀ (ε : ℝ), δ < ε → Set.Nonempty (s ∩ Ioc δ ε) E : Set α ⊢ ⋂ (i : ℝ) (_ : i ∈ s), thickening i E ⊆ ⋂ (ε : ℝ) (_ : ε ∈ s), cthickening ε E [PROOFSTEP] exact iInter₂_mono fun ε _ => thickening_subset_cthickening ε E [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ E : Set α ⊢ cthickening δ E = ⋂ (ε : ℝ) (_ : δ < ε), thickening ε E [PROOFSTEP] apply cthickening_eq_iInter_thickening' δ_nn (Ioi δ) rfl.subset [GOAL] case hs ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ E : Set α ⊢ ∀ (ε : ℝ), δ < ε → Set.Nonempty (Ioi δ ∩ Ioc δ ε) [PROOFSTEP] simp_rw [inter_eq_right_iff_subset.mpr Ioc_subset_Ioi_self] [GOAL] case hs ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ δ_nn : 0 ≤ δ E : Set α ⊢ ∀ (ε : ℝ), δ < ε → Set.Nonempty (Ioc δ ε) [PROOFSTEP] exact fun _ hε => nonempty_Ioc.mpr hε [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ cthickening δ E = ⋂ (ε : ℝ) (_ : max 0 δ < ε), thickening ε E [PROOFSTEP] rw [← cthickening_max_zero, cthickening_eq_iInter_thickening] [GOAL] case δ_nn ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s t : Set α x : α δ : ℝ E : Set α ⊢ 0 ≤ max 0 δ [PROOFSTEP] exact le_max_left _ _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) ⊢ closure E = ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E [PROOFSTEP] by_cases hs₀ : s ⊆ Ioi 0 [GOAL] case pos ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) hs₀ : s ⊆ Ioi 0 ⊢ closure E = ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E [PROOFSTEP] rw [← cthickening_zero] [GOAL] case pos ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) hs₀ : s ⊆ Ioi 0 ⊢ cthickening 0 E = ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E [PROOFSTEP] apply cthickening_eq_iInter_cthickening' _ hs₀ hs [GOAL] case neg ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) hs₀ : ¬s ⊆ Ioi 0 ⊢ closure E = ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E [PROOFSTEP] obtain ⟨δ, hδs, δ_nonpos⟩ := not_subset.mp hs₀ [GOAL] case neg.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) hs₀ : ¬s ⊆ Ioi 0 δ : ℝ hδs : δ ∈ s δ_nonpos : ¬δ ∈ Ioi 0 ⊢ closure E = ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E [PROOFSTEP] rw [Set.mem_Ioi, not_lt] at δ_nonpos [GOAL] case neg.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) hs₀ : ¬s ⊆ Ioi 0 δ : ℝ hδs : δ ∈ s δ_nonpos : δ ≤ 0 ⊢ closure E = ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E [PROOFSTEP] apply Subset.antisymm [GOAL] case neg.intro.intro.h₁ ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) hs₀ : ¬s ⊆ Ioi 0 δ : ℝ hδs : δ ∈ s δ_nonpos : δ ≤ 0 ⊢ closure E ⊆ ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E [PROOFSTEP] exact subset_iInter₂ fun ε _ => closure_subset_cthickening ε E [GOAL] case neg.intro.intro.h₂ ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) hs₀ : ¬s ⊆ Ioi 0 δ : ℝ hδs : δ ∈ s δ_nonpos : δ ≤ 0 ⊢ ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E ⊆ closure E [PROOFSTEP] rw [← cthickening_of_nonpos δ_nonpos E] [GOAL] case neg.intro.intro.h₂ ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) hs₀ : ¬s ⊆ Ioi 0 δ : ℝ hδs : δ ∈ s δ_nonpos : δ ≤ 0 ⊢ ⋂ (δ : ℝ) (_ : δ ∈ s), cthickening δ E ⊆ cthickening δ E [PROOFSTEP] exact biInter_subset_of_mem hδs [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α E : Set α ⊢ closure E = ⋂ (δ : ℝ) (_ : 0 < δ), cthickening δ E [PROOFSTEP] rw [← cthickening_zero] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α E : Set α ⊢ cthickening 0 E = ⋂ (δ : ℝ) (_ : 0 < δ), cthickening δ E [PROOFSTEP] exact cthickening_eq_iInter_cthickening E [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs₀ : s ⊆ Ioi 0 hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) ⊢ closure E = ⋂ (δ : ℝ) (_ : δ ∈ s), thickening δ E [PROOFSTEP] rw [← cthickening_zero] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x : α E : Set α s : Set ℝ hs₀ : s ⊆ Ioi 0 hs : ∀ (ε : ℝ), 0 < ε → Set.Nonempty (s ∩ Ioc 0 ε) ⊢ cthickening 0 E = ⋂ (δ : ℝ) (_ : δ ∈ s), thickening δ E [PROOFSTEP] apply cthickening_eq_iInter_thickening' le_rfl _ hs₀ hs [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α E : Set α ⊢ closure E = ⋂ (δ : ℝ) (_ : 0 < δ), thickening δ E [PROOFSTEP] rw [← cthickening_zero] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α E : Set α ⊢ cthickening 0 E = ⋂ (δ : ℝ) (_ : 0 < δ), thickening δ E [PROOFSTEP] exact cthickening_eq_iInter_thickening rfl.ge E [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x : α E : Set α hx : x ∈ E δ : ℝ ⊢ closedBall x δ ⊆ cthickening δ E [PROOFSTEP] refine' (closedBall_subset_cthickening_singleton _ _).trans (cthickening_subset_of_subset _ _) [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α x : α E : Set α hx : x ∈ E δ : ℝ ⊢ {x} ⊆ E [PROOFSTEP] simpa using hx [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α E : Set α δ δ' : ℝ hδ₀ : 0 < δ' hδδ' : δ < δ' ⊢ cthickening δ E ⊆ ⋃ (x : α) (_ : x ∈ E), closedBall x δ' [PROOFSTEP] refine' (cthickening_subset_thickening' hδ₀ hδδ' E).trans fun x hx => _ [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α E : Set α δ δ' : ℝ hδ₀ : 0 < δ' hδδ' : δ < δ' x : α hx : x ∈ thickening δ' E ⊢ x ∈ ⋃ (x : α) (_ : x ∈ E), closedBall x δ' [PROOFSTEP] obtain ⟨y, hy₁, hy₂⟩ := mem_thickening_iff.mp hx [GOAL] case intro.intro ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α E : Set α δ δ' : ℝ hδ₀ : 0 < δ' hδδ' : δ < δ' x : α hx : x ∈ thickening δ' E y : α hy₁ : y ∈ E hy₂ : dist x y < δ' ⊢ x ∈ ⋃ (x : α) (_ : x ∈ E), closedBall x δ' [PROOFSTEP] exact mem_iUnion₂.mpr ⟨y, hy₁, hy₂.le⟩ [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α hE : IsCompact E hδ : 0 ≤ δ ⊢ cthickening δ E = ⋃ (x : α) (_ : x ∈ E), closedBall x δ [PROOFSTEP] rcases eq_empty_or_nonempty E with (rfl | hne) [GOAL] case inl ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ hδ : 0 ≤ δ hE : IsCompact ∅ ⊢ cthickening δ ∅ = ⋃ (x : α) (_ : x ∈ ∅), closedBall x δ [PROOFSTEP] simp only [cthickening_empty, biUnion_empty] [GOAL] case inr ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α hE : IsCompact E hδ : 0 ≤ δ hne : Set.Nonempty E ⊢ cthickening δ E = ⋃ (x : α) (_ : x ∈ E), closedBall x δ [PROOFSTEP] refine Subset.antisymm (fun x hx ↦ ?_) (iUnion₂_subset fun x hx ↦ closedBall_subset_cthickening hx _) [GOAL] case inr ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α hE : IsCompact E hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ E ⊢ x ∈ ⋃ (x : α) (_ : x ∈ E), closedBall x δ [PROOFSTEP] obtain ⟨y, yE, hy⟩ : ∃ y ∈ E, infEdist x E = edist x y := hE.exists_infEdist_eq_edist hne _ [GOAL] case inr.intro.intro ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α hE : IsCompact E hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ E y : α yE : y ∈ E hy : infEdist x E = edist x y ⊢ x ∈ ⋃ (x : α) (_ : x ∈ E), closedBall x δ [PROOFSTEP] have D1 : edist x y ≤ ENNReal.ofReal δ := (le_of_eq hy.symm).trans hx [GOAL] case inr.intro.intro ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α hE : IsCompact E hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ E y : α yE : y ∈ E hy : infEdist x E = edist x y D1 : edist x y ≤ ENNReal.ofReal δ ⊢ x ∈ ⋃ (x : α) (_ : x ∈ E), closedBall x δ [PROOFSTEP] have D2 : dist x y ≤ δ := by rw [edist_dist] at D1 exact (ENNReal.ofReal_le_ofReal_iff hδ).1 D1 [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α hE : IsCompact E hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ E y : α yE : y ∈ E hy : infEdist x E = edist x y D1 : edist x y ≤ ENNReal.ofReal δ ⊢ dist x y ≤ δ [PROOFSTEP] rw [edist_dist] at D1 [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α hE : IsCompact E hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ E y : α yE : y ∈ E hy : infEdist x E = edist x y D1 : ENNReal.ofReal (dist x y) ≤ ENNReal.ofReal δ ⊢ dist x y ≤ δ [PROOFSTEP] exact (ENNReal.ofReal_le_ofReal_iff hδ).1 D1 [GOAL] case inr.intro.intro ι : Sort u_1 α✝ : Type u β : Type v inst✝¹ : PseudoEMetricSpace α✝ δ✝ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝ : PseudoMetricSpace α δ : ℝ E : Set α hE : IsCompact E hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ E y : α yE : y ∈ E hy : infEdist x E = edist x y D1 : edist x y ≤ ENNReal.ofReal δ D2 : dist x y ≤ δ ⊢ x ∈ ⋃ (x : α) (_ : x ∈ E), closedBall x δ [PROOFSTEP] exact mem_biUnion yE D2 [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝² : PseudoEMetricSpace α✝ δ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α E : Set α hδ : 0 ≤ δ ⊢ cthickening δ E = ⋃ (x : α) (_ : x ∈ closure E), closedBall x δ [PROOFSTEP] rcases eq_empty_or_nonempty E with (rfl | hne) [GOAL] case inl ι : Sort u_1 α✝ : Type u β : Type v inst✝² : PseudoEMetricSpace α✝ δ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α hδ : 0 ≤ δ ⊢ cthickening δ ∅ = ⋃ (x : α) (_ : x ∈ closure ∅), closedBall x δ [PROOFSTEP] simp only [cthickening_empty, biUnion_empty, closure_empty] [GOAL] case inr ι : Sort u_1 α✝ : Type u β : Type v inst✝² : PseudoEMetricSpace α✝ δ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α E : Set α hδ : 0 ≤ δ hne : Set.Nonempty E ⊢ cthickening δ E = ⋃ (x : α) (_ : x ∈ closure E), closedBall x δ [PROOFSTEP] rw [← cthickening_closure] [GOAL] case inr ι : Sort u_1 α✝ : Type u β : Type v inst✝² : PseudoEMetricSpace α✝ δ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α E : Set α hδ : 0 ≤ δ hne : Set.Nonempty E ⊢ cthickening δ (closure E) = ⋃ (x : α) (_ : x ∈ closure E), closedBall x δ [PROOFSTEP] refine Subset.antisymm (fun x hx ↦ ?_) (iUnion₂_subset fun x hx ↦ closedBall_subset_cthickening hx _) [GOAL] case inr ι : Sort u_1 α✝ : Type u β : Type v inst✝² : PseudoEMetricSpace α✝ δ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α E : Set α hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ (closure E) ⊢ x ∈ ⋃ (x : α) (_ : x ∈ closure E), closedBall x δ [PROOFSTEP] obtain ⟨y, yE, hy⟩ : ∃ y ∈ closure E, infDist x (closure E) = dist x y := isClosed_closure.exists_infDist_eq_dist (closure_nonempty_iff.mpr hne) x [GOAL] case inr.intro.intro ι : Sort u_1 α✝ : Type u β : Type v inst✝² : PseudoEMetricSpace α✝ δ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α E : Set α hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ (closure E) y : α yE : y ∈ closure E hy : infDist x (closure E) = dist x y ⊢ x ∈ ⋃ (x : α) (_ : x ∈ closure E), closedBall x δ [PROOFSTEP] replace hy : dist x y ≤ δ := (ENNReal.ofReal_le_ofReal_iff hδ).mp (((congr_arg ENNReal.ofReal hy.symm).le.trans ENNReal.ofReal_toReal_le).trans hx) [GOAL] case inr.intro.intro ι : Sort u_1 α✝ : Type u β : Type v inst✝² : PseudoEMetricSpace α✝ δ ε : ℝ s t : Set α✝ x✝ : α✝ α : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α E : Set α hδ : 0 ≤ δ hne : Set.Nonempty E x : α hx : x ∈ cthickening δ (closure E) y : α yE : y ∈ closure E hy : dist x y ≤ δ ⊢ x ∈ ⋃ (x : α) (_ : x ∈ closure E), closedBall x δ [PROOFSTEP] exact mem_biUnion yE hy [GOAL] ι : Sort u_1 α✝ : Type u β : Type v inst✝² : PseudoEMetricSpace α✝ δ ε : ℝ s t : Set α✝ x : α✝ α : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α E : Set α hE : IsClosed E hδ : 0 ≤ δ ⊢ cthickening δ E = ⋃ (x : α) (_ : x ∈ E), closedBall x δ [PROOFSTEP] rw [cthickening_eq_biUnion_closedBall E hδ, hE.closure_eq] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α ⊢ infEdist x s ≤ infEdist x (cthickening δ s) + ENNReal.ofReal δ [PROOFSTEP] refine' le_of_forall_lt' fun r h => _ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α r : ℝ≥0∞ h : infEdist x (cthickening δ s) + ENNReal.ofReal δ < r ⊢ infEdist x s < r [PROOFSTEP] simp_rw [← lt_tsub_iff_right, infEdist_lt_iff, mem_cthickening_iff] at h [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α r : ℝ≥0∞ h : ∃ y, infEdist y s ≤ ENNReal.ofReal δ ∧ edist x y < r - ENNReal.ofReal δ ⊢ infEdist x s < r [PROOFSTEP] obtain ⟨y, hy, hxy⟩ := h [GOAL] case intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α r : ℝ≥0∞ y : α hy : infEdist y s ≤ ENNReal.ofReal δ hxy : edist x y < r - ENNReal.ofReal δ ⊢ infEdist x s < r [PROOFSTEP] exact infEdist_le_edist_add_infEdist.trans_lt ((ENNReal.add_lt_add_of_lt_of_le (hy.trans_lt ENNReal.ofReal_lt_top).ne hxy hy).trans_eq (tsub_add_cancel_of_le <| le_self_add.trans (lt_tsub_iff_left.1 hxy).le)) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x : α ε δ : ℝ s : Set α ⊢ thickening ε (thickening δ s) ⊆ thickening (ε + δ) s [PROOFSTEP] obtain hε | hε := le_total ε 0 [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x : α ε δ : ℝ s : Set α hε : ε ≤ 0 ⊢ thickening ε (thickening δ s) ⊆ thickening (ε + δ) s [PROOFSTEP] simp only [thickening_of_nonpos hε, empty_subset] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x : α ε δ : ℝ s : Set α hε : 0 ≤ ε ⊢ thickening ε (thickening δ s) ⊆ thickening (ε + δ) s [PROOFSTEP] obtain hδ | hδ := le_total δ 0 [GOAL] case inr.inl ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x : α ε δ : ℝ s : Set α hε : 0 ≤ ε hδ : δ ≤ 0 ⊢ thickening ε (thickening δ s) ⊆ thickening (ε + δ) s [PROOFSTEP] simp only [thickening_of_nonpos hδ, thickening_empty, empty_subset] [GOAL] case inr.inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x : α ε δ : ℝ s : Set α hε : 0 ≤ ε hδ : 0 ≤ δ ⊢ thickening ε (thickening δ s) ⊆ thickening (ε + δ) s [PROOFSTEP] intro x [GOAL] case inr.inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x✝ : α ε δ : ℝ s : Set α hε : 0 ≤ ε hδ : 0 ≤ δ x : α ⊢ x ∈ thickening ε (thickening δ s) → x ∈ thickening (ε + δ) s [PROOFSTEP] simp_rw [mem_thickening_iff_exists_edist_lt, ENNReal.ofReal_add hε hδ] [GOAL] case inr.inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε✝ : ℝ s✝ t : Set α x✝ : α ε δ : ℝ s : Set α hε : 0 ≤ ε hδ : 0 ≤ δ x : α ⊢ (∃ z, (∃ z_1, z_1 ∈ s ∧ edist z z_1 < ENNReal.ofReal δ) ∧ edist x z < ENNReal.ofReal ε) → ∃ z, z ∈ s ∧ edist x z < ENNReal.ofReal ε + ENNReal.ofReal δ [PROOFSTEP] exact fun ⟨y, ⟨z, hz, hy⟩, hx⟩ => ⟨z, hz, (edist_triangle _ _ _).trans_lt <| ENNReal.add_lt_add hx hy⟩ [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε✝ : ℝ s✝ t : Set α x : α ε : ℝ hδ : 0 ≤ δ s : Set α ⊢ thickening ε (cthickening δ s) ⊆ thickening (ε + δ) s [PROOFSTEP] obtain hε | hε := le_total ε 0 [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε✝ : ℝ s✝ t : Set α x : α ε : ℝ hδ : 0 ≤ δ s : Set α hε : ε ≤ 0 ⊢ thickening ε (cthickening δ s) ⊆ thickening (ε + δ) s [PROOFSTEP] simp only [thickening_of_nonpos hε, empty_subset] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε✝ : ℝ s✝ t : Set α x : α ε : ℝ hδ : 0 ≤ δ s : Set α hε : 0 ≤ ε ⊢ thickening ε (cthickening δ s) ⊆ thickening (ε + δ) s [PROOFSTEP] intro x [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε✝ : ℝ s✝ t : Set α x✝ : α ε : ℝ hδ : 0 ≤ δ s : Set α hε : 0 ≤ ε x : α ⊢ x ∈ thickening ε (cthickening δ s) → x ∈ thickening (ε + δ) s [PROOFSTEP] simp_rw [mem_thickening_iff_exists_edist_lt, mem_cthickening_iff, ← infEdist_lt_iff, ENNReal.ofReal_add hε hδ] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε✝ : ℝ s✝ t : Set α x✝ : α ε : ℝ hδ : 0 ≤ δ s : Set α hε : 0 ≤ ε x : α ⊢ (∃ z, infEdist z s ≤ ENNReal.ofReal δ ∧ edist x z < ENNReal.ofReal ε) → infEdist x s < ENNReal.ofReal ε + ENNReal.ofReal δ [PROOFSTEP] rintro ⟨y, hy, hxy⟩ [GOAL] case inr.intro.intro ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε✝ : ℝ s✝ t : Set α x✝ : α ε : ℝ hδ : 0 ≤ δ s : Set α hε : 0 ≤ ε x y : α hy : infEdist y s ≤ ENNReal.ofReal δ hxy : edist x y < ENNReal.ofReal ε ⊢ infEdist x s < ENNReal.ofReal ε + ENNReal.ofReal δ [PROOFSTEP] exact infEdist_le_edist_add_infEdist.trans_lt (ENNReal.add_lt_add_of_lt_of_le (hy.trans_lt ENNReal.ofReal_lt_top).ne hxy hy) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α hε : 0 ≤ ε δ : ℝ s : Set α ⊢ cthickening ε (thickening δ s) ⊆ cthickening (ε + δ) s [PROOFSTEP] obtain hδ | hδ := le_total δ 0 [GOAL] case inl ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α hε : 0 ≤ ε δ : ℝ s : Set α hδ : δ ≤ 0 ⊢ cthickening ε (thickening δ s) ⊆ cthickening (ε + δ) s [PROOFSTEP] simp only [thickening_of_nonpos hδ, cthickening_empty, empty_subset] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x : α hε : 0 ≤ ε δ : ℝ s : Set α hδ : 0 ≤ δ ⊢ cthickening ε (thickening δ s) ⊆ cthickening (ε + δ) s [PROOFSTEP] intro x [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x✝ : α hε : 0 ≤ ε δ : ℝ s : Set α hδ : 0 ≤ δ x : α ⊢ x ∈ cthickening ε (thickening δ s) → x ∈ cthickening (ε + δ) s [PROOFSTEP] simp_rw [mem_cthickening_iff, ENNReal.ofReal_add hε hδ] [GOAL] case inr ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ✝ ε : ℝ s✝ t : Set α x✝ : α hε : 0 ≤ ε δ : ℝ s : Set α hδ : 0 ≤ δ x : α ⊢ infEdist x (thickening δ s) ≤ ENNReal.ofReal ε → infEdist x s ≤ ENNReal.ofReal ε + ENNReal.ofReal δ [PROOFSTEP] exact fun hx => infEdist_le_infEdist_thickening_add.trans (add_le_add_right hx _) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x : α hε : 0 ≤ ε hδ : 0 ≤ δ s : Set α ⊢ cthickening ε (cthickening δ s) ⊆ cthickening (ε + δ) s [PROOFSTEP] intro x [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x✝ : α hε : 0 ≤ ε hδ : 0 ≤ δ s : Set α x : α ⊢ x ∈ cthickening ε (cthickening δ s) → x ∈ cthickening (ε + δ) s [PROOFSTEP] simp_rw [mem_cthickening_iff, ENNReal.ofReal_add hε hδ] [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s✝ t : Set α x✝ : α hε : 0 ≤ ε hδ : 0 ≤ δ s : Set α x : α ⊢ infEdist x (cthickening δ s) ≤ ENNReal.ofReal ε → infEdist x s ≤ ENNReal.ofReal ε + ENNReal.ofReal δ [PROOFSTEP] exact fun hx => infEdist_le_infEdist_cthickening_add.trans (add_le_add_right hx _) [GOAL] ι : Sort u_1 α : Type u β : Type v inst✝ : PseudoEMetricSpace α δ ε : ℝ s t : Set α x : α A : Set α r₁ r₂ : ℝ≥0 hr : r₁ ≠ r₂ ⊢ ENNReal.ofReal ↑r₁ ≠ ENNReal.ofReal ↑r₂ [PROOFSTEP] simpa
{"mathlib_filename": "Mathlib.Topology.MetricSpace.HausdorffDistance", "llama_tokens": 74120}
[GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ p : Z ⊢ glueDist Φ Ψ ε (Sum.inl (Φ p)) (Sum.inr (Ψ p)) = ε [PROOFSTEP] have : ⨅ q, dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) = 0 := by have A : ∀ q, 0 ≤ dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) := fun _ => add_nonneg dist_nonneg dist_nonneg refine' le_antisymm _ (le_ciInf A) have : 0 = dist (Φ p) (Φ p) + dist (Ψ p) (Ψ p) := by simp rw [this] exact ciInf_le ⟨0, forall_range_iff.2 A⟩ p [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ p : Z ⊢ ⨅ (q : Z), dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) = 0 [PROOFSTEP] have A : ∀ q, 0 ≤ dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) := fun _ => add_nonneg dist_nonneg dist_nonneg [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ p : Z A : ∀ (q : Z), 0 ≤ dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) ⊢ ⨅ (q : Z), dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) = 0 [PROOFSTEP] refine' le_antisymm _ (le_ciInf A) [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ p : Z A : ∀ (q : Z), 0 ≤ dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) ⊢ ⨅ (q : Z), dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) ≤ 0 [PROOFSTEP] have : 0 = dist (Φ p) (Φ p) + dist (Ψ p) (Ψ p) := by simp [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ p : Z A : ∀ (q : Z), 0 ≤ dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) ⊢ 0 = dist (Φ p) (Φ p) + dist (Ψ p) (Ψ p) [PROOFSTEP] simp [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ p : Z A : ∀ (q : Z), 0 ≤ dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) this : 0 = dist (Φ p) (Φ p) + dist (Ψ p) (Ψ p) ⊢ ⨅ (q : Z), dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) ≤ 0 [PROOFSTEP] rw [this] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ p : Z A : ∀ (q : Z), 0 ≤ dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) this : 0 = dist (Φ p) (Φ p) + dist (Ψ p) (Ψ p) ⊢ ⨅ (q : Z), dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) ≤ dist (Φ p) (Φ p) + dist (Ψ p) (Ψ p) [PROOFSTEP] exact ciInf_le ⟨0, forall_range_iff.2 A⟩ p [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ p : Z this : ⨅ (q : Z), dist (Φ p) (Φ q) + dist (Ψ p) (Ψ q) = 0 ⊢ glueDist Φ Ψ ε (Sum.inl (Φ p)) (Sum.inr (Ψ p)) = ε [PROOFSTEP] simp only [glueDist, this, zero_add] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ Φ : Z → X Ψ : Z → Y ε : ℝ val✝¹ : X val✝ : Y ⊢ glueDist Ψ Φ ε (Sum.swap (Sum.inl val✝¹)) (Sum.swap (Sum.inr val✝)) = glueDist Φ Ψ ε (Sum.inl val✝¹) (Sum.inr val✝) [PROOFSTEP] simp only [glueDist, Sum.swap_inl, Sum.swap_inr, dist_comm, add_comm] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ Φ : Z → X Ψ : Z → Y ε : ℝ val✝¹ : Y val✝ : X ⊢ glueDist Ψ Φ ε (Sum.swap (Sum.inr val✝¹)) (Sum.swap (Sum.inl val✝)) = glueDist Φ Ψ ε (Sum.inr val✝¹) (Sum.inl val✝) [PROOFSTEP] simp only [glueDist, Sum.swap_inl, Sum.swap_inr, dist_comm, add_comm] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ Φ : Z → X Ψ : Z → Y ε : ℝ x : Y y : X ⊢ ε ≤ glueDist Φ Ψ ε (Sum.inr x) (Sum.inl y) [PROOFSTEP] rw [glueDist_comm] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ Φ : Z → X Ψ : Z → Y ε : ℝ x : Y y : X ⊢ ε ≤ glueDist Φ Ψ ε (Sum.inl y) (Sum.inr x) [PROOFSTEP] apply le_glueDist_inl_inr [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ x : X y z : Y ⊢ glueDist Φ Ψ ε (Sum.inl x) (Sum.inr z) ≤ glueDist Φ Ψ ε (Sum.inl x) (Sum.inr y) + glueDist Φ Ψ ε (Sum.inr y) (Sum.inr z) [PROOFSTEP] simp only [glueDist] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ x : X y z : Y ⊢ (⨅ (p : Z), dist x (Φ p) + dist z (Ψ p)) + ε ≤ (⨅ (p : Z), dist x (Φ p) + dist y (Ψ p)) + ε + dist y z [PROOFSTEP] rw [add_right_comm, add_le_add_iff_right] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ x : X y z : Y ⊢ ⨅ (p : Z), dist x (Φ p) + dist z (Ψ p) ≤ (⨅ (p : Z), dist x (Φ p) + dist y (Ψ p)) + dist y z [PROOFSTEP] refine le_ciInf_add fun p => ciInf_le_of_le ⟨0, ?_⟩ p ?_ [GOAL] case refine_1 X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ x : X y z : Y p : Z ⊢ 0 ∈ lowerBounds (range fun p => dist x (Φ p) + dist z (Ψ p)) [PROOFSTEP] exact forall_range_iff.2 fun _ => add_nonneg dist_nonneg dist_nonneg [GOAL] case refine_2 X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ x : X y z : Y p : Z ⊢ dist x (Φ p) + dist z (Ψ p) ≤ dist x (Φ p) + dist y (Ψ p) + dist y z [PROOFSTEP] linarith [dist_triangle_left z (Ψ p) y] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : X y : Y z : X ⊢ glueDist Φ Ψ ε (Sum.inl x) (Sum.inl z) ≤ glueDist Φ Ψ ε (Sum.inl x) (Sum.inr y) + glueDist Φ Ψ ε (Sum.inr y) (Sum.inl z) [PROOFSTEP] simp_rw [glueDist, add_add_add_comm _ ε, add_assoc] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : X y : Y z : X ⊢ dist x z ≤ (⨅ (p : Z), dist x (Φ p) + dist y (Ψ p)) + ((⨅ (p : Z), dist z (Φ p) + dist y (Ψ p)) + (ε + ε)) [PROOFSTEP] refine le_ciInf_add fun p => ?_ [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : X y : Y z : X p : Z ⊢ dist x z ≤ dist x (Φ p) + dist y (Ψ p) + ((⨅ (p : Z), dist z (Φ p) + dist y (Ψ p)) + (ε + ε)) [PROOFSTEP] rw [add_left_comm, add_assoc, ← two_mul] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : X y : Y z : X p : Z ⊢ dist x z ≤ (⨅ (p : Z), dist z (Φ p) + dist y (Ψ p)) + (dist x (Φ p) + (dist y (Ψ p) + 2 * ε)) [PROOFSTEP] refine le_ciInf_add fun q => ?_ [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : X y : Y z : X p q : Z ⊢ dist x z ≤ dist z (Φ q) + dist y (Ψ q) + (dist x (Φ p) + (dist y (Ψ p) + 2 * ε)) [PROOFSTEP] rw [dist_comm z] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : X y : Y z : X p q : Z ⊢ dist x z ≤ dist (Φ q) z + dist y (Ψ q) + (dist x (Φ p) + (dist y (Ψ p) + 2 * ε)) [PROOFSTEP] linarith [dist_triangle4 x (Φ p) (Φ q) z, dist_triangle_left (Ψ p) (Ψ q) y, (abs_le.1 (H p q)).2] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : Y y z : X ⊢ glueDist Φ Ψ ε (Sum.inr x) (Sum.inl z) ≤ glueDist Φ Ψ ε (Sum.inr x) (Sum.inl y) + glueDist Φ Ψ ε (Sum.inl y) (Sum.inl z) [PROOFSTEP] simp only [← glueDist_swap Φ] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : Y y z : X ⊢ glueDist Ψ Φ ε (Sum.swap (Sum.inr x)) (Sum.swap (Sum.inl z)) ≤ glueDist Ψ Φ ε (Sum.swap (Sum.inr x)) (Sum.swap (Sum.inl y)) + glueDist Ψ Φ ε (Sum.swap (Sum.inl y)) (Sum.swap (Sum.inl z)) [PROOFSTEP] apply glueDist_triangle_inl_inr_inr [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x y : Y z : X ⊢ glueDist Φ Ψ ε (Sum.inr x) (Sum.inl z) ≤ glueDist Φ Ψ ε (Sum.inr x) (Sum.inr y) + glueDist Φ Ψ ε (Sum.inr y) (Sum.inl z) [PROOFSTEP] simpa only [glueDist_comm, add_comm] using glueDist_triangle_inl_inr_inr _ _ _ z y x [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x y : X z : Y ⊢ glueDist Φ Ψ ε (Sum.inl x) (Sum.inr z) ≤ glueDist Φ Ψ ε (Sum.inl x) (Sum.inl y) + glueDist Φ Ψ ε (Sum.inl y) (Sum.inr z) [PROOFSTEP] simpa only [← glueDist_swap Φ, glueDist_comm, add_comm, Sum.swap_inl, Sum.swap_inr] using glueDist_triangle_inl_inr_inr Ψ Φ ε z y x [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : Y y : X z : Y ⊢ glueDist Φ Ψ ε (Sum.inr x) (Sum.inr z) ≤ glueDist Φ Ψ ε (Sum.inr x) (Sum.inl y) + glueDist Φ Ψ ε (Sum.inl y) (Sum.inr z) [PROOFSTEP] simp only [← glueDist_swap Φ] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : Y y : X z : Y ⊢ glueDist Ψ Φ ε (Sum.swap (Sum.inr x)) (Sum.swap (Sum.inr z)) ≤ glueDist Ψ Φ ε (Sum.swap (Sum.inr x)) (Sum.swap (Sum.inl y)) + glueDist Ψ Φ ε (Sum.swap (Sum.inl y)) (Sum.swap (Sum.inr z)) [PROOFSTEP] apply glueDist_triangle_inl_inr_inl [GOAL] case H X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x : Y y : X z : Y ⊢ ∀ (p q : Z), |dist (Ψ p) (Ψ q) - dist (Φ p) (Φ q)| ≤ 2 * ε [PROOFSTEP] simpa only [abs_sub_comm] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ ε0 : 0 < ε x y : X h : glueDist Φ Ψ ε (Sum.inl x) (Sum.inl y) = 0 ⊢ Sum.inl x = Sum.inl y [PROOFSTEP] rw [eq_of_dist_eq_zero h] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ ε0 : 0 < ε x : X y : Y h : glueDist Φ Ψ ε (Sum.inl x) (Sum.inr y) = 0 ⊢ Sum.inl x = Sum.inr y [PROOFSTEP] exfalso [GOAL] case h X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ ε0 : 0 < ε x : X y : Y h : glueDist Φ Ψ ε (Sum.inl x) (Sum.inr y) = 0 ⊢ False [PROOFSTEP] linarith [le_glueDist_inl_inr Φ Ψ ε x y] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ ε0 : 0 < ε x : Y y : X h : glueDist Φ Ψ ε (Sum.inr x) (Sum.inl y) = 0 ⊢ Sum.inr x = Sum.inl y [PROOFSTEP] exfalso [GOAL] case h X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ ε0 : 0 < ε x : Y y : X h : glueDist Φ Ψ ε (Sum.inr x) (Sum.inl y) = 0 ⊢ False [PROOFSTEP] linarith [le_glueDist_inr_inl Φ Ψ ε x y] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ ε0 : 0 < ε x y : Y h : glueDist Φ Ψ ε (Sum.inr x) (Sum.inr y) = 0 ⊢ Sum.inr x = Sum.inr y [PROOFSTEP] rw [eq_of_dist_eq_zero h] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ s ∈ 𝓤 (X ⊕ Y) ↔ ∃ δ, δ > 0 ∧ ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε a b < δ → (a, b) ∈ s [PROOFSTEP] simp only [Sum.uniformity, Filter.mem_sup, Filter.mem_map, mem_uniformity_dist, mem_preimage] [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ ((∃ ε, ε > 0 ∧ ∀ {a b : X}, dist a b < ε → (Sum.inl a, Sum.inl b) ∈ s) ∧ ∃ ε, ε > 0 ∧ ∀ {a b : Y}, dist a b < ε → (Sum.inr a, Sum.inr b) ∈ s) ↔ ∃ δ, δ > 0 ∧ ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε a b < δ → (a, b) ∈ s [PROOFSTEP] constructor [GOAL] case mp X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ ((∃ ε, ε > 0 ∧ ∀ {a b : X}, dist a b < ε → (Sum.inl a, Sum.inl b) ∈ s) ∧ ∃ ε, ε > 0 ∧ ∀ {a b : Y}, dist a b < ε → (Sum.inr a, Sum.inr b) ∈ s) → ∃ δ, δ > 0 ∧ ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε a b < δ → (a, b) ∈ s [PROOFSTEP] rintro ⟨⟨δX, δX0, hX⟩, δY, δY0, hY⟩ [GOAL] case mp.intro.intro.intro.intro.intro X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s ⊢ ∃ δ, δ > 0 ∧ ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε a b < δ → (a, b) ∈ s [PROOFSTEP] refine ⟨min (min δX δY) ε, lt_min (lt_min δX0 δY0) hε, ?_⟩ [GOAL] case mp.intro.intro.intro.intro.intro X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s ⊢ ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε a b < min (min δX δY) ε → (a, b) ∈ s [PROOFSTEP] rintro (a | a) (b | b) h [GOAL] case mp.intro.intro.intro.intro.intro.inl.inl X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s a b : X h : glueDist Φ Ψ ε (Sum.inl a) (Sum.inl b) < min (min δX δY) ε ⊢ (Sum.inl a, Sum.inl b) ∈ s [PROOFSTEP] simp only [lt_min_iff] at h [GOAL] case mp.intro.intro.intro.intro.intro.inl.inr X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s a : X b : Y h : glueDist Φ Ψ ε (Sum.inl a) (Sum.inr b) < min (min δX δY) ε ⊢ (Sum.inl a, Sum.inr b) ∈ s [PROOFSTEP] simp only [lt_min_iff] at h [GOAL] case mp.intro.intro.intro.intro.intro.inr.inl X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s a : Y b : X h : glueDist Φ Ψ ε (Sum.inr a) (Sum.inl b) < min (min δX δY) ε ⊢ (Sum.inr a, Sum.inl b) ∈ s [PROOFSTEP] simp only [lt_min_iff] at h [GOAL] case mp.intro.intro.intro.intro.intro.inr.inr X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s a b : Y h : glueDist Φ Ψ ε (Sum.inr a) (Sum.inr b) < min (min δX δY) ε ⊢ (Sum.inr a, Sum.inr b) ∈ s [PROOFSTEP] simp only [lt_min_iff] at h [GOAL] case mp.intro.intro.intro.intro.intro.inl.inl X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s a b : X h : (glueDist Φ Ψ ε (Sum.inl a) (Sum.inl b) < δX ∧ glueDist Φ Ψ ε (Sum.inl a) (Sum.inl b) < δY) ∧ glueDist Φ Ψ ε (Sum.inl a) (Sum.inl b) < ε ⊢ (Sum.inl a, Sum.inl b) ∈ s [PROOFSTEP] exact hX h.1.1 [GOAL] case mp.intro.intro.intro.intro.intro.inl.inr X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s a : X b : Y h : (glueDist Φ Ψ ε (Sum.inl a) (Sum.inr b) < δX ∧ glueDist Φ Ψ ε (Sum.inl a) (Sum.inr b) < δY) ∧ glueDist Φ Ψ ε (Sum.inl a) (Sum.inr b) < ε ⊢ (Sum.inl a, Sum.inr b) ∈ s [PROOFSTEP] exact absurd h.2 (le_glueDist_inl_inr _ _ _ _ _).not_lt [GOAL] case mp.intro.intro.intro.intro.intro.inr.inl X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s a : Y b : X h : (glueDist Φ Ψ ε (Sum.inr a) (Sum.inl b) < δX ∧ glueDist Φ Ψ ε (Sum.inr a) (Sum.inl b) < δY) ∧ glueDist Φ Ψ ε (Sum.inr a) (Sum.inl b) < ε ⊢ (Sum.inr a, Sum.inl b) ∈ s [PROOFSTEP] exact absurd h.2 (le_glueDist_inr_inl _ _ _ _ _).not_lt [GOAL] case mp.intro.intro.intro.intro.intro.inr.inr X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) δX : ℝ δX0 : δX > 0 hX : ∀ {a b : X}, dist a b < δX → (Sum.inl a, Sum.inl b) ∈ s δY : ℝ δY0 : δY > 0 hY : ∀ {a b : Y}, dist a b < δY → (Sum.inr a, Sum.inr b) ∈ s a b : Y h : (glueDist Φ Ψ ε (Sum.inr a) (Sum.inr b) < δX ∧ glueDist Φ Ψ ε (Sum.inr a) (Sum.inr b) < δY) ∧ glueDist Φ Ψ ε (Sum.inr a) (Sum.inr b) < ε ⊢ (Sum.inr a, Sum.inr b) ∈ s [PROOFSTEP] exact hY h.1.2 [GOAL] case mpr X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ inst✝ : Nonempty Z hε : 0 < ε s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ (∃ δ, δ > 0 ∧ ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε a b < δ → (a, b) ∈ s) → (∃ ε, ε > 0 ∧ ∀ {a b : X}, dist a b < ε → (Sum.inl a, Sum.inl b) ∈ s) ∧ ∃ ε, ε > 0 ∧ ∀ {a b : Y}, dist a b < ε → (Sum.inr a, Sum.inr b) ∈ s [PROOFSTEP] rintro ⟨ε, ε0, H⟩ [GOAL] case mpr.intro.intro X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z hε : 0 < ε✝ s : Set ((X ⊕ Y) × (X ⊕ Y)) ε : ℝ ε0 : ε > 0 H : ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε✝ a b < ε → (a, b) ∈ s ⊢ (∃ ε, ε > 0 ∧ ∀ {a b : X}, dist a b < ε → (Sum.inl a, Sum.inl b) ∈ s) ∧ ∃ ε, ε > 0 ∧ ∀ {a b : Y}, dist a b < ε → (Sum.inr a, Sum.inr b) ∈ s [PROOFSTEP] constructor [GOAL] case mpr.intro.intro.left X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z hε : 0 < ε✝ s : Set ((X ⊕ Y) × (X ⊕ Y)) ε : ℝ ε0 : ε > 0 H : ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε✝ a b < ε → (a, b) ∈ s ⊢ ∃ ε, ε > 0 ∧ ∀ {a b : X}, dist a b < ε → (Sum.inl a, Sum.inl b) ∈ s [PROOFSTEP] exact ⟨ε, ε0, fun h => H _ _ h⟩ [GOAL] case mpr.intro.intro.right X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z hε : 0 < ε✝ s : Set ((X ⊕ Y) × (X ⊕ Y)) ε : ℝ ε0 : ε > 0 H : ∀ (a b : X ⊕ Y), glueDist Φ Ψ ε✝ a b < ε → (a, b) ∈ s ⊢ ∃ ε, ε > 0 ∧ ∀ {a b : Y}, dist a b < ε → (Sum.inr a, Sum.inr b) ∈ s [PROOFSTEP] exact ⟨ε, ε0, fun h => H _ _ h⟩ [GOAL] X : Type u Y : Type v Z : Type w inst✝² : MetricSpace X inst✝¹ : MetricSpace Y Φ✝ : Z → X Ψ✝ : Z → Y ε✝ : ℝ inst✝ : Nonempty Z Φ : Z → X Ψ : Z → Y ε : ℝ ε0 : 0 < ε H : ∀ (p q : Z), |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * ε x✝¹ x✝ : X ⊕ Y ⊢ (fun x y => ↑{ val := glueDist Φ Ψ ε x y, property := (_ : 0 ≤ glueDist Φ Ψ ε x y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p q : X ⊕ Y x : X y : Y ⊢ Sum.dist p q = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 p q [PROOFSTEP] cases p [GOAL] case inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y q : X ⊕ Y x : X y : Y val✝ : X ⊢ Sum.dist (Sum.inl val✝) q = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl val✝) q [PROOFSTEP] cases q [GOAL] case inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y q : X ⊕ Y x : X y val✝ : Y ⊢ Sum.dist (Sum.inr val✝) q = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr val✝) q [PROOFSTEP] cases q [GOAL] case inl.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y : Y val✝¹ val✝ : X ⊢ Sum.dist (Sum.inl val✝¹) (Sum.inl val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl val✝¹) (Sum.inl val✝) [PROOFSTEP] first | rfl | simp [Sum.dist, glueDist, dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inl.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y : Y val✝¹ val✝ : X ⊢ Sum.dist (Sum.inl val✝¹) (Sum.inl val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl val✝¹) (Sum.inl val✝) [PROOFSTEP] rfl [GOAL] case inl.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y : Y val✝¹ : X val✝ : Y ⊢ Sum.dist (Sum.inl val✝¹) (Sum.inr val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl val✝¹) (Sum.inr val✝) [PROOFSTEP] first | rfl | simp [Sum.dist, glueDist, dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inl.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y : Y val✝¹ : X val✝ : Y ⊢ Sum.dist (Sum.inl val✝¹) (Sum.inr val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl val✝¹) (Sum.inr val✝) [PROOFSTEP] rfl [GOAL] case inl.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y : Y val✝¹ : X val✝ : Y ⊢ Sum.dist (Sum.inl val✝¹) (Sum.inr val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl val✝¹) (Sum.inr val✝) [PROOFSTEP] simp [Sum.dist, glueDist, dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inr.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y val✝¹ : Y val✝ : X ⊢ Sum.dist (Sum.inr val✝¹) (Sum.inl val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr val✝¹) (Sum.inl val✝) [PROOFSTEP] first | rfl | simp [Sum.dist, glueDist, dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inr.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y val✝¹ : Y val✝ : X ⊢ Sum.dist (Sum.inr val✝¹) (Sum.inl val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr val✝¹) (Sum.inl val✝) [PROOFSTEP] rfl [GOAL] case inr.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y val✝¹ : Y val✝ : X ⊢ Sum.dist (Sum.inr val✝¹) (Sum.inl val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr val✝¹) (Sum.inl val✝) [PROOFSTEP] simp [Sum.dist, glueDist, dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inr.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y val✝¹ val✝ : Y ⊢ Sum.dist (Sum.inr val✝¹) (Sum.inr val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr val✝¹) (Sum.inr val✝) [PROOFSTEP] first | rfl | simp [Sum.dist, glueDist, dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inr.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y val✝¹ val✝ : Y ⊢ Sum.dist (Sum.inr val✝¹) (Sum.inr val✝) = glueDist (fun x_1 => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr val✝¹) (Sum.inr val✝) [PROOFSTEP] rfl [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x y : X ⊕ Y ⊢ Sum.dist x y = Sum.dist y x [PROOFSTEP] cases x [GOAL] case inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y y : X ⊕ Y val✝ : X ⊢ Sum.dist (Sum.inl val✝) y = Sum.dist y (Sum.inl val✝) [PROOFSTEP] cases y [GOAL] case inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y y : X ⊕ Y val✝ : Y ⊢ Sum.dist (Sum.inr val✝) y = Sum.dist y (Sum.inr val✝) [PROOFSTEP] cases y [GOAL] case inl.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y val✝¹ val✝ : X ⊢ Sum.dist (Sum.inl val✝¹) (Sum.inl val✝) = Sum.dist (Sum.inl val✝) (Sum.inl val✝¹) [PROOFSTEP] simp [Sum.dist, _root_.dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inl.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y val✝¹ : X val✝ : Y ⊢ Sum.dist (Sum.inl val✝¹) (Sum.inr val✝) = Sum.dist (Sum.inr val✝) (Sum.inl val✝¹) [PROOFSTEP] simp [Sum.dist, _root_.dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inr.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y val✝¹ : Y val✝ : X ⊢ Sum.dist (Sum.inr val✝¹) (Sum.inl val✝) = Sum.dist (Sum.inl val✝) (Sum.inr val✝¹) [PROOFSTEP] simp [Sum.dist, _root_.dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] case inr.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y val✝¹ val✝ : Y ⊢ Sum.dist (Sum.inr val✝¹) (Sum.inr val✝) = Sum.dist (Sum.inr val✝) (Sum.inr val✝¹) [PROOFSTEP] simp [Sum.dist, _root_.dist_comm, add_comm, add_left_comm, add_assoc] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y : Y ⊢ 1 ≤ Sum.dist (Sum.inr y) (Sum.inl x) [PROOFSTEP] rw [Sum.dist_comm] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X y : Y ⊢ 1 ≤ Sum.dist (Sum.inl x) (Sum.inr y) [PROOFSTEP] exact Sum.one_le_dist_inl_inr [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ s ∈ 𝓤 (X ⊕ Y) ↔ ∃ ε, ε > 0 ∧ ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s [PROOFSTEP] constructor [GOAL] case mp X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ s ∈ 𝓤 (X ⊕ Y) → ∃ ε, ε > 0 ∧ ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s [PROOFSTEP] rintro ⟨hsX, hsY⟩ [GOAL] case mp.intro X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) hsX : s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets hsY : s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets ⊢ ∃ ε, ε > 0 ∧ ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s [PROOFSTEP] rcases mem_uniformity_dist.1 hsX with ⟨εX, εX0, hX⟩ [GOAL] case mp.intro.intro.intro X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) hsX : s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets hsY : s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets εX : ℝ εX0 : εX > 0 hX : ∀ {a b : X}, dist a b < εX → (a, b) ∈ (fun p => (Sum.inl p.fst, Sum.inl p.snd)) ⁻¹' s ⊢ ∃ ε, ε > 0 ∧ ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s [PROOFSTEP] rcases mem_uniformity_dist.1 hsY with ⟨εY, εY0, hY⟩ [GOAL] case mp.intro.intro.intro.intro.intro X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) hsX : s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets hsY : s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets εX : ℝ εX0 : εX > 0 hX : ∀ {a b : X}, dist a b < εX → (a, b) ∈ (fun p => (Sum.inl p.fst, Sum.inl p.snd)) ⁻¹' s εY : ℝ εY0 : εY > 0 hY : ∀ {a b : Y}, dist a b < εY → (a, b) ∈ (fun p => (Sum.inr p.fst, Sum.inr p.snd)) ⁻¹' s ⊢ ∃ ε, ε > 0 ∧ ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s [PROOFSTEP] refine' ⟨min (min εX εY) 1, lt_min (lt_min εX0 εY0) zero_lt_one, _⟩ [GOAL] case mp.intro.intro.intro.intro.intro X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) hsX : s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets hsY : s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets εX : ℝ εX0 : εX > 0 hX : ∀ {a b : X}, dist a b < εX → (a, b) ∈ (fun p => (Sum.inl p.fst, Sum.inl p.snd)) ⁻¹' s εY : ℝ εY0 : εY > 0 hY : ∀ {a b : Y}, dist a b < εY → (a, b) ∈ (fun p => (Sum.inr p.fst, Sum.inr p.snd)) ⁻¹' s ⊢ ∀ (a b : X ⊕ Y), Sum.dist a b < min (min εX εY) 1 → (a, b) ∈ s [PROOFSTEP] rintro (a | a) (b | b) h [GOAL] case mp.intro.intro.intro.intro.intro.inl.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) hsX : s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets hsY : s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets εX : ℝ εX0 : εX > 0 hX : ∀ {a b : X}, dist a b < εX → (a, b) ∈ (fun p => (Sum.inl p.fst, Sum.inl p.snd)) ⁻¹' s εY : ℝ εY0 : εY > 0 hY : ∀ {a b : Y}, dist a b < εY → (a, b) ∈ (fun p => (Sum.inr p.fst, Sum.inr p.snd)) ⁻¹' s a b : X h : Sum.dist (Sum.inl a) (Sum.inl b) < min (min εX εY) 1 ⊢ (Sum.inl a, Sum.inl b) ∈ s [PROOFSTEP] exact hX (lt_of_lt_of_le h (le_trans (min_le_left _ _) (min_le_left _ _))) [GOAL] case mp.intro.intro.intro.intro.intro.inl.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) hsX : s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets hsY : s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets εX : ℝ εX0 : εX > 0 hX : ∀ {a b : X}, dist a b < εX → (a, b) ∈ (fun p => (Sum.inl p.fst, Sum.inl p.snd)) ⁻¹' s εY : ℝ εY0 : εY > 0 hY : ∀ {a b : Y}, dist a b < εY → (a, b) ∈ (fun p => (Sum.inr p.fst, Sum.inr p.snd)) ⁻¹' s a : X b : Y h : Sum.dist (Sum.inl a) (Sum.inr b) < min (min εX εY) 1 ⊢ (Sum.inl a, Sum.inr b) ∈ s [PROOFSTEP] cases not_le_of_lt (lt_of_lt_of_le h (min_le_right _ _)) Sum.one_le_dist_inl_inr [GOAL] case mp.intro.intro.intro.intro.intro.inr.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) hsX : s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets hsY : s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets εX : ℝ εX0 : εX > 0 hX : ∀ {a b : X}, dist a b < εX → (a, b) ∈ (fun p => (Sum.inl p.fst, Sum.inl p.snd)) ⁻¹' s εY : ℝ εY0 : εY > 0 hY : ∀ {a b : Y}, dist a b < εY → (a, b) ∈ (fun p => (Sum.inr p.fst, Sum.inr p.snd)) ⁻¹' s a : Y b : X h : Sum.dist (Sum.inr a) (Sum.inl b) < min (min εX εY) 1 ⊢ (Sum.inr a, Sum.inl b) ∈ s [PROOFSTEP] cases not_le_of_lt (lt_of_lt_of_le h (min_le_right _ _)) Sum.one_le_dist_inr_inl [GOAL] case mp.intro.intro.intro.intro.intro.inr.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) hsX : s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets hsY : s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets εX : ℝ εX0 : εX > 0 hX : ∀ {a b : X}, dist a b < εX → (a, b) ∈ (fun p => (Sum.inl p.fst, Sum.inl p.snd)) ⁻¹' s εY : ℝ εY0 : εY > 0 hY : ∀ {a b : Y}, dist a b < εY → (a, b) ∈ (fun p => (Sum.inr p.fst, Sum.inr p.snd)) ⁻¹' s a b : Y h : Sum.dist (Sum.inr a) (Sum.inr b) < min (min εX εY) 1 ⊢ (Sum.inr a, Sum.inr b) ∈ s [PROOFSTEP] exact hY (lt_of_lt_of_le h (le_trans (min_le_left _ _) (min_le_right _ _))) [GOAL] case mpr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) ⊢ (∃ ε, ε > 0 ∧ ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s) → s ∈ 𝓤 (X ⊕ Y) [PROOFSTEP] rintro ⟨ε, ε0, H⟩ [GOAL] case mpr.intro.intro X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) ε : ℝ ε0 : ε > 0 H : ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s ⊢ s ∈ 𝓤 (X ⊕ Y) [PROOFSTEP] constructor [GOAL] case mpr.intro.intro.left X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) ε : ℝ ε0 : ε > 0 H : ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s ⊢ s ∈ (Filter.map (fun p => (Sum.inl p.fst, Sum.inl p.snd)) (𝓤 X)).sets [PROOFSTEP] rw [Filter.mem_sets, Filter.mem_map, mem_uniformity_dist] [GOAL] case mpr.intro.intro.right X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) ε : ℝ ε0 : ε > 0 H : ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s ⊢ s ∈ (Filter.map (fun p => (Sum.inr p.fst, Sum.inr p.snd)) (𝓤 Y)).sets [PROOFSTEP] rw [Filter.mem_sets, Filter.mem_map, mem_uniformity_dist] [GOAL] case mpr.intro.intro.left X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) ε : ℝ ε0 : ε > 0 H : ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s ⊢ ∃ ε, ε > 0 ∧ ∀ {a b : X}, dist a b < ε → (a, b) ∈ (fun p => (Sum.inl p.fst, Sum.inl p.snd)) ⁻¹' s [PROOFSTEP] exact ⟨ε, ε0, fun h => H _ _ h⟩ [GOAL] case mpr.intro.intro.right X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y s : Set ((X ⊕ Y) × (X ⊕ Y)) ε : ℝ ε0 : ε > 0 H : ∀ (a b : X ⊕ Y), Sum.dist a b < ε → (a, b) ∈ s ⊢ ∃ ε, ε > 0 ∧ ∀ {a b : Y}, dist a b < ε → (a, b) ∈ (fun p => (Sum.inr p.fst, Sum.inr p.snd)) ⁻¹' s [PROOFSTEP] exact ⟨ε, ε0, fun h => H _ _ h⟩ [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x : X ⊕ Y ⊢ dist x x = 0 [PROOFSTEP] cases x [GOAL] case inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y val✝ : X ⊢ dist (Sum.inl val✝) (Sum.inl val✝) = 0 [PROOFSTEP] simp only [Sum.dist, dist_self] [GOAL] case inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y val✝ : Y ⊢ dist (Sum.inr val✝) (Sum.inr val✝) = 0 [PROOFSTEP] simp only [Sum.dist, dist_self] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p : X q : Y x✝ : X ⊕ Y ⊢ dist (Sum.inl p) x✝ ≤ dist (Sum.inl p) (Sum.inr q) + dist (Sum.inr q) x✝ [PROOFSTEP] simp only [Sum.dist_eq_glueDist p q] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p : X q : Y x✝ : X ⊕ Y ⊢ glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl p) x✝ ≤ glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl p) (Sum.inr q) + glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr q) x✝ [PROOFSTEP] exact glueDist_triangle _ _ _ (by norm_num) _ _ _ [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p : X q : Y x✝ : X ⊕ Y ⊢ Unit → Unit → |dist (Nonempty.some (_ : Nonempty X)) (Nonempty.some (_ : Nonempty X)) - dist (Nonempty.some (_ : Nonempty Y)) (Nonempty.some (_ : Nonempty Y))| ≤ 2 * 1 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x✝ : X ⊕ Y q : X r : Y ⊢ dist x✝ (Sum.inr r) ≤ dist x✝ (Sum.inl q) + dist (Sum.inl q) (Sum.inr r) [PROOFSTEP] simp only [Sum.dist_eq_glueDist q r] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x✝ : X ⊕ Y q : X r : Y ⊢ glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 x✝ (Sum.inr r) ≤ glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 x✝ (Sum.inl q) + glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inl q) (Sum.inr r) [PROOFSTEP] exact glueDist_triangle _ _ _ (by norm_num) _ _ _ [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x✝ : X ⊕ Y q : X r : Y ⊢ Unit → Unit → |dist (Nonempty.some (_ : Nonempty X)) (Nonempty.some (_ : Nonempty X)) - dist (Nonempty.some (_ : Nonempty Y)) (Nonempty.some (_ : Nonempty Y))| ≤ 2 * 1 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p : Y x✝ : X ⊕ Y r : X ⊢ dist (Sum.inr p) (Sum.inl r) ≤ dist (Sum.inr p) x✝ + dist x✝ (Sum.inl r) [PROOFSTEP] simp only [Sum.dist_eq_glueDist r p] [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p : Y x✝ : X ⊕ Y r : X ⊢ glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr p) (Sum.inl r) ≤ glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 (Sum.inr p) x✝ + glueDist (fun x => Nonempty.some (_ : Nonempty X)) (fun x => Nonempty.some (_ : Nonempty Y)) 1 x✝ (Sum.inl r) [PROOFSTEP] exact glueDist_triangle _ _ _ (by norm_num) _ _ _ [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p : Y x✝ : X ⊕ Y r : X ⊢ Unit → Unit → |dist (Nonempty.some (_ : Nonempty X)) (Nonempty.some (_ : Nonempty X)) - dist (Nonempty.some (_ : Nonempty Y)) (Nonempty.some (_ : Nonempty Y))| ≤ 2 * 1 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y x✝¹ x✝ : X ⊕ Y ⊢ (fun x y => ↑{ val := Sum.dist x y, property := (_ : 0 ≤ Sum.dist x y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p q : X ⊕ Y h : dist p q = 0 ⊢ p = q [PROOFSTEP] cases' p with p p [GOAL] case inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y q : X ⊕ Y p : X h : dist (Sum.inl p) q = 0 ⊢ Sum.inl p = q [PROOFSTEP] cases' q with q q [GOAL] case inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y q : X ⊕ Y p : Y h : dist (Sum.inr p) q = 0 ⊢ Sum.inr p = q [PROOFSTEP] cases' q with q q [GOAL] case inl.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p q : X h : dist (Sum.inl p) (Sum.inl q) = 0 ⊢ Sum.inl p = Sum.inl q [PROOFSTEP] rw [eq_of_dist_eq_zero h] [GOAL] case inl.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p : X q : Y h : dist (Sum.inl p) (Sum.inr q) = 0 ⊢ Sum.inl p = Sum.inr q [PROOFSTEP] exact eq_of_glueDist_eq_zero _ _ _ one_pos _ _ ((Sum.dist_eq_glueDist p q).symm.trans h) [GOAL] case inr.inl X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p : Y q : X h : dist (Sum.inr p) (Sum.inl q) = 0 ⊢ Sum.inr p = Sum.inl q [PROOFSTEP] exact eq_of_glueDist_eq_zero _ _ _ one_pos _ _ ((Sum.dist_eq_glueDist q p).symm.trans h) [GOAL] case inr.inr X : Type u Y : Type v Z : Type w inst✝¹ : MetricSpace X inst✝ : MetricSpace Y p q : Y h : dist (Sum.inr p) (Sum.inr q) = 0 ⊢ Sum.inr p = Sum.inr q [PROOFSTEP] rw [eq_of_dist_eq_zero h] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j h : i = j ⊢ E j = E i [PROOFSTEP] rw [h] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x y : E i ⊢ dist { fst := i, snd := x } { fst := i, snd := y } = dist x y [PROOFSTEP] simp [Dist.dist, Sigma.dist] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i j : ι h : i ≠ j x : E i y : E j ⊢ 1 ≤ dist { fst := i, snd := x } { fst := j, snd := y } [PROOFSTEP] rw [Sigma.dist_ne h x y] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i j : ι h : i ≠ j x : E i y : E j ⊢ 1 ≤ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) y [PROOFSTEP] linarith [@dist_nonneg _ _ x (Nonempty.some ⟨x⟩), @dist_nonneg _ _ (Nonempty.some ⟨y⟩) y] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) x y : (i : ι) × E i h : dist x y < 1 ⊢ x.fst = y.fst [PROOFSTEP] cases x [GOAL] case mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) y : (i : ι) × E i fst✝ : ι snd✝ : E fst✝ h : dist { fst := fst✝, snd := snd✝ } y < 1 ⊢ { fst := fst✝, snd := snd✝ }.fst = y.fst [PROOFSTEP] cases y [GOAL] case mk.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) fst✝¹ : ι snd✝¹ : E fst✝¹ fst✝ : ι snd✝ : E fst✝ h : dist { fst := fst✝¹, snd := snd✝¹ } { fst := fst✝, snd := snd✝ } < 1 ⊢ { fst := fst✝¹, snd := snd✝¹ }.fst = { fst := fst✝, snd := snd✝ }.fst [PROOFSTEP] contrapose! h [GOAL] case mk.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) fst✝¹ : ι snd✝¹ : E fst✝¹ fst✝ : ι snd✝ : E fst✝ h : fst✝¹ ≠ fst✝ ⊢ 1 ≤ dist { fst := fst✝¹, snd := snd✝¹ } { fst := fst✝, snd := snd✝ } [PROOFSTEP] apply one_le_dist_of_ne h [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) x y z : (i : ι) × E i ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] rcases x with ⟨i, x⟩ [GOAL] case mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) y z : (i : ι) × E i i : ι x : E i ⊢ dist { fst := i, snd := x } z ≤ dist { fst := i, snd := x } y + dist y z [PROOFSTEP] rcases y with ⟨j, y⟩ [GOAL] case mk.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) z : (i : ι) × E i i : ι x : E i j : ι y : E j ⊢ dist { fst := i, snd := x } z ≤ dist { fst := i, snd := x } { fst := j, snd := y } + dist { fst := j, snd := y } z [PROOFSTEP] rcases z with ⟨k, z⟩ [GOAL] case mk.mk.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j k : ι z : E k ⊢ dist { fst := i, snd := x } { fst := k, snd := z } ≤ dist { fst := i, snd := x } { fst := j, snd := y } + dist { fst := j, snd := y } { fst := k, snd := z } [PROOFSTEP] rcases eq_or_ne i k with (rfl | hik) [GOAL] case mk.mk.mk.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j z : E i ⊢ dist { fst := i, snd := x } { fst := i, snd := z } ≤ dist { fst := i, snd := x } { fst := j, snd := y } + dist { fst := j, snd := y } { fst := i, snd := z } [PROOFSTEP] rcases eq_or_ne i j with (rfl | hij) [GOAL] case mk.mk.mk.inl.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x z y : E i ⊢ dist { fst := i, snd := x } { fst := i, snd := z } ≤ dist { fst := i, snd := x } { fst := i, snd := y } + dist { fst := i, snd := y } { fst := i, snd := z } [PROOFSTEP] simpa using dist_triangle x y z [GOAL] case mk.mk.mk.inl.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j z : E i hij : i ≠ j ⊢ dist { fst := i, snd := x } { fst := i, snd := z } ≤ dist { fst := i, snd := x } { fst := j, snd := y } + dist { fst := j, snd := y } { fst := i, snd := z } [PROOFSTEP] simp only [Sigma.dist_same, Sigma.dist_ne hij, Sigma.dist_ne hij.symm] [GOAL] case mk.mk.mk.inl.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j z : E i hij : i ≠ j ⊢ dist x z ≤ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) y + (dist y (Nonempty.some (_ : Nonempty (E j))) + 1 + dist (Nonempty.some (_ : Nonempty (E i))) z) [PROOFSTEP] calc dist x z ≤ dist x (Nonempty.some ⟨x⟩) + 0 + 0 + (0 + 0 + dist (Nonempty.some ⟨z⟩) z) := by simpa only [zero_add, add_zero] using dist_triangle _ _ _ _ ≤ _ := by apply_rules [add_le_add, le_rfl, dist_nonneg, zero_le_one] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j z : E i hij : i ≠ j ⊢ dist x z ≤ dist x (Nonempty.some (_ : Nonempty (E i))) + 0 + 0 + (0 + 0 + dist (Nonempty.some (_ : Nonempty (E i))) z) [PROOFSTEP] simpa only [zero_add, add_zero] using dist_triangle _ _ _ [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j z : E i hij : i ≠ j ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 0 + 0 + (0 + 0 + dist (Nonempty.some (_ : Nonempty (E i))) z) ≤ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) y + (dist y (Nonempty.some (_ : Nonempty (E j))) + 1 + dist (Nonempty.some (_ : Nonempty (E i))) z) [PROOFSTEP] apply_rules [add_le_add, le_rfl, dist_nonneg, zero_le_one] [GOAL] case mk.mk.mk.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j k : ι z : E k hik : i ≠ k ⊢ dist { fst := i, snd := x } { fst := k, snd := z } ≤ dist { fst := i, snd := x } { fst := j, snd := y } + dist { fst := j, snd := y } { fst := k, snd := z } [PROOFSTEP] rcases eq_or_ne i j with (rfl | hij) [GOAL] case mk.mk.mk.inr.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i k : ι z : E k hik : i ≠ k y : E i ⊢ dist { fst := i, snd := x } { fst := k, snd := z } ≤ dist { fst := i, snd := x } { fst := i, snd := y } + dist { fst := i, snd := y } { fst := k, snd := z } [PROOFSTEP] simp only [Sigma.dist_ne hik, Sigma.dist_same] [GOAL] case mk.mk.mk.inr.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i k : ι z : E k hik : i ≠ k y : E i ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z ≤ dist x y + (dist y (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z) [PROOFSTEP] calc dist x (Nonempty.some ⟨x⟩) + 1 + dist (Nonempty.some ⟨z⟩) z ≤ dist x y + dist y (Nonempty.some ⟨y⟩) + 1 + dist (Nonempty.some ⟨z⟩) z := by apply_rules [add_le_add, le_rfl, dist_triangle] _ = _ := by abel [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i k : ι z : E k hik : i ≠ k y : E i ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z ≤ dist x y + dist y (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z [PROOFSTEP] apply_rules [add_le_add, le_rfl, dist_triangle] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i k : ι z : E k hik : i ≠ k y : E i ⊢ dist x y + dist y (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z = dist x y + (dist y (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z) [PROOFSTEP] abel [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i k : ι z : E k hik : i ≠ k y : E i ⊢ dist x y + dist y (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z = dist x y + (dist y (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z) [PROOFSTEP] abel [GOAL] case mk.mk.mk.inr.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j k : ι z : E k hik : i ≠ k hij : i ≠ j ⊢ dist { fst := i, snd := x } { fst := k, snd := z } ≤ dist { fst := i, snd := x } { fst := j, snd := y } + dist { fst := j, snd := y } { fst := k, snd := z } [PROOFSTEP] rcases eq_or_ne j k with (rfl | hjk) [GOAL] case mk.mk.mk.inr.inr.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j z : E j hik : i ≠ j ⊢ dist { fst := i, snd := x } { fst := j, snd := z } ≤ dist { fst := i, snd := x } { fst := j, snd := y } + dist { fst := j, snd := y } { fst := j, snd := z } [PROOFSTEP] simp only [Sigma.dist_ne hij, Sigma.dist_same] [GOAL] case mk.mk.mk.inr.inr.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j z : E j hik : i ≠ j ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) z ≤ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) y + dist y z [PROOFSTEP] calc dist x (Nonempty.some ⟨x⟩) + 1 + dist (Nonempty.some ⟨z⟩) z ≤ dist x (Nonempty.some ⟨x⟩) + 1 + (dist (Nonempty.some ⟨z⟩) y + dist y z) := by apply_rules [add_le_add, le_rfl, dist_triangle] _ = _ := by abel [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j z : E j hik : i ≠ j ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) z ≤ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + (dist (Nonempty.some (_ : Nonempty (E j))) y + dist y z) [PROOFSTEP] apply_rules [add_le_add, le_rfl, dist_triangle] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j z : E j hik : i ≠ j ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + (dist (Nonempty.some (_ : Nonempty (E j))) y + dist y z) = dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) y + dist y z [PROOFSTEP] abel [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j z : E j hik : i ≠ j ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + (dist (Nonempty.some (_ : Nonempty (E j))) y + dist y z) = dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) y + dist y z [PROOFSTEP] abel [GOAL] case mk.mk.mk.inr.inr.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j k : ι z : E k hik : i ≠ k hij : i ≠ j hjk : j ≠ k ⊢ dist { fst := i, snd := x } { fst := k, snd := z } ≤ dist { fst := i, snd := x } { fst := j, snd := y } + dist { fst := j, snd := y } { fst := k, snd := z } [PROOFSTEP] simp only [hik, hij, hjk, Sigma.dist_ne, Ne.def, not_false_iff] [GOAL] case mk.mk.mk.inr.inr.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j k : ι z : E k hik : i ≠ k hij : i ≠ j hjk : j ≠ k ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z ≤ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) y + (dist y (Nonempty.some (_ : Nonempty (E j))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z) [PROOFSTEP] calc dist x (Nonempty.some ⟨x⟩) + 1 + dist (Nonempty.some ⟨z⟩) z = dist x (Nonempty.some ⟨x⟩) + 1 + 0 + (0 + 0 + dist (Nonempty.some ⟨z⟩) z) := by simp only [add_zero, zero_add] _ ≤ _ := by apply_rules [add_le_add, zero_le_one, dist_nonneg, le_rfl] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j k : ι z : E k hik : i ≠ k hij : i ≠ j hjk : j ≠ k ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z = dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + 0 + (0 + 0 + dist (Nonempty.some (_ : Nonempty (E k))) z) [PROOFSTEP] simp only [add_zero, zero_add] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j k : ι z : E k hik : i ≠ k hij : i ≠ j hjk : j ≠ k ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + 0 + (0 + 0 + dist (Nonempty.some (_ : Nonempty (E k))) z) ≤ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist (Nonempty.some (_ : Nonempty (E j))) y + (dist y (Nonempty.some (_ : Nonempty (E j))) + 1 + dist (Nonempty.some (_ : Nonempty (E k))) z) [PROOFSTEP] apply_rules [add_le_add, zero_le_one, dist_nonneg, le_rfl] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) ⊢ IsOpen s ↔ ∀ (x : (i : ι) × E i), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist x y < ε → y ∈ s [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) ⊢ IsOpen s → ∀ (x : (i : ι) × E i), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist x y < ε → y ∈ s [PROOFSTEP] rintro hs ⟨i, x⟩ hx [GOAL] case mp.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) hs : IsOpen s i : ι x : E i hx : { fst := i, snd := x } ∈ s ⊢ ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist { fst := i, snd := x } y < ε → y ∈ s [PROOFSTEP] obtain ⟨ε, εpos, hε⟩ : ∃ ε > 0, ball x ε ⊆ Sigma.mk i ⁻¹' s := Metric.isOpen_iff.1 (isOpen_sigma_iff.1 hs i) x hx [GOAL] case mp.mk.intro.intro ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) hs : IsOpen s i : ι x : E i hx : { fst := i, snd := x } ∈ s ε : ℝ εpos : ε > 0 hε : ball x ε ⊆ Sigma.mk i ⁻¹' s ⊢ ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist { fst := i, snd := x } y < ε → y ∈ s [PROOFSTEP] refine' ⟨min ε 1, lt_min εpos zero_lt_one, _⟩ [GOAL] case mp.mk.intro.intro ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) hs : IsOpen s i : ι x : E i hx : { fst := i, snd := x } ∈ s ε : ℝ εpos : ε > 0 hε : ball x ε ⊆ Sigma.mk i ⁻¹' s ⊢ ∀ (y : (i : ι) × E i), dist { fst := i, snd := x } y < min ε 1 → y ∈ s [PROOFSTEP] rintro ⟨j, y⟩ hy [GOAL] case mp.mk.intro.intro.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) hs : IsOpen s i : ι x : E i hx : { fst := i, snd := x } ∈ s ε : ℝ εpos : ε > 0 hε : ball x ε ⊆ Sigma.mk i ⁻¹' s j : ι y : E j hy : dist { fst := i, snd := x } { fst := j, snd := y } < min ε 1 ⊢ { fst := j, snd := y } ∈ s [PROOFSTEP] rcases eq_or_ne i j with (rfl | hij) [GOAL] case mp.mk.intro.intro.mk.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) hs : IsOpen s i : ι x : E i hx : { fst := i, snd := x } ∈ s ε : ℝ εpos : ε > 0 hε : ball x ε ⊆ Sigma.mk i ⁻¹' s y : E i hy : dist { fst := i, snd := x } { fst := i, snd := y } < min ε 1 ⊢ { fst := i, snd := y } ∈ s [PROOFSTEP] simp only [Sigma.dist_same, lt_min_iff] at hy [GOAL] case mp.mk.intro.intro.mk.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) hs : IsOpen s i : ι x : E i hx : { fst := i, snd := x } ∈ s ε : ℝ εpos : ε > 0 hε : ball x ε ⊆ Sigma.mk i ⁻¹' s y : E i hy : dist x y < ε ∧ dist x y < 1 ⊢ { fst := i, snd := y } ∈ s [PROOFSTEP] exact hε (mem_ball'.2 hy.1) [GOAL] case mp.mk.intro.intro.mk.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) hs : IsOpen s i : ι x : E i hx : { fst := i, snd := x } ∈ s ε : ℝ εpos : ε > 0 hε : ball x ε ⊆ Sigma.mk i ⁻¹' s j : ι y : E j hy : dist { fst := i, snd := x } { fst := j, snd := y } < min ε 1 hij : i ≠ j ⊢ { fst := j, snd := y } ∈ s [PROOFSTEP] apply (lt_irrefl (1 : ℝ) _).elim [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) hs : IsOpen s i : ι x : E i hx : { fst := i, snd := x } ∈ s ε : ℝ εpos : ε > 0 hε : ball x ε ⊆ Sigma.mk i ⁻¹' s j : ι y : E j hy : dist { fst := i, snd := x } { fst := j, snd := y } < min ε 1 hij : i ≠ j ⊢ 1 < 1 [PROOFSTEP] calc 1 ≤ Sigma.dist ⟨i, x⟩ ⟨j, y⟩ := Sigma.one_le_dist_of_ne hij _ _ _ < 1 := hy.trans_le (min_le_right _ _) [GOAL] case mpr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) ⊢ (∀ (x : (i : ι) × E i), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist x y < ε → y ∈ s) → IsOpen s [PROOFSTEP] refine fun H => isOpen_sigma_iff.2 fun i => Metric.isOpen_iff.2 fun x hx => ?_ [GOAL] case mpr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) H : ∀ (x : (i : ι) × E i), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist x y < ε → y ∈ s i : ι x : E i hx : x ∈ Sigma.mk i ⁻¹' s ⊢ ∃ ε, ε > 0 ∧ ball x ε ⊆ Sigma.mk i ⁻¹' s [PROOFSTEP] obtain ⟨ε, εpos, hε⟩ : ∃ ε > 0, ∀ y, dist (⟨i, x⟩ : Σ j, E j) y < ε → y ∈ s := H ⟨i, x⟩ hx [GOAL] case mpr.intro.intro ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) H : ∀ (x : (i : ι) × E i), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist x y < ε → y ∈ s i : ι x : E i hx : x ∈ Sigma.mk i ⁻¹' s ε : ℝ εpos : ε > 0 hε : ∀ (y : (j : ι) × E j), dist { fst := i, snd := x } y < ε → y ∈ s ⊢ ∃ ε, ε > 0 ∧ ball x ε ⊆ Sigma.mk i ⁻¹' s [PROOFSTEP] refine' ⟨ε, εpos, fun y hy => _⟩ [GOAL] case mpr.intro.intro ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) H : ∀ (x : (i : ι) × E i), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist x y < ε → y ∈ s i : ι x : E i hx : x ∈ Sigma.mk i ⁻¹' s ε : ℝ εpos : ε > 0 hε : ∀ (y : (j : ι) × E j), dist { fst := i, snd := x } y < ε → y ∈ s y : E i hy : y ∈ ball x ε ⊢ y ∈ Sigma.mk i ⁻¹' s [PROOFSTEP] apply hε ⟨i, y⟩ [GOAL] case mpr.intro.intro ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) H : ∀ (x : (i : ι) × E i), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist x y < ε → y ∈ s i : ι x : E i hx : x ∈ Sigma.mk i ⁻¹' s ε : ℝ εpos : ε > 0 hε : ∀ (y : (j : ι) × E j), dist { fst := i, snd := x } y < ε → y ∈ s y : E i hy : y ∈ ball x ε ⊢ dist { fst := i, snd := x } { fst := i, snd := y } < ε [PROOFSTEP] rw [Sigma.dist_same] [GOAL] case mpr.intro.intro ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) s : Set ((i : ι) × E i) H : ∀ (x : (i : ι) × E i), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (i : ι) × E i), dist x y < ε → y ∈ s i : ι x : E i hx : x ∈ Sigma.mk i ⁻¹' s ε : ℝ εpos : ε > 0 hε : ∀ (y : (j : ι) × E j), dist { fst := i, snd := x } y < ε → y ∈ s y : E i hy : y ∈ ball x ε ⊢ dist x y < ε [PROOFSTEP] exact mem_ball'.1 hy [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) ⊢ MetricSpace ((i : ι) × E i) [PROOFSTEP] refine' MetricSpace.ofDistTopology Sigma.dist _ _ Sigma.dist_triangle Sigma.isOpen_iff _ [GOAL] case refine'_1 ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) ⊢ ∀ (x : (i : ι) × E i), Sigma.dist x x = 0 [PROOFSTEP] rintro ⟨i, x⟩ [GOAL] case refine'_1.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i ⊢ Sigma.dist { fst := i, snd := x } { fst := i, snd := x } = 0 [PROOFSTEP] simp [Sigma.dist] [GOAL] case refine'_2 ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) ⊢ ∀ (x y : (i : ι) × E i), Sigma.dist x y = Sigma.dist y x [PROOFSTEP] rintro ⟨i, x⟩ ⟨j, y⟩ [GOAL] case refine'_2.mk.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j ⊢ Sigma.dist { fst := i, snd := x } { fst := j, snd := y } = Sigma.dist { fst := j, snd := y } { fst := i, snd := x } [PROOFSTEP] rcases eq_or_ne i j with (rfl | h) [GOAL] case refine'_2.mk.mk.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x y : E i ⊢ Sigma.dist { fst := i, snd := x } { fst := i, snd := y } = Sigma.dist { fst := i, snd := y } { fst := i, snd := x } [PROOFSTEP] simp [Sigma.dist, dist_comm] [GOAL] case refine'_2.mk.mk.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j h : i ≠ j ⊢ Sigma.dist { fst := i, snd := x } { fst := j, snd := y } = Sigma.dist { fst := j, snd := y } { fst := i, snd := x } [PROOFSTEP] simp only [Sigma.dist, dist_comm, h, h.symm, not_false_iff, dif_neg] [GOAL] case refine'_2.mk.mk.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j h : i ≠ j ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist y (Nonempty.some (_ : Nonempty (E j))) = dist y (Nonempty.some (_ : Nonempty (E j))) + 1 + dist x (Nonempty.some (_ : Nonempty (E i))) [PROOFSTEP] abel [GOAL] case refine'_2.mk.mk.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j h : i ≠ j ⊢ dist x (Nonempty.some (_ : Nonempty (E i))) + 1 + dist y (Nonempty.some (_ : Nonempty (E j))) = dist y (Nonempty.some (_ : Nonempty (E j))) + 1 + dist x (Nonempty.some (_ : Nonempty (E i))) [PROOFSTEP] abel [GOAL] case refine'_3 ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) ⊢ ∀ (x y : (i : ι) × E i), Sigma.dist x y = 0 → x = y [PROOFSTEP] rintro ⟨i, x⟩ ⟨j, y⟩ [GOAL] case refine'_3.mk.mk ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j ⊢ Sigma.dist { fst := i, snd := x } { fst := j, snd := y } = 0 → { fst := i, snd := x } = { fst := j, snd := y } [PROOFSTEP] rcases eq_or_ne i j with (rfl | hij) [GOAL] case refine'_3.mk.mk.inl ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x y : E i ⊢ Sigma.dist { fst := i, snd := x } { fst := i, snd := y } = 0 → { fst := i, snd := x } = { fst := i, snd := y } [PROOFSTEP] simp [Sigma.dist] [GOAL] case refine'_3.mk.mk.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j ⊢ Sigma.dist { fst := i, snd := x } { fst := j, snd := y } = 0 → { fst := i, snd := x } = { fst := j, snd := y } [PROOFSTEP] intro h [GOAL] case refine'_3.mk.mk.inr ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j h : Sigma.dist { fst := i, snd := x } { fst := j, snd := y } = 0 ⊢ { fst := i, snd := x } = { fst := j, snd := y } [PROOFSTEP] apply (lt_irrefl (1 : ℝ) _).elim [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j h : Sigma.dist { fst := i, snd := x } { fst := j, snd := y } = 0 ⊢ 1 < 1 [PROOFSTEP] calc 1 ≤ Sigma.dist (⟨i, x⟩ : Σ k, E k) ⟨j, y⟩ := Sigma.one_le_dist_of_ne hij _ _ _ < 1 := by rw [h]; exact zero_lt_one [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j h : Sigma.dist { fst := i, snd := x } { fst := j, snd := y } = 0 ⊢ Sigma.dist { fst := i, snd := x } { fst := j, snd := y } < 1 [PROOFSTEP] rw [h] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x : E i j : ι y : E j hij : i ≠ j h : Sigma.dist { fst := i, snd := x } { fst := j, snd := y } = 0 ⊢ 0 < 1 [PROOFSTEP] exact zero_lt_one [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝ : (i : ι) → MetricSpace (E i) i : ι x y : E i ⊢ dist { fst := i, snd := x } { fst := i, snd := y } = dist x y [PROOFSTEP] simp [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) ⊢ CompleteSpace ((i : ι) × E i) [PROOFSTEP] set s : ι → Set (Σ i, E i) := fun i => Sigma.fst ⁻¹' { i } [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} ⊢ CompleteSpace ((i : ι) × E i) [PROOFSTEP] set U := {p : (Σ k, E k) × Σ k, E k | dist p.1 p.2 < 1} [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.fst p.snd < 1} ⊢ CompleteSpace ((i : ι) × E i) [PROOFSTEP] have hc : ∀ i, IsComplete (s i) := fun i => by simp only [← range_sigmaMk] exact (isometry_mk i).uniformInducing.isComplete_range [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.fst p.snd < 1} i : ι ⊢ IsComplete (s i) [PROOFSTEP] simp only [← range_sigmaMk] [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.fst p.snd < 1} i : ι ⊢ IsComplete (range (Sigma.mk i)) [PROOFSTEP] exact (isometry_mk i).uniformInducing.isComplete_range [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.fst p.snd < 1} hc : ∀ (i : ι), IsComplete (s i) ⊢ CompleteSpace ((i : ι) × E i) [PROOFSTEP] have hd : ∀ (i j), ∀ x ∈ s i, ∀ y ∈ s j, (x, y) ∈ U → i = j := fun i j x hx y hy hxy => (Eq.symm hx).trans ((fst_eq_of_dist_lt_one _ _ hxy).trans hy) [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.fst p.snd < 1} hc : ∀ (i : ι), IsComplete (s i) hd : ∀ (i j : ι) (x : (i : ι) × E i), x ∈ s i → ∀ (y : (i : ι) × E i), y ∈ s j → (x, y) ∈ U → i = j ⊢ CompleteSpace ((i : ι) × E i) [PROOFSTEP] refine' completeSpace_of_isComplete_univ _ [GOAL] ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.fst p.snd < 1} hc : ∀ (i : ι), IsComplete (s i) hd : ∀ (i j : ι) (x : (i : ι) × E i), x ∈ s i → ∀ (y : (i : ι) × E i), y ∈ s j → (x, y) ∈ U → i = j ⊢ IsComplete univ [PROOFSTEP] convert isComplete_iUnion_separated hc (dist_mem_uniformity zero_lt_one) hd [GOAL] case h.e'_3 ι : Type u_1 E : ι → Type u_2 inst✝¹ : (i : ι) → MetricSpace (E i) inst✝ : ∀ (i : ι), CompleteSpace (E i) s : ι → Set ((i : ι) × E i) := fun i => Sigma.fst ⁻¹' {i} U : Set (((k : ι) × E k) × (k : ι) × E k) := {p | dist p.fst p.snd < 1} hc : ∀ (i : ι), IsComplete (s i) hd : ∀ (i j : ι) (x : (i : ι) × E i), x ∈ s i → ∀ (y : (i : ι) × E i), y ∈ s j → (x, y) ∈ U → i = j ⊢ univ = ⋃ (i : ι), s i [PROOFSTEP] simp only [← preimage_iUnion, iUnion_of_singleton, preimage_univ] [GOAL] X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ p q : Z ⊢ |dist (Φ p) (Φ q) - dist (Ψ p) (Ψ q)| ≤ 2 * 0 [PROOFSTEP] rw [hΦ.dist_eq, hΨ.dist_eq] [GOAL] X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ p q : Z ⊢ |dist p q - dist p q| ≤ 2 * 0 [PROOFSTEP] simp [GOAL] X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ x✝¹ x✝ : X ⊕ Y ⊢ (fun x y => ↑{ val := glueDist Φ Ψ 0 x y, property := (_ : 0 ≤ glueDist Φ Ψ 0 x y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ ⊢ toGlueL hΦ hΨ ∘ Φ = toGlueR hΦ hΨ ∘ Ψ [PROOFSTEP] let i : PseudoMetricSpace (X ⊕ Y) := gluePremetric hΦ hΨ [GOAL] X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ i : PseudoMetricSpace (X ⊕ Y) := gluePremetric hΦ hΨ ⊢ toGlueL hΦ hΨ ∘ Φ = toGlueR hΦ hΨ ∘ Ψ [PROOFSTEP] let _ := i.toUniformSpace [GOAL] X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ i : PseudoMetricSpace (X ⊕ Y) := gluePremetric hΦ hΨ x✝ : UniformSpace (X ⊕ Y) := PseudoMetricSpace.toUniformSpace ⊢ toGlueL hΦ hΨ ∘ Φ = toGlueR hΦ hΨ ∘ Ψ [PROOFSTEP] funext [GOAL] case h X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ i : PseudoMetricSpace (X ⊕ Y) := gluePremetric hΦ hΨ x✝¹ : UniformSpace (X ⊕ Y) := PseudoMetricSpace.toUniformSpace x✝ : Z ⊢ (toGlueL hΦ hΨ ∘ Φ) x✝ = (toGlueR hΦ hΨ ∘ Ψ) x✝ [PROOFSTEP] simp only [comp, toGlueL, toGlueR] [GOAL] case h X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ i : PseudoMetricSpace (X ⊕ Y) := gluePremetric hΦ hΨ x✝¹ : UniformSpace (X ⊕ Y) := PseudoMetricSpace.toUniformSpace x✝ : Z ⊢ Quotient.mk'' (Sum.inl (Φ x✝)) = Quotient.mk'' (Sum.inr (Ψ x✝)) [PROOFSTEP] refine' UniformSpace.SeparationQuotient.mk_eq_mk.2 (Metric.inseparable_iff.2 _) [GOAL] case h X : Type u Y : Type v Z : Type w inst✝³ : Nonempty Z inst✝² : MetricSpace Z inst✝¹ : MetricSpace X inst✝ : MetricSpace Y Φ : Z → X Ψ : Z → Y ε : ℝ hΦ : Isometry Φ hΨ : Isometry Ψ i : PseudoMetricSpace (X ⊕ Y) := gluePremetric hΦ hΨ x✝¹ : UniformSpace (X ⊕ Y) := PseudoMetricSpace.toUniformSpace x✝ : Z ⊢ dist (Sum.inl (Φ x✝)) (Sum.inr (Ψ x✝)) = 0 [PROOFSTEP] exact glueDist_glued_points Φ Ψ 0 _ [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n hx : x.fst ≤ 0 hy : y.fst ≤ 0 ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] cases' x with i x [GOAL] case mk X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) y : (n : ℕ) × X n hy : y.fst ≤ 0 i : ℕ x : X i hx : { fst := i, snd := x }.fst ≤ 0 ⊢ inductiveLimitDist f { fst := i, snd := x } y = dist (leRecOn hx (fun {k} => f k) { fst := i, snd := x }.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] cases' y with j y [GOAL] case mk.mk X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) i : ℕ x : X i hx : { fst := i, snd := x }.fst ≤ 0 j : ℕ y : X j hy : { fst := j, snd := y }.fst ≤ 0 ⊢ inductiveLimitDist f { fst := i, snd := x } { fst := j, snd := y } = dist (leRecOn hx (fun {k} => f k) { fst := i, snd := x }.snd) (leRecOn hy (fun {k} => f k) { fst := j, snd := y }.snd) [PROOFSTEP] obtain rfl : i = 0 := nonpos_iff_eq_zero.1 hx [GOAL] case mk.mk X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) j : ℕ y : X j hy : { fst := j, snd := y }.fst ≤ 0 x : X 0 hx : { fst := 0, snd := x }.fst ≤ 0 ⊢ inductiveLimitDist f { fst := 0, snd := x } { fst := j, snd := y } = dist (leRecOn hx (fun {k} => f k) { fst := 0, snd := x }.snd) (leRecOn hy (fun {k} => f k) { fst := j, snd := y }.snd) [PROOFSTEP] obtain rfl : j = 0 := nonpos_iff_eq_zero.1 hy [GOAL] case mk.mk X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x : X 0 hx : { fst := 0, snd := x }.fst ≤ 0 y : X 0 hy : { fst := 0, snd := y }.fst ≤ 0 ⊢ inductiveLimitDist f { fst := 0, snd := x } { fst := 0, snd := y } = dist (leRecOn hx (fun {k} => f k) { fst := 0, snd := x }.snd) (leRecOn hy (fun {k} => f k) { fst := 0, snd := y }.snd) [PROOFSTEP] rfl [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] by_cases h : max x.1 y.1 = (m + 1) [GOAL] case pos X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : max x.fst y.fst = m + 1 ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] generalize m + 1 = m' at * [GOAL] case pos X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m m' : ℕ hx : x.fst ≤ m' hy : y.fst ≤ m' h : max x.fst y.fst = m' ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] subst m' [GOAL] case pos X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ max x.fst y.fst hy : y.fst ≤ max x.fst y.fst ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] rfl [GOAL] case neg X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : ¬max x.fst y.fst = m + 1 ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] have : max x.1 y.1 ≤ succ m := by simp [hx, hy] [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : ¬max x.fst y.fst = m + 1 ⊢ max x.fst y.fst ≤ succ m [PROOFSTEP] simp [hx, hy] [GOAL] case neg X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : ¬max x.fst y.fst = m + 1 this : max x.fst y.fst ≤ succ m ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] have : max x.1 y.1 ≤ m := by simpa [h] using of_le_succ this [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : ¬max x.fst y.fst = m + 1 this : max x.fst y.fst ≤ succ m ⊢ max x.fst y.fst ≤ m [PROOFSTEP] simpa [h] using of_le_succ this [GOAL] case neg X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : ¬max x.fst y.fst = m + 1 this✝ : max x.fst y.fst ≤ succ m this : max x.fst y.fst ≤ m ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] have xm : x.1 ≤ m := le_trans (le_max_left _ _) this [GOAL] case neg X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : ¬max x.fst y.fst = m + 1 this✝ : max x.fst y.fst ≤ succ m this : max x.fst y.fst ≤ m xm : x.fst ≤ m ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] have ym : y.1 ≤ m := le_trans (le_max_right _ _) this [GOAL] case neg X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : ¬max x.fst y.fst = m + 1 this✝ : max x.fst y.fst ≤ succ m this : max x.fst y.fst ≤ m xm : x.fst ≤ m ym : y.fst ≤ m ⊢ inductiveLimitDist f x y = dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) [PROOFSTEP] rw [leRecOn_succ xm, leRecOn_succ ym, (I m).dist_eq] [GOAL] case neg X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ hx : x.fst ≤ m + 1 hy : y.fst ≤ m + 1 h : ¬max x.fst y.fst = m + 1 this✝ : max x.fst y.fst ≤ succ m this : max x.fst y.fst ≤ m xm : x.fst ≤ m ym : y.fst ≤ m ⊢ inductiveLimitDist f x y = dist (leRecOn xm (fun {k} => f k) x.snd) (leRecOn ym (fun {k} => f k) y.snd) [PROOFSTEP] exact inductiveLimitDist_eq_dist I x y m xm ym [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x : (n : ℕ) × X n ⊢ dist x x = 0 [PROOFSTEP] simp [dist, inductiveLimitDist] [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n ⊢ dist x y = dist y x [PROOFSTEP] let m := max x.1 y.1 [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ := max x.fst y.fst ⊢ dist x y = dist y x [PROOFSTEP] have hx : x.1 ≤ m := le_max_left _ _ [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ := max x.fst y.fst hx : x.fst ≤ m ⊢ dist x y = dist y x [PROOFSTEP] have hy : y.1 ≤ m := le_max_right _ _ [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ := max x.fst y.fst hx : x.fst ≤ m hy : y.fst ≤ m ⊢ dist x y = dist y x [PROOFSTEP] unfold dist [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ := max x.fst y.fst hx : x.fst ≤ m hy : y.fst ≤ m ⊢ { dist := inductiveLimitDist f }.1 x y = { dist := inductiveLimitDist f }.1 y x [PROOFSTEP] simp only [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y : (n : ℕ) × X n m : ℕ := max x.fst y.fst hx : x.fst ≤ m hy : y.fst ≤ m ⊢ inductiveLimitDist f x y = inductiveLimitDist f y x [PROOFSTEP] rw [inductiveLimitDist_eq_dist I x y m hx hy, inductiveLimitDist_eq_dist I y x m hy hx, dist_comm] [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y z : (n : ℕ) × X n ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] let m := max (max x.1 y.1) z.1 [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y z : (n : ℕ) × X n m : ℕ := max (max x.fst y.fst) z.fst ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] have hx : x.1 ≤ m := le_trans (le_max_left _ _) (le_max_left _ _) [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y z : (n : ℕ) × X n m : ℕ := max (max x.fst y.fst) z.fst hx : x.fst ≤ m ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] have hy : y.1 ≤ m := le_trans (le_max_right _ _) (le_max_left _ _) [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y z : (n : ℕ) × X n m : ℕ := max (max x.fst y.fst) z.fst hx : x.fst ≤ m hy : y.fst ≤ m ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] have hz : z.1 ≤ m := le_max_right _ _ [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y z : (n : ℕ) × X n m : ℕ := max (max x.fst y.fst) z.fst hx : x.fst ≤ m hy : y.fst ≤ m hz : z.fst ≤ m ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] calc inductiveLimitDist f x z = dist (leRecOn hx (f _) x.2 : X m) (leRecOn hz (f _) z.2 : X m) := inductiveLimitDist_eq_dist I x z m hx hz _ ≤ dist (leRecOn hx (f _) x.2 : X m) (leRecOn hy (f _) y.2 : X m) + dist (leRecOn hy (f _) y.2 : X m) (leRecOn hz (f _) z.2 : X m) := (dist_triangle _ _ _) _ = inductiveLimitDist f x y + inductiveLimitDist f y z := by rw [inductiveLimitDist_eq_dist I x y m hx hy, inductiveLimitDist_eq_dist I y z m hy hz] [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x y z : (n : ℕ) × X n m : ℕ := max (max x.fst y.fst) z.fst hx : x.fst ≤ m hy : y.fst ≤ m hz : z.fst ≤ m ⊢ dist (leRecOn hx (fun {k} => f k) x.snd) (leRecOn hy (fun {k} => f k) y.snd) + dist (leRecOn hy (fun {k} => f k) y.snd) (leRecOn hz (fun {k} => f k) z.snd) = inductiveLimitDist f x y + inductiveLimitDist f y z [PROOFSTEP] rw [inductiveLimitDist_eq_dist I x y m hx hy, inductiveLimitDist_eq_dist I y z m hy hz] [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) x✝¹ x✝ : (n : ℕ) × X n ⊢ (fun x y => ↑{ val := inductiveLimitDist f x y, property := (_ : 0 ≤ inductiveLimitDist f x y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x y : X n ⊢ dist (toInductiveLimit I n x) (toInductiveLimit I n y) = dist x y [PROOFSTEP] change inductiveLimitDist f ⟨n, x⟩ ⟨n, y⟩ = dist x y [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x y : X n ⊢ inductiveLimitDist f { fst := n, snd := x } { fst := n, snd := y } = dist x y [PROOFSTEP] rw [inductiveLimitDist_eq_dist I ⟨n, x⟩ ⟨n, y⟩ n (le_refl n) (le_refl n), leRecOn_self, leRecOn_self] [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ ⊢ toInductiveLimit I (succ n) ∘ f n = toInductiveLimit I n [PROOFSTEP] let _ := inductivePremetric I [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x✝ : PseudoMetricSpace ((n : ℕ) × X n) := inductivePremetric I ⊢ toInductiveLimit I (succ n) ∘ f n = toInductiveLimit I n [PROOFSTEP] funext x [GOAL] case h X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x✝ : PseudoMetricSpace ((n : ℕ) × X n) := inductivePremetric I x : X n ⊢ (toInductiveLimit I (succ n) ∘ f n) x = toInductiveLimit I n x [PROOFSTEP] simp only [comp, toInductiveLimit] [GOAL] case h X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x✝ : PseudoMetricSpace ((n : ℕ) × X n) := inductivePremetric I x : X n ⊢ Quotient.mk'' { fst := succ n, snd := f n x } = Quotient.mk'' { fst := n, snd := x } [PROOFSTEP] refine' UniformSpace.SeparationQuotient.mk_eq_mk.2 (Metric.inseparable_iff.2 _) [GOAL] case h X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x✝ : PseudoMetricSpace ((n : ℕ) × X n) := inductivePremetric I x : X n ⊢ dist { fst := succ n, snd := f n x } { fst := n, snd := x } = 0 [PROOFSTEP] show inductiveLimitDist f ⟨n.succ, f n x⟩ ⟨n, x⟩ = 0 [GOAL] case h X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x✝ : PseudoMetricSpace ((n : ℕ) × X n) := inductivePremetric I x : X n ⊢ inductiveLimitDist f { fst := succ n, snd := f n x } { fst := n, snd := x } = 0 [PROOFSTEP] rw [inductiveLimitDist_eq_dist I ⟨n.succ, f n x⟩ ⟨n, x⟩ n.succ, leRecOn_self, leRecOn_succ, leRecOn_self, dist_self] [GOAL] X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x✝ : PseudoMetricSpace ((n : ℕ) × X n) := inductivePremetric I x : X n ⊢ { fst := n, snd := x }.fst ≤ { fst := n, snd := x }.fst case h.h2 X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x✝ : PseudoMetricSpace ((n : ℕ) × X n) := inductivePremetric I x : X n ⊢ { fst := n, snd := x }.fst ≤ n + 1 X : ℕ → Type u inst✝ : (n : ℕ) → MetricSpace (X n) f : (n : ℕ) → X n → X (n + 1) I : ∀ (n : ℕ), Isometry (f n) n : ℕ x✝ : PseudoMetricSpace ((n : ℕ) × X n) := inductivePremetric I x : X n ⊢ { fst := succ n, snd := f n x }.fst ≤ { fst := succ n, snd := f n x }.fst [PROOFSTEP] exacts [le_rfl, le_succ _, le_rfl]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Gluing", "llama_tokens": 46400}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ OrdConnected (range some) [PROOFSTEP] rw [range_coe'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ OrdConnected (Iio ⊤) [PROOFSTEP] exact ordConnected_Iio [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ IsOpen (Ico 0 b) [PROOFSTEP] rw [ENNReal.Ico_eq_Iio] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ IsOpen (Iio b) [PROOFSTEP] exact isOpen_Iio [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ IsOpen (range some) [PROOFSTEP] rw [range_coe'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ IsOpen (Iio ⊤) [PROOFSTEP] exact isOpen_Iio [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ α : Type u_4 l : Filter α x : ℝ≥0 f : ℝ≥0∞ → α ⊢ Tendsto f (𝓝 ↑x) l ↔ Tendsto (f ∘ some) (𝓝 x) l [PROOFSTEP] rw [nhds_coe, tendsto_map'_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ ha : a ≠ ⊤ ⊢ Tendsto ENNReal.toNNReal (𝓝 a) (𝓝 (ENNReal.toNNReal a)) [PROOFSTEP] lift a to ℝ≥0 using ha [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0 ⊢ Tendsto ENNReal.toNNReal (𝓝 ↑a) (𝓝 (ENNReal.toNNReal ↑a)) [PROOFSTEP] rw [nhds_coe, tendsto_map'_iff] [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0 ⊢ Tendsto (ENNReal.toNNReal ∘ some) (𝓝 a) (𝓝 (ENNReal.toNNReal ↑a)) [PROOFSTEP] exact tendsto_id [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ l : Filter α f g : α → ℝ≥0∞ hfi : ∀ᶠ (x : α) in l, f x ≠ ⊤ hgi : ∀ᶠ (x : α) in l, g x ≠ ⊤ hfg : (fun x => ENNReal.toReal (f x)) =ᶠ[l] fun x => ENNReal.toReal (g x) ⊢ f =ᶠ[l] g [PROOFSTEP] filter_upwards [hfi, hgi, hfg] with _ hfx hgx _ [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ l : Filter α f g : α → ℝ≥0∞ hfi : ∀ᶠ (x : α) in l, f x ≠ ⊤ hgi : ∀ᶠ (x : α) in l, g x ≠ ⊤ hfg : (fun x => ENNReal.toReal (f x)) =ᶠ[l] fun x => ENNReal.toReal (g x) a✝¹ : α hfx : f a✝¹ ≠ ⊤ hgx : g a✝¹ ≠ ⊤ a✝ : ENNReal.toReal (f a✝¹) = ENNReal.toReal (g a✝¹) ⊢ f a✝¹ = g a✝¹ [PROOFSTEP] rwa [← ENNReal.toReal_eq_toReal hfx hgx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ ↑{a | a < ⊤} ≃ₜ ℝ≥0 [PROOFSTEP] refine' (Homeomorph.setCongr _).trans neTopHomeomorphNNReal [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ {a | a < ⊤} = {a | a ≠ ⊤} [PROOFSTEP] simp only [mem_setOf_eq, lt_top_iff_ne_top] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ ⨅ (l : ℝ≥0∞) (_ : l < ⊤), 𝓟 (Ioi l) = ⨅ (a : ℝ≥0∞) (_ : a ≠ ⊤), 𝓟 (Ioi a) [PROOFSTEP] simp [lt_top_iff_ne_top, Ioi] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ m : α → ℝ≥0∞ f : Filter α ⊢ Tendsto m f (𝓝 ⊤) ↔ ∀ (x : ℝ≥0), ∀ᶠ (a : α) in f, ↑x < m a [PROOFSTEP] simp only [nhds_top', tendsto_iInf, tendsto_principal, mem_Ioi] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ m : α → ℝ≥0∞ f : Filter α h : ∀ (x : ℝ≥0), ∀ᶠ (a : α) in f, ↑x < m a n : ℕ ⊢ ∀ᶠ (a : α) in f, ↑n < m a [PROOFSTEP] simpa only [ENNReal.coe_nat] using h n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ m : α → ℝ≥0∞ f : Filter α h : ∀ (n : ℕ), ∀ᶠ (a : α) in f, ↑n < m a x : ℝ≥0 n : ℕ hn : x < ↑n y : α ⊢ ↑x < ↑n [PROOFSTEP] rwa [← ENNReal.coe_nat, coe_lt_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : α → ℝ≥0 l : Filter α ⊢ Tendsto (fun x => ↑(f x)) l (𝓝 ⊤) ↔ Tendsto f l atTop [PROOFSTEP] rw [tendsto_nhds_top_iff_nnreal, atTop_basis_Ioi.tendsto_right_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : α → ℝ≥0 l : Filter α ⊢ (∀ (x : ℝ≥0), ∀ᶠ (a : α) in l, ↑x < ↑(f a)) ↔ ∀ (i : ℝ≥0), True → ∀ᶠ (x : α) in l, f x ∈ Ioi i [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ ⨅ (l : ℝ≥0∞) (_ : ⊥ < l), 𝓟 (Iio l) = ⨅ (a : ℝ≥0∞) (_ : a ≠ 0), 𝓟 (Iio a) [PROOFSTEP] simp [pos_iff_ne_zero, Iio] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ ⊢ HasBasis (𝓝 x) (fun x => x ≠ 0) fun ε => Icc (x - ε) (x + ε) [PROOFSTEP] rcases(zero_le x).eq_or_gt with rfl | x0 [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : 0 ≠ ⊤ ⊢ HasBasis (𝓝 0) (fun x => x ≠ 0) fun ε => Icc (0 - ε) (0 + ε) [PROOFSTEP] simp_rw [zero_tsub, zero_add, ← bot_eq_zero, Icc_bot, ← bot_lt_iff_ne_bot] [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : 0 ≠ ⊤ ⊢ HasBasis (𝓝 ⊥) (fun x => ⊥ < x) fun ε => Iic ε [PROOFSTEP] exact nhds_bot_basis_Iic [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ x0 : 0 < x ⊢ HasBasis (𝓝 x) (fun x => x ≠ 0) fun ε => Icc (x - ε) (x + ε) [PROOFSTEP] refine (nhds_basis_Ioo' ⟨_, x0⟩ ⟨_, xt.lt_top⟩).to_hasBasis ?_ fun ε ε0 => ?_ [GOAL] case inr.refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ x0 : 0 < x ⊢ ∀ (i : ℝ≥0∞ × ℝ≥0∞), i.fst < x ∧ x < i.snd → ∃ i', i' ≠ 0 ∧ Icc (x - i') (x + i') ⊆ Ioo i.fst i.snd [PROOFSTEP] rintro ⟨a, b⟩ ⟨ha, hb⟩ [GOAL] case inr.refine_1.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ x0 : 0 < x a b : ℝ≥0∞ ha : (a, b).fst < x hb : x < (a, b).snd ⊢ ∃ i', i' ≠ 0 ∧ Icc (x - i') (x + i') ⊆ Ioo (a, b).fst (a, b).snd [PROOFSTEP] rcases exists_between (tsub_pos_of_lt ha) with ⟨ε, ε0, hε⟩ [GOAL] case inr.refine_1.mk.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ x0 : 0 < x a b : ℝ≥0∞ ha : (a, b).fst < x hb : x < (a, b).snd ε : ℝ≥0∞ ε0 : 0 < ε hε : ε < x - (a, b).fst ⊢ ∃ i', i' ≠ 0 ∧ Icc (x - i') (x + i') ⊆ Ioo (a, b).fst (a, b).snd [PROOFSTEP] rcases lt_iff_exists_add_pos_lt.1 hb with ⟨δ, δ0, hδ⟩ [GOAL] case inr.refine_1.mk.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ x0 : 0 < x a b : ℝ≥0∞ ha : (a, b).fst < x hb : x < (a, b).snd ε : ℝ≥0∞ ε0 : 0 < ε hε : ε < x - (a, b).fst δ : ℝ≥0 δ0 : 0 < δ hδ : x + ↑δ < (a, b).snd ⊢ ∃ i', i' ≠ 0 ∧ Icc (x - i') (x + i') ⊆ Ioo (a, b).fst (a, b).snd [PROOFSTEP] refine ⟨min ε δ, (lt_min ε0 (coe_pos.2 δ0)).ne', Icc_subset_Ioo ?_ ?_⟩ [GOAL] case inr.refine_1.mk.intro.intro.intro.intro.intro.refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ x0 : 0 < x a b : ℝ≥0∞ ha : (a, b).fst < x hb : x < (a, b).snd ε : ℝ≥0∞ ε0 : 0 < ε hε : ε < x - (a, b).fst δ : ℝ≥0 δ0 : 0 < δ hδ : x + ↑δ < (a, b).snd ⊢ (a, b).fst < x - min ε ↑δ [PROOFSTEP] exact lt_tsub_comm.2 ((min_le_left _ _).trans_lt hε) [GOAL] case inr.refine_1.mk.intro.intro.intro.intro.intro.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ x0 : 0 < x a b : ℝ≥0∞ ha : (a, b).fst < x hb : x < (a, b).snd ε : ℝ≥0∞ ε0 : 0 < ε hε : ε < x - (a, b).fst δ : ℝ≥0 δ0 : 0 < δ hδ : x + ↑δ < (a, b).snd ⊢ x + min ε ↑δ < (a, b).snd [PROOFSTEP] exact (add_le_add_left (min_le_right _ _) _).trans_lt hδ [GOAL] case inr.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ x0 : 0 < x ε : ℝ≥0∞ ε0 : ε ≠ 0 ⊢ ∃ i, (i.fst < x ∧ x < i.snd) ∧ Ioo i.fst i.snd ⊆ Icc (x - ε) (x + ε) [PROOFSTEP] exact ⟨(x - ε, x + ε), ⟨ENNReal.sub_lt_self xt x0.ne' ε0, lt_add_right xt ε0⟩, Ioo_subset_Icc_self⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ xt : x ≠ ⊤ ⊢ HasBasis (𝓝 x) (fun x => 0 < x) fun ε => Icc (x - ε) (x + ε) [PROOFSTEP] simpa only [pos_iff_ne_zero] using hasBasis_nhds_of_ne_top' xt [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ 𝓟 (Icc (⊤ - 1) (⊤ + 1)) ≤ 𝓝 ⊤ [PROOFSTEP] simpa only [← coe_one, top_sub_coe, top_add, Icc_self, principal_singleton] using pure_le_nhds _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ h : ∀ (ε : ℝ≥0∞), ε > 0 → ∀ᶠ (x : α) in f, u x ∈ Icc (a - ε) (a + ε) ⊢ Tendsto u f (𝓝 a) [PROOFSTEP] refine Tendsto.mono_right ?_ (biInf_le_nhds _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ h : ∀ (ε : ℝ≥0∞), ε > 0 → ∀ᶠ (x : α) in f, u x ∈ Icc (a - ε) (a + ε) ⊢ Tendsto u f (⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 (Icc (a - ε) (a + ε))) [PROOFSTEP] simpa only [tendsto_iInf, tendsto_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α u : α → ℝ≥0∞ a : ℝ≥0∞ ha : a ≠ ⊤ ⊢ Tendsto u f (𝓝 a) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∀ᶠ (x : α) in f, u x ∈ Icc (a - ε) (a + ε) [PROOFSTEP] simp only [nhds_of_ne_top ha, tendsto_iInf, tendsto_principal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → ℝ≥0∞ a : ℝ≥0∞ ha : a ≠ ⊤ ⊢ (∀ (ib : ℝ≥0∞), 0 < ib → ∃ ia, True ∧ ∀ (x : β), x ∈ Ici ia → f x ∈ Icc (a - ib) (a + ib)) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (n : β), n ≥ N → f n ∈ Icc (a - ε) (a + ε) [PROOFSTEP] simp only [true_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → ℝ≥0∞ a : ℝ≥0∞ ha : a ≠ ⊤ ⊢ (∀ (ib : ℝ≥0∞), 0 < ib → ∃ ia, ∀ (x : β), x ∈ Ici ia → f x ∈ Icc (a - ib) (a + ib)) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (n : β), n ≥ N → f n ∈ Icc (a - ε) (a + ε) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ ContinuousAdd ℝ≥0∞ [PROOFSTEP] refine' ⟨continuous_iff_continuousAt.2 _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ ∀ (x : ℝ≥0∞ × ℝ≥0∞), ContinuousAt (fun p => p.fst + p.snd) x [PROOFSTEP] rintro ⟨_ | a, b⟩ [GOAL] case mk.none α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ b : ℝ≥0∞ ⊢ ContinuousAt (fun p => p.fst + p.snd) (none, b) [PROOFSTEP] exact tendsto_nhds_top_mono' continuousAt_fst fun p => le_add_right le_rfl [GOAL] case mk.some α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ b : ℝ≥0∞ a : ℝ≥0 ⊢ ContinuousAt (fun p => p.fst + p.snd) (Option.some a, b) [PROOFSTEP] rcases b with (_ | b) [GOAL] case mk.some.none α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0 ⊢ ContinuousAt (fun p => p.fst + p.snd) (Option.some a, none) [PROOFSTEP] exact tendsto_nhds_top_mono' continuousAt_snd fun p => le_add_left le_rfl [GOAL] case mk.some.some α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a b : ℝ≥0 ⊢ ContinuousAt (fun p => p.fst + p.snd) (Option.some a, Option.some b) [PROOFSTEP] simp only [ContinuousAt, some_eq_coe, nhds_coe_coe, ← coe_add, tendsto_map'_iff, (· ∘ ·), tendsto_coe, tendsto_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → ℝ≥0∞ ⊢ (∀ (ib : ℝ≥0∞), 0 < ib → ∃ ia, True ∧ ∀ (x : β), x ∈ Ici ia → f x ∈ Iic ib) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (n : β), n ≥ N → f n ≤ ε [PROOFSTEP] simp only [true_and] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ inst✝¹ : Nonempty β inst✝ : SemilatticeSup β f : β → ℝ≥0∞ ⊢ (∀ (ib : ℝ≥0∞), 0 < ib → ∃ ia, ∀ (x : β), x ∈ Ici ia → f x ∈ Iic ib) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (n : β), n ≥ N → f n ≤ ε [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ h : ⊤ ≠ ⊤ ∨ ⊤ ≠ ⊤ ⊢ Tendsto (fun p => p.fst - p.snd) (𝓝 (⊤, ⊤)) (𝓝 (⊤ - ⊤)) [PROOFSTEP] simp only at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ b : ℝ≥0 x✝ : ⊤ ≠ ⊤ ∨ ↑b ≠ ⊤ ⊢ Tendsto (fun p => p.fst - p.snd) (𝓝 (⊤, ↑b)) (𝓝 (⊤ - ↑b)) [PROOFSTEP] rw [top_sub_coe, tendsto_nhds_top_iff_nnreal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ b : ℝ≥0 x✝ : ⊤ ≠ ⊤ ∨ ↑b ≠ ⊤ ⊢ ∀ (x : ℝ≥0), ∀ᶠ (a : ℝ≥0∞ × ℝ≥0∞) in 𝓝 (⊤, ↑b), ↑x < a.fst - a.snd [PROOFSTEP] refine fun x => ((lt_mem_nhds <| @coe_lt_top (b + 1 + x)).prod_nhds (ge_mem_nhds <| coe_lt_coe.2 <| lt_add_one b)).mono fun y hy => ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x✝¹ y✝ z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ b : ℝ≥0 x✝ : ⊤ ≠ ⊤ ∨ ↑b ≠ ⊤ x : ℝ≥0 y : ℝ≥0∞ × ℝ≥0∞ hy : ↑(b + 1 + x) < y.fst ∧ y.snd ≤ ↑(b + 1) ⊢ ↑x < y.fst - y.snd [PROOFSTEP] rw [lt_tsub_iff_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x✝¹ y✝ z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ b : ℝ≥0 x✝ : ⊤ ≠ ⊤ ∨ ↑b ≠ ⊤ x : ℝ≥0 y : ℝ≥0∞ × ℝ≥0∞ hy : ↑(b + 1 + x) < y.fst ∧ y.snd ≤ ↑(b + 1) ⊢ y.snd + ↑x < y.fst [PROOFSTEP] calc y.2 + x ≤ ↑(b + 1) + x := add_le_add_right hy.2 _ _ < y.1 := hy.1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0 x✝ : ↑a ≠ ⊤ ∨ ⊤ ≠ ⊤ ⊢ Tendsto (fun p => p.fst - p.snd) (𝓝 (↑a, ⊤)) (𝓝 (↑a - ⊤)) [PROOFSTEP] rw [sub_top] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0 x✝ : ↑a ≠ ⊤ ∨ ⊤ ≠ ⊤ ⊢ Tendsto (fun p => p.fst - p.snd) (𝓝 (↑a, ⊤)) (𝓝 0) [PROOFSTEP] refine (tendsto_pure.2 ?_).mono_right (pure_le_nhds _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0 x✝ : ↑a ≠ ⊤ ∨ ⊤ ≠ ⊤ ⊢ ∀ᶠ (x : ℝ≥0∞ × ℝ≥0∞) in 𝓝 (↑a, ⊤), x.fst - x.snd = 0 [PROOFSTEP] exact ((gt_mem_nhds <| coe_lt_coe.2 <| lt_add_one a).prod_nhds (lt_mem_nhds <| @coe_lt_top (a + 1))).mono fun x hx => tsub_eq_zero_iff_le.2 (hx.1.trans hx.2).le [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a b : ℝ≥0 x✝ : ↑a ≠ ⊤ ∨ ↑b ≠ ⊤ ⊢ Tendsto (fun p => p.fst - p.snd) (𝓝 (↑a, ↑b)) (𝓝 (↑a - ↑b)) [PROOFSTEP] simp only [nhds_coe_coe, tendsto_map'_iff, ← ENNReal.coe_sub, (· ∘ ·), tendsto_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a b : ℝ≥0 x✝ : ↑a ≠ ⊤ ∨ ↑b ≠ ⊤ ⊢ Tendsto (fun a => a.fst - a.snd) (𝓝 (a, b)) (𝓝 (a - b)) [PROOFSTEP] exact continuous_sub.tendsto (a, b) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ha : a ≠ 0 ∨ b ≠ ⊤ hb : b ≠ 0 ∨ a ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (a, b)) (𝓝 (a * b)) [PROOFSTEP] have ht : ∀ b : ℝ≥0∞, b ≠ 0 → Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 * p.2) (𝓝 ((⊤ : ℝ≥0∞), b)) (𝓝 ⊤) := fun b hb => by refine' tendsto_nhds_top_iff_nnreal.2 fun n => _ rcases lt_iff_exists_nnreal_btwn.1 (pos_iff_ne_zero.2 hb) with ⟨ε, hε, hεb⟩ have : ∀ᶠ c : ℝ≥0∞ × ℝ≥0∞ in 𝓝 (∞, b), ↑n / ↑ε < c.1 ∧ ↑ε < c.2 := (lt_mem_nhds <| div_lt_top coe_ne_top hε.ne').prod_nhds (lt_mem_nhds hεb) refine' this.mono fun c hc => _ exact (ENNReal.div_mul_cancel hε.ne' coe_ne_top).symm.trans_lt (mul_lt_mul hc.1 hc.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ha : a ≠ 0 ∨ b✝ ≠ ⊤ hb✝ : b✝ ≠ 0 ∨ a ≠ ⊤ b : ℝ≥0∞ hb : b ≠ 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) [PROOFSTEP] refine' tendsto_nhds_top_iff_nnreal.2 fun n => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ha : a ≠ 0 ∨ b✝ ≠ ⊤ hb✝ : b✝ ≠ 0 ∨ a ≠ ⊤ b : ℝ≥0∞ hb : b ≠ 0 n : ℝ≥0 ⊢ ∀ᶠ (a : ℝ≥0∞ × ℝ≥0∞) in 𝓝 (⊤, b), ↑n < a.fst * a.snd [PROOFSTEP] rcases lt_iff_exists_nnreal_btwn.1 (pos_iff_ne_zero.2 hb) with ⟨ε, hε, hεb⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ha : a ≠ 0 ∨ b✝ ≠ ⊤ hb✝ : b✝ ≠ 0 ∨ a ≠ ⊤ b : ℝ≥0∞ hb : b ≠ 0 n ε : ℝ≥0 hε : 0 < ↑ε hεb : ↑ε < b ⊢ ∀ᶠ (a : ℝ≥0∞ × ℝ≥0∞) in 𝓝 (⊤, b), ↑n < a.fst * a.snd [PROOFSTEP] have : ∀ᶠ c : ℝ≥0∞ × ℝ≥0∞ in 𝓝 (∞, b), ↑n / ↑ε < c.1 ∧ ↑ε < c.2 := (lt_mem_nhds <| div_lt_top coe_ne_top hε.ne').prod_nhds (lt_mem_nhds hεb) [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ha : a ≠ 0 ∨ b✝ ≠ ⊤ hb✝ : b✝ ≠ 0 ∨ a ≠ ⊤ b : ℝ≥0∞ hb : b ≠ 0 n ε : ℝ≥0 hε : 0 < ↑ε hεb : ↑ε < b this : ∀ᶠ (c : ℝ≥0∞ × ℝ≥0∞) in 𝓝 (⊤, b), ↑n / ↑ε < c.fst ∧ ↑ε < c.snd ⊢ ∀ᶠ (a : ℝ≥0∞ × ℝ≥0∞) in 𝓝 (⊤, b), ↑n < a.fst * a.snd [PROOFSTEP] refine' this.mono fun c hc => _ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b✝ c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ha : a ≠ 0 ∨ b✝ ≠ ⊤ hb✝ : b✝ ≠ 0 ∨ a ≠ ⊤ b : ℝ≥0∞ hb : b ≠ 0 n ε : ℝ≥0 hε : 0 < ↑ε hεb : ↑ε < b this : ∀ᶠ (c : ℝ≥0∞ × ℝ≥0∞) in 𝓝 (⊤, b), ↑n / ↑ε < c.fst ∧ ↑ε < c.snd c : ℝ≥0∞ × ℝ≥0∞ hc : ↑n / ↑ε < c.fst ∧ ↑ε < c.snd ⊢ ↑n < c.fst * c.snd [PROOFSTEP] exact (ENNReal.div_mul_cancel hε.ne' coe_ne_top).symm.trans_lt (mul_lt_mul hc.1 hc.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ha : a ≠ 0 ∨ b ≠ ⊤ hb : b ≠ 0 ∨ a ≠ ⊤ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (a, b)) (𝓝 (a * b)) [PROOFSTEP] induction a using recTopCoe with | top => simp only [ne_eq, or_false] at hb ; simp [ht b hb, top_mul hb] | coe a => induction b using recTopCoe with | top => simp only [ne_eq, or_false] at ha simpa [(· ∘ ·), mul_comm, mul_top ha] using (ht a ha).comp (continuous_swap.tendsto (some a, ⊤)) | coe b => simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ha : a ≠ 0 ∨ b ≠ ⊤ hb : b ≠ 0 ∨ a ≠ ⊤ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (a, b)) (𝓝 (a * b)) [PROOFSTEP] induction a using recTopCoe with | top => simp only [ne_eq, or_false] at hb ; simp [ht b hb, top_mul hb] | coe a => induction b using recTopCoe with | top => simp only [ne_eq, or_false] at ha simpa [(· ∘ ·), mul_comm, mul_top ha] using (ht a ha).comp (continuous_swap.tendsto (some a, ⊤)) | coe b => simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul] [GOAL] case top α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) ha : ⊤ ≠ 0 ∨ b ≠ ⊤ hb : b ≠ 0 ∨ ⊤ ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 (⊤ * b)) [PROOFSTEP] | top => simp only [ne_eq, or_false] at hb ; simp [ht b hb, top_mul hb] [GOAL] case top α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) ha : ⊤ ≠ 0 ∨ b ≠ ⊤ hb : b ≠ 0 ∨ ⊤ ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 (⊤ * b)) [PROOFSTEP] simp only [ne_eq, or_false] at hb [GOAL] case top α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) ha : ⊤ ≠ 0 ∨ b ≠ ⊤ hb : ¬b = 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 (⊤ * b)) [PROOFSTEP] simp [ht b hb, top_mul hb] [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) a : ℝ≥0 ha : ↑a ≠ 0 ∨ b ≠ ⊤ hb : b ≠ 0 ∨ ↑a ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (↑a, b)) (𝓝 (↑a * b)) [PROOFSTEP] | coe a => induction b using recTopCoe with | top => simp only [ne_eq, or_false] at ha simpa [(· ∘ ·), mul_comm, mul_top ha] using (ht a ha).comp (continuous_swap.tendsto (some a, ⊤)) | coe b => simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul] [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) a : ℝ≥0 ha : ↑a ≠ 0 ∨ b ≠ ⊤ hb : b ≠ 0 ∨ ↑a ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (↑a, b)) (𝓝 (↑a * b)) [PROOFSTEP] induction b using recTopCoe with | top => simp only [ne_eq, or_false] at ha simpa [(· ∘ ·), mul_comm, mul_top ha] using (ht a ha).comp (continuous_swap.tendsto (some a, ⊤)) | coe b => simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul] [GOAL] case coe α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) a : ℝ≥0 ha : ↑a ≠ 0 ∨ b ≠ ⊤ hb : b ≠ 0 ∨ ↑a ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (↑a, b)) (𝓝 (↑a * b)) [PROOFSTEP] induction b using recTopCoe with | top => simp only [ne_eq, or_false] at ha simpa [(· ∘ ·), mul_comm, mul_top ha] using (ht a ha).comp (continuous_swap.tendsto (some a, ⊤)) | coe b => simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul] [GOAL] case coe.top α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) a : ℝ≥0 ha : ↑a ≠ 0 ∨ ⊤ ≠ ⊤ hb : ⊤ ≠ 0 ∨ ↑a ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (↑a, ⊤)) (𝓝 (↑a * ⊤)) [PROOFSTEP] | top => simp only [ne_eq, or_false] at ha simpa [(· ∘ ·), mul_comm, mul_top ha] using (ht a ha).comp (continuous_swap.tendsto (some a, ⊤)) [GOAL] case coe.top α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) a : ℝ≥0 ha : ↑a ≠ 0 ∨ ⊤ ≠ ⊤ hb : ⊤ ≠ 0 ∨ ↑a ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (↑a, ⊤)) (𝓝 (↑a * ⊤)) [PROOFSTEP] simp only [ne_eq, or_false] at ha [GOAL] case coe.top α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) a : ℝ≥0 hb : ⊤ ≠ 0 ∨ ↑a ≠ ⊤ ha : ¬↑a = 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (↑a, ⊤)) (𝓝 (↑a * ⊤)) [PROOFSTEP] simpa [(· ∘ ·), mul_comm, mul_top ha] using (ht a ha).comp (continuous_swap.tendsto (some a, ⊤)) [GOAL] case coe.coe α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) a b : ℝ≥0 ha : ↑a ≠ 0 ∨ ↑b ≠ ⊤ hb : ↑b ≠ 0 ∨ ↑a ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (↑a, ↑b)) (𝓝 (↑a * ↑b)) [PROOFSTEP] | coe b => simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul] [GOAL] case coe.coe α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ht : ∀ (b : ℝ≥0∞), b ≠ 0 → Tendsto (fun p => p.fst * p.snd) (𝓝 (⊤, b)) (𝓝 ⊤) a b : ℝ≥0 ha : ↑a ≠ 0 ∨ ↑b ≠ ⊤ hb : ↑b ≠ 0 ∨ ↑a ≠ ⊤ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (↑a, ↑b)) (𝓝 (↑a * ↑b)) [PROOFSTEP] simp only [nhds_coe_coe, ← coe_mul, tendsto_coe, tendsto_map'_iff, (· ∘ ·), tendsto_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α m : α → ℝ≥0∞ a b : ℝ≥0∞ hm : Tendsto m f (𝓝 b) hb : b ≠ 0 ∨ a ≠ ⊤ this : a = 0 ⊢ Tendsto (fun b => a * m b) f (𝓝 (a * b)) [PROOFSTEP] simp [this, tendsto_const_nhds] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α m : α → ℝ≥0∞ a b : ℝ≥0∞ hm : Tendsto m f (𝓝 a) ha : a ≠ 0 ∨ b ≠ ⊤ ⊢ Tendsto (fun x => m x * b) f (𝓝 (a * b)) [PROOFSTEP] simpa only [mul_comm] using ENNReal.Tendsto.const_mul hm ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ ι : Type u_4 f : ι → α → ℝ≥0∞ x : Filter α a : ι → ℝ≥0∞ s : Finset ι h : ∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a i)) h' : ∀ (i : ι), i ∈ s → a i ≠ ⊤ ⊢ Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a c)) [PROOFSTEP] induction' s using Finset.induction with a s has IH [GOAL] case empty α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ ι : Type u_4 f : ι → α → ℝ≥0∞ x : Filter α a : ι → ℝ≥0∞ s : Finset ι h✝ : ∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a i)) h'✝ : ∀ (i : ι), i ∈ s → a i ≠ ⊤ h : ∀ (i : ι), i ∈ ∅ → Tendsto (f i) x (𝓝 (a i)) h' : ∀ (i : ι), i ∈ ∅ → a i ≠ ⊤ ⊢ Tendsto (fun b => ∏ c in ∅, f c b) x (𝓝 (∏ c in ∅, a c)) [PROOFSTEP] simp [tendsto_const_nhds] [GOAL] case insert α : Type u_1 β : Type u_2 γ : Type u_3 a✝¹ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ ι : Type u_4 f : ι → α → ℝ≥0∞ x : Filter α a✝ : ι → ℝ≥0∞ s✝ : Finset ι h✝ : ∀ (i : ι), i ∈ s✝ → Tendsto (f i) x (𝓝 (a✝ i)) h'✝ : ∀ (i : ι), i ∈ s✝ → a✝ i ≠ ⊤ a : ι s : Finset ι has : ¬a ∈ s IH : (∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a✝ i))) → (∀ (i : ι), i ∈ s → a✝ i ≠ ⊤) → Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a✝ c)) h : ∀ (i : ι), i ∈ insert a s → Tendsto (f i) x (𝓝 (a✝ i)) h' : ∀ (i : ι), i ∈ insert a s → a✝ i ≠ ⊤ ⊢ Tendsto (fun b => ∏ c in insert a s, f c b) x (𝓝 (∏ c in insert a s, a✝ c)) [PROOFSTEP] simp only [Finset.prod_insert has] [GOAL] case insert α : Type u_1 β : Type u_2 γ : Type u_3 a✝¹ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ ι : Type u_4 f : ι → α → ℝ≥0∞ x : Filter α a✝ : ι → ℝ≥0∞ s✝ : Finset ι h✝ : ∀ (i : ι), i ∈ s✝ → Tendsto (f i) x (𝓝 (a✝ i)) h'✝ : ∀ (i : ι), i ∈ s✝ → a✝ i ≠ ⊤ a : ι s : Finset ι has : ¬a ∈ s IH : (∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a✝ i))) → (∀ (i : ι), i ∈ s → a✝ i ≠ ⊤) → Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a✝ c)) h : ∀ (i : ι), i ∈ insert a s → Tendsto (f i) x (𝓝 (a✝ i)) h' : ∀ (i : ι), i ∈ insert a s → a✝ i ≠ ⊤ ⊢ Tendsto (fun b => f a b * ∏ c in s, f c b) x (𝓝 (a✝ a * ∏ c in s, a✝ c)) [PROOFSTEP] apply Tendsto.mul (h _ (Finset.mem_insert_self _ _)) [GOAL] case insert.ha α : Type u_1 β : Type u_2 γ : Type u_3 a✝¹ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ ι : Type u_4 f : ι → α → ℝ≥0∞ x : Filter α a✝ : ι → ℝ≥0∞ s✝ : Finset ι h✝ : ∀ (i : ι), i ∈ s✝ → Tendsto (f i) x (𝓝 (a✝ i)) h'✝ : ∀ (i : ι), i ∈ s✝ → a✝ i ≠ ⊤ a : ι s : Finset ι has : ¬a ∈ s IH : (∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a✝ i))) → (∀ (i : ι), i ∈ s → a✝ i ≠ ⊤) → Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a✝ c)) h : ∀ (i : ι), i ∈ insert a s → Tendsto (f i) x (𝓝 (a✝ i)) h' : ∀ (i : ι), i ∈ insert a s → a✝ i ≠ ⊤ ⊢ a✝ a ≠ 0 ∨ ∏ c in s, a✝ c ≠ ⊤ [PROOFSTEP] right [GOAL] case insert.ha.h α : Type u_1 β : Type u_2 γ : Type u_3 a✝¹ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ ι : Type u_4 f : ι → α → ℝ≥0∞ x : Filter α a✝ : ι → ℝ≥0∞ s✝ : Finset ι h✝ : ∀ (i : ι), i ∈ s✝ → Tendsto (f i) x (𝓝 (a✝ i)) h'✝ : ∀ (i : ι), i ∈ s✝ → a✝ i ≠ ⊤ a : ι s : Finset ι has : ¬a ∈ s IH : (∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a✝ i))) → (∀ (i : ι), i ∈ s → a✝ i ≠ ⊤) → Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a✝ c)) h : ∀ (i : ι), i ∈ insert a s → Tendsto (f i) x (𝓝 (a✝ i)) h' : ∀ (i : ι), i ∈ insert a s → a✝ i ≠ ⊤ ⊢ ∏ c in s, a✝ c ≠ ⊤ [PROOFSTEP] exact (prod_lt_top fun i hi => h' _ (Finset.mem_insert_of_mem hi)).ne [GOAL] case insert.hmb α : Type u_1 β : Type u_2 γ : Type u_3 a✝¹ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ ι : Type u_4 f : ι → α → ℝ≥0∞ x : Filter α a✝ : ι → ℝ≥0∞ s✝ : Finset ι h✝ : ∀ (i : ι), i ∈ s✝ → Tendsto (f i) x (𝓝 (a✝ i)) h'✝ : ∀ (i : ι), i ∈ s✝ → a✝ i ≠ ⊤ a : ι s : Finset ι has : ¬a ∈ s IH : (∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a✝ i))) → (∀ (i : ι), i ∈ s → a✝ i ≠ ⊤) → Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a✝ c)) h : ∀ (i : ι), i ∈ insert a s → Tendsto (f i) x (𝓝 (a✝ i)) h' : ∀ (i : ι), i ∈ insert a s → a✝ i ≠ ⊤ ⊢ Tendsto (fun a => ∏ c in s, f c a) x (𝓝 (∏ c in s, a✝ c)) [PROOFSTEP] exact IH (fun i hi => h _ (Finset.mem_insert_of_mem hi)) fun i hi => h' _ (Finset.mem_insert_of_mem hi) [GOAL] case insert.hb α : Type u_1 β : Type u_2 γ : Type u_3 a✝¹ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ ι : Type u_4 f : ι → α → ℝ≥0∞ x : Filter α a✝ : ι → ℝ≥0∞ s✝ : Finset ι h✝ : ∀ (i : ι), i ∈ s✝ → Tendsto (f i) x (𝓝 (a✝ i)) h'✝ : ∀ (i : ι), i ∈ s✝ → a✝ i ≠ ⊤ a : ι s : Finset ι has : ¬a ∈ s IH : (∀ (i : ι), i ∈ s → Tendsto (f i) x (𝓝 (a✝ i))) → (∀ (i : ι), i ∈ s → a✝ i ≠ ⊤) → Tendsto (fun b => ∏ c in s, f c b) x (𝓝 (∏ c in s, a✝ c)) h : ∀ (i : ι), i ∈ insert a s → Tendsto (f i) x (𝓝 (a✝ i)) h' : ∀ (i : ι), i ∈ insert a s → a✝ i ≠ ⊤ ⊢ ∏ c in s, a✝ c ≠ 0 ∨ a✝ a ≠ ⊤ [PROOFSTEP] exact Or.inr (h' _ (Finset.mem_insert_self _ _)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ c : ℝ≥0∞ c_ne_zero : c ≠ 0 ⊢ Continuous fun x => x / c [PROOFSTEP] simp_rw [div_eq_mul_inv, continuous_iff_continuousAt] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ c : ℝ≥0∞ c_ne_zero : c ≠ 0 ⊢ ∀ (x : ℝ≥0∞), ContinuousAt (fun x => x * c⁻¹) x [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ c : ℝ≥0∞ c_ne_zero : c ≠ 0 x : ℝ≥0∞ ⊢ ContinuousAt (fun x => x * c⁻¹) x [PROOFSTEP] exact ENNReal.continuousAt_mul_const (Or.intro_left _ (inv_ne_top.mpr c_ne_zero)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ ⊢ Continuous fun a => a ^ n [PROOFSTEP] induction' n with n IH [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ Continuous fun a => a ^ Nat.zero [PROOFSTEP] simp [continuous_const] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n ⊢ Continuous fun a => a ^ Nat.succ n [PROOFSTEP] simp_rw [Nat.succ_eq_add_one, pow_add, pow_one, continuous_iff_continuousAt] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n ⊢ ∀ (x : ℝ≥0∞), ContinuousAt (fun a => a ^ n * a) x [PROOFSTEP] intro x [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ ⊢ ContinuousAt (fun a => a ^ n * a) x [PROOFSTEP] refine' ENNReal.Tendsto.mul (IH.tendsto _) _ tendsto_id _ [GOAL] case succ.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ ⊢ x ^ n ≠ 0 ∨ x ≠ ⊤ [PROOFSTEP] by_cases H : x = 0 [GOAL] case succ.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ ⊢ x ≠ 0 ∨ x ^ n ≠ ⊤ [PROOFSTEP] by_cases H : x = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ H : x = 0 ⊢ x ^ n ≠ 0 ∨ x ≠ ⊤ [PROOFSTEP] simp only [H, zero_ne_top, Ne.def, or_true_iff, not_false_iff] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ H : ¬x = 0 ⊢ x ^ n ≠ 0 ∨ x ≠ ⊤ [PROOFSTEP] exact Or.inl fun h => H (pow_eq_zero h) [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ H : x = 0 ⊢ x ≠ 0 ∨ x ^ n ≠ ⊤ [PROOFSTEP] simp only [H, pow_eq_top_iff, zero_ne_top, false_or_iff, eq_self_iff_true, not_true, Ne.def, not_false_iff, false_and_iff] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ n : ℕ IH : Continuous fun a => a ^ n x : ℝ≥0∞ H : ¬x = 0 ⊢ x ≠ 0 ∨ x ^ n ≠ ⊤ [PROOFSTEP] simp only [H, true_or_iff, Ne.def, not_false_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ ContinuousOn (fun p => p.fst - p.snd) {p | p ≠ (⊤, ⊤)} [PROOFSTEP] rw [ContinuousOn] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ ∀ (x : ℝ≥0∞ × ℝ≥0∞), x ∈ {p | p ≠ (⊤, ⊤)} → ContinuousWithinAt (fun p => p.fst - p.snd) {p | p ≠ (⊤, ⊤)} x [PROOFSTEP] rintro ⟨x, y⟩ hp [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y : ℝ≥0∞ hp : (x, y) ∈ {p | p ≠ (⊤, ⊤)} ⊢ ContinuousWithinAt (fun p => p.fst - p.snd) {p | p ≠ (⊤, ⊤)} (x, y) [PROOFSTEP] simp only [Ne.def, Set.mem_setOf_eq, Prod.mk.inj_iff] at hp [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y : ℝ≥0∞ hp : ¬(x = ⊤ ∧ y = ⊤) ⊢ ContinuousWithinAt (fun p => p.fst - p.snd) {p | p ≠ (⊤, ⊤)} (x, y) [PROOFSTEP] refine' tendsto_nhdsWithin_of_tendsto_nhds (tendsto_sub (not_and_or.mp hp)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_ne_top : a ≠ ⊤ ⊢ Continuous fun x => a - x [PROOFSTEP] change Continuous (Function.uncurry Sub.sub ∘ (a, ·)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_ne_top : a ≠ ⊤ ⊢ Continuous (uncurry Sub.sub ∘ fun x => (a, x)) [PROOFSTEP] refine continuousOn_sub.comp_continuous (Continuous.Prod.mk a) fun x => ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_ne_top : a ≠ ⊤ x : ℝ≥0∞ ⊢ (a, x) ∈ {p | p ≠ (⊤, ⊤)} [PROOFSTEP] simp only [a_ne_top, Ne.def, mem_setOf_eq, Prod.mk.inj_iff, false_and_iff, not_false_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ ⊢ ContinuousOn (fun x => a - x) {x | x ≠ ⊤} [PROOFSTEP] rw [show (fun x => a - x) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨a, x⟩ by rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ ⊢ (fun x => a - x) = (fun p => p.fst - p.snd) ∘ fun x => (a, x) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ ⊢ ContinuousOn ((fun p => p.fst - p.snd) ∘ fun x => (a, x)) {x | x ≠ ⊤} [PROOFSTEP] apply ContinuousOn.comp continuousOn_sub (Continuous.continuousOn (Continuous.Prod.mk a)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ ⊢ MapsTo (fun b => (a, b)) {x | x ≠ ⊤} {p | p ≠ (⊤, ⊤)} [PROOFSTEP] rintro _ h (_ | _) [GOAL] case refl α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ h : ⊤ ∈ {x | x ≠ ⊤} ⊢ False [PROOFSTEP] exact h none_eq_top [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ ⊢ Continuous fun x => x - a [PROOFSTEP] by_cases a_infty : a = ∞ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_infty : a = ⊤ ⊢ Continuous fun x => x - a [PROOFSTEP] simp [a_infty, continuous_const] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_infty : ¬a = ⊤ ⊢ Continuous fun x => x - a [PROOFSTEP] rw [show (fun x => x - a) = (fun p : ℝ≥0∞ × ℝ≥0∞ => p.fst - p.snd) ∘ fun x => ⟨x, a⟩ by rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_infty : ¬a = ⊤ ⊢ (fun x => x - a) = (fun p => p.fst - p.snd) ∘ fun x => (x, a) [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_infty : ¬a = ⊤ ⊢ Continuous ((fun p => p.fst - p.snd) ∘ fun x => (x, a)) [PROOFSTEP] apply ContinuousOn.comp_continuous continuousOn_sub (continuous_id'.prod_mk continuous_const) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_infty : ¬a = ⊤ ⊢ ∀ (x : ℝ≥0∞), (x, a) ∈ {p | p ≠ (⊤, ⊤)} [PROOFSTEP] intro x [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ a : ℝ≥0∞ a_infty : ¬a = ⊤ x : ℝ≥0∞ ⊢ (x, a) ∈ {p | p ≠ (⊤, ⊤)} [PROOFSTEP] simp only [a_infty, Ne.def, mem_setOf_eq, Prod.mk.inj_iff, and_false_iff, not_false_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y : ℝ≥0∞ h : ∀ (a : ℝ≥0∞), a < 1 → a * x ≤ y ⊢ x ≤ y [PROOFSTEP] have : Tendsto (· * x) (𝓝[<] 1) (𝓝 (1 * x)) := (ENNReal.continuousAt_mul_const (Or.inr one_ne_zero)).mono_left inf_le_left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y : ℝ≥0∞ h : ∀ (a : ℝ≥0∞), a < 1 → a * x ≤ y this : Tendsto (fun x_1 => x_1 * x) (𝓝[Iio 1] 1) (𝓝 (1 * x)) ⊢ x ≤ y [PROOFSTEP] rw [one_mul] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y : ℝ≥0∞ h : ∀ (a : ℝ≥0∞), a < 1 → a * x ≤ y this : Tendsto (fun x_1 => x_1 * x) (𝓝[Iio 1] 1) (𝓝 x) ⊢ x ≤ y [PROOFSTEP] exact le_of_tendsto this (eventually_nhdsWithin_iff.2 <| eventually_of_forall h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι ⊢ ⨅ (i : ι), a * f i = a * ⨅ (i : ι), f i [PROOFSTEP] by_cases H : a = ⊤ ∧ ⨅ i, f i = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : a = ⊤ ∧ ⨅ (i : ι), f i = 0 ⊢ ⨅ (i : ι), a * f i = a * ⨅ (i : ι), f i [PROOFSTEP] rcases h H.1 H.2 with ⟨i, hi⟩ [GOAL] case pos.intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : a = ⊤ ∧ ⨅ (i : ι), f i = 0 i : ι hi : f i = 0 ⊢ ⨅ (i : ι), a * f i = a * ⨅ (i : ι), f i [PROOFSTEP] rw [H.2, mul_zero, ← bot_eq_zero, iInf_eq_bot] [GOAL] case pos.intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : a = ⊤ ∧ ⨅ (i : ι), f i = 0 i : ι hi : f i = 0 ⊢ ∀ (b : ℝ≥0∞), b > ⊥ → ∃ i, a * f i < b [PROOFSTEP] exact fun b hb => ⟨i, by rwa [hi, mul_zero, ← bot_eq_zero]⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : a = ⊤ ∧ ⨅ (i : ι), f i = 0 i : ι hi : f i = 0 b : ℝ≥0∞ hb : b > ⊥ ⊢ a * f i < b [PROOFSTEP] rwa [hi, mul_zero, ← bot_eq_zero] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : ¬(a = ⊤ ∧ ⨅ (i : ι), f i = 0) ⊢ ⨅ (i : ι), a * f i = a * ⨅ (i : ι), f i [PROOFSTEP] rw [not_and_or] at H [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : ¬a = ⊤ ∨ ¬⨅ (i : ι), f i = 0 ⊢ ⨅ (i : ι), a * f i = a * ⨅ (i : ι), f i [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case neg.inl α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : ¬a = ⊤ ∨ ¬⨅ (i : ι), f i = 0 h✝ : IsEmpty ι ⊢ ⨅ (i : ι), a * f i = a * ⨅ (i : ι), f i [PROOFSTEP] rw [iInf_of_empty, iInf_of_empty, mul_top] [GOAL] case neg.inl α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : ¬a = ⊤ ∨ ¬⨅ (i : ι), f i = 0 h✝ : IsEmpty ι ⊢ a ≠ 0 [PROOFSTEP] exact mt h0 (not_nonempty_iff.2 ‹_›) [GOAL] case neg.inr α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι H : ¬a = ⊤ ∨ ¬⨅ (i : ι), f i = 0 h✝ : Nonempty ι ⊢ ⨅ (i : ι), a * f i = a * ⨅ (i : ι), f i [PROOFSTEP] exact (ENNReal.mul_left_mono.map_iInf_of_continuousAt' (ENNReal.continuousAt_const_mul H)).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ h : a = ⊤ → ⨅ (i : ι), f i = 0 → ∃ i, f i = 0 h0 : a = 0 → Nonempty ι ⊢ ⨅ (i : ι), f i * a = (⨅ (i : ι), f i) * a [PROOFSTEP] simpa only [mul_comm a] using iInf_mul_left' h h0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α m : α → ℝ≥0∞ a : ℝ≥0∞ h : Tendsto (fun x => (m x)⁻¹) f (𝓝 a⁻¹) ⊢ Tendsto m f (𝓝 a) [PROOFSTEP] simpa only [inv_inv] using Tendsto.inv h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α ma mb : α → ℝ≥0∞ a b : ℝ≥0∞ hma : Tendsto ma f (𝓝 a) ha : a ≠ 0 ∨ b ≠ 0 hmb : Tendsto mb f (𝓝 b) hb : b ≠ ⊤ ∨ a ≠ ⊤ ⊢ Tendsto (fun a => ma a / mb a) f (𝓝 (a / b)) [PROOFSTEP] apply Tendsto.mul hma _ (ENNReal.tendsto_inv_iff.2 hmb) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α ma mb : α → ℝ≥0∞ a b : ℝ≥0∞ hma : Tendsto ma f (𝓝 a) ha : a ≠ 0 ∨ b ≠ 0 hmb : Tendsto mb f (𝓝 b) hb : b ≠ ⊤ ∨ a ≠ ⊤ ⊢ a ≠ 0 ∨ b⁻¹ ≠ ⊤ [PROOFSTEP] simp [ha, hb] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α ma mb : α → ℝ≥0∞ a b : ℝ≥0∞ hma : Tendsto ma f (𝓝 a) ha : a ≠ 0 ∨ b ≠ 0 hmb : Tendsto mb f (𝓝 b) hb : b ≠ ⊤ ∨ a ≠ ⊤ ⊢ b⁻¹ ≠ 0 ∨ a ≠ ⊤ [PROOFSTEP] simp [ha, hb] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α m : α → ℝ≥0∞ a b : ℝ≥0∞ hm : Tendsto m f (𝓝 b) hb : b ≠ ⊤ ∨ a ≠ ⊤ ⊢ Tendsto (fun b => a / m b) f (𝓝 (a / b)) [PROOFSTEP] apply Tendsto.const_mul (ENNReal.tendsto_inv_iff.2 hm) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α m : α → ℝ≥0∞ a b : ℝ≥0∞ hm : Tendsto m f (𝓝 b) hb : b ≠ ⊤ ∨ a ≠ ⊤ ⊢ b⁻¹ ≠ 0 ∨ a ≠ ⊤ [PROOFSTEP] simp [hb] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α m : α → ℝ≥0∞ a b : ℝ≥0∞ hm : Tendsto m f (𝓝 a) ha : a ≠ 0 ∨ b ≠ 0 ⊢ Tendsto (fun x => m x / b) f (𝓝 (a / b)) [PROOFSTEP] apply Tendsto.mul_const hm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b✝ c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : Filter α m : α → ℝ≥0∞ a b : ℝ≥0∞ hm : Tendsto m f (𝓝 a) ha : a ≠ 0 ∨ b ≠ 0 ⊢ a ≠ 0 ∨ b⁻¹ ≠ ⊤ [PROOFSTEP] simp [ha] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p✝ q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 p : ι → Prop h : ∃ i, p i f : ι → ℝ≥0∞ ⊢ (⨆ (i : ι) (_ : p i), f i) + a = ⨆ (i : ι) (_ : p i), f i + a [PROOFSTEP] haveI : Nonempty { i // p i } := nonempty_subtype.2 h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p✝ q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 p : ι → Prop h : ∃ i, p i f : ι → ℝ≥0∞ this : Nonempty { i // p i } ⊢ (⨆ (i : ι) (_ : p i), f i) + a = ⨆ (i : ι) (_ : p i), f i + a [PROOFSTEP] simp only [iSup_subtype', iSup_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p✝ q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 p : ι → Prop h : ∃ i, p i f : ι → ℝ≥0∞ ⊢ a + ⨆ (i : ι) (_ : p i), f i = ⨆ (i : ι) (_ : p i), a + f i [PROOFSTEP] simp only [add_comm a, biSup_add' h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ s : Set ℝ≥0∞ hs : Set.Nonempty s ⊢ sSup s + a = ⨆ (b : ℝ≥0∞) (_ : b ∈ s), b + a [PROOFSTEP] rw [sSup_eq_iSup, biSup_add hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ ι : Sort u_4 s : ι → ℝ≥0∞ inst✝ : Nonempty ι ⊢ a + iSup s = ⨆ (b : ι), a + s b [PROOFSTEP] rw [add_comm, iSup_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ ι : Sort u_4 s : ι → ℝ≥0∞ inst✝ : Nonempty ι ⊢ ⨆ (b : ι), s b + a = ⨆ (b : ι), a + s b [PROOFSTEP] simp [add_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 ι' : Sort u_5 inst✝¹ : Nonempty ι inst✝ : Nonempty ι' f : ι → ℝ≥0∞ g : ι' → ℝ≥0∞ a : ℝ≥0∞ h : ∀ (i : ι) (j : ι'), f i + g j ≤ a ⊢ iSup f + iSup g ≤ a [PROOFSTEP] simp_rw [iSup_add, add_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 ι' : Sort u_5 inst✝¹ : Nonempty ι inst✝ : Nonempty ι' f : ι → ℝ≥0∞ g : ι' → ℝ≥0∞ a : ℝ≥0∞ h : ∀ (i : ι) (j : ι'), f i + g j ≤ a ⊢ ⨆ (b : ι) (b_1 : ι'), f b + g b_1 ≤ a [PROOFSTEP] exact iSup₂_le h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p✝ q✝ : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 ι' : Sort u_5 p : ι → Prop q : ι' → Prop hp : ∃ i, p i hq : ∃ j, q j f : ι → ℝ≥0∞ g : ι' → ℝ≥0∞ a : ℝ≥0∞ h : ∀ (i : ι), p i → ∀ (j : ι'), q j → f i + g j ≤ a ⊢ (⨆ (i : ι) (_ : p i), f i) + ⨆ (j : ι') (_ : q j), g j ≤ a [PROOFSTEP] simp_rw [biSup_add' hp, add_biSup' hq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p✝ q✝ : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 ι' : Sort u_5 p : ι → Prop q : ι' → Prop hp : ∃ i, p i hq : ∃ j, q j f : ι → ℝ≥0∞ g : ι' → ℝ≥0∞ a : ℝ≥0∞ h : ∀ (i : ι), p i → ∀ (j : ι'), q j → f i + g j ≤ a ⊢ ⨆ (i : ι) (_ : p i) (i_1 : ι') (_ : q i_1), f i + g i_1 ≤ a [PROOFSTEP] exact iSup₂_le fun i hi => iSup₂_le (h i hi) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f g : ι → ℝ≥0∞ h : ∀ (i j : ι), ∃ k, f i + g j ≤ f k + g k ⊢ iSup f + iSup g = ⨆ (a : ι), f a + g a [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f g : ι → ℝ≥0∞ h : ∀ (i j : ι), ∃ k, f i + g j ≤ f k + g k h✝ : IsEmpty ι ⊢ iSup f + iSup g = ⨆ (a : ι), f a + g a [PROOFSTEP] simp only [iSup_of_empty, bot_eq_zero, zero_add] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f g : ι → ℝ≥0∞ h : ∀ (i j : ι), ∃ k, f i + g j ≤ f k + g k h✝ : Nonempty ι ⊢ iSup f + iSup g = ⨆ (a : ι), f a + g a [PROOFSTEP] refine' le_antisymm _ (iSup_le fun a => add_le_add (le_iSup _ _) (le_iSup _ _)) [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f g : ι → ℝ≥0∞ h : ∀ (i j : ι), ∃ k, f i + g j ≤ f k + g k h✝ : Nonempty ι ⊢ iSup f + iSup g ≤ ⨆ (a : ι), f a + g a [PROOFSTEP] refine' iSup_add_iSup_le fun i j => _ [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f g : ι → ℝ≥0∞ h : ∀ (i j : ι), ∃ k, f i + g j ≤ f k + g k h✝ : Nonempty ι i j : ι ⊢ f i + g j ≤ ⨆ (a : ι), f a + g a [PROOFSTEP] rcases h i j with ⟨k, hk⟩ [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f g : ι → ℝ≥0∞ h : ∀ (i j : ι), ∃ k, f i + g j ≤ f k + g k h✝ : Nonempty ι i j k : ι hk : f i + g j ≤ f k + g k ⊢ f i + g j ≤ ⨆ (a : ι), f a + g a [PROOFSTEP] exact le_iSup_of_le k hk [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ α : Type u_4 ι : Type u_5 inst✝ : SemilatticeSup ι s : Finset α f : α → ι → ℝ≥0∞ hf : ∀ (a : α), Monotone (f a) ⊢ ∑ a in s, iSup (f a) = ⨆ (n : ι), ∑ a in s, f a n [PROOFSTEP] refine' Finset.induction_on s _ _ [GOAL] case refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ α : Type u_4 ι : Type u_5 inst✝ : SemilatticeSup ι s : Finset α f : α → ι → ℝ≥0∞ hf : ∀ (a : α), Monotone (f a) ⊢ ∑ a in ∅, iSup (f a) = ⨆ (n : ι), ∑ a in ∅, f a n [PROOFSTEP] simp [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ α : Type u_4 ι : Type u_5 inst✝ : SemilatticeSup ι s : Finset α f : α → ι → ℝ≥0∞ hf : ∀ (a : α), Monotone (f a) ⊢ ∀ ⦃a : α⦄ {s : Finset α}, ¬a ∈ s → ∑ a in s, iSup (f a) = ⨆ (n : ι), ∑ a in s, f a n → ∑ a in insert a s, iSup (f a) = ⨆ (n : ι), ∑ a in insert a s, f a n [PROOFSTEP] intro a s has ih [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ α : Type u_4 ι : Type u_5 inst✝ : SemilatticeSup ι s✝ : Finset α f : α → ι → ℝ≥0∞ hf : ∀ (a : α), Monotone (f a) a : α s : Finset α has : ¬a ∈ s ih : ∑ a in s, iSup (f a) = ⨆ (n : ι), ∑ a in s, f a n ⊢ ∑ a in insert a s, iSup (f a) = ⨆ (n : ι), ∑ a in insert a s, f a n [PROOFSTEP] simp only [Finset.sum_insert has] [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ α : Type u_4 ι : Type u_5 inst✝ : SemilatticeSup ι s✝ : Finset α f : α → ι → ℝ≥0∞ hf : ∀ (a : α), Monotone (f a) a : α s : Finset α has : ¬a ∈ s ih : ∑ a in s, iSup (f a) = ⨆ (n : ι), ∑ a in s, f a n ⊢ iSup (f a) + ∑ a in s, iSup (f a) = ⨆ (n : ι), f a n + ∑ a in s, f a n [PROOFSTEP] rw [ih, iSup_add_iSup_of_monotone (hf a)] [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ α : Type u_4 ι : Type u_5 inst✝ : SemilatticeSup ι s✝ : Finset α f : α → ι → ℝ≥0∞ hf : ∀ (a : α), Monotone (f a) a : α s : Finset α has : ¬a ∈ s ih : ∑ a in s, iSup (f a) = ⨆ (n : ι), ∑ a in s, f a n ⊢ Monotone fun n => ∑ a in s, f a n [PROOFSTEP] intro i j h [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝¹ : Set ℝ≥0∞ α : Type u_4 ι : Type u_5 inst✝ : SemilatticeSup ι s✝ : Finset α f : α → ι → ℝ≥0∞ hf : ∀ (a : α), Monotone (f a) a : α s : Finset α has : ¬a ∈ s ih : ∑ a in s, iSup (f a) = ⨆ (n : ι), ∑ a in s, f a n i j : ι h : i ≤ j ⊢ (fun n => ∑ a in s, f a n) i ≤ (fun n => ∑ a in s, f a n) j [PROOFSTEP] exact Finset.sum_le_sum fun a _ => hf a h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ ⊢ a * iSup f = ⨆ (i : ι), a * f i [PROOFSTEP] by_cases hf : ∀ i, f i = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ hf : ∀ (i : ι), f i = 0 ⊢ a * iSup f = ⨆ (i : ι), a * f i [PROOFSTEP] obtain rfl : f = fun _ => 0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ hf : ∀ (i : ι), f i = 0 ⊢ f = fun x => 0 case pos α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 a : ℝ≥0∞ hf : ∀ (i : ι), (fun x => 0) i = 0 ⊢ a * ⨆ (x : ι), 0 = ⨆ (i : ι), a * (fun x => 0) i [PROOFSTEP] exact funext hf [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 a : ℝ≥0∞ hf : ∀ (i : ι), (fun x => 0) i = 0 ⊢ a * ⨆ (x : ι), 0 = ⨆ (i : ι), a * (fun x => 0) i [PROOFSTEP] simp only [iSup_zero_eq_zero, mul_zero] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ hf : ¬∀ (i : ι), f i = 0 ⊢ a * iSup f = ⨆ (i : ι), a * f i [PROOFSTEP] refine' (monotone_id.const_mul' _).map_iSup_of_continuousAt _ (mul_zero a) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ hf : ¬∀ (i : ι), f i = 0 ⊢ ContinuousAt (fun x => a * id x) (⨆ (i : ι), f i) [PROOFSTEP] refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ hf : ¬∀ (i : ι), f i = 0 ⊢ id (⨆ (i : ι), f i) ≠ 0 [PROOFSTEP] exact mt iSup_eq_zero.1 hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ s : Set ℝ≥0∞ a : ℝ≥0∞ ⊢ a * sSup s = ⨆ (i : ℝ≥0∞) (_ : i ∈ s), a * i [PROOFSTEP] simp only [sSup_eq_iSup, mul_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ ⊢ iSup f * a = ⨆ (i : ι), f i * a [PROOFSTEP] rw [mul_comm, mul_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ ⊢ ⨆ (i : ι), a * f i = ⨆ (i : ι), f i * a [PROOFSTEP] congr [GOAL] case e_s α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ ⊢ (fun i => a * f i) = fun i => f i * a [PROOFSTEP] funext [GOAL] case e_s.h α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 f : ι → ℝ≥0∞ a : ℝ≥0∞ x✝ : ι ⊢ a * f x✝ = f x✝ * a [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Sort u_4 R : Type u_5 inst✝¹ : SMul R ℝ≥0∞ inst✝ : IsScalarTower R ℝ≥0∞ ℝ≥0∞ f : ι → ℝ≥0∞ c : R ⊢ c • ⨆ (i : ι), f i = ⨆ (i : ι), c • f i [PROOFSTEP] simp only [← smul_one_mul c (f _), ← smul_one_mul c (iSup f), ENNReal.mul_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ R : Type u_4 inst✝¹ : SMul R ℝ≥0∞ inst✝ : IsScalarTower R ℝ≥0∞ ℝ≥0∞ s : Set ℝ≥0∞ c : R ⊢ c • sSup s = ⨆ (i : ℝ≥0∞) (_ : i ∈ s), c • i [PROOFSTEP] simp_rw [← smul_one_mul c (sSup s), ENNReal.mul_sSup, smul_one_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ⊢ ∃ s, Set.Countable s ∧ Dense s ∧ ¬0 ∈ s ∧ ¬⊤ ∈ s [PROOFSTEP] obtain ⟨s, s_count, s_dense, hs⟩ : ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ (∀ x, IsBot x → x ∉ s) ∧ ∀ x, IsTop x → x ∉ s := exists_countable_dense_no_bot_top ℝ≥0∞ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ s : Set ℝ≥0∞ s_count : Set.Countable s s_dense : Dense s hs : (∀ (x : ℝ≥0∞), IsBot x → ¬x ∈ s) ∧ ∀ (x : ℝ≥0∞), IsTop x → ¬x ∈ s ⊢ ∃ s, Set.Countable s ∧ Dense s ∧ ¬0 ∈ s ∧ ¬⊤ ∈ s [PROOFSTEP] exact ⟨s, s_count, s_dense, fun h => hs.1 0 (by simp) h, fun h => hs.2 ∞ (by simp) h⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ s : Set ℝ≥0∞ s_count : Set.Countable s s_dense : Dense s hs : (∀ (x : ℝ≥0∞), IsBot x → ¬x ∈ s) ∧ ∀ (x : ℝ≥0∞), IsTop x → ¬x ∈ s h : 0 ∈ s ⊢ IsBot 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ s : Set ℝ≥0∞ s_count : Set.Countable s s_dense : Dense s hs : (∀ (x : ℝ≥0∞), IsBot x → ¬x ∈ s) ∧ ∀ (x : ℝ≥0∞), IsTop x → ¬x ∈ s h : ⊤ ∈ s ⊢ IsTop ⊤ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z✝ ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y z : ℝ≥0∞ h : x < y + z hy : y ≠ 0 hz : z ≠ 0 ⊢ ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' [PROOFSTEP] have : NeZero y := ⟨hy⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z✝ ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y z : ℝ≥0∞ h : x < y + z hy : y ≠ 0 hz : z ≠ 0 this : NeZero y ⊢ ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' [PROOFSTEP] have : NeZero z := ⟨hz⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z✝ ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y z : ℝ≥0∞ h : x < y + z hy : y ≠ 0 hz : z ≠ 0 this✝ : NeZero y this : NeZero z ⊢ ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' [PROOFSTEP] have A : Tendsto (fun p : ℝ≥0∞ × ℝ≥0∞ => p.1 + p.2) (𝓝[<] y ×ˢ 𝓝[<] z) (𝓝 (y + z)) := by apply Tendsto.mono_left _ (Filter.prod_mono nhdsWithin_le_nhds nhdsWithin_le_nhds) rw [← nhds_prod_eq] exact tendsto_add [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z✝ ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y z : ℝ≥0∞ h : x < y + z hy : y ≠ 0 hz : z ≠ 0 this✝ : NeZero y this : NeZero z ⊢ Tendsto (fun p => p.fst + p.snd) (𝓝[Iio y] y ×ˢ 𝓝[Iio z] z) (𝓝 (y + z)) [PROOFSTEP] apply Tendsto.mono_left _ (Filter.prod_mono nhdsWithin_le_nhds nhdsWithin_le_nhds) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z✝ ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y z : ℝ≥0∞ h : x < y + z hy : y ≠ 0 hz : z ≠ 0 this✝ : NeZero y this : NeZero z ⊢ Tendsto (fun p => p.fst + p.snd) (𝓝 y ×ˢ 𝓝 z) (𝓝 (y + z)) [PROOFSTEP] rw [← nhds_prod_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z✝ ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y z : ℝ≥0∞ h : x < y + z hy : y ≠ 0 hz : z ≠ 0 this✝ : NeZero y this : NeZero z ⊢ Tendsto (fun p => p.fst + p.snd) (𝓝 (y, z)) (𝓝 (y + z)) [PROOFSTEP] exact tendsto_add [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z✝ ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y z : ℝ≥0∞ h : x < y + z hy : y ≠ 0 hz : z ≠ 0 this✝ : NeZero y this : NeZero z A : Tendsto (fun p => p.fst + p.snd) (𝓝[Iio y] y ×ˢ 𝓝[Iio z] z) (𝓝 (y + z)) ⊢ ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' [PROOFSTEP] rcases((A.eventually (lt_mem_nhds h)).and (Filter.prod_mem_prod self_mem_nhdsWithin self_mem_nhdsWithin)).exists with ⟨⟨y', z'⟩, hx, hy', hz'⟩ [GOAL] case intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y✝ z✝ ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ x y z : ℝ≥0∞ h : x < y + z hy : y ≠ 0 hz : z ≠ 0 this✝ : NeZero y this : NeZero z A : Tendsto (fun p => p.fst + p.snd) (𝓝[Iio y] y ×ˢ 𝓝[Iio z] z) (𝓝 (y + z)) y' z' : ℝ≥0∞ hx : x < (y', z').fst + (y', z').snd hy' : (y', z').fst ∈ Iio y hz' : (y', z').snd ∈ Iio z ⊢ ∃ y' z', y' < y ∧ z' < z ∧ x < y' + z' [PROOFSTEP] exact ⟨y', z', hy', hz', hx⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ ⊢ ∃ R, ∃ᶠ (n : ι) in l, x n < R [PROOFSTEP] by_contra h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ¬∃ R, ∃ᶠ (n : ι) in l, x n < R ⊢ False [PROOFSTEP] simp_rw [not_exists, not_frequently, not_lt] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ∀ (x_1 : ℝ), ∀ᶠ (x_2 : ι) in l, x_1 ≤ x x_2 ⊢ False [PROOFSTEP] refine hx (ENNReal.eq_top_of_forall_nnreal_le fun r => le_limsInf_of_le (by isBoundedDefault) ?_) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ∀ (x_1 : ℝ), ∀ᶠ (x_2 : ι) in l, x_1 ≤ x x_2 r : ℝ≥0 ⊢ IsCobounded (fun x x_1 => x ≥ x_1) (map (fun n => ↑(↑Real.nnabs (x n))) l) [PROOFSTEP] isBoundedDefault [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ∀ (x_1 : ℝ), ∀ᶠ (x_2 : ι) in l, x_1 ≤ x x_2 r : ℝ≥0 ⊢ ∀ᶠ (n : ℝ≥0∞) in map (fun n => ↑(↑Real.nnabs (x n))) l, ↑r ≤ n [PROOFSTEP] simp only [eventually_map, ENNReal.coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ∀ (x_1 : ℝ), ∀ᶠ (x_2 : ι) in l, x_1 ≤ x x_2 r : ℝ≥0 ⊢ ∀ᶠ (a : ι) in l, r ≤ ↑Real.nnabs (x a) [PROOFSTEP] filter_upwards [h r] with i hi using hi.trans (le_abs_self (x i)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ ⊢ ∃ R, ∃ᶠ (n : ι) in l, R < x n [PROOFSTEP] by_contra h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ¬∃ R, ∃ᶠ (n : ι) in l, R < x n ⊢ False [PROOFSTEP] simp_rw [not_exists, not_frequently, not_lt] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ∀ (x_1 : ℝ), ∀ᶠ (x_2 : ι) in l, x x_2 ≤ x_1 ⊢ False [PROOFSTEP] refine hx (ENNReal.eq_top_of_forall_nnreal_le fun r => le_limsInf_of_le (by isBoundedDefault) ?_) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ∀ (x_1 : ℝ), ∀ᶠ (x_2 : ι) in l, x x_2 ≤ x_1 r : ℝ≥0 ⊢ IsCobounded (fun x x_1 => x ≥ x_1) (map (fun n => ↑(↑Real.nnabs (x n))) l) [PROOFSTEP] isBoundedDefault [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ∀ (x_1 : ℝ), ∀ᶠ (x_2 : ι) in l, x x_2 ≤ x_1 r : ℝ≥0 ⊢ ∀ᶠ (n : ℝ≥0∞) in map (fun n => ↑(↑Real.nnabs (x n))) l, ↑r ≤ n [PROOFSTEP] simp only [eventually_map, ENNReal.coe_le_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hx : liminf (fun n => ↑(↑Real.nnabs (x n))) l ≠ ⊤ h : ∀ (x_1 : ℝ), ∀ᶠ (x_2 : ι) in l, x x_2 ≤ x_1 r : ℝ≥0 ⊢ ∀ᶠ (a : ι) in l, r ≤ ↑Real.nnabs (x a) [PROOFSTEP] filter_upwards [h (-r)] with i hi using (le_neg.1 hi).trans (neg_le_abs_self _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun i => |x i| ⊢ ∃ a b, a < b ∧ (∃ᶠ (i : ι) in l, x i < ↑a) ∧ ∃ᶠ (i : ι) in l, ↑b < x i [PROOFSTEP] rw [isBoundedUnder_le_abs, not_and_or] at hbdd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : (¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun i => x i) ∨ ¬IsBoundedUnder (fun x x_1 => x ≥ x_1) l fun i => x i ⊢ ∃ a b, a < b ∧ (∃ᶠ (i : ι) in l, x i < ↑a) ∧ ∃ᶠ (i : ι) in l, ↑b < x i [PROOFSTEP] obtain hbdd | hbdd := hbdd [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun i => x i ⊢ ∃ a b, a < b ∧ (∃ᶠ (i : ι) in l, x i < ↑a) ∧ ∃ᶠ (i : ι) in l, ↑b < x i [PROOFSTEP] obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top hf [GOAL] case inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, x n < R ⊢ ∃ a b, a < b ∧ (∃ᶠ (i : ι) in l, x i < ↑a) ∧ ∃ᶠ (i : ι) in l, ↑b < x i [PROOFSTEP] obtain ⟨q, hq⟩ := exists_rat_gt R [GOAL] case inl.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, x n < R q : ℚ hq : R < ↑q ⊢ ∃ a b, a < b ∧ (∃ᶠ (i : ι) in l, x i < ↑a) ∧ ∃ᶠ (i : ι) in l, ↑b < x i [PROOFSTEP] refine' ⟨q, q + 1, (lt_add_iff_pos_right _).2 zero_lt_one, _, _⟩ [GOAL] case inl.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, x n < R q : ℚ hq : R < ↑q ⊢ ∃ᶠ (i : ι) in l, x i < ↑q [PROOFSTEP] refine' fun hcon => hR _ [GOAL] case inl.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, x n < R q : ℚ hq : R < ↑q hcon : ∀ᶠ (x_1 : ι) in l, ¬(fun i => x i < ↑q) x_1 ⊢ ∀ᶠ (x_1 : ι) in l, ¬(fun n => x n < R) x_1 [PROOFSTEP] filter_upwards [hcon] with x hx using not_lt.2 (lt_of_lt_of_le hq (not_lt.1 hx)).le [GOAL] case inl.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, x n < R q : ℚ hq : R < ↑q ⊢ ∃ᶠ (i : ι) in l, ↑(q + 1) < x i [PROOFSTEP] simp only [IsBoundedUnder, IsBounded, eventually_map, eventually_atTop, ge_iff_le, not_exists, not_forall, not_le, exists_prop] at hbdd [GOAL] case inl.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ R : ℝ hR : ∃ᶠ (n : ι) in l, x n < R q : ℚ hq : R < ↑q hbdd : ∀ (x_1 : ℝ), ¬∀ᶠ (a : ι) in l, x a ≤ x_1 ⊢ ∃ᶠ (i : ι) in l, ↑(q + 1) < x i [PROOFSTEP] refine' fun hcon => hbdd ↑(q + 1) _ [GOAL] case inl.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ R : ℝ hR : ∃ᶠ (n : ι) in l, x n < R q : ℚ hq : R < ↑q hbdd : ∀ (x_1 : ℝ), ¬∀ᶠ (a : ι) in l, x a ≤ x_1 hcon : ∀ᶠ (x_1 : ι) in l, ¬(fun i => ↑(q + 1) < x i) x_1 ⊢ ∀ᶠ (a : ι) in l, x a ≤ ↑(q + 1) [PROOFSTEP] filter_upwards [hcon] with x hx using not_lt.1 hx [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≥ x_1) l fun i => x i ⊢ ∃ a b, a < b ∧ (∃ᶠ (i : ι) in l, x i < ↑a) ∧ ∃ᶠ (i : ι) in l, ↑b < x i [PROOFSTEP] obtain ⟨R, hR⟩ := exists_frequently_lt_of_liminf_ne_top' hf [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≥ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, R < x n ⊢ ∃ a b, a < b ∧ (∃ᶠ (i : ι) in l, x i < ↑a) ∧ ∃ᶠ (i : ι) in l, ↑b < x i [PROOFSTEP] obtain ⟨q, hq⟩ := exists_rat_lt R [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≥ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, R < x n q : ℚ hq : ↑q < R ⊢ ∃ a b, a < b ∧ (∃ᶠ (i : ι) in l, x i < ↑a) ∧ ∃ᶠ (i : ι) in l, ↑b < x i [PROOFSTEP] refine' ⟨q - 1, q, (sub_lt_self_iff _).2 zero_lt_one, _, _⟩ [GOAL] case inr.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≥ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, R < x n q : ℚ hq : ↑q < R ⊢ ∃ᶠ (i : ι) in l, x i < ↑(q - 1) [PROOFSTEP] simp only [IsBoundedUnder, IsBounded, eventually_map, eventually_atTop, ge_iff_le, not_exists, not_forall, not_le, exists_prop] at hbdd [GOAL] case inr.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ R : ℝ hR : ∃ᶠ (n : ι) in l, R < x n q : ℚ hq : ↑q < R hbdd : ∀ (x_1 : ℝ), ¬∀ᶠ (a : ι) in l, x_1 ≤ x a ⊢ ∃ᶠ (i : ι) in l, x i < ↑(q - 1) [PROOFSTEP] refine' fun hcon => hbdd ↑(q - 1) _ [GOAL] case inr.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ R : ℝ hR : ∃ᶠ (n : ι) in l, R < x n q : ℚ hq : ↑q < R hbdd : ∀ (x_1 : ℝ), ¬∀ᶠ (a : ι) in l, x_1 ≤ x a hcon : ∀ᶠ (x_1 : ι) in l, ¬(fun i => x i < ↑(q - 1)) x_1 ⊢ ∀ᶠ (a : ι) in l, ↑(q - 1) ≤ x a [PROOFSTEP] filter_upwards [hcon] with x hx using not_lt.1 hx [GOAL] case inr.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≥ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, R < x n q : ℚ hq : ↑q < R ⊢ ∃ᶠ (i : ι) in l, ↑q < x i [PROOFSTEP] refine' fun hcon => hR _ [GOAL] case inr.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q✝ : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 l : Filter ι x : ι → ℝ hf : liminf (fun i => ↑(↑Real.nnabs (x i))) l ≠ ⊤ hbdd : ¬IsBoundedUnder (fun x x_1 => x ≥ x_1) l fun i => x i R : ℝ hR : ∃ᶠ (n : ι) in l, R < x n q : ℚ hq : ↑q < R hcon : ∀ᶠ (x_1 : ι) in l, ¬(fun i => ↑q < x i) x_1 ⊢ ∀ᶠ (x_1 : ι) in l, ¬(fun n => R < x n) x_1 [PROOFSTEP] filter_upwards [hcon] with x hx using not_lt.2 ((not_lt.1 hx).trans hq.le) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : α → ℝ≥0 r : ℝ≥0 ⊢ HasSum (fun a => ↑(f a)) ↑r ↔ HasSum f r [PROOFSTEP] simp only [HasSum, ← coe_finset_sum, tendsto_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : α → ℝ≥0 r : ℝ≥0 hr : HasSum f r ⊢ ↑(tsum f) = ∑' (a : α), ↑(f a) [PROOFSTEP] rw [hr.tsum_eq, ENNReal.tsum_coe_eq hr] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : β → ℝ≥0 ⊢ ∑' (b : β), ↑(f b) ≠ ⊤ ↔ Summable f [PROOFSTEP] refine ⟨fun h => ?_, fun h => ENNReal.coe_tsum h ▸ ENNReal.coe_ne_top⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : β → ℝ≥0 h : ∑' (b : β), ↑(f b) ≠ ⊤ ⊢ Summable f [PROOFSTEP] lift ∑' b, (f b : ℝ≥0∞) to ℝ≥0 using h with a ha [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : β → ℝ≥0 a : ℝ≥0 ha : ↑a = ∑' (b : β), ↑(f b) ⊢ Summable f [PROOFSTEP] refine' ⟨a, ENNReal.hasSum_coe.1 _⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : β → ℝ≥0 a : ℝ≥0 ha : ↑a = ∑' (b : β), ↑(f b) ⊢ HasSum (fun a => ↑(f a)) ↑a [PROOFSTEP] rw [ha] [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : β → ℝ≥0 a : ℝ≥0 ha : ↑a = ∑' (b : β), ↑(f b) ⊢ HasSum (fun a => ↑(f a)) (∑' (b : β), ↑(f b)) [PROOFSTEP] exact ENNReal.summable.hasSum [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 s : ι → Finset α hs : ∀ (t : Finset α), ∃ i, t ⊆ s i ⊢ ∑' (a : α), f a = ⨆ (i : ι), ∑ a in s i, f a [PROOFSTEP] rw [ENNReal.tsum_eq_iSup_sum] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 s : ι → Finset α hs : ∀ (t : Finset α), ∃ i, t ⊆ s i ⊢ ⨆ (s : Finset α), ∑ a in s, f a = ⨆ (i : ι), ∑ a in s i, f a [PROOFSTEP] symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 s : ι → Finset α hs : ∀ (t : Finset α), ∃ i, t ⊆ s i ⊢ ⨆ (i : ι), ∑ a in s i, f a = ⨆ (s : Finset α), ∑ a in s, f a [PROOFSTEP] change ⨆ i : ι, (fun t : Finset α => ∑ a in t, f a) (s i) = ⨆ s : Finset α, ∑ a in s, f a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 s : ι → Finset α hs : ∀ (t : Finset α), ∃ i, t ⊆ s i ⊢ ⨆ (i : ι), (fun t => ∑ a in t, f a) (s i) = ⨆ (s : Finset α), ∑ a in s, f a [PROOFSTEP] exact (Finset.sum_mono_set f).iSup_comp_eq hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g a : α → ℝ≥0∞ tsum_ne_top : ∑' (i : α), a i ≠ ⊤ j : α ⊢ a j < ⊤ [PROOFSTEP] contrapose! tsum_ne_top with h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g a : α → ℝ≥0∞ j : α h : ⊤ ≤ a j ⊢ ∑' (i : α), a i = ⊤ [PROOFSTEP] exact ENNReal.tsum_eq_top_of_eq_top ⟨j, top_unique h⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α✝ → ℝ≥0∞ α : Type u_4 inst✝ : Infinite α c : ℝ≥0∞ hc : c ≠ 0 ⊢ ∑' (x : α), c = ⊤ [PROOFSTEP] have A : Tendsto (fun n : ℕ => (n : ℝ≥0∞) * c) atTop (𝓝 (∞ * c)) := by apply ENNReal.Tendsto.mul_const tendsto_nat_nhds_top simp only [true_or_iff, top_ne_zero, Ne.def, not_false_iff] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α✝ → ℝ≥0∞ α : Type u_4 inst✝ : Infinite α c : ℝ≥0∞ hc : c ≠ 0 ⊢ Tendsto (fun n => ↑n * c) atTop (𝓝 (⊤ * c)) [PROOFSTEP] apply ENNReal.Tendsto.mul_const tendsto_nat_nhds_top [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α✝ → ℝ≥0∞ α : Type u_4 inst✝ : Infinite α c : ℝ≥0∞ hc : c ≠ 0 ⊢ ⊤ ≠ 0 ∨ c ≠ ⊤ [PROOFSTEP] simp only [true_or_iff, top_ne_zero, Ne.def, not_false_iff] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α✝ → ℝ≥0∞ α : Type u_4 inst✝ : Infinite α c : ℝ≥0∞ hc : c ≠ 0 A : Tendsto (fun n => ↑n * c) atTop (𝓝 (⊤ * c)) ⊢ ∑' (x : α), c = ⊤ [PROOFSTEP] have B : ∀ n : ℕ, (n : ℝ≥0∞) * c ≤ ∑' _ : α, c := fun n => by rcases Infinite.exists_subset_card_eq α n with ⟨s, hs⟩ simpa [hs] using @ENNReal.sum_le_tsum α (fun _ => c) s [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α✝ → ℝ≥0∞ α : Type u_4 inst✝ : Infinite α c : ℝ≥0∞ hc : c ≠ 0 A : Tendsto (fun n => ↑n * c) atTop (𝓝 (⊤ * c)) n : ℕ ⊢ ↑n * c ≤ ∑' (x : α), c [PROOFSTEP] rcases Infinite.exists_subset_card_eq α n with ⟨s, hs⟩ [GOAL] case intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ f g : α✝ → ℝ≥0∞ α : Type u_4 inst✝ : Infinite α c : ℝ≥0∞ hc : c ≠ 0 A : Tendsto (fun n => ↑n * c) atTop (𝓝 (⊤ * c)) n : ℕ s : Finset α hs : Finset.card s = n ⊢ ↑n * c ≤ ∑' (x : α), c [PROOFSTEP] simpa [hs] using @ENNReal.sum_le_tsum α (fun _ => c) s [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α✝ → ℝ≥0∞ α : Type u_4 inst✝ : Infinite α c : ℝ≥0∞ hc : c ≠ 0 A : Tendsto (fun n => ↑n * c) atTop (𝓝 (⊤ * c)) B : ∀ (n : ℕ), ↑n * c ≤ ∑' (x : α), c ⊢ ∑' (x : α), c = ⊤ [PROOFSTEP] simpa [hc] using le_of_tendsto' A B [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ⊢ ∑' (i : α), a * f i = a * ∑' (i : α), f i [PROOFSTEP] by_cases hf : ∀ i, f i = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ hf : ∀ (i : α), f i = 0 ⊢ ∑' (i : α), a * f i = a * ∑' (i : α), f i [PROOFSTEP] simp [hf] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ hf : ¬∀ (i : α), f i = 0 ⊢ ∑' (i : α), a * f i = a * ∑' (i : α), f i [PROOFSTEP] rw [← ENNReal.tsum_eq_zero] at hf [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ hf : ¬∑' (i : α), f i = 0 ⊢ ∑' (i : α), a * f i = a * ∑' (i : α), f i [PROOFSTEP] have : Tendsto (fun s : Finset α => ∑ j in s, a * f j) atTop (𝓝 (a * ∑' i, f i)) := by simp only [← Finset.mul_sum] exact ENNReal.Tendsto.const_mul ENNReal.summable.hasSum (Or.inl hf) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ hf : ¬∑' (i : α), f i = 0 ⊢ Tendsto (fun s => ∑ j in s, a * f j) atTop (𝓝 (a * ∑' (i : α), f i)) [PROOFSTEP] simp only [← Finset.mul_sum] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ hf : ¬∑' (i : α), f i = 0 ⊢ Tendsto (fun s => a * ∑ x in s, f x) atTop (𝓝 (a * ∑' (x : α), f x)) [PROOFSTEP] exact ENNReal.Tendsto.const_mul ENNReal.summable.hasSum (Or.inl hf) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ hf : ¬∑' (i : α), f i = 0 this : Tendsto (fun s => ∑ j in s, a * f j) atTop (𝓝 (a * ∑' (i : α), f i)) ⊢ ∑' (i : α), a * f i = a * ∑' (i : α), f i [PROOFSTEP] exact HasSum.tsum_eq this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ⊢ ∑' (i : α), f i * a = (∑' (i : α), f i) * a [PROOFSTEP] simp [mul_comm, ENNReal.tsum_mul_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ R : Type u_4 inst✝¹ : SMul R ℝ≥0∞ inst✝ : IsScalarTower R ℝ≥0∞ ℝ≥0∞ a : R ⊢ ∑' (i : α), a • f i = a • ∑' (i : α), f i [PROOFSTEP] simpa only [smul_one_mul] using @ENNReal.tsum_mul_left _ (a • (1 : ℝ≥0∞)) _ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 a : α f : α → ℝ≥0∞ x✝ : α h : x✝ ≠ a ⊢ ⨆ (_ : a = x✝), f x✝ = 0 [PROOFSTEP] simp [h.symm] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 a : α f : α → ℝ≥0∞ ⊢ ⨆ (_ : a = a), f a = f a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ r : ℝ≥0∞ ⊢ HasSum f r ↔ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r) [PROOFSTEP] refine' ⟨HasSum.tendsto_sum_nat, fun h => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ r : ℝ≥0∞ h : Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r) ⊢ HasSum f r [PROOFSTEP] rw [← iSup_eq_of_tendsto _ h, ← ENNReal.tsum_eq_iSup_nat] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ r : ℝ≥0∞ h : Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r) ⊢ HasSum f (∑' (i : ℕ), f i) [PROOFSTEP] exact ENNReal.summable.hasSum [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r✝ p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ r : ℝ≥0∞ h : Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r) ⊢ Monotone fun n => ∑ i in Finset.range n, f i [PROOFSTEP] exact fun s t hst => Finset.sum_le_sum_of_subset (Finset.range_subset.2 hst) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ ⊢ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 (∑' (n : ℕ), f n)) [PROOFSTEP] rw [← hasSum_iff_tendsto_nat] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ ⊢ HasSum (fun i => f i) (∑' (n : ℕ), f n) [PROOFSTEP] exact ENNReal.summable.hasSum [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0∞ hf : ∑' (i : α), f i ≠ ⊤ ⊢ Summable (ENNReal.toNNReal ∘ f) [PROOFSTEP] simpa only [← tsum_coe_ne_top_iff_summable, toNNReal_apply_of_tsum_ne_top hf] using hf [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0∞ hf : ∑' (x : α), f x ≠ ⊤ ⊢ Tendsto f cofinite (𝓝 0) [PROOFSTEP] have f_ne_top : ∀ n, f n ≠ ∞ := ENNReal.ne_top_of_tsum_ne_top hf [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0∞ hf : ∑' (x : α), f x ≠ ⊤ f_ne_top : ∀ (n : α), f n ≠ ⊤ ⊢ Tendsto f cofinite (𝓝 0) [PROOFSTEP] have h_f_coe : f = fun n => ((f n).toNNReal : ENNReal) := funext fun n => (coe_toNNReal (f_ne_top n)).symm [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0∞ hf : ∑' (x : α), f x ≠ ⊤ f_ne_top : ∀ (n : α), f n ≠ ⊤ h_f_coe : f = fun n => ↑(ENNReal.toNNReal (f n)) ⊢ Tendsto f cofinite (𝓝 0) [PROOFSTEP] rw [h_f_coe, ← @coe_zero, tendsto_coe] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0∞ hf : ∑' (x : α), f x ≠ ⊤ f_ne_top : ∀ (n : α), f n ≠ ⊤ h_f_coe : f = fun n => ↑(ENNReal.toNNReal (f n)) ⊢ Tendsto (fun n => ENNReal.toNNReal (f n)) cofinite (𝓝 0) [PROOFSTEP] exact NNReal.tendsto_cofinite_zero_of_summable (summable_toNNReal_of_tsum_ne_top hf) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ hf : ∑' (x : ℕ), f x ≠ ⊤ ⊢ Tendsto f atTop (𝓝 0) [PROOFSTEP] rw [← Nat.cofinite_eq_atTop] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ hf : ∑' (x : ℕ), f x ≠ ⊤ ⊢ Tendsto f cofinite (𝓝 0) [PROOFSTEP] exact tendsto_cofinite_zero_of_tsum_ne_top hf [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0∞ hf : ∑' (x : α), f x ≠ ⊤ ⊢ Tendsto (fun s => ∑' (b : { x // ¬x ∈ s }), f ↑b) atTop (𝓝 0) [PROOFSTEP] lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf [GOAL] case intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0 hf : ∑' (x : α), (fun i => ↑(f i)) x ≠ ⊤ ⊢ Tendsto (fun s => ∑' (b : { x // ¬x ∈ s }), (fun i => ↑(f i)) ↑b) atTop (𝓝 0) [PROOFSTEP] convert ENNReal.tendsto_coe.2 (NNReal.tendsto_tsum_compl_atTop_zero f) [GOAL] case h.e'_3.h α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0 hf : ∑' (x : α), (fun i => ↑(f i)) x ≠ ⊤ x✝ : Finset α ⊢ ∑' (b : { x // ¬x ∈ x✝ }), (fun i => ↑(f i)) ↑b = ↑(∑' (b : { x // ¬x ∈ x✝ }), f ↑b) [PROOFSTEP] rw [ENNReal.coe_tsum] [GOAL] case h.e'_3.h α✝ : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α✝ → ℝ≥0∞ α : Type u_4 f : α → ℝ≥0 hf : ∑' (x : α), (fun i => ↑(f i)) x ≠ ⊤ x✝ : Finset α ⊢ Summable fun b => f ↑b [PROOFSTEP] exact NNReal.summable_comp_injective (tsum_coe_ne_top_iff_summable.1 hf) Subtype.coe_injective [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g✝ : α → ℝ≥0∞ f g : ℕ → ℝ≥0∞ h₁ : ∑' (i : ℕ), g i ≠ ⊤ h₂ : g ≤ f this : ∀ (i : ℕ), f i - g i + g i = f i ⊢ ∑' (i : ℕ), (f i - g i) + ∑' (i : ℕ), g i = ∑' (i : ℕ), f i [PROOFSTEP] simp only [← ENNReal.tsum_add, this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g✝ : α → ℝ≥0∞ f : α → β hf : Surjective f g : β → ℝ≥0∞ ⊢ ∑' (y : β), g y = ∑' (y : β), g (f (surjInv hf y)) [PROOFSTEP] simp only [surjInv_eq hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ ι : Type u_4 f : α → ℝ≥0∞ s : Set ι t : ι → Set α ⊢ ⋃ (i : ι) (_ : i ∈ s), t i = ⋃ (i : ↑s), t ↑i [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ ι : Type u_4 inst✝ : Fintype ι f : α → ℝ≥0∞ t : ι → Set α ⊢ ∑' (x : ↑(⋃ (i : ι), t i)), f ↑x ≤ ∑ i : ι, ∑' (x : ↑(t i)), f ↑x [PROOFSTEP] rw [← tsum_fintype] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ ι : Type u_4 inst✝ : Fintype ι f : α → ℝ≥0∞ t : ι → Set α ⊢ ∑' (x : ↑(⋃ (i : ι), t i)), f ↑x ≤ ∑' (b : ι) (x : ↑(t b)), f ↑x [PROOFSTEP] exact tsum_iUnion_le_tsum f t [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s✝ : Set ℝ≥0∞ f✝ g f : α → ℝ≥0∞ s t : Set α ⊢ ∑' (x : ↑(⋃ (b : Bool), bif b then s else t)), f ↑x ≤ ∑' (x : ↑s), f ↑x + ∑' (x : ↑t), f ↑x [PROOFSTEP] simpa using tsum_iUnion_le f (cond · s t) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ hf : ∑' (n : ℕ), f n = ⊤ hf0 : f 0 ≠ ⊤ ⊢ ∑' (n : ℕ), f (n + 1) = ⊤ [PROOFSTEP] rw [tsum_eq_zero_add' ENNReal.summable, add_eq_top] at hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f✝ g : α → ℝ≥0∞ f : ℕ → ℝ≥0∞ hf : f 0 = ⊤ ∨ ∑' (b : ℕ), f (b + 1) = ⊤ hf0 : f 0 ≠ ⊤ ⊢ ∑' (n : ℕ), f (n + 1) = ⊤ [PROOFSTEP] exact hf.resolve_left hf0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 a : ι → ℝ≥0∞ tsum_ne_top : ∑' (i : ι), a i ≠ ⊤ ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 ⊢ Set.Finite {i | ε ≤ a i} [PROOFSTEP] by_contra h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 a : ι → ℝ≥0∞ tsum_ne_top : ∑' (i : ι), a i ≠ ⊤ ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 h : ¬Set.Finite {i | ε ≤ a i} ⊢ False [PROOFSTEP] have := Infinite.to_subtype h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 a : ι → ℝ≥0∞ tsum_ne_top : ∑' (i : ι), a i ≠ ⊤ ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 h : ¬Set.Finite {i | ε ≤ a i} this : Infinite ↑{i | ε ≤ a i} ⊢ False [PROOFSTEP] refine tsum_ne_top (top_unique ?_) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 a : ι → ℝ≥0∞ tsum_ne_top : ∑' (i : ι), a i ≠ ⊤ ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 h : ¬Set.Finite {i | ε ≤ a i} this : Infinite ↑{i | ε ≤ a i} ⊢ ⊤ ≤ ∑' (i : ι), a i [PROOFSTEP] calc ⊤ = ∑' _ : {i | ε ≤ a i}, ε := (tsum_const_eq_top_of_ne_zero ε_ne_zero).symm _ ≤ ∑' i, a i := tsum_le_tsum_of_inj (↑) Subtype.val_injective (fun _ _ => zero_le _) (fun i => i.2) ENNReal.summable ENNReal.summable [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 a : ι → ℝ≥0∞ c : ℝ≥0∞ c_ne_top : c ≠ ⊤ tsum_le_c : ∑' (i : ι), a i ≤ c ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 ⊢ ∃ hf, ↑(Finset.card (Finite.toFinset hf)) ≤ c / ε [PROOFSTEP] have hf : {i : ι | ε ≤ a i}.Finite := finite_const_le_of_tsum_ne_top (ne_top_of_le_ne_top c_ne_top tsum_le_c) ε_ne_zero [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 a : ι → ℝ≥0∞ c : ℝ≥0∞ c_ne_top : c ≠ ⊤ tsum_le_c : ∑' (i : ι), a i ≤ c ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 hf : Set.Finite {i | ε ≤ a i} ⊢ ∃ hf, ↑(Finset.card (Finite.toFinset hf)) ≤ c / ε [PROOFSTEP] refine ⟨hf, (ENNReal.le_div_iff_mul_le (.inl ε_ne_zero) (.inr c_ne_top)).2 ?_⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 a : ι → ℝ≥0∞ c : ℝ≥0∞ c_ne_top : c ≠ ⊤ tsum_le_c : ∑' (i : ι), a i ≤ c ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 hf : Set.Finite {i | ε ≤ a i} ⊢ ↑(Finset.card (Finite.toFinset hf)) * ε ≤ c [PROOFSTEP] calc ↑hf.toFinset.card * ε = ∑ _i in hf.toFinset, ε := by rw [Finset.sum_const, nsmul_eq_mul] _ ≤ ∑ i in hf.toFinset, a i := (Finset.sum_le_sum fun i => hf.mem_toFinset.1) _ ≤ ∑' i, a i := (ENNReal.sum_le_tsum _) _ ≤ c := tsum_le_c [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a✝ b c✝ d : ℝ≥0∞ r p q : ℝ≥0 x y z ε✝ ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f g : α → ℝ≥0∞ ι : Type u_4 a : ι → ℝ≥0∞ c : ℝ≥0∞ c_ne_top : c ≠ ⊤ tsum_le_c : ∑' (i : ι), a i ≤ c ε : ℝ≥0∞ ε_ne_zero : ε ≠ 0 hf : Set.Finite {i | ε ≤ a i} ⊢ ↑(Finset.card (Finite.toFinset hf)) * ε = ∑ _i in Finite.toFinset hf, ε [PROOFSTEP] rw [Finset.sum_const, nsmul_eq_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 fi : Filter ι f : ι → ℝ≥0∞ hf : ∀ (i : ι), f i ≠ ⊤ x : ℝ≥0∞ hx : x ≠ ⊤ ⊢ Tendsto (fun n => ENNReal.toReal (f n)) fi (𝓝 (ENNReal.toReal x)) ↔ Tendsto f fi (𝓝 x) [PROOFSTEP] lift f to ι → ℝ≥0 using hf [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 fi : Filter ι x : ℝ≥0∞ hx : x ≠ ⊤ f : ι → ℝ≥0 ⊢ Tendsto (fun n => ENNReal.toReal ((fun i => ↑(f i)) n)) fi (𝓝 (ENNReal.toReal x)) ↔ Tendsto (fun i => ↑(f i)) fi (𝓝 x) [PROOFSTEP] lift x to ℝ≥0 using hx [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x✝ y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ ι : Type u_4 fi : Filter ι f : ι → ℝ≥0 x : ℝ≥0 ⊢ Tendsto (fun n => ENNReal.toReal ((fun i => ↑(f i)) n)) fi (𝓝 (ENNReal.toReal ↑x)) ↔ Tendsto (fun i => ↑(f i)) fi (𝓝 ↑x) [PROOFSTEP] simp [tendsto_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : α → ℝ≥0 ⊢ ∑' (a : α), ↑(f a) ≠ ⊤ ↔ Summable fun a => ↑(f a) [PROOFSTEP] rw [NNReal.summable_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : α → ℝ≥0 ⊢ ∑' (a : α), ↑(f a) ≠ ⊤ ↔ Summable fun a => f a [PROOFSTEP] exact tsum_coe_ne_top_iff_summable [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : α → ℝ≥0∞ hsum : ∑' (x : α), f x ≠ ⊤ ⊢ HasSum (fun x => ENNReal.toReal (f x)) (∑' (x : α), ENNReal.toReal (f x)) [PROOFSTEP] lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hsum [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : α → ℝ≥0 hsum : ∑' (x : α), (fun i => ↑(f i)) x ≠ ⊤ ⊢ HasSum (fun x => ENNReal.toReal ((fun i => ↑(f i)) x)) (∑' (x : α), ENNReal.toReal ((fun i => ↑(f i)) x)) [PROOFSTEP] simp only [coe_toReal, ← NNReal.coe_tsum, NNReal.hasSum_coe] [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 a b c d : ℝ≥0∞ r p q : ℝ≥0 x y z ε ε₁ ε₂ : ℝ≥0∞ s : Set ℝ≥0∞ f : α → ℝ≥0 hsum : ∑' (x : α), (fun i => ↑(f i)) x ≠ ⊤ ⊢ HasSum (fun a => f a) (∑' (a : α), f a) [PROOFSTEP] exact (tsum_coe_ne_top_iff_summable.1 hsum).hasSum [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : β → ℝ≥0 ⊢ ∑' (b : β), f b = ENNReal.toNNReal (∑' (b : β), ↑(f b)) [PROOFSTEP] by_cases h : Summable f [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 f : β → ℝ≥0 h : Summable f ⊢ ∑' (b : β), f b = ENNReal.toNNReal (∑' (b : β), ↑(f b)) [PROOFSTEP] rw [← ENNReal.coe_tsum h, ENNReal.toNNReal_coe] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f : β → ℝ≥0 h : ¬Summable f ⊢ ∑' (b : β), f b = ENNReal.toNNReal (∑' (b : β), ↑(f b)) [PROOFSTEP] have A := tsum_eq_zero_of_not_summable h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f : β → ℝ≥0 h : ¬Summable f A : ∑' (b : β), f b = 0 ⊢ ∑' (b : β), f b = ENNReal.toNNReal (∑' (b : β), ↑(f b)) [PROOFSTEP] simp only [← ENNReal.tsum_coe_ne_top_iff_summable, Classical.not_not] at h [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f : β → ℝ≥0 A : ∑' (b : β), f b = 0 h : ∑' (b : β), ↑(f b) = ⊤ ⊢ ∑' (b : β), f b = ENNReal.toNNReal (∑' (b : β), ↑(f b)) [PROOFSTEP] simp only [h, ENNReal.top_toNNReal, A] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : β → ℝ≥0 r : ℝ≥0 hgf : ∀ (b : β), g b ≤ f b hfr : HasSum f r ⊢ ∑' (b : β), ↑(g b) ≤ ↑r [PROOFSTEP] refine hasSum_le (fun b => ?_) ENNReal.summable.hasSum (ENNReal.hasSum_coe.2 hfr) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : β → ℝ≥0 r : ℝ≥0 hgf : ∀ (b : β), g b ≤ f b hfr : HasSum f r b : β ⊢ ↑(g b) ≤ ↑(f b) [PROOFSTEP] exact ENNReal.coe_le_coe.2 (hgf _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 h : Summable f ⊢ Set.Countable (support f) [PROOFSTEP] rw [← NNReal.summable_coe] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 h : Summable fun a => ↑(f a) ⊢ Set.Countable (support f) [PROOFSTEP] simpa [support] using h.countable_support [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 r : ℝ≥0 ⊢ HasSum f r ↔ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r) [PROOFSTEP] rw [← ENNReal.hasSum_coe, ENNReal.hasSum_iff_tendsto_nat] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 r : ℝ≥0 ⊢ Tendsto (fun n => ∑ i in Finset.range n, ↑(f i)) atTop (𝓝 ↑r) ↔ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r) [PROOFSTEP] simp only [← ENNReal.coe_finset_sum] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 r : ℝ≥0 ⊢ Tendsto (fun n => ↑(∑ a in Finset.range n, f a)) atTop (𝓝 ↑r) ↔ Tendsto (fun n => ∑ a in Finset.range n, f a) atTop (𝓝 r) [PROOFSTEP] exact ENNReal.tendsto_coe [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 ⊢ ¬Summable f ↔ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 ⊢ ¬Summable f → Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 h : ¬Summable f ⊢ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop [PROOFSTEP] refine' ((tendsto_of_monotone _).resolve_right h).comp _ [GOAL] case mp.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 h : ¬Summable f ⊢ Monotone fun s => ∑ b in s, f b case mp.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 h : ¬Summable f ⊢ Tendsto (fun n => Finset.range n) atTop atTop [PROOFSTEP] exacts [Finset.sum_mono_set _, tendsto_finset_range] [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 ⊢ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop → ¬Summable f [PROOFSTEP] rintro hnat ⟨r, hr⟩ [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 hnat : Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop r : ℝ≥0 hr : HasSum f r ⊢ False [PROOFSTEP] exact not_tendsto_nhds_of_tendsto_atTop hnat _ (hasSum_iff_tendsto_nat.1 hr) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 ⊢ Summable f ↔ ¬Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop [PROOFSTEP] rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 c : ℝ≥0 h : ∀ (n : ℕ), ∑ i in Finset.range n, f i ≤ c ⊢ Summable f [PROOFSTEP] refine summable_iff_not_tendsto_nat_atTop.2 fun H => ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 c : ℝ≥0 h : ∀ (n : ℕ), ∑ i in Finset.range n, f i ≤ c H : Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop ⊢ False [PROOFSTEP] rcases exists_lt_of_tendsto_atTop H 0 c with ⟨n, -, hn⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 c : ℝ≥0 h : ∀ (n : ℕ), ∑ i in Finset.range n, f i ≤ c H : Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop n : ℕ hn : c < ∑ i in Finset.range n, f i ⊢ False [PROOFSTEP] exact lt_irrefl _ (hn.trans_le (h n)) [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : α → Type u_4 f : (x : α) × β x → ℝ≥0 ⊢ Summable f ↔ (∀ (x : α), Summable fun y => f { fst := x, snd := y }) ∧ Summable fun x => ∑' (y : β x), f { fst := x, snd := y } [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : α → Type u_4 f : (x : α) × β x → ℝ≥0 ⊢ Summable f → (∀ (x : α), Summable fun y => f { fst := x, snd := y }) ∧ Summable fun x => ∑' (y : β x), f { fst := x, snd := y } [PROOFSTEP] simp only [← NNReal.summable_coe, NNReal.coe_tsum] [GOAL] case mp α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : α → Type u_4 f : (x : α) × β x → ℝ≥0 ⊢ (Summable fun a => ↑(f a)) → (∀ (x : α), Summable fun a => ↑(f { fst := x, snd := a })) ∧ Summable fun a => ∑' (a_1 : β a), ↑(f { fst := a, snd := a_1 }) [PROOFSTEP] exact fun h => ⟨h.sigma_factor, h.sigma⟩ [GOAL] case mpr α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : α → Type u_4 f : (x : α) × β x → ℝ≥0 ⊢ ((∀ (x : α), Summable fun y => f { fst := x, snd := y }) ∧ Summable fun x => ∑' (y : β x), f { fst := x, snd := y }) → Summable f [PROOFSTEP] rintro ⟨h₁, h₂⟩ [GOAL] case mpr.intro α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : α → Type u_4 f : (x : α) × β x → ℝ≥0 h₁ : ∀ (x : α), Summable fun y => f { fst := x, snd := y } h₂ : Summable fun x => ∑' (y : β x), f { fst := x, snd := y } ⊢ Summable f [PROOFSTEP] simpa only [← ENNReal.tsum_coe_ne_top_iff_summable, ENNReal.tsum_sigma', ENNReal.coe_tsum (h₁ _)] using h₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f s : Set α ⊢ Summable (indicator s f) [PROOFSTEP] refine' NNReal.summable_of_le (fun a => le_trans (le_of_eq (s.indicator_apply f a)) _) hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f s : Set α a : α ⊢ (if a ∈ s then f a else 0) ≤ f a [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f s : Set α a : α h✝ : a ∈ s ⊢ f a ≤ f a case neg α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f s : Set α a : α h✝ : ¬a ∈ s ⊢ 0 ≤ f a [PROOFSTEP] exact le_refl (f a) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f s : Set α a : α h✝ : ¬a ∈ s ⊢ 0 ≤ f a [PROOFSTEP] exact zero_le_coe [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 ⊢ Tendsto (fun i => ∑' (k : ℕ), f (k + i)) atTop (𝓝 0) [PROOFSTEP] rw [← tendsto_coe] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 ⊢ Tendsto (fun a => ↑(∑' (k : ℕ), f (k + a))) atTop (𝓝 ↑0) [PROOFSTEP] convert _root_.tendsto_sum_nat_add fun i => (f i : ℝ) [GOAL] case h.e'_3.h α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 x✝ : ℕ ⊢ ↑(∑' (k : ℕ), f (k + x✝)) = ∑' (k : ℕ), ↑(f (k + x✝)) [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → ℝ≥0 sf sg : ℝ≥0 i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hf : HasSum f sf hg : HasSum g sg ⊢ sf < sg [PROOFSTEP] have A : ∀ a : α, (f a : ℝ) ≤ g a := fun a => NNReal.coe_le_coe.2 (h a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → ℝ≥0 sf sg : ℝ≥0 i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hf : HasSum f sf hg : HasSum g sg A : ∀ (a : α), ↑(f a) ≤ ↑(g a) ⊢ sf < sg [PROOFSTEP] have : (sf : ℝ) < sg := hasSum_lt A (NNReal.coe_lt_coe.2 hi) (hasSum_coe.2 hf) (hasSum_coe.2 hg) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → ℝ≥0 sf sg : ℝ≥0 i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hf : HasSum f sf hg : HasSum g sg A : ∀ (a : α), ↑(f a) ≤ ↑(g a) this : ↑sf < ↑sg ⊢ sf < sg [PROOFSTEP] exact NNReal.coe_lt_coe.1 this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 g : α → ℝ≥0 hg : Summable g i : α hi : 0 < g i ⊢ 0 < ∑' (b : α), g b [PROOFSTEP] rw [← tsum_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 g : α → ℝ≥0 hg : Summable g i : α hi : 0 < g i ⊢ ∑' (x : ?m.347288), 0 < ∑' (b : α), g b α : Type u_1 β : Type u_2 γ : Type u_3 g : α → ℝ≥0 hg : Summable g i : α hi : 0 < g i ⊢ Type ?u.347286 [PROOFSTEP] exact tsum_lt_tsum (fun a => zero_le _) hi hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f i : α ⊢ ∑' (x : α), f x = f i + ∑' (x : α), if x = i then 0 else f x [PROOFSTEP] refine' tsum_eq_add_tsum_ite' i (NNReal.summable_of_le (fun i' => _) hf) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f i i' : α ⊢ update (fun x => f x) i 0 i' ≤ f i' [PROOFSTEP] rw [Function.update_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f i i' : α ⊢ (if i' = i then 0 else f i') ≤ f i' [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f i i' : α h✝ : i' = i ⊢ 0 ≤ f i' [PROOFSTEP] simp only [zero_le', le_rfl] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 hf : Summable f i i' : α h✝ : ¬i' = i ⊢ f i' ≤ f i' [PROOFSTEP] simp only [zero_le', le_rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0∞ hf : ∀ (a : α), f a ≠ ⊤ ⊢ ENNReal.toReal (∑' (a : α), f a) = ∑' (a : α), ENNReal.toReal (f a) [PROOFSTEP] simp only [ENNReal.toReal, tsum_toNNReal_eq hf, NNReal.coe_tsum] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0∞ hf : ∑' (i : ℕ), f i ≠ ⊤ ⊢ Tendsto (fun i => ∑' (k : ℕ), f (k + i)) atTop (𝓝 0) [PROOFSTEP] lift f to ℕ → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top hf [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 hf : ∑' (i : ℕ), (fun i => ↑(f i)) i ≠ ⊤ ⊢ Tendsto (fun i => ∑' (k : ℕ), (fun i => ↑(f i)) (k + i)) atTop (𝓝 0) [PROOFSTEP] replace hf : Summable f := tsum_coe_ne_top_iff_summable.1 hf [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 hf : Summable f ⊢ Tendsto (fun i => ∑' (k : ℕ), (fun i => ↑(f i)) (k + i)) atTop (𝓝 0) [PROOFSTEP] simp only [← ENNReal.coe_tsum, NNReal.summable_nat_add _ hf, ← ENNReal.coe_zero] [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 hf : Summable f ⊢ Tendsto (fun i => ↑(∑' (a : ℕ), f (a + i))) atTop (𝓝 ↑0) [PROOFSTEP] exact_mod_cast NNReal.tendsto_sum_nat_add f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → ℝ≥0∞ sf sg : ℝ≥0∞ i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hsf : sf ≠ ⊤ hf : HasSum f sf hg : HasSum g sg ⊢ sf < sg [PROOFSTEP] by_cases hsg : sg = ⊤ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → ℝ≥0∞ sf sg : ℝ≥0∞ i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hsf : sf ≠ ⊤ hf : HasSum f sf hg : HasSum g sg hsg : sg = ⊤ ⊢ sf < sg [PROOFSTEP] exact hsg.symm ▸ lt_of_le_of_ne le_top hsf [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → ℝ≥0∞ sf sg : ℝ≥0∞ i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hsf : sf ≠ ⊤ hf : HasSum f sf hg : HasSum g sg hsg : ¬sg = ⊤ ⊢ sf < sg [PROOFSTEP] have hg' : ∀ x, g x ≠ ⊤ := ENNReal.ne_top_of_tsum_ne_top (hg.tsum_eq.symm ▸ hsg) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → ℝ≥0∞ sf sg : ℝ≥0∞ i : α h : ∀ (a : α), f a ≤ g a hi : f i < g i hsf : sf ≠ ⊤ hf : HasSum f sf hg : HasSum g sg hsg : ¬sg = ⊤ hg' : ∀ (x : α), g x ≠ ⊤ ⊢ sf < sg [PROOFSTEP] lift f to α → ℝ≥0 using fun x => ne_of_lt (lt_of_le_of_lt (h x) <| lt_of_le_of_ne le_top (hg' x)) [GOAL] case neg.intro α : Type u_1 β : Type u_2 γ : Type u_3 g : α → ℝ≥0∞ sf sg : ℝ≥0∞ i : α hsf : sf ≠ ⊤ hg : HasSum g sg hsg : ¬sg = ⊤ hg' : ∀ (x : α), g x ≠ ⊤ f : α → ℝ≥0 h : ∀ (a : α), (fun i => ↑(f i)) a ≤ g a hi : (fun i => ↑(f i)) i < g i hf : HasSum (fun i => ↑(f i)) sf ⊢ sf < sg [PROOFSTEP] lift g to α → ℝ≥0 using hg' [GOAL] case neg.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 sf sg : ℝ≥0∞ i : α hsf : sf ≠ ⊤ hsg : ¬sg = ⊤ f : α → ℝ≥0 hf : HasSum (fun i => ↑(f i)) sf g : α → ℝ≥0 hg : HasSum (fun i => ↑(g i)) sg h : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a hi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i ⊢ sf < sg [PROOFSTEP] lift sf to ℝ≥0 using hsf [GOAL] case neg.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 sg : ℝ≥0∞ i : α hsg : ¬sg = ⊤ f g : α → ℝ≥0 hg : HasSum (fun i => ↑(g i)) sg h : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a hi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i sf : ℝ≥0 hf : HasSum (fun i => ↑(f i)) ↑sf ⊢ ↑sf < sg [PROOFSTEP] lift sg to ℝ≥0 using hsg [GOAL] case neg.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 i : α f g : α → ℝ≥0 h : ∀ (a : α), (fun i => ↑(f i)) a ≤ (fun i => ↑(g i)) a hi : (fun i => ↑(f i)) i < (fun i => ↑(g i)) i sf : ℝ≥0 hf : HasSum (fun i => ↑(f i)) ↑sf sg : ℝ≥0 hg : HasSum (fun i => ↑(g i)) ↑sg ⊢ ↑sf < ↑sg [PROOFSTEP] simp only [coe_le_coe, coe_lt_coe] at h hi ⊢ [GOAL] case neg.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 i : α f g : α → ℝ≥0 sf : ℝ≥0 hf : HasSum (fun i => ↑(f i)) ↑sf sg : ℝ≥0 hg : HasSum (fun i => ↑(g i)) ↑sg h : ∀ (a : α), f a ≤ g a hi : f i < g i ⊢ sf < sg [PROOFSTEP] exact NNReal.hasSum_lt h hi (ENNReal.hasSum_coe.1 hf) (ENNReal.hasSum_coe.1 hg) [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : Type u_4 f : α → ℝ hf : Summable f hn : ∀ (a : α), 0 ≤ f a i : β → α hi : Injective i ⊢ tsum (f ∘ i) ≤ tsum f [PROOFSTEP] lift f to α → ℝ≥0 using hn [GOAL] case intro α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : Type u_4 i : β → α hi : Injective i f : α → ℝ≥0 hf : Summable fun i => ↑(f i) ⊢ tsum ((fun i => ↑(f i)) ∘ i) ≤ ∑' (i : α), ↑(f i) [PROOFSTEP] rw [NNReal.summable_coe] at hf [GOAL] case intro α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : Type u_4 i : β → α hi : Injective i f : α → ℝ≥0 hf : Summable fun i => f i ⊢ tsum ((fun i => ↑(f i)) ∘ i) ≤ ∑' (i : α), ↑(f i) [PROOFSTEP] simpa only [(· ∘ ·), ← NNReal.coe_tsum] using NNReal.tsum_comp_le_tsum_of_inj hf hi [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : β → ℝ hg : ∀ (b : β), 0 ≤ g b hgf : ∀ (b : β), g b ≤ f b hf : Summable f ⊢ Summable g [PROOFSTEP] lift f to β → ℝ≥0 using fun b => (hg b).trans (hgf b) [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 g : β → ℝ hg : ∀ (b : β), 0 ≤ g b f : β → ℝ≥0 hgf : ∀ (b : β), g b ≤ (fun i => ↑(f i)) b hf : Summable fun i => ↑(f i) ⊢ Summable g [PROOFSTEP] lift g to β → ℝ≥0 using hg [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 f : β → ℝ≥0 hf : Summable fun i => ↑(f i) g : β → ℝ≥0 hgf : ∀ (b : β), (fun i => ↑(g i)) b ≤ (fun i => ↑(f i)) b ⊢ Summable fun i => ↑(g i) [PROOFSTEP] rw [NNReal.summable_coe] at hf ⊢ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 f : β → ℝ≥0 hf : Summable fun i => f i g : β → ℝ≥0 hgf : ∀ (b : β), (fun i => ↑(g i)) b ≤ (fun i => ↑(f i)) b ⊢ Summable fun i => g i [PROOFSTEP] exact NNReal.summable_of_le (fun b => NNReal.coe_le_coe.1 (hgf b)) hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ hf : Summable f ⊢ Summable fun n => Real.toNNReal (f n) [PROOFSTEP] apply NNReal.summable_coe.1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ hf : Summable f ⊢ Summable fun a => ↑(Real.toNNReal (f a)) [PROOFSTEP] refine' summable_of_nonneg_of_le (fun n => NNReal.coe_nonneg _) (fun n => _) hf.abs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ hf : Summable f n : α ⊢ ↑(Real.toNNReal (f n)) ≤ |f n| [PROOFSTEP] simp only [le_abs_self, Real.coe_toNNReal', max_le_iff, abs_nonneg, and_self_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0∞ h : ∑' (i : α), f i ≠ ⊤ ⊢ Set.Countable (support f) [PROOFSTEP] lift f to α → ℝ≥0 using ENNReal.ne_top_of_tsum_ne_top h [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0 h : ∑' (i : α), (fun i => ↑(f i)) i ≠ ⊤ ⊢ Set.Countable (support fun i => ↑(f i)) [PROOFSTEP] simpa [support] using (ENNReal.tsum_coe_ne_top_iff_summable.1 h).countable_support_nnreal [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ hf : ∀ (i : ℕ), 0 ≤ f i r : ℝ ⊢ HasSum f r ↔ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop (𝓝 r) [PROOFSTEP] lift f to ℕ → ℝ≥0 using hf [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 r : ℝ f : ℕ → ℝ≥0 ⊢ HasSum (fun i => ↑(f i)) r ↔ Tendsto (fun n => ∑ i in Finset.range n, (fun i => ↑(f i)) i) atTop (𝓝 r) [PROOFSTEP] simp only [HasSum, ← NNReal.coe_sum, NNReal.tendsto_coe'] [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 r : ℝ f : ℕ → ℝ≥0 ⊢ (∃ hx, Tendsto (fun a => ∑ a in a, f a) atTop (𝓝 { val := r, property := hx })) ↔ ∃ hx, Tendsto (fun a => ∑ a in Finset.range a, f a) atTop (𝓝 { val := r, property := hx }) [PROOFSTEP] exact exists_congr fun hr => NNReal.hasSum_iff_tendsto_nat [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ hf_nonneg : ∀ (n : α), 0 ≤ f n hf : Summable f ⊢ ENNReal.ofReal (∑' (n : α), f n) = ∑' (n : α), ENNReal.ofReal (f n) [PROOFSTEP] simp_rw [ENNReal.ofReal, ENNReal.tsum_coe_eq (NNReal.hasSum_real_toNNReal_of_nonneg hf_nonneg hf)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ hf : ∀ (n : ℕ), 0 ≤ f n ⊢ ¬Summable f ↔ Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop [PROOFSTEP] lift f to ℕ → ℝ≥0 using hf [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ≥0 ⊢ (¬Summable fun i => ↑(f i)) ↔ Tendsto (fun n => ∑ i in Finset.range n, (fun i => ↑(f i)) i) atTop atTop [PROOFSTEP] exact_mod_cast NNReal.not_summable_iff_tendsto_nat_atTop [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ hf : ∀ (n : ℕ), 0 ≤ f n ⊢ Summable f ↔ ¬Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop [PROOFSTEP] rw [← not_iff_not, Classical.not_not, not_summable_iff_tendsto_nat_atTop_of_nonneg hf] [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : α → Type u_4 f : (x : α) × β x → ℝ hf : ∀ (x : (x : α) × β x), 0 ≤ f x ⊢ Summable f ↔ (∀ (x : α), Summable fun y => f { fst := x, snd := y }) ∧ Summable fun x => ∑' (y : β x), f { fst := x, snd := y } [PROOFSTEP] lift f to (Σ x, β x) → ℝ≥0 using hf [GOAL] case intro α : Type u_1 β✝ : Type u_2 γ : Type u_3 β : α → Type u_4 f : (x : α) × β x → ℝ≥0 ⊢ (Summable fun i => ↑(f i)) ↔ (∀ (x : α), Summable fun y => (fun i => ↑(f i)) { fst := x, snd := y }) ∧ Summable fun x => ∑' (y : β x), (fun i => ↑(f i)) { fst := x, snd := y } [PROOFSTEP] exact_mod_cast NNReal.summable_sigma [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ c : ℝ hf : ∀ (n : ℕ), 0 ≤ f n h : ∀ (n : ℕ), ∑ i in Finset.range n, f i ≤ c ⊢ Summable f [PROOFSTEP] refine (summable_iff_not_tendsto_nat_atTop_of_nonneg hf).2 fun H => ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ c : ℝ hf : ∀ (n : ℕ), 0 ≤ f n h : ∀ (n : ℕ), ∑ i in Finset.range n, f i ≤ c H : Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop ⊢ False [PROOFSTEP] rcases exists_lt_of_tendsto_atTop H 0 c with ⟨n, -, hn⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 f : ℕ → ℝ c : ℝ hf : ∀ (n : ℕ), 0 ≤ f n h : ∀ (n : ℕ), ∑ i in Finset.range n, f i ≤ c H : Tendsto (fun n => ∑ i in Finset.range n, f i) atTop atTop n : ℕ hn : c < ∑ i in Finset.range n, f i ⊢ False [PROOFSTEP] exact lt_irrefl _ (hn.trans_le (h n)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : EMetricSpace β a : β r : ℝ≥0∞ x y : ↑(EMetric.ball a r) ⊢ edist a ↑x + edist a ↑y < r + r [PROOFSTEP] rw [edist_comm a x, edist_comm a y] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : EMetricSpace β a : β r : ℝ≥0∞ x y : ↑(EMetric.ball a r) ⊢ edist (↑x) a + edist (↑y) a < r + r [PROOFSTEP] exact add_lt_add x.2 y.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α l : Filter β f : β → α y : α ⊢ Tendsto f l (𝓝 y) ↔ Tendsto (fun x => edist (f x) y) l (𝓝 0) [PROOFSTEP] simp only [EMetric.nhds_basis_eball.tendsto_right_iff, EMetric.mem_ball, @tendsto_order ℝ≥0∞ β _ _, forall_prop_of_false ENNReal.not_lt_zero, forall_const, true_and_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α ⊢ (∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε) ↔ ∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α ⊢ (∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε) → ∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] intro hs [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε ⊢ ∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] refine ⟨fun N => EMetric.diam (s '' Ici N), fun n m N hn hm => ?_, ?_⟩ -- Prove that it bounds the distances of points in the Cauchy sequence [GOAL] case mp.refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε n m N : β hn : N ≤ n hm : N ≤ m ⊢ edist (s n) (s m) ≤ (fun N => diam (s '' Ici N)) N [PROOFSTEP] exact EMetric.edist_le_diam_of_mem (mem_image_of_mem _ hn) (mem_image_of_mem _ hm) -- Prove that it tends to `0`, by using the Cauchy property of `s` [GOAL] case mp.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε ⊢ Tendsto (fun N => diam (s '' Ici N)) atTop (𝓝 0) [PROOFSTEP] refine ENNReal.tendsto_nhds_zero.2 fun ε ε0 => ?_ [GOAL] case mp.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε ε : ℝ≥0∞ ε0 : ε > 0 ⊢ ∀ᶠ (x : β) in atTop, diam (s '' Ici x) ≤ ε [PROOFSTEP] rcases hs ε ε0 with ⟨N, hN⟩ [GOAL] case mp.refine_2.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε ε : ℝ≥0∞ ε0 : ε > 0 N : β hN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε ⊢ ∀ᶠ (x : β) in atTop, diam (s '' Ici x) ≤ ε [PROOFSTEP] refine (eventually_ge_atTop N).mono fun n hn => EMetric.diam_le ?_ [GOAL] case mp.refine_2.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε ε : ℝ≥0∞ ε0 : ε > 0 N : β hN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε n : β hn : N ≤ n ⊢ ∀ (x : α), x ∈ s '' Ici n → ∀ (y : α), y ∈ s '' Ici n → edist x y ≤ ε [PROOFSTEP] rintro _ ⟨k, hk, rfl⟩ _ ⟨l, hl, rfl⟩ [GOAL] case mp.refine_2.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε ε : ℝ≥0∞ ε0 : ε > 0 N : β hN : ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε n : β hn : N ≤ n k : β hk : k ∈ Ici n l : β hl : l ∈ Ici n ⊢ edist (s k) (s l) ≤ ε [PROOFSTEP] exact (hN _ (hn.trans hk) _ (hn.trans hl)).le [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α ⊢ (∃ b, (∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0)) → ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε [PROOFSTEP] rintro ⟨b, ⟨b_bound, b_lim⟩⟩ ε εpos [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α b : β → ℝ≥0∞ b_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) ε : ℝ≥0∞ εpos : ε > 0 ⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε [PROOFSTEP] have : ∀ᶠ n in atTop, b n < ε := b_lim.eventually (gt_mem_nhds εpos) [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α b : β → ℝ≥0∞ b_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) ε : ℝ≥0∞ εpos : ε > 0 this : ∀ᶠ (n : β) in atTop, b n < ε ⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε [PROOFSTEP] rcases this.exists with ⟨N, hN⟩ [GOAL] case mpr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α b : β → ℝ≥0∞ b_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) ε : ℝ≥0∞ εpos : ε > 0 this : ∀ᶠ (n : β) in atTop, b n < ε N : β hN : b N < ε ⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → edist (s m) (s n) < ε [PROOFSTEP] refine ⟨N, fun m hm n hn => ?_⟩ [GOAL] case mpr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : β → α b : β → ℝ≥0∞ b_bound : ∀ (n m N : β), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) ε : ℝ≥0∞ εpos : ε > 0 this : ∀ᶠ (n : β) in atTop, b n < ε N : β hN : b N < ε m : β hm : N ≤ m n : β hn : N ≤ n ⊢ edist (s m) (s n) < ε [PROOFSTEP] calc edist (s m) (s n) ≤ b N := b_bound m n N hm hn _ < ε := hN [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y ⊢ Continuous f [PROOFSTEP] refine continuous_iff_continuousAt.2 fun x => ENNReal.tendsto_nhds_of_Icc fun ε ε0 => ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y x : α ε : ℝ≥0∞ ε0 : ε > 0 ⊢ ∀ᶠ (x_1 : α) in 𝓝 x, f x_1 ∈ Icc (f x - ε) (f x + ε) [PROOFSTEP] rcases ENNReal.exists_nnreal_pos_mul_lt hC ε0.ne' with ⟨δ, δ0, hδ⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y x : α ε : ℝ≥0∞ ε0 : ε > 0 δ : ℝ≥0 δ0 : δ > 0 hδ : ↑δ * C < ε ⊢ ∀ᶠ (x_1 : α) in 𝓝 x, f x_1 ∈ Icc (f x - ε) (f x + ε) [PROOFSTEP] rw [mul_comm] at hδ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y x : α ε : ℝ≥0∞ ε0 : ε > 0 δ : ℝ≥0 δ0 : δ > 0 hδ : C * ↑δ < ε ⊢ ∀ᶠ (x_1 : α) in 𝓝 x, f x_1 ∈ Icc (f x - ε) (f x + ε) [PROOFSTEP] filter_upwards [EMetric.closedBall_mem_nhds x (ENNReal.coe_pos.2 δ0)] with y hy [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y x : α ε : ℝ≥0∞ ε0 : ε > 0 δ : ℝ≥0 δ0 : δ > 0 hδ : C * ↑δ < ε y : α hy : y ∈ EMetric.closedBall x ↑δ ⊢ f y ∈ Icc (f x - ε) (f x + ε) [PROOFSTEP] refine ⟨tsub_le_iff_right.2 <| (h x y).trans ?_, (h y x).trans ?_⟩ [GOAL] case h.refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y x : α ε : ℝ≥0∞ ε0 : ε > 0 δ : ℝ≥0 δ0 : δ > 0 hδ : C * ↑δ < ε y : α hy : y ∈ EMetric.closedBall x ↑δ ⊢ f y + C * edist x y ≤ f y + ε [PROOFSTEP] refine add_le_add_left (le_trans (mul_le_mul_left' ?_ _) hδ.le) _ [GOAL] case h.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y x : α ε : ℝ≥0∞ ε0 : ε > 0 δ : ℝ≥0 δ0 : δ > 0 hδ : C * ↑δ < ε y : α hy : y ∈ EMetric.closedBall x ↑δ ⊢ f x + C * edist y x ≤ f x + ε [PROOFSTEP] refine add_le_add_left (le_trans (mul_le_mul_left' ?_ _) hδ.le) _ [GOAL] case h.refine_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y x : α ε : ℝ≥0∞ ε0 : ε > 0 δ : ℝ≥0 δ0 : δ > 0 hδ : C * ↑δ < ε y : α hy : y ∈ EMetric.closedBall x ↑δ ⊢ edist x y ≤ ↑δ case h.refine_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : α → ℝ≥0∞ C : ℝ≥0∞ hC : C ≠ ⊤ h : ∀ (x y : α), f x ≤ f y + C * edist x y x : α ε : ℝ≥0∞ ε0 : ε > 0 δ : ℝ≥0 δ0 : δ > 0 hδ : C * ↑δ < ε y : α hy : y ∈ EMetric.closedBall x ↑δ ⊢ edist y x ≤ ↑δ [PROOFSTEP] exacts [EMetric.mem_closedBall'.1 hy, EMetric.mem_closedBall.1 hy] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α ⊢ Continuous fun p => edist p.fst p.snd [PROOFSTEP] apply continuous_of_le_add_edist 2 (by norm_num) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α ⊢ 2 ≠ ⊤ [PROOFSTEP] norm_num [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α ⊢ ∀ (x y : α × α), edist x.fst x.snd ≤ edist y.fst y.snd + 2 * edist x y [PROOFSTEP] rintro ⟨x, y⟩ ⟨x', y'⟩ [GOAL] case mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α x y x' y' : α ⊢ edist (x, y).fst (x, y).snd ≤ edist (x', y').fst (x', y').snd + 2 * edist (x, y) (x', y') [PROOFSTEP] calc edist x y ≤ edist x x' + edist x' y' + edist y' y := edist_triangle4 _ _ _ _ _ = edist x' y' + (edist x x' + edist y y') := by simp only [edist_comm]; ac_rfl _ ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) := (add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _) _ = edist x' y' + 2 * edist (x, y) (x', y') := by rw [← mul_two, mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α x y x' y' : α ⊢ edist x x' + edist x' y' + edist y' y = edist x' y' + (edist x x' + edist y y') [PROOFSTEP] simp only [edist_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α x y x' y' : α ⊢ edist x x' + edist x' y' + edist y y' = edist x' y' + (edist x x' + edist y y') [PROOFSTEP] ac_rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α x y x' y' : α ⊢ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) = edist x' y' + 2 * edist (x, y) (x', y') [PROOFSTEP] rw [← mul_two, mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0∞ hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ d n hd : tsum d ≠ ⊤ ⊢ CauchySeq f [PROOFSTEP] lift d to ℕ → NNReal using fun i => ENNReal.ne_top_of_tsum_ne_top hd i [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ (fun i => ↑(d i)) n hd : ∑' (i : ℕ), ↑(d i) ≠ ⊤ ⊢ CauchySeq f [PROOFSTEP] rw [ENNReal.tsum_coe_ne_top_iff_summable] at hd [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0 hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ (fun i => ↑(d i)) n hd : Summable fun i => d i ⊢ CauchySeq f [PROOFSTEP] exact cauchySeq_of_edist_le_of_summable d hf hd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set α ⊢ diam (closure s) = diam s [PROOFSTEP] refine' le_antisymm (diam_le fun x hx y hy => _) (diam_mono subset_closure) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set α x : α hx : x ∈ closure s y : α hy : y ∈ closure s ⊢ edist x y ≤ diam s [PROOFSTEP] have : edist x y ∈ closure (Iic (diam s)) := map_mem_closure₂ continuous_edist hx hy fun x hx y hy => edist_le_diam_of_mem hx hy [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set α x : α hx : x ∈ closure s y : α hy : y ∈ closure s this : edist x y ∈ closure (Iic (diam s)) ⊢ edist x y ≤ diam s [PROOFSTEP] rwa [closure_Iic] at this [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoEMetricSpace α✝ α : Type u_4 inst✝ : PseudoMetricSpace α s : Set α ⊢ diam (closure s) = diam s [PROOFSTEP] simp only [Metric.diam, EMetric.diam_closure] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α✝ α : Type u_4 β : Type u_5 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 s : Set α ⊢ IsClosed {f | LipschitzOnWith K f s} [PROOFSTEP] simp only [LipschitzOnWith, setOf_forall] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α✝ α : Type u_4 β : Type u_5 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 s : Set α ⊢ IsClosed (⋂ (i : α) (_ : i ∈ s) (i_1 : α) (_ : i_1 ∈ s), {x | edist (x i) (x i_1) ≤ ↑K * edist i i_1}) [PROOFSTEP] refine' isClosed_biInter fun x _ => isClosed_biInter fun y _ => isClosed_le _ _ [GOAL] case refine'_1 α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α✝ α : Type u_4 β : Type u_5 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 s : Set α x : α x✝¹ : x ∈ s y : α x✝ : y ∈ s ⊢ Continuous fun x_1 => edist (x_1 x) (x_1 y) case refine'_2 α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α✝ α : Type u_4 β : Type u_5 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 s : Set α x : α x✝¹ : x ∈ s y : α x✝ : y ∈ s ⊢ Continuous fun x_1 => ↑K * edist x y [PROOFSTEP] exacts [.edist (continuous_apply x) (continuous_apply y), continuous_const] [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α✝ α : Type u_4 β : Type u_5 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 ⊢ IsClosed {f | LipschitzWith K f} [PROOFSTEP] simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s ⊢ EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | hne) [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α h : Metric.Bounded ∅ ⊢ EMetric.diam ∅ = ENNReal.ofReal (sSup ∅ - sInf ∅) [PROOFSTEP] simp [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s hne : Set.Nonempty s ⊢ EMetric.diam s = ENNReal.ofReal (sSup s - sInf s) [PROOFSTEP] refine' le_antisymm (Metric.ediam_le_of_forall_dist_le fun x hx y hy => _) _ [GOAL] case inr.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s hne : Set.Nonempty s x : ℝ hx : x ∈ s y : ℝ hy : y ∈ s ⊢ dist x y ≤ sSup s - sInf s [PROOFSTEP] have := Real.subset_Icc_sInf_sSup_of_bounded h [GOAL] case inr.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s hne : Set.Nonempty s x : ℝ hx : x ∈ s y : ℝ hy : y ∈ s this : s ⊆ Icc (sInf s) (sSup s) ⊢ dist x y ≤ sSup s - sInf s [PROOFSTEP] exact Real.dist_le_of_mem_Icc (this hx) (this hy) [GOAL] case inr.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s hne : Set.Nonempty s ⊢ ENNReal.ofReal (sSup s - sInf s) ≤ EMetric.diam s [PROOFSTEP] apply ENNReal.ofReal_le_of_le_toReal [GOAL] case inr.refine'_2.h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s hne : Set.Nonempty s ⊢ sSup s - sInf s ≤ ENNReal.toReal (EMetric.diam s) [PROOFSTEP] rw [← Metric.diam, ← Metric.diam_closure] [GOAL] case inr.refine'_2.h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s hne : Set.Nonempty s ⊢ sSup s - sInf s ≤ Metric.diam (closure s) [PROOFSTEP] have h' := Real.bounded_iff_bddBelow_bddAbove.1 h [GOAL] case inr.refine'_2.h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s hne : Set.Nonempty s h' : BddBelow s ∧ BddAbove s ⊢ sSup s - sInf s ≤ Metric.diam (closure s) [PROOFSTEP] calc sSup s - sInf s ≤ dist (sSup s) (sInf s) := le_abs_self _ _ ≤ Metric.diam (closure s) := dist_le_diam_of_mem h.closure (csSup_mem_closure hne h'.2) (csInf_mem_closure hne h'.1) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s ⊢ Metric.diam s = sSup s - sInf s [PROOFSTEP] rw [Metric.diam, Real.ediam_eq h, ENNReal.toReal_ofReal] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : Metric.Bounded s ⊢ 0 ≤ sSup s - sInf s [PROOFSTEP] rw [Real.bounded_iff_bddBelow_bddAbove] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α s : Set ℝ h : BddBelow s ∧ BddAbove s ⊢ 0 ≤ sSup s - sInf s [PROOFSTEP] exact sub_nonneg.2 (Real.sInf_le_sSup s h.1 h.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ ⊢ EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) [PROOFSTEP] rcases le_or_lt b a with (h | h) [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ h : b ≤ a ⊢ EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) [PROOFSTEP] simp [h] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ h : a < b ⊢ EMetric.diam (Ioo a b) = ENNReal.ofReal (b - a) [PROOFSTEP] rw [Real.ediam_eq (bounded_Ioo _ _), csSup_Ioo h, csInf_Ioo h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ ⊢ EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) [PROOFSTEP] rcases le_or_lt a b with (h | h) [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ h : a ≤ b ⊢ EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) [PROOFSTEP] rw [Real.ediam_eq (bounded_Icc _ _), csSup_Icc h, csInf_Icc h] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ h : b < a ⊢ EMetric.diam (Icc a b) = ENNReal.ofReal (b - a) [PROOFSTEP] simp [h, h.le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ h : a ≤ b ⊢ Metric.diam (Icc a b) = b - a [PROOFSTEP] simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ h : a ≤ b ⊢ Metric.diam (Ico a b) = b - a [PROOFSTEP] simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ h : a ≤ b ⊢ Metric.diam (Ioc a b) = b - a [PROOFSTEP] simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α a b : ℝ h : a ≤ b ⊢ Metric.diam (Ioo a b) = b - a [PROOFSTEP] simp [Metric.diam, ENNReal.toReal_ofReal (sub_nonneg.2 h)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0∞ hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ d n a : α ha : Tendsto f atTop (𝓝 a) n : ℕ ⊢ edist (f n) a ≤ ∑' (m : ℕ), d (n + m) [PROOFSTEP] refine' le_of_tendsto (tendsto_const_nhds.edist ha) (mem_atTop_sets.2 ⟨n, fun m hnm => _⟩) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0∞ hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ d n a : α ha : Tendsto f atTop (𝓝 a) n m : ℕ hnm : m ≥ n ⊢ m ∈ {x | (fun c => edist (f n) (f c) ≤ ∑' (m : ℕ), d (n + m)) x} [PROOFSTEP] refine' le_trans (edist_le_Ico_sum_of_edist_le hnm fun _ _ => hf _) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0∞ hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ d n a : α ha : Tendsto f atTop (𝓝 a) n m : ℕ hnm : m ≥ n ⊢ ∑ i in Finset.Ico n m, d i ≤ ∑' (m : ℕ), d (n + m) [PROOFSTEP] rw [Finset.sum_Ico_eq_sum_range] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0∞ hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ d n a : α ha : Tendsto f atTop (𝓝 a) n m : ℕ hnm : m ≥ n ⊢ ∑ k in Finset.range (m - n), d (n + k) ≤ ∑' (m : ℕ), d (n + m) [PROOFSTEP] exact sum_le_tsum _ (fun _ _ => zero_le _) ENNReal.summable [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : PseudoEMetricSpace α f : ℕ → α d : ℕ → ℝ≥0∞ hf : ∀ (n : ℕ), edist (f n) (f (Nat.succ n)) ≤ d n a : α ha : Tendsto f atTop (𝓝 a) ⊢ edist (f 0) a ≤ ∑' (m : ℕ), d m [PROOFSTEP] simpa using edist_le_tsum_of_edist_le_of_tendsto d hf ha 0
{"mathlib_filename": "Mathlib.Topology.Instances.ENNReal", "llama_tokens": 82701}
[GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β ⊢ LipschitzWith K f ↔ ∀ (x y : α), dist (f x) (f y) ≤ ↑K * dist x y [PROOFSTEP] simp only [LipschitzWith, edist_nndist, dist_nndist] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β ⊢ (∀ (x y : α), ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y)) ↔ ∀ (x y : α), ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y) [PROOFSTEP] norm_cast [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 s : Set α f : α → β ⊢ LipschitzOnWith K f s ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → dist (f x) (f y) ≤ ↑K * dist x y [PROOFSTEP] simp only [LipschitzOnWith, edist_nndist, dist_nndist] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 s : Set α f : α → β ⊢ (∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y)) ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y) [PROOFSTEP] norm_cast [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 f : α → β ⊢ LipschitzOnWith K f univ ↔ LipschitzWith K f [PROOFSTEP] simp [LipschitzOnWith, LipschitzWith] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 f : α → β s : Set α ⊢ LipschitzOnWith K f s ↔ LipschitzWith K (restrict s f) [PROOFSTEP] simp only [LipschitzOnWith, LipschitzWith, SetCoe.forall', restrict, Subtype.edist_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x✝ y✝ : α r : ℝ≥0∞ h : LipschitzWith K f x y : α ⊢ (↑K)⁻¹ * edist (f x) (f y) ≤ edist x y [PROOFSTEP] rw [mul_comm, ← div_eq_mul_inv] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x✝ y✝ : α r : ℝ≥0∞ h : LipschitzWith K f x y : α ⊢ edist (f x) (f y) / ↑K ≤ edist x y [PROOFSTEP] exact ENNReal.div_le_of_le_mul' (h x y) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x✝ y✝ : α r : ℝ≥0∞ h : ∀ (x y : α), edist (f x) (f y) ≤ edist x y x y : α ⊢ edist (f x) (f y) ≤ ↑1 * edist x y [PROOFSTEP] simp only [ENNReal.coe_one, one_mul, h] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x y : α r : ℝ≥0∞ hf : LipschitzWith K f s : Set α ⊢ diam (f '' s) ≤ ↑K * diam s [PROOFSTEP] apply EMetric.diam_le [GOAL] case h α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x y : α r : ℝ≥0∞ hf : LipschitzWith K f s : Set α ⊢ ∀ (x : β), x ∈ f '' s → ∀ (y : β), y ∈ f '' s → edist x y ≤ ↑K * diam s [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ [GOAL] case h.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x✝ y✝ : α r : ℝ≥0∞ hf : LipschitzWith K f s : Set α x : α hx : x ∈ s y : α hy : y ∈ s ⊢ edist (f x) (f y) ≤ ↑K * diam s [PROOFSTEP] exact hf.edist_le_mul_of_le (EMetric.edist_le_diam_of_mem hx hy) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x✝ y✝ : α r : ℝ≥0∞ b : β x y : α ⊢ edist ((fun x => b) x) ((fun x => b) y) ≤ ↑0 * edist x y [PROOFSTEP] simp only [edist_self, zero_le] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K✝ : ℝ≥0 f : α → β x✝ y✝ : α r : ℝ≥0∞ b : β K : ℝ≥0 x y : α ⊢ edist ((fun x => b) x) ((fun x => b) y) ≤ ↑K * edist x y [PROOFSTEP] simp only [edist_self, zero_le] [GOAL] α✝ : Type u β : Type v γ : Type w ι : Type x inst✝⁴ : PseudoEMetricSpace α✝ inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α✝ → β x y : α✝ r : ℝ≥0∞ α : ι → Type u inst✝¹ : (i : ι) → PseudoEMetricSpace (α i) inst✝ : Fintype ι i : ι f g : (x : ι) → α x ⊢ edist (eval i f) (eval i g) ≤ edist f g [PROOFSTEP] convert edist_le_pi_edist f g i [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x✝ y✝ : α r : ℝ≥0∞ Kf Kg : ℝ≥0 f : β → γ g : α → β hf : LipschitzWith Kf f hg : LipschitzWith Kg g x y : α ⊢ ↑Kf * (↑Kg * edist x y) = ↑(Kf * Kg) * edist x y [PROOFSTEP] rw [← mul_assoc, ENNReal.coe_mul] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : α → β Kf : ℝ≥0 hf : LipschitzWith Kf f g : α → γ Kg : ℝ≥0 hg : LipschitzWith Kg g ⊢ LipschitzWith (max Kf Kg) fun x => (f x, g x) [PROOFSTEP] intro x y [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x✝ y✝ : α r : ℝ≥0∞ f : α → β Kf : ℝ≥0 hf : LipschitzWith Kf f g : α → γ Kg : ℝ≥0 hg : LipschitzWith Kg g x y : α ⊢ edist ((fun x => (f x, g x)) x) ((fun x => (f x, g x)) y) ≤ ↑(max Kf Kg) * edist x y [PROOFSTEP] rw [ENNReal.coe_mono.map_max, Prod.edist_eq, ENNReal.max_mul] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x✝ y✝ : α r : ℝ≥0∞ f : α → β Kf : ℝ≥0 hf : LipschitzWith Kf f g : α → γ Kg : ℝ≥0 hg : LipschitzWith Kg g x y : α ⊢ max (edist ((fun x => (f x, g x)) x).fst ((fun x => (f x, g x)) y).fst) (edist ((fun x => (f x, g x)) x).snd ((fun x => (f x, g x)) y).snd) ≤ max (↑Kf * edist x y) (↑Kg * edist x y) [PROOFSTEP] exact max_le_max (hf x y) (hg x y) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x y : α r : ℝ≥0∞ a : α ⊢ LipschitzWith 1 (Prod.mk a) [PROOFSTEP] simpa only [max_eq_right zero_le_one] using (LipschitzWith.const a).prod LipschitzWith.id [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x y : α r : ℝ≥0∞ b : β ⊢ LipschitzWith 1 fun a => (a, b) [PROOFSTEP] simpa only [max_eq_left zero_le_one] using LipschitzWith.id.prod (LipschitzWith.const b) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : α → β → γ Kα Kβ : ℝ≥0 hα : ∀ (b : β), LipschitzWith Kα fun a => f a b hβ : ∀ (a : α), LipschitzWith Kβ (f a) ⊢ LipschitzWith (Kα + Kβ) (uncurry f) [PROOFSTEP] rintro ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ [GOAL] case mk.mk α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : α → β → γ Kα Kβ : ℝ≥0 hα : ∀ (b : β), LipschitzWith Kα fun a => f a b hβ : ∀ (a : α), LipschitzWith Kβ (f a) a₁ : α b₁ : β a₂ : α b₂ : β ⊢ edist (uncurry f (a₁, b₁)) (uncurry f (a₂, b₂)) ≤ ↑(Kα + Kβ) * edist (a₁, b₁) (a₂, b₂) [PROOFSTEP] simp only [Function.uncurry, ENNReal.coe_add, add_mul] [GOAL] case mk.mk α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : α → β → γ Kα Kβ : ℝ≥0 hα : ∀ (b : β), LipschitzWith Kα fun a => f a b hβ : ∀ (a : α), LipschitzWith Kβ (f a) a₁ : α b₁ : β a₂ : α b₂ : β ⊢ edist (f a₁ b₁) (f a₂ b₂) ≤ ↑Kα * edist (a₁, b₁) (a₂, b₂) + ↑Kβ * edist (a₁, b₁) (a₂, b₂) [PROOFSTEP] apply le_trans (edist_triangle _ (f a₂ b₁) _) [GOAL] case mk.mk α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : α → β → γ Kα Kβ : ℝ≥0 hα : ∀ (b : β), LipschitzWith Kα fun a => f a b hβ : ∀ (a : α), LipschitzWith Kβ (f a) a₁ : α b₁ : β a₂ : α b₂ : β ⊢ edist (f a₁ b₁) (f a₂ b₁) + edist (f a₂ b₁) (f a₂ b₂) ≤ ↑Kα * edist (a₁, b₁) (a₂, b₂) + ↑Kβ * edist (a₁, b₁) (a₂, b₂) [PROOFSTEP] exact add_le_add (le_trans (hα _ _ _) <| ENNReal.mul_left_mono <| le_max_left _ _) (le_trans (hβ _ _ _) <| ENNReal.mul_left_mono <| le_max_right _ _) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : α → α hf : LipschitzWith K f ⊢ LipschitzWith (K ^ 0) f^[0] [PROOFSTEP] simpa only [pow_zero] using LipschitzWith.id [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : α → α hf : LipschitzWith K f n : ℕ ⊢ LipschitzWith (K ^ (n + 1)) f^[n + 1] [PROOFSTEP] rw [pow_succ'] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : α → α hf : LipschitzWith K f n : ℕ ⊢ LipschitzWith (K ^ n * K) f^[n + 1] [PROOFSTEP] exact (LipschitzWith.iterate hf n).comp hf [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x✝ y : α r : ℝ≥0∞ f : α → α hf : LipschitzWith K f x : α n : ℕ ⊢ edist (f^[n] x) (f^[n + 1] x) ≤ edist x (f x) * ↑K ^ n [PROOFSTEP] rw [iterate_succ, mul_comm] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β x✝ y : α r : ℝ≥0∞ f : α → α hf : LipschitzWith K f x : α n : ℕ ⊢ edist (f^[n] x) ((f^[n] ∘ f) x) ≤ ↑K ^ n * edist x (f x) [PROOFSTEP] simpa only [ENNReal.coe_pow] using (hf.iterate n) x (f x) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K✝ : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : ι → Function.End α K : ι → ℝ≥0 h : ∀ (i : ι), LipschitzWith (K i) (f i) ⊢ LipschitzWith (List.prod (List.map K [])) (List.prod (List.map f [])) [PROOFSTEP] simpa using LipschitzWith.id [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K✝ : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : ι → Function.End α K : ι → ℝ≥0 h : ∀ (i : ι), LipschitzWith (K i) (f i) i : ι l : List ι ⊢ LipschitzWith (List.prod (List.map K (i :: l))) (List.prod (List.map f (i :: l))) [PROOFSTEP] simp only [List.map_cons, List.prod_cons] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K✝ : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : ι → Function.End α K : ι → ℝ≥0 h : ∀ (i : ι), LipschitzWith (K i) (f i) i : ι l : List ι ⊢ LipschitzWith (K i * List.prod (List.map K l)) (f i * List.prod (List.map f l)) [PROOFSTEP] exact (h i).mul (LipschitzWith.list_prod f K h l) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K✝ : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : Function.End α K : ℝ≥0 h : LipschitzWith K f ⊢ LipschitzWith (K ^ 0) (f ^ 0) [PROOFSTEP] simpa only [pow_zero] using LipschitzWith.id [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K✝ : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : Function.End α K : ℝ≥0 h : LipschitzWith K f n : ℕ ⊢ LipschitzWith (K ^ (n + 1)) (f ^ (n + 1)) [PROOFSTEP] rw [pow_succ, pow_succ] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K✝ : ℝ≥0 f✝ : α → β x y : α r : ℝ≥0∞ f : Function.End α K : ℝ≥0 h : LipschitzWith K f n : ℕ ⊢ LipschitzWith (K * K ^ n) (f * f ^ n) [PROOFSTEP] exact h.mul (LipschitzWith.pow h n) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K✝ : ℝ≥0 f : α → β x✝ y✝ : α r K : ℝ h : ∀ (x y : α), dist (f x) (f y) ≤ K * dist x y x y : α ⊢ K * dist x y ≤ ↑(Real.toNNReal K) * dist x y [PROOFSTEP] gcongr [GOAL] case h α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K✝ : ℝ≥0 f : α → β x✝ y✝ : α r K : ℝ h : ∀ (x y : α), dist (f x) (f y) ≤ K * dist x y x y : α ⊢ K ≤ ↑(Real.toNNReal K) [PROOFSTEP] apply Real.le_coe_toNNReal [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 f : α → β x y : α r : ℝ h : ∀ (x y : α), dist (f x) (f y) ≤ dist x y ⊢ ∀ (x y : α), dist (f x) (f y) ≤ ↑1 * dist x y [PROOFSTEP] simpa only [NNReal.coe_one, one_mul] using h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K✝ : ℝ≥0 f✝ : α → β x y : α r : ℝ f : α → ℝ K : ℝ≥0 h : ∀ (x y : α), f x ≤ f y + ↑K * dist x y ⊢ LipschitzWith K f [PROOFSTEP] simpa only [Real.toNNReal_coe] using LipschitzWith.of_le_add_mul' K h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 f✝ : α → β x y : α r : ℝ f : α → ℝ h : ∀ (x y : α), f x ≤ f y + dist x y ⊢ ∀ (x y : α), f x ≤ f y + ↑1 * dist x y [PROOFSTEP] simpa only [NNReal.coe_one, one_mul] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 f : α → β x y : α r : ℝ hf : LipschitzWith K f hr : dist x y ≤ r ⊢ ↑K * dist x y ≤ ↑K * r [PROOFSTEP] gcongr [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 f : α → β x y : α r : ℝ ⊢ LipschitzWith 2 (uncurry dist) [PROOFSTEP] rw [← one_add_one_eq_two] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 f : α → β x y : α r : ℝ ⊢ LipschitzWith (1 + 1) (uncurry dist) [PROOFSTEP] exact LipschitzWith.uncurry LipschitzWith.dist_left LipschitzWith.dist_right [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 f✝ : α → β x✝ y : α r : ℝ f : α → α hf : LipschitzWith K f x : α n : ℕ ⊢ dist (f^[n] x) (f^[n + 1] x) ≤ dist x (f x) * ↑K ^ n [PROOFSTEP] rw [iterate_succ, mul_comm] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 f✝ : α → β x✝ y : α r : ℝ f : α → α hf : LipschitzWith K f x : α n : ℕ ⊢ dist (f^[n] x) ((f^[n] ∘ f) x) ≤ ↑K ^ n * dist x (f x) [PROOFSTEP] simpa only [NNReal.coe_pow] using (hf.iterate n).dist_le_mul x (f x) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoEMetricSpace α f g : α → ℝ Kf Kg : ℝ≥0 hf : LipschitzWith Kf f hg : LipschitzWith Kg g ⊢ LipschitzWith (max Kf Kg) fun x => max (f x) (g x) [PROOFSTEP] simpa only [(· ∘ ·), one_mul] using lipschitzWith_max.comp (hf.prod hg) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoEMetricSpace α f g : α → ℝ Kf Kg : ℝ≥0 hf : LipschitzWith Kf f hg : LipschitzWith Kg g ⊢ LipschitzWith (max Kf Kg) fun x => min (f x) (g x) [PROOFSTEP] simpa only [(· ∘ ·), one_mul] using lipschitzWith_min.comp (hf.prod hg) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoEMetricSpace α f g : α → ℝ Kf Kg : ℝ≥0 hf : LipschitzWith Kf f a : ℝ ⊢ LipschitzWith Kf fun x => max (f x) a [PROOFSTEP] simpa only [max_eq_left (zero_le Kf)] using hf.max (LipschitzWith.const a) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoEMetricSpace α f g : α → ℝ Kf Kg : ℝ≥0 hf : LipschitzWith Kf f a : ℝ ⊢ LipschitzWith Kf fun x => max a (f x) [PROOFSTEP] simpa only [max_comm] using hf.max_const a [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoEMetricSpace α f g : α → ℝ Kf Kg : ℝ≥0 hf : LipschitzWith Kf f a : ℝ ⊢ LipschitzWith Kf fun x => min (f x) a [PROOFSTEP] simpa only [max_eq_left (zero_le Kf)] using hf.min (LipschitzWith.const a) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoEMetricSpace α f g : α → ℝ Kf Kg : ℝ≥0 hf : LipschitzWith Kf f a : ℝ ⊢ LipschitzWith Kf fun x => min a (f x) [PROOFSTEP] simpa only [min_comm] using hf.min_const a [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s : Set α t : Set β h : Bounded (s ×ˢ t) ht : Set.Nonempty t ⊢ Bounded s [PROOFSTEP] simpa only [fst_image_prod s ht] using (@LipschitzWith.prod_fst α β _ _).bounded_image h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s : Set α t : Set β h : Bounded (s ×ˢ t) hs : Set.Nonempty s ⊢ Bounded t [PROOFSTEP] simpa only [snd_image_prod hs t] using (@LipschitzWith.prod_snd α β _ _).bounded_image h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β s : Set α t : Set β ⊢ Bounded (s ×ˢ t) ↔ s = ∅ ∨ t = ∅ ∨ Bounded s ∧ Bounded t [PROOFSTEP] simp only [bounded_iff_isBounded, Bornology.isBounded_prod] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K✝ : ℝ≥0 s : Set α f : α → β K : ℝ h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → dist (f x) (f y) ≤ K * dist x y x : α hx : x ∈ s y : α hy : y ∈ s ⊢ K * dist x y ≤ ↑(Real.toNNReal K) * dist x y [PROOFSTEP] gcongr [GOAL] case h α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K✝ : ℝ≥0 s : Set α f : α → β K : ℝ h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → dist (f x) (f y) ≤ K * dist x y x : α hx : x ∈ s y : α hy : y ∈ s ⊢ K ≤ ↑(Real.toNNReal K) [PROOFSTEP] apply Real.le_coe_toNNReal [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 s : Set α f : α → β h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → dist (f x) (f y) ≤ dist x y ⊢ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → dist (f x) (f y) ≤ ↑1 * dist x y [PROOFSTEP] simpa only [NNReal.coe_one, one_mul] using h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K✝ : ℝ≥0 s : Set α f✝ : α → β f : α → ℝ K : ℝ≥0 h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → f x ≤ f y + ↑K * dist x y ⊢ LipschitzOnWith K f s [PROOFSTEP] simpa only [Real.toNNReal_coe] using LipschitzOnWith.of_le_add_mul' K h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoMetricSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ K : ℝ≥0 s : Set α f✝ : α → β f : α → ℝ h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → f x ≤ f y + dist x y ⊢ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → f x ≤ f y + ↑1 * dist x y [PROOFSTEP] simpa only [NNReal.coe_one, one_mul] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s ⊢ ContinuousOn f (s ×ˢ t) [PROOFSTEP] rintro ⟨x, y⟩ ⟨hx : x ∈ s, hy : y ∈ t⟩ [GOAL] case mk.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ⊢ ContinuousWithinAt f (s ×ˢ t) (x, y) [PROOFSTEP] refine' EMetric.nhds_basis_closed_eball.tendsto_right_iff.2 fun ε (ε0 : 0 < ε) => _ [GOAL] case mk.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε ⊢ ∀ᶠ (x_1 : α × β) in 𝓝[s ×ˢ t] (x, y), f x_1 ∈ EMetric.closedBall (f (x, y)) ε [PROOFSTEP] replace ε0 : 0 < ε / 2 := ENNReal.half_pos ε0.ne' [GOAL] case mk.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 ⊢ ∀ᶠ (x_1 : α × β) in 𝓝[s ×ˢ t] (x, y), f x_1 ∈ EMetric.closedBall (f (x, y)) ε [PROOFSTEP] obtain ⟨δ, δpos, hδ⟩ : ∃ δ : ℝ≥0, 0 < δ ∧ (δ : ℝ≥0∞) * ↑(3 * K) < ε / 2 := ENNReal.exists_nnreal_pos_mul_lt ENNReal.coe_ne_top ε0.ne' [GOAL] case mk.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < δ hδ : ↑δ * ↑(3 * K) < ε / 2 ⊢ ∀ᶠ (x_1 : α × β) in 𝓝[s ×ˢ t] (x, y), f x_1 ∈ EMetric.closedBall (f (x, y)) ε [PROOFSTEP] rw [← ENNReal.coe_pos] at δpos [GOAL] case mk.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 ⊢ ∀ᶠ (x_1 : α × β) in 𝓝[s ×ˢ t] (x, y), f x_1 ∈ EMetric.closedBall (f (x, y)) ε [PROOFSTEP] rcases EMetric.mem_closure_iff.1 (hss' hx) δ δpos with ⟨x', hx', hxx'⟩ [GOAL] case mk.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ ⊢ ∀ᶠ (x_1 : α × β) in 𝓝[s ×ˢ t] (x, y), f x_1 ∈ EMetric.closedBall (f (x, y)) ε [PROOFSTEP] have A : s ∩ EMetric.ball x δ ∈ 𝓝[s] x := inter_mem_nhdsWithin _ (EMetric.ball_mem_nhds _ δpos) [GOAL] case mk.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x ⊢ ∀ᶠ (x_1 : α × β) in 𝓝[s ×ˢ t] (x, y), f x_1 ∈ EMetric.closedBall (f (x, y)) ε [PROOFSTEP] have B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y := inter_mem self_mem_nhdsWithin (ha x' hx' y hy (EMetric.closedBall_mem_nhds (f (x', y)) ε0)) [GOAL] case mk.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y ⊢ ∀ᶠ (x_1 : α × β) in 𝓝[s ×ˢ t] (x, y), f x_1 ∈ EMetric.closedBall (f (x, y)) ε [PROOFSTEP] filter_upwards [nhdsWithin_prod A B] with ⟨a, b⟩ ⟨⟨has, hax⟩, ⟨hbt, hby⟩⟩ [GOAL] case h α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ f (a, b) ∈ EMetric.closedBall (f (x, y)) ε [PROOFSTEP] calc edist (f (a, b)) (f (x, y)) ≤ edist (f (a, b)) (f (x', b)) + edist (f (x', b)) (f (x', y)) + edist (f (x', y)) (f (x, y)) := edist_triangle4 _ _ _ _ _ ≤ K * (δ + δ) + ε / 2 + K * δ := by gcongr · refine (hb b hbt).edist_le_mul_of_le has (hs' hx') ?_ refine (edist_triangle _ _ _).trans (add_le_add (le_of_lt hax) hxx'.le) · exact hby · exact (hb y hy).edist_le_mul_of_le (hs' hx') hx ((edist_comm _ _).trans_le hxx'.le) _ = δ * ↑(3 * K) + ε / 2 := by push_cast ; ring _ ≤ ε / 2 + ε / 2 := by gcongr _ = ε := ENNReal.add_halves _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ edist (f (a, b)) (f (x', b)) + edist (f (x', b)) (f (x', y)) + edist (f (x', y)) (f (x, y)) ≤ ↑K * (↑δ + ↑δ) + ε / 2 + ↑K * ↑δ [PROOFSTEP] gcongr [GOAL] case h₁.h₁ α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ edist (f (a, b)) (f (x', b)) ≤ ↑K * (↑δ + ↑δ) [PROOFSTEP] refine (hb b hbt).edist_le_mul_of_le has (hs' hx') ?_ [GOAL] case h₁.h₁ α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ edist a x' ≤ ↑δ + ↑δ [PROOFSTEP] refine (edist_triangle _ _ _).trans (add_le_add (le_of_lt hax) hxx'.le) [GOAL] case h₁.h₂ α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ edist (f (x', b)) (f (x', y)) ≤ ε / 2 [PROOFSTEP] exact hby [GOAL] case h₂ α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ edist (f (x', y)) (f (x, y)) ≤ ↑K * ↑δ [PROOFSTEP] exact (hb y hy).edist_le_mul_of_le (hs' hx') hx ((edist_comm _ _).trans_le hxx'.le) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ ↑K * (↑δ + ↑δ) + ε / 2 + ↑K * ↑δ = ↑δ * ↑(3 * K) + ε / 2 [PROOFSTEP] push_cast [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ ↑K * (↑δ + ↑δ) + ε / 2 + ↑K * ↑δ = ↑δ * (3 * ↑K) + ε / 2 [PROOFSTEP] ring [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ s s' : Set α t : Set β hs' : s' ⊆ s hss' : s ⊆ closure s' K : ℝ≥0 ha : ∀ (a : α), a ∈ s' → ContinuousOn (fun y => f (a, y)) t hb : ∀ (b : β), b ∈ t → LipschitzOnWith K (fun x => f (x, b)) s x : α y : β hx : x ∈ s hy : y ∈ t ε : ℝ≥0∞ ε0 : 0 < ε / 2 δ : ℝ≥0 δpos : 0 < ↑δ hδ : ↑δ * ↑(3 * K) < ε / 2 x' : α hx' : x' ∈ s' hxx' : edist x x' < ↑δ A : s ∩ EMetric.ball x ↑δ ∈ 𝓝[s] x B : t ∩ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ∈ 𝓝[t] y a : α b : β has : (a, b).fst ∈ s hax : (a, b).fst ∈ EMetric.ball x ↑δ hbt : (a, b).snd ∈ t hby : (a, b).snd ∈ {b | edist (f (x', b)) (f (x', y)) ≤ ε / 2} ⊢ ↑δ * ↑(3 * K) + ε / 2 ≤ ε / 2 + ε / 2 [PROOFSTEP] gcongr [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ K : ℝ≥0 s : Set α hs : Dense s ha : ∀ (a : α), a ∈ s → Continuous fun y => f (a, y) hb : ∀ (b : β), LipschitzWith K fun x => f (x, b) ⊢ Continuous f [PROOFSTEP] simp only [continuous_iff_continuousOn_univ, ← univ_prod_univ, ← lipschitz_on_univ] at * [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : PseudoEMetricSpace α inst✝¹ : TopologicalSpace β inst✝ : PseudoEMetricSpace γ f : α × β → γ K : ℝ≥0 s : Set α hs : Dense s ha : ∀ (a : α), a ∈ s → ContinuousOn (fun y => f (a, y)) univ hb : ∀ (b : β), LipschitzOnWith K (fun x => f (x, b)) univ ⊢ ContinuousOn f (univ ×ˢ univ) [PROOFSTEP] exact continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith f (subset_univ _) hs.closure_eq.ge K ha fun b _ => hb b [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β x : α r : ℝ hr : 0 < r K : ℝ h : ∀ (y : α), dist y x < r → dist (f y) (f x) ≤ K * dist y x ⊢ ContinuousAt f x [PROOFSTEP] refine tendsto_iff_dist_tendsto_zero.2 (squeeze_zero' (eventually_of_forall fun _ => dist_nonneg) (mem_of_superset (ball_mem_nhds _ hr) h) ?_) -- Then show that `K * dist y x` tends to zero as `y → x` [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β x : α r : ℝ hr : 0 < r K : ℝ h : ∀ (y : α), dist y x < r → dist (f y) (f x) ≤ K * dist y x ⊢ Tendsto (fun a => K * dist a x) (𝓝 x) (𝓝 0) [PROOFSTEP] refine (continuous_const.mul (continuous_id.dist continuous_const)).tendsto' _ _ ?_ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β x : α r : ℝ hr : 0 < r K : ℝ h : ∀ (y : α), dist y x < r → dist (f y) (f x) ≤ K * dist y x ⊢ K * dist (id x) x = 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | hs) [GOAL] case inl α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ K : ℝ≥0 hf : LipschitzOnWith K f ∅ ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g ∅ [PROOFSTEP] exact ⟨fun _ => 0, (LipschitzWith.const _).weaken (zero_le _), eqOn_empty _ _⟩ [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] have : Nonempty s := by simp only [hs, nonempty_coe_sort] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s ⊢ Nonempty ↑s [PROOFSTEP] simp only [hs, nonempty_coe_sort] [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] let g := fun y : α => iInf fun x : s => f x + K * dist y x [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] have B : ∀ y : α, BddBelow (range fun x : s => f x + K * dist y x) := fun y => by rcases hs with ⟨z, hz⟩ refine' ⟨f z - K * dist y z, _⟩ rintro w ⟨t, rfl⟩ dsimp rw [sub_le_iff_le_add, add_assoc, ← mul_add, add_comm (dist y t)] calc f z ≤ f t + K * dist z t := hf.le_add_mul hz t.2 _ ≤ f t + K * (dist y z + dist y t) := by gcongr; apply dist_triangle_left [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x y : α ⊢ BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) [PROOFSTEP] rcases hs with ⟨z, hz⟩ [GOAL] case intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x y z : α hz : z ∈ s ⊢ BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) [PROOFSTEP] refine' ⟨f z - K * dist y z, _⟩ [GOAL] case intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x y z : α hz : z ∈ s ⊢ f z - ↑K * dist y z ∈ lowerBounds (range fun x => f ↑x + ↑K * dist y ↑x) [PROOFSTEP] rintro w ⟨t, rfl⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x y z : α hz : z ∈ s t : ↑s ⊢ f z - ↑K * dist y z ≤ (fun x => f ↑x + ↑K * dist y ↑x) t [PROOFSTEP] dsimp [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x y z : α hz : z ∈ s t : ↑s ⊢ f z - ↑K * dist y z ≤ f ↑t + ↑K * dist y ↑t [PROOFSTEP] rw [sub_le_iff_le_add, add_assoc, ← mul_add, add_comm (dist y t)] [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x y z : α hz : z ∈ s t : ↑s ⊢ f z ≤ f ↑t + ↑K * (dist y z + dist y ↑t) [PROOFSTEP] calc f z ≤ f t + K * dist z t := hf.le_add_mul hz t.2 _ ≤ f t + K * (dist y z + dist y t) := by gcongr; apply dist_triangle_left [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x y z : α hz : z ∈ s t : ↑s ⊢ f ↑t + ↑K * dist z ↑t ≤ f ↑t + ↑K * (dist y z + dist y ↑t) [PROOFSTEP] gcongr [GOAL] case bc.h α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x y z : α hz : z ∈ s t : ↑s ⊢ dist z ↑t ≤ dist y z + dist y ↑t [PROOFSTEP] apply dist_triangle_left [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] have E : EqOn f g s := fun x hx => by refine' le_antisymm (le_ciInf fun y => hf.le_add_mul hx y.2) _ simpa only [add_zero, Subtype.coe_mk, mul_zero, dist_self] using ciInf_le (B x) ⟨x, hx⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) x : α hx : x ∈ s ⊢ f x = g x [PROOFSTEP] refine' le_antisymm (le_ciInf fun y => hf.le_add_mul hx y.2) _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) x : α hx : x ∈ s ⊢ g x ≤ f x [PROOFSTEP] simpa only [add_zero, Subtype.coe_mk, mul_zero, dist_self] using ciInf_le (B x) ⟨x, hx⟩ [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] refine' ⟨g, LipschitzWith.of_le_add_mul K fun x y => _, E⟩ [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s x y : α ⊢ g x ≤ g y + ↑K * dist x y [PROOFSTEP] rw [← sub_le_iff_le_add] [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s x y : α ⊢ g x - ↑K * dist x y ≤ g y [PROOFSTEP] refine' le_ciInf fun z => _ [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s x y : α z : ↑s ⊢ g x - ↑K * dist x y ≤ f ↑z + ↑K * dist y ↑z [PROOFSTEP] rw [sub_le_iff_le_add] [GOAL] case inr α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s x y : α z : ↑s ⊢ g x ≤ f ↑z + ↑K * dist y ↑z + ↑K * dist x y [PROOFSTEP] calc g x ≤ f z + K * dist x z := ciInf_le (B x) _ _ ≤ f z + K * dist y z + K * dist x y := by rw [add_assoc, ← mul_add, add_comm (dist y z)] gcongr apply dist_triangle [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s x y : α z : ↑s ⊢ f ↑z + ↑K * dist x ↑z ≤ f ↑z + ↑K * dist y ↑z + ↑K * dist x y [PROOFSTEP] rw [add_assoc, ← mul_add, add_comm (dist y z)] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s x y : α z : ↑s ⊢ f ↑z + ↑K * dist x ↑z ≤ f ↑z + ↑K * (dist x y + dist y ↑z) [PROOFSTEP] gcongr [GOAL] case bc.h α : Type u β : Type v γ : Type w ι : Type x inst✝ : PseudoMetricSpace α f : α → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s hs : Set.Nonempty s this : Nonempty ↑s g : α → ℝ := fun y => ⨅ (x : ↑s), f ↑x + ↑K * dist y ↑x B : ∀ (y : α), BddBelow (range fun x => f ↑x + ↑K * dist y ↑x) E : EqOn f g s x y : α z : ↑s ⊢ dist x ↑z ≤ dist x y + dist y ↑z [PROOFSTEP] apply dist_triangle [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] have : ∀ i, ∃ g : α → ℝ, LipschitzWith K g ∧ EqOn (fun x => f x i) g s := fun i => by have : LipschitzOnWith K (fun x : α => f x i) s := LipschitzOnWith.of_dist_le_mul fun x hx y hy => (dist_le_pi_dist _ _ i).trans (hf.dist_le_mul x hx y hy) exact this.extend_real [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s i : ι ⊢ ∃ g, LipschitzWith K g ∧ EqOn (fun x => f x i) g s [PROOFSTEP] have : LipschitzOnWith K (fun x : α => f x i) s := LipschitzOnWith.of_dist_le_mul fun x hx y hy => (dist_le_pi_dist _ _ i).trans (hf.dist_le_mul x hx y hy) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s i : ι this : LipschitzOnWith K (fun x => f x i) s ⊢ ∃ g, LipschitzWith K g ∧ EqOn (fun x => f x i) g s [PROOFSTEP] exact this.extend_real [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s this : ∀ (i : ι), ∃ g, LipschitzWith K g ∧ EqOn (fun x => f x i) g s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] choose g hg using this [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s g : ι → α → ℝ hg : ∀ (i : ι), LipschitzWith K (g i) ∧ EqOn (fun x => f x i) (g i) s ⊢ ∃ g, LipschitzWith K g ∧ EqOn f g s [PROOFSTEP] refine' ⟨fun x i => g i x, LipschitzWith.of_dist_le_mul fun x y => _, _⟩ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s g : ι → α → ℝ hg : ∀ (i : ι), LipschitzWith K (g i) ∧ EqOn (fun x => f x i) (g i) s x y : α ⊢ (dist (fun i => g i x) fun i => g i y) ≤ ↑K * dist x y [PROOFSTEP] exact (dist_pi_le_iff (mul_nonneg K.2 dist_nonneg)).2 fun i => (hg i).1.dist_le_mul x y [GOAL] case refine'_2 α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s g : ι → α → ℝ hg : ∀ (i : ι), LipschitzWith K (g i) ∧ EqOn (fun x => f x i) (g i) s ⊢ EqOn f (fun x i => g i x) s [PROOFSTEP] intro x hx [GOAL] case refine'_2 α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s g : ι → α → ℝ hg : ∀ (i : ι), LipschitzWith K (g i) ∧ EqOn (fun x => f x i) (g i) s x : α hx : x ∈ s ⊢ f x = (fun x i => g i x) x [PROOFSTEP] ext1 i [GOAL] case refine'_2.h α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : PseudoMetricSpace α inst✝ : Fintype ι f : α → ι → ℝ s : Set α K : ℝ≥0 hf : LipschitzOnWith K f s g : ι → α → ℝ hg : ∀ (i : ι), LipschitzWith K (g i) ∧ EqOn (fun x => f x i) (g i) s x : α hx : x ∈ s i : ι ⊢ f x i = (fun x i => g i x) x i [PROOFSTEP] exact (hg i).2 hx
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Lipschitz", "llama_tokens": 26536}
[GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α x : α U : Set α h_acc : AccPt x (𝓟 C) hU : U ∈ 𝓝 x ⊢ AccPt x (𝓟 (U ∩ C)) [PROOFSTEP] have : 𝓝[≠] x ≤ 𝓟 U := by rw [le_principal_iff] exact mem_nhdsWithin_of_mem_nhds hU [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α x : α U : Set α h_acc : AccPt x (𝓟 C) hU : U ∈ 𝓝 x ⊢ 𝓝[{x}ᶜ] x ≤ 𝓟 U [PROOFSTEP] rw [le_principal_iff] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α x : α U : Set α h_acc : AccPt x (𝓟 C) hU : U ∈ 𝓝 x ⊢ U ∈ 𝓝[{x}ᶜ] x [PROOFSTEP] exact mem_nhdsWithin_of_mem_nhds hU [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α x : α U : Set α h_acc : AccPt x (𝓟 C) hU : U ∈ 𝓝 x this : 𝓝[{x}ᶜ] x ≤ 𝓟 U ⊢ AccPt x (𝓟 (U ∩ C)) [PROOFSTEP] rw [AccPt, ← inf_principal, ← inf_assoc, inf_of_le_left this] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α x : α U : Set α h_acc : AccPt x (𝓟 C) hU : U ∈ 𝓝 x this : 𝓝[{x}ᶜ] x ≤ 𝓟 U ⊢ NeBot (𝓝[{x}ᶜ] x ⊓ 𝓟 C) [PROOFSTEP] exact h_acc [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α ⊢ Preperfect C ↔ ∀ (x : α), x ∈ C → ∀ (U : Set α), U ∈ 𝓝 x → ∃ y, y ∈ U ∩ C ∧ y ≠ x [PROOFSTEP] simp only [Preperfect, accPt_iff_nhds] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Preperfect C hU : IsOpen U ⊢ Preperfect (U ∩ C) [PROOFSTEP] rintro x ⟨xU, xC⟩ [GOAL] case intro α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Preperfect C hU : IsOpen U x : α xU : x ∈ U xC : x ∈ C ⊢ AccPt x (𝓟 (U ∩ C)) [PROOFSTEP] apply (hC _ xC).nhds_inter [GOAL] case intro α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Preperfect C hU : IsOpen U x : α xU : x ∈ U xC : x ∈ C ⊢ U ∈ 𝓝 x [PROOFSTEP] exact hU.mem_nhds xU [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C ⊢ Perfect (closure C) [PROOFSTEP] constructor [GOAL] case closed α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C ⊢ IsClosed (closure C) [PROOFSTEP] exact isClosed_closure [GOAL] case acc α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C ⊢ Preperfect (closure C) [PROOFSTEP] intro x hx [GOAL] case acc α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ closure C ⊢ AccPt x (𝓟 (closure C)) [PROOFSTEP] by_cases h : x ∈ C [GOAL] case pos α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ closure C h : x ∈ C ⊢ AccPt x (𝓟 (closure C)) [PROOFSTEP] apply AccPt.mono _ (principal_mono.mpr subset_closure) [GOAL] case neg α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ closure C h : ¬x ∈ C ⊢ AccPt x (𝓟 (closure C)) [PROOFSTEP] apply AccPt.mono _ (principal_mono.mpr subset_closure) [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ closure C h : x ∈ C ⊢ AccPt x (𝓟 C) [PROOFSTEP] exact hC _ h [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ closure C h : ¬x ∈ C ⊢ AccPt x (𝓟 C) [PROOFSTEP] have : { x }ᶜ ∩ C = C := by simp [h] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ closure C h : ¬x ∈ C ⊢ {x}ᶜ ∩ C = C [PROOFSTEP] simp [h] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ closure C h : ¬x ∈ C this : {x}ᶜ ∩ C = C ⊢ AccPt x (𝓟 C) [PROOFSTEP] rw [AccPt, nhdsWithin, inf_assoc, inf_principal, this] [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ closure C h : ¬x ∈ C this : {x}ᶜ ∩ C = C ⊢ NeBot (𝓝 x ⊓ 𝓟 C) [PROOFSTEP] rw [closure_eq_cluster_pts] at hx [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C : Set α hC : Preperfect C x : α hx : x ∈ {a | ClusterPt a (𝓟 C)} h : ¬x ∈ C this : {x}ᶜ ∩ C = C ⊢ NeBot (𝓝 x ⊓ 𝓟 C) [PROOFSTEP] exact hx [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α ⊢ Preperfect C ↔ Perfect (closure C) [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α ⊢ Preperfect C → Perfect (closure C) [PROOFSTEP] intro h [GOAL] case mpr α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α ⊢ Perfect (closure C) → Preperfect C [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Preperfect C ⊢ Perfect (closure C) [PROOFSTEP] exact h.perfect_closure [GOAL] case mpr α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) ⊢ Preperfect C [PROOFSTEP] intro x xC [GOAL] case mpr α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) x : α xC : x ∈ C ⊢ AccPt x (𝓟 C) [PROOFSTEP] have H : AccPt x (𝓟 (closure C)) := h.acc _ (subset_closure xC) [GOAL] case mpr α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) x : α xC : x ∈ C H : AccPt x (𝓟 (closure C)) ⊢ AccPt x (𝓟 C) [PROOFSTEP] rw [accPt_iff_frequently] at * [GOAL] case mpr α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) x : α xC : x ∈ C H : ∃ᶠ (y : α) in 𝓝 x, y ≠ x ∧ y ∈ closure C ⊢ ∃ᶠ (y : α) in 𝓝 x, y ≠ x ∧ y ∈ C [PROOFSTEP] have : ∀ y, y ≠ x ∧ y ∈ closure C → ∃ᶠ z in 𝓝 y, z ≠ x ∧ z ∈ C := by rintro y ⟨hyx, yC⟩ simp only [← mem_compl_singleton_iff, and_comm, ← frequently_nhdsWithin_iff, hyx.nhdsWithin_compl_singleton, ← mem_closure_iff_frequently] exact yC [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) x : α xC : x ∈ C H : ∃ᶠ (y : α) in 𝓝 x, y ≠ x ∧ y ∈ closure C ⊢ ∀ (y : α), y ≠ x ∧ y ∈ closure C → ∃ᶠ (z : α) in 𝓝 y, z ≠ x ∧ z ∈ C [PROOFSTEP] rintro y ⟨hyx, yC⟩ [GOAL] case intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) x : α xC : x ∈ C H : ∃ᶠ (y : α) in 𝓝 x, y ≠ x ∧ y ∈ closure C y : α hyx : y ≠ x yC : y ∈ closure C ⊢ ∃ᶠ (z : α) in 𝓝 y, z ≠ x ∧ z ∈ C [PROOFSTEP] simp only [← mem_compl_singleton_iff, and_comm, ← frequently_nhdsWithin_iff, hyx.nhdsWithin_compl_singleton, ← mem_closure_iff_frequently] [GOAL] case intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) x : α xC : x ∈ C H : ∃ᶠ (y : α) in 𝓝 x, y ≠ x ∧ y ∈ closure C y : α hyx : y ≠ x yC : y ∈ closure C ⊢ y ∈ closure C [PROOFSTEP] exact yC [GOAL] case mpr α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) x : α xC : x ∈ C H : ∃ᶠ (y : α) in 𝓝 x, y ≠ x ∧ y ∈ closure C this : ∀ (y : α), y ≠ x ∧ y ∈ closure C → ∃ᶠ (z : α) in 𝓝 y, z ≠ x ∧ z ∈ C ⊢ ∃ᶠ (y : α) in 𝓝 x, y ≠ x ∧ y ∈ C [PROOFSTEP] rw [← frequently_frequently_nhds] [GOAL] case mpr α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T1Space α h : Perfect (closure C) x : α xC : x ∈ C H : ∃ᶠ (y : α) in 𝓝 x, y ≠ x ∧ y ∈ closure C this : ∀ (y : α), y ≠ x ∧ y ∈ closure C → ∃ᶠ (z : α) in 𝓝 y, z ≠ x ∧ z ∈ C ⊢ ∃ᶠ (y : α) in 𝓝 x, ∃ᶠ (x_1 : α) in 𝓝 y, x_1 ≠ x ∧ x_1 ∈ C [PROOFSTEP] exact H.mono this [GOAL] α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Perfect C x : α xC : x ∈ C xU : x ∈ U Uop : IsOpen U ⊢ Perfect (closure (U ∩ C)) ∧ Set.Nonempty (closure (U ∩ C)) [PROOFSTEP] constructor [GOAL] case left α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Perfect C x : α xC : x ∈ C xU : x ∈ U Uop : IsOpen U ⊢ Perfect (closure (U ∩ C)) [PROOFSTEP] apply Preperfect.perfect_closure [GOAL] case left.hC α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Perfect C x : α xC : x ∈ C xU : x ∈ U Uop : IsOpen U ⊢ Preperfect (U ∩ C) [PROOFSTEP] exact hC.acc.open_inter Uop [GOAL] case right α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Perfect C x : α xC : x ∈ C xU : x ∈ U Uop : IsOpen U ⊢ Set.Nonempty (closure (U ∩ C)) [PROOFSTEP] apply Nonempty.closure [GOAL] case right.a α : Type u_1 inst✝ : TopologicalSpace α C U : Set α hC : Perfect C x : α xC : x ∈ C xU : x ∈ U Uop : IsOpen U ⊢ Set.Nonempty (U ∩ C) [PROOFSTEP] exact ⟨x, ⟨xU, xC⟩⟩ [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C hnonempty : Set.Nonempty C ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C) ∧ Disjoint C₀ C₁ [PROOFSTEP] cases' hnonempty with y yC [GOAL] case intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C) ∧ Disjoint C₀ C₁ [PROOFSTEP] obtain ⟨x, xC, hxy⟩ : ∃ x ∈ C, x ≠ y := by have := hC.acc _ yC rw [accPt_iff_nhds] at this rcases this univ univ_mem with ⟨x, xC, hxy⟩ exact ⟨x, xC.2, hxy⟩ [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C ⊢ ∃ x, x ∈ C ∧ x ≠ y [PROOFSTEP] have := hC.acc _ yC [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C this : AccPt y (𝓟 C) ⊢ ∃ x, x ∈ C ∧ x ≠ y [PROOFSTEP] rw [accPt_iff_nhds] at this [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C this : ∀ (U : Set α), U ∈ 𝓝 y → ∃ y_1, y_1 ∈ U ∩ C ∧ y_1 ≠ y ⊢ ∃ x, x ∈ C ∧ x ≠ y [PROOFSTEP] rcases this univ univ_mem with ⟨x, xC, hxy⟩ [GOAL] case intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C this : ∀ (U : Set α), U ∈ 𝓝 y → ∃ y_1, y_1 ∈ U ∩ C ∧ y_1 ≠ y x : α xC : x ∈ univ ∩ C hxy : x ≠ y ⊢ ∃ x, x ∈ C ∧ x ≠ y [PROOFSTEP] exact ⟨x, xC.2, hxy⟩ [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C) ∧ Disjoint C₀ C₁ [PROOFSTEP] obtain ⟨U, xU, Uop, V, yV, Vop, hUV⟩ := exists_open_nhds_disjoint_closure hxy [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C) ∧ Disjoint C₀ C₁ [PROOFSTEP] use closure (U ∩ C), closure (V ∩ C) [GOAL] case h α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ (Perfect (closure (U ∩ C)) ∧ Set.Nonempty (closure (U ∩ C)) ∧ closure (U ∩ C) ⊆ C) ∧ (Perfect (closure (V ∩ C)) ∧ Set.Nonempty (closure (V ∩ C)) ∧ closure (V ∩ C) ⊆ C) ∧ Disjoint (closure (U ∩ C)) (closure (V ∩ C)) [PROOFSTEP] constructor [GOAL] case h.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ Perfect (closure (U ∩ C)) ∧ Set.Nonempty (closure (U ∩ C)) ∧ closure (U ∩ C) ⊆ C [PROOFSTEP] rw [← and_assoc] [GOAL] case h.right α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ (Perfect (closure (V ∩ C)) ∧ Set.Nonempty (closure (V ∩ C)) ∧ closure (V ∩ C) ⊆ C) ∧ Disjoint (closure (U ∩ C)) (closure (V ∩ C)) [PROOFSTEP] rw [← and_assoc] [GOAL] case h.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ (Perfect (closure (U ∩ C)) ∧ Set.Nonempty (closure (U ∩ C))) ∧ closure (U ∩ C) ⊆ C [PROOFSTEP] refine' ⟨hC.closure_nhds_inter x xC xU Uop, _⟩ [GOAL] case h.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ closure (U ∩ C) ⊆ C [PROOFSTEP] rw [hC.closed.closure_subset_iff] [GOAL] case h.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ U ∩ C ⊆ C [PROOFSTEP] exact inter_subset_right _ _ [GOAL] case h.right α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ ((Perfect (closure (V ∩ C)) ∧ Set.Nonempty (closure (V ∩ C))) ∧ closure (V ∩ C) ⊆ C) ∧ Disjoint (closure (U ∩ C)) (closure (V ∩ C)) [PROOFSTEP] constructor [GOAL] case h.right.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ (Perfect (closure (V ∩ C)) ∧ Set.Nonempty (closure (V ∩ C))) ∧ closure (V ∩ C) ⊆ C [PROOFSTEP] refine' ⟨hC.closure_nhds_inter y yC yV Vop, _⟩ [GOAL] case h.right.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ closure (V ∩ C) ⊆ C [PROOFSTEP] rw [hC.closed.closure_subset_iff] [GOAL] case h.right.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ V ∩ C ⊆ C [PROOFSTEP] exact inter_subset_right _ _ [GOAL] case h.right.right α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ Disjoint (closure (U ∩ C)) (closure (V ∩ C)) [PROOFSTEP] apply Disjoint.mono _ _ hUV [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ closure (U ∩ C) ≤ closure U [PROOFSTEP] apply closure_mono [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ closure (V ∩ C) ≤ closure V [PROOFSTEP] apply closure_mono [GOAL] case h α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ U ∩ C ⊆ U [PROOFSTEP] exact inter_subset_left _ _ [GOAL] case h α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : T25Space α hC : Perfect C y : α yC : y ∈ C x : α xC : x ∈ C hxy : x ≠ y U : Set α xU : x ∈ U Uop : IsOpen U V : Set α yV : y ∈ V Vop : IsOpen V hUV : Disjoint (closure U) (closure V) ⊢ V ∩ C ⊆ V [PROOFSTEP] exact inter_subset_left _ _ [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C ⊢ ∃ V D, Set.Countable V ∧ Perfect D ∧ C = V ∪ D [PROOFSTEP] obtain ⟨b, bct, _, bbasis⟩ := TopologicalSpace.exists_countable_basis α [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b ⊢ ∃ V D, Set.Countable V ∧ Perfect D ∧ C = V ∪ D [PROOFSTEP] let v := {U ∈ b | (U ∩ C).Countable} [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} ⊢ ∃ V D, Set.Countable V ∧ Perfect D ∧ C = V ∪ D [PROOFSTEP] let V := ⋃ U ∈ v, U [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U ⊢ ∃ V D, Set.Countable V ∧ Perfect D ∧ C = V ∪ D [PROOFSTEP] let D := C \ V [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V ⊢ ∃ V D, Set.Countable V ∧ Perfect D ∧ C = V ∪ D [PROOFSTEP] have Vct : (V ∩ C).Countable := by simp only [iUnion_inter, mem_sep_iff] apply Countable.biUnion · exact Countable.mono (inter_subset_left _ _) bct · exact inter_subset_right _ _ [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V ⊢ Set.Countable (V ∩ C) [PROOFSTEP] simp only [iUnion_inter, mem_sep_iff] [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V ⊢ Set.Countable (⋃ (i : Set α) (_ : i ∈ b ∧ Set.Countable (i ∩ C)), i ∩ C) [PROOFSTEP] apply Countable.biUnion [GOAL] case hs α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V ⊢ Set.Countable fun a => a ∈ b ∧ Set.Countable (a ∩ C) [PROOFSTEP] exact Countable.mono (inter_subset_left _ _) bct [GOAL] case a α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V ⊢ ∀ (a : Set α), (a ∈ fun a => a ∈ b ∧ Set.Countable (a ∩ C)) → Set.Countable (a ∩ C) [PROOFSTEP] exact inter_subset_right _ _ [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) ⊢ ∃ V D, Set.Countable V ∧ Perfect D ∧ C = V ∪ D [PROOFSTEP] refine' ⟨V ∩ C, D, Vct, ⟨_, _⟩, _⟩ [GOAL] case intro.intro.intro.refine'_1 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) ⊢ IsClosed D [PROOFSTEP] refine' hclosed.sdiff (isOpen_biUnion fun _ ↦ _) [GOAL] case intro.intro.intro.refine'_1 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x✝ : Set α ⊢ x✝ ∈ v → IsOpen x✝ [PROOFSTEP] exact fun ⟨Ub, _⟩ ↦ IsTopologicalBasis.isOpen bbasis Ub [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) ⊢ Preperfect D [PROOFSTEP] rw [preperfect_iff_nhds] [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) ⊢ ∀ (x : α), x ∈ D → ∀ (U : Set α), U ∈ 𝓝 x → ∃ y, y ∈ U ∩ D ∧ y ≠ x [PROOFSTEP] intro x xD E xE [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x ⊢ ∃ y, y ∈ E ∩ D ∧ y ≠ x [PROOFSTEP] have : ¬(E ∩ D).Countable := by intro h obtain ⟨U, hUb, xU, hU⟩ : ∃ U ∈ b, x ∈ U ∧ U ⊆ E := (IsTopologicalBasis.mem_nhds_iff bbasis).mp xE have hU_cnt : (U ∩ C).Countable := by apply @Countable.mono _ _ (E ∩ D ∪ V ∩ C) · rintro y ⟨yU, yC⟩ by_cases h : y ∈ V · exact mem_union_right _ (mem_inter h yC) · exact mem_union_left _ (mem_inter (hU yU) ⟨yC, h⟩) exact Countable.union h Vct have : U ∈ v := ⟨hUb, hU_cnt⟩ apply xD.2 exact mem_biUnion this xU [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x ⊢ ¬Set.Countable (E ∩ D) [PROOFSTEP] intro h [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) ⊢ False [PROOFSTEP] obtain ⟨U, hUb, xU, hU⟩ : ∃ U ∈ b, x ∈ U ∧ U ⊆ E := (IsTopologicalBasis.mem_nhds_iff bbasis).mp xE [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E ⊢ False [PROOFSTEP] have hU_cnt : (U ∩ C).Countable := by apply @Countable.mono _ _ (E ∩ D ∪ V ∩ C) · rintro y ⟨yU, yC⟩ by_cases h : y ∈ V · exact mem_union_right _ (mem_inter h yC) · exact mem_union_left _ (mem_inter (hU yU) ⟨yC, h⟩) exact Countable.union h Vct [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E ⊢ Set.Countable (U ∩ C) [PROOFSTEP] apply @Countable.mono _ _ (E ∩ D ∪ V ∩ C) [GOAL] case h α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E ⊢ U ∩ C ⊆ E ∩ D ∪ V ∩ C [PROOFSTEP] rintro y ⟨yU, yC⟩ [GOAL] case h.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E y : α yU : y ∈ U yC : y ∈ C ⊢ y ∈ E ∩ D ∪ V ∩ C [PROOFSTEP] by_cases h : y ∈ V [GOAL] case pos α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h✝ : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E y : α yU : y ∈ U yC : y ∈ C h : y ∈ V ⊢ y ∈ E ∩ D ∪ V ∩ C [PROOFSTEP] exact mem_union_right _ (mem_inter h yC) [GOAL] case neg α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h✝ : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E y : α yU : y ∈ U yC : y ∈ C h : ¬y ∈ V ⊢ y ∈ E ∩ D ∪ V ∩ C [PROOFSTEP] exact mem_union_left _ (mem_inter (hU yU) ⟨yC, h⟩) [GOAL] case a α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E ⊢ Set.Countable (E ∩ D ∪ V ∩ C) [PROOFSTEP] exact Countable.union h Vct [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E hU_cnt : Set.Countable (U ∩ C) ⊢ False [PROOFSTEP] have : U ∈ v := ⟨hUb, hU_cnt⟩ [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E hU_cnt : Set.Countable (U ∩ C) this : U ∈ v ⊢ False [PROOFSTEP] apply xD.2 [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x h : Set.Countable (E ∩ D) U : Set α hUb : U ∈ b xU : x ∈ U hU : U ⊆ E hU_cnt : Set.Countable (U ∩ C) this : U ∈ v ⊢ x ∈ V [PROOFSTEP] exact mem_biUnion this xU [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x this : ¬Set.Countable (E ∩ D) ⊢ ∃ y, y ∈ E ∩ D ∧ y ≠ x [PROOFSTEP] by_contra' h [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) x : α xD : x ∈ D E : Set α xE : E ∈ 𝓝 x this : ¬Set.Countable (E ∩ D) h : ∀ (y : α), y ∈ E ∩ (C \ V) → y = x ⊢ False [PROOFSTEP] exact absurd (Countable.mono h (Set.countable_singleton _)) this [GOAL] case intro.intro.intro.refine'_3 α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C b : Set (Set α) bct : Set.Countable b left✝ : ¬∅ ∈ b bbasis : IsTopologicalBasis b v : Set (Set α) := {U | U ∈ b ∧ Set.Countable (U ∩ C)} V : Set α := ⋃ (U : Set α) (_ : U ∈ v), U D : Set α := C \ V Vct : Set.Countable (V ∩ C) ⊢ C = V ∩ C ∪ D [PROOFSTEP] rw [inter_comm, inter_union_diff] [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C ⊢ ∃ D, Perfect D ∧ Set.Nonempty D ∧ D ⊆ C [PROOFSTEP] rcases exists_countable_union_perfect_of_isClosed hclosed with ⟨V, D, Vct, Dperf, VD⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V ∪ D ⊢ ∃ D, Perfect D ∧ Set.Nonempty D ∧ D ⊆ C [PROOFSTEP] refine' ⟨D, ⟨Dperf, _⟩⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V ∪ D ⊢ Set.Nonempty D ∧ D ⊆ C [PROOFSTEP] constructor [GOAL] case intro.intro.intro.intro.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V ∪ D ⊢ Set.Nonempty D [PROOFSTEP] rw [nonempty_iff_ne_empty] [GOAL] case intro.intro.intro.intro.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V ∪ D ⊢ D ≠ ∅ [PROOFSTEP] by_contra h [GOAL] case intro.intro.intro.intro.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V ∪ D h : D = ∅ ⊢ False [PROOFSTEP] rw [h, union_empty] at VD [GOAL] case intro.intro.intro.intro.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V h : D = ∅ ⊢ False [PROOFSTEP] rw [VD] at hunc [GOAL] case intro.intro.intro.intro.left α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C V : Set α hunc : ¬Set.Countable V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V h : D = ∅ ⊢ False [PROOFSTEP] contradiction [GOAL] case intro.intro.intro.intro.right α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V ∪ D ⊢ D ⊆ C [PROOFSTEP] rw [VD] [GOAL] case intro.intro.intro.intro.right α : Type u_1 inst✝¹ : TopologicalSpace α C : Set α inst✝ : SecondCountableTopology α hclosed : IsClosed C hunc : ¬Set.Countable C V D : Set α Vct : Set.Countable V Dperf : Perfect D VD : C = V ∪ D ⊢ D ⊆ V ∪ D [PROOFSTEP] exact subset_union_right _ _ [GOAL] α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C ⊢ let D := closure (EMetric.ball x (ε / 2) ∩ C); Perfect D ∧ Set.Nonempty D ∧ D ⊆ C ∧ EMetric.diam D ≤ ε [PROOFSTEP] have : x ∈ EMetric.ball x (ε / 2) := by apply EMetric.mem_ball_self rw [ENNReal.div_pos_iff] exact ⟨ne_of_gt ε_pos, by norm_num⟩ [GOAL] α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C ⊢ x ∈ EMetric.ball x (ε / 2) [PROOFSTEP] apply EMetric.mem_ball_self [GOAL] case h α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C ⊢ 0 < ε / 2 [PROOFSTEP] rw [ENNReal.div_pos_iff] [GOAL] case h α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C ⊢ ε ≠ 0 ∧ 2 ≠ ⊤ [PROOFSTEP] exact ⟨ne_of_gt ε_pos, by norm_num⟩ [GOAL] α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C ⊢ 2 ≠ ⊤ [PROOFSTEP] norm_num [GOAL] α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this : x ∈ EMetric.ball x (ε / 2) ⊢ let D := closure (EMetric.ball x (ε / 2) ∩ C); Perfect D ∧ Set.Nonempty D ∧ D ⊆ C ∧ EMetric.diam D ≤ ε [PROOFSTEP] have := hC.closure_nhds_inter x xC this EMetric.isOpen_ball [GOAL] α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ let D := closure (EMetric.ball x (ε / 2) ∩ C); Perfect D ∧ Set.Nonempty D ∧ D ⊆ C ∧ EMetric.diam D ≤ ε [PROOFSTEP] refine' ⟨this.1, this.2, _, _⟩ [GOAL] case refine'_1 α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ closure (EMetric.ball x (ε / 2) ∩ C) ⊆ C [PROOFSTEP] rw [IsClosed.closure_subset_iff hC.closed] [GOAL] case refine'_1 α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ EMetric.ball x (ε / 2) ∩ C ⊆ C [PROOFSTEP] apply inter_subset_right [GOAL] case refine'_2 α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ EMetric.diam (closure (EMetric.ball x (ε / 2) ∩ C)) ≤ ε [PROOFSTEP] rw [EMetric.diam_closure] [GOAL] case refine'_2 α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ EMetric.diam (EMetric.ball x (ε / 2) ∩ C) ≤ ε [PROOFSTEP] apply le_trans (EMetric.diam_mono (inter_subset_left _ _)) [GOAL] case refine'_2 α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ EMetric.diam (EMetric.ball x (ε / 2)) ≤ ε [PROOFSTEP] convert EMetric.diam_ball (x := x) [GOAL] case h.e'_4 α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ ε = 2 * (ε / 2) [PROOFSTEP] rw [mul_comm, ENNReal.div_mul_cancel] [GOAL] case h.e'_4.h0 α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ 2 ≠ 0 [PROOFSTEP] norm_num [GOAL] case h.e'_4.hI α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ ε_pos : 0 < ε x : α xC : x ∈ C this✝ : x ∈ EMetric.ball x (ε / 2) this : Perfect (closure (EMetric.ball x (ε / 2) ∩ C)) ∧ Set.Nonempty (closure (EMetric.ball x (ε / 2) ∩ C)) ⊢ 2 ≠ ⊤ [PROOFSTEP] norm_num [GOAL] α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C ∧ EMetric.diam C₀ ≤ ε) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C ∧ EMetric.diam C₁ ≤ ε) ∧ Disjoint C₀ C₁ [PROOFSTEP] rcases hC.splitting hnonempty with ⟨D₀, D₁, ⟨perf0, non0, sub0⟩, ⟨perf1, non1, sub1⟩, hdisj⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε D₀ D₁ : Set α perf0 : Perfect D₀ non0 : Set.Nonempty D₀ sub0 : D₀ ⊆ C hdisj : Disjoint D₀ D₁ perf1 : Perfect D₁ non1 : Set.Nonempty D₁ sub1 : D₁ ⊆ C ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C ∧ EMetric.diam C₀ ≤ ε) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C ∧ EMetric.diam C₁ ≤ ε) ∧ Disjoint C₀ C₁ [PROOFSTEP] cases' non0 with x₀ hx₀ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε D₀ D₁ : Set α perf0 : Perfect D₀ sub0 : D₀ ⊆ C hdisj : Disjoint D₀ D₁ perf1 : Perfect D₁ non1 : Set.Nonempty D₁ sub1 : D₁ ⊆ C x₀ : α hx₀ : x₀ ∈ D₀ ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C ∧ EMetric.diam C₀ ≤ ε) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C ∧ EMetric.diam C₁ ≤ ε) ∧ Disjoint C₀ C₁ [PROOFSTEP] cases' non1 with x₁ hx₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε D₀ D₁ : Set α perf0 : Perfect D₀ sub0 : D₀ ⊆ C hdisj : Disjoint D₀ D₁ perf1 : Perfect D₁ sub1 : D₁ ⊆ C x₀ : α hx₀ : x₀ ∈ D₀ x₁ : α hx₁ : x₁ ∈ D₁ ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C ∧ EMetric.diam C₀ ≤ ε) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C ∧ EMetric.diam C₁ ≤ ε) ∧ Disjoint C₀ C₁ [PROOFSTEP] rcases perf0.small_diam_aux ε_pos hx₀ with ⟨perf0', non0', sub0', diam0⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε D₀ D₁ : Set α perf0 : Perfect D₀ sub0 : D₀ ⊆ C hdisj : Disjoint D₀ D₁ perf1 : Perfect D₁ sub1 : D₁ ⊆ C x₀ : α hx₀ : x₀ ∈ D₀ x₁ : α hx₁ : x₁ ∈ D₁ perf0' : Perfect (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) non0' : Set.Nonempty (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) sub0' : closure (EMetric.ball x₀ (ε / 2) ∩ D₀) ⊆ D₀ diam0 : EMetric.diam (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) ≤ ε ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C ∧ EMetric.diam C₀ ≤ ε) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C ∧ EMetric.diam C₁ ≤ ε) ∧ Disjoint C₀ C₁ [PROOFSTEP] rcases perf1.small_diam_aux ε_pos hx₁ with ⟨perf1', non1', sub1', diam1⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε D₀ D₁ : Set α perf0 : Perfect D₀ sub0 : D₀ ⊆ C hdisj : Disjoint D₀ D₁ perf1 : Perfect D₁ sub1 : D₁ ⊆ C x₀ : α hx₀ : x₀ ∈ D₀ x₁ : α hx₁ : x₁ ∈ D₁ perf0' : Perfect (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) non0' : Set.Nonempty (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) sub0' : closure (EMetric.ball x₀ (ε / 2) ∩ D₀) ⊆ D₀ diam0 : EMetric.diam (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) ≤ ε perf1' : Perfect (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) non1' : Set.Nonempty (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) sub1' : closure (EMetric.ball x₁ (ε / 2) ∩ D₁) ⊆ D₁ diam1 : EMetric.diam (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) ≤ ε ⊢ ∃ C₀ C₁, (Perfect C₀ ∧ Set.Nonempty C₀ ∧ C₀ ⊆ C ∧ EMetric.diam C₀ ≤ ε) ∧ (Perfect C₁ ∧ Set.Nonempty C₁ ∧ C₁ ⊆ C ∧ EMetric.diam C₁ ≤ ε) ∧ Disjoint C₀ C₁ [PROOFSTEP] refine' ⟨closure (EMetric.ball x₀ (ε / 2) ∩ D₀), closure (EMetric.ball x₁ (ε / 2) ∩ D₁), ⟨perf0', non0', sub0'.trans sub0, diam0⟩, ⟨perf1', non1', sub1'.trans sub1, diam1⟩, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε D₀ D₁ : Set α perf0 : Perfect D₀ sub0 : D₀ ⊆ C hdisj : Disjoint D₀ D₁ perf1 : Perfect D₁ sub1 : D₁ ⊆ C x₀ : α hx₀ : x₀ ∈ D₀ x₁ : α hx₁ : x₁ ∈ D₁ perf0' : Perfect (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) non0' : Set.Nonempty (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) sub0' : closure (EMetric.ball x₀ (ε / 2) ∩ D₀) ⊆ D₀ diam0 : EMetric.diam (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) ≤ ε perf1' : Perfect (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) non1' : Set.Nonempty (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) sub1' : closure (EMetric.ball x₁ (ε / 2) ∩ D₁) ⊆ D₁ diam1 : EMetric.diam (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) ≤ ε ⊢ Disjoint (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) [PROOFSTEP] apply Disjoint.mono _ _ hdisj [GOAL] α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε D₀ D₁ : Set α perf0 : Perfect D₀ sub0 : D₀ ⊆ C hdisj : Disjoint D₀ D₁ perf1 : Perfect D₁ sub1 : D₁ ⊆ C x₀ : α hx₀ : x₀ ∈ D₀ x₁ : α hx₁ : x₁ ∈ D₁ perf0' : Perfect (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) non0' : Set.Nonempty (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) sub0' : closure (EMetric.ball x₀ (ε / 2) ∩ D₀) ⊆ D₀ diam0 : EMetric.diam (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) ≤ ε perf1' : Perfect (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) non1' : Set.Nonempty (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) sub1' : closure (EMetric.ball x₁ (ε / 2) ∩ D₁) ⊆ D₁ diam1 : EMetric.diam (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) ≤ ε ⊢ closure (EMetric.ball x₀ (ε / 2) ∩ D₀) ≤ D₀ [PROOFSTEP] assumption [GOAL] α : Type u_1 inst✝ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C ε_pos : 0 < ε D₀ D₁ : Set α perf0 : Perfect D₀ sub0 : D₀ ⊆ C hdisj : Disjoint D₀ D₁ perf1 : Perfect D₁ sub1 : D₁ ⊆ C x₀ : α hx₀ : x₀ ∈ D₀ x₁ : α hx₁ : x₁ ∈ D₁ perf0' : Perfect (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) non0' : Set.Nonempty (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) sub0' : closure (EMetric.ball x₀ (ε / 2) ∩ D₀) ⊆ D₀ diam0 : EMetric.diam (closure (EMetric.ball x₀ (ε / 2) ∩ D₀)) ≤ ε perf1' : Perfect (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) non1' : Set.Nonempty (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) sub1' : closure (EMetric.ball x₁ (ε / 2) ∩ D₁) ⊆ D₁ diam1 : EMetric.diam (closure (EMetric.ball x₁ (ε / 2) ∩ D₁)) ≤ ε ⊢ closure (EMetric.ball x₁ (ε / 2) ∩ D₁) ≤ D₁ [PROOFSTEP] assumption [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] obtain ⟨u, -, upos', hu⟩ := exists_seq_strictAnti_tendsto' (zero_lt_one' ℝ≥0∞) [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] have upos := fun n => (upos' n).1 [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] let P := Subtype fun E : Set α => Perfect E ∧ E.Nonempty [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] choose C0 C1 h0 h1 hdisj using fun {C : Set α} (hC : Perfect C) (hnonempty : C.Nonempty) {ε : ℝ≥0∞} (hε : 0 < ε) => hC.small_diam_splitting hnonempty hε [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] let DP : List Bool → P := fun l => by induction' l with a l ih; · exact ⟨C, ⟨hC, hnonempty⟩⟩ cases a · use C0 ih.property.1 ih.property.2 (upos l.length.succ) exact ⟨(h0 _ _ _).1, (h0 _ _ _).2.1⟩ use C1 ih.property.1 ih.property.2 (upos l.length.succ) exact ⟨(h1 _ _ _).1, (h1 _ _ _).2.1⟩ [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) l : List Bool ⊢ P [PROOFSTEP] induction' l with a l ih [GOAL] case nil α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) ⊢ P [PROOFSTEP] exact ⟨C, ⟨hC, hnonempty⟩⟩ [GOAL] case cons α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) a : Bool l : List Bool ih : P ⊢ P [PROOFSTEP] cases a [GOAL] case cons.false α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) l : List Bool ih : P ⊢ P [PROOFSTEP] use C0 ih.property.1 ih.property.2 (upos l.length.succ) [GOAL] case property α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) l : List Bool ih : P ⊢ Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) [PROOFSTEP] exact ⟨(h0 _ _ _).1, (h0 _ _ _).2.1⟩ [GOAL] case cons.true α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) l : List Bool ih : P ⊢ P [PROOFSTEP] use C1 ih.property.1 ih.property.2 (upos l.length.succ) [GOAL] case property α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) l : List Bool ih : P ⊢ Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) [PROOFSTEP] exact ⟨(h1 _ _ _).1, (h1 _ _ _).2.1⟩ [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] let D : List Bool → Set α := fun l => (DP l).val [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] have hanti : ClosureAntitone D := by refine' Antitone.closureAntitone _ fun l => (DP l).property.1.closed intro l a cases a · exact (h0 _ _ _).2.2.1 exact (h1 _ _ _).2.2.1 [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) ⊢ ClosureAntitone D [PROOFSTEP] refine' Antitone.closureAntitone _ fun l => (DP l).property.1.closed [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) ⊢ CantorScheme.Antitone D [PROOFSTEP] intro l a [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) l : List Bool a : Bool ⊢ D (a :: l) ⊆ D l [PROOFSTEP] cases a [GOAL] case false α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) l : List Bool ⊢ D (false :: l) ⊆ D l [PROOFSTEP] exact (h0 _ _ _).2.2.1 [GOAL] case true α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) l : List Bool ⊢ D (true :: l) ⊆ D l [PROOFSTEP] exact (h1 _ _ _).2.2.1 [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] have hdiam : VanishingDiam D := by intro x apply tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds hu · simp rw [eventually_atTop] refine' ⟨1, fun m (hm : 1 ≤ m) => _⟩ rw [Nat.one_le_iff_ne_zero] at hm rcases Nat.exists_eq_succ_of_ne_zero hm with ⟨n, rfl⟩ dsimp cases x n · convert (h0 _ _ _).2.2.2 rw [PiNat.res_length] convert (h1 _ _ _).2.2.2 rw [PiNat.res_length] [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D ⊢ VanishingDiam D [PROOFSTEP] intro x [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool ⊢ Tendsto (fun n => EMetric.diam (D (PiNat.res x n))) atTop (𝓝 0) [PROOFSTEP] apply tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds hu [GOAL] case hgf α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool ⊢ ∀ᶠ (b : ℕ) in atTop, 0 ≤ EMetric.diam (D (PiNat.res x b)) [PROOFSTEP] simp [GOAL] case hfh α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool ⊢ ∀ᶠ (b : ℕ) in atTop, EMetric.diam (D (PiNat.res x b)) ≤ u b [PROOFSTEP] rw [eventually_atTop] [GOAL] case hfh α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → EMetric.diam (D (PiNat.res x b)) ≤ u b [PROOFSTEP] refine' ⟨1, fun m (hm : 1 ≤ m) => _⟩ [GOAL] case hfh α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool m : ℕ hm : 1 ≤ m ⊢ EMetric.diam (D (PiNat.res x m)) ≤ u m [PROOFSTEP] rw [Nat.one_le_iff_ne_zero] at hm [GOAL] case hfh α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool m : ℕ hm : m ≠ 0 ⊢ EMetric.diam (D (PiNat.res x m)) ≤ u m [PROOFSTEP] rcases Nat.exists_eq_succ_of_ne_zero hm with ⟨n, rfl⟩ [GOAL] case hfh.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool n : ℕ hm : Nat.succ n ≠ 0 ⊢ EMetric.diam (D (PiNat.res x (Nat.succ n))) ≤ u (Nat.succ n) [PROOFSTEP] dsimp [GOAL] case hfh.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool n : ℕ hm : Nat.succ n ≠ 0 ⊢ EMetric.diam ↑(Bool.rec (motive := fun t => x n = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = x n) ▸ { val := C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))), property := (_ : Perfect (C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n))))) ∧ Set.Nonempty (C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))))) }) (fun h => (_ : true = x n) ▸ { val := C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))), property := (_ : Perfect (C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n))))) ∧ Set.Nonempty (C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))))) }) (x n) (_ : x n = x n)) ≤ u (Nat.succ n) [PROOFSTEP] cases x n [GOAL] case hfh.intro.false α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool n : ℕ hm : Nat.succ n ≠ 0 ⊢ EMetric.diam ↑(Bool.rec (motive := fun t => false = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = false) ▸ { val := C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))), property := (_ : Perfect (C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n))))) ∧ Set.Nonempty (C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))))) }) (fun h => (_ : true = false) ▸ { val := C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))), property := (_ : Perfect (C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n))))) ∧ Set.Nonempty (C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))))) }) false (_ : false = false)) ≤ u (Nat.succ n) [PROOFSTEP] convert (h0 _ _ _).2.2.2 [GOAL] case h.e'_4.h.e'_1.h.e'_1 α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool n : ℕ hm : Nat.succ n ≠ 0 ⊢ n = List.length (PiNat.res x n) [PROOFSTEP] rw [PiNat.res_length] [GOAL] case hfh.intro.true α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool n : ℕ hm : Nat.succ n ≠ 0 ⊢ EMetric.diam ↑(Bool.rec (motive := fun t => true = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = true) ▸ { val := C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))), property := (_ : Perfect (C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n))))) ∧ Set.Nonempty (C0 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))))) }) (fun h => (_ : true = true) ▸ { val := C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))), property := (_ : Perfect (C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n))))) ∧ Set.Nonempty (C1 (_ : Perfect ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : Set.Nonempty ↑(List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.rec (motive := fun t => a = t → { E // Perfect E ∧ Set.Nonempty E }) (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) a (_ : a = a)) (PiNat.res x n))) (_ : 0 < u (Nat.succ (List.length (PiNat.res x n)))))) }) true (_ : true = true)) ≤ u (Nat.succ n) [PROOFSTEP] convert (h1 _ _ _).2.2.2 [GOAL] case h.e'_4.h.e'_1.h.e'_1 α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D x : ℕ → Bool n : ℕ hm : Nat.succ n ≠ 0 ⊢ n = List.length (PiNat.res x n) [PROOFSTEP] rw [PiNat.res_length] [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] have hdisj' : CantorScheme.Disjoint D := by rintro l (a | a) (b | b) hab <;> try contradiction · exact hdisj _ _ _ exact (hdisj _ _ _).symm [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D ⊢ CantorScheme.Disjoint D [PROOFSTEP] rintro l (a | a) (b | b) hab [GOAL] case false.false α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : false ≠ false ⊢ Disjoint (D (false :: l)) (D (false :: l)) [PROOFSTEP] try contradiction [GOAL] case false.false α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : false ≠ false ⊢ Disjoint (D (false :: l)) (D (false :: l)) [PROOFSTEP] contradiction [GOAL] case false.true α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : false ≠ true ⊢ Disjoint (D (false :: l)) (D (true :: l)) [PROOFSTEP] try contradiction [GOAL] case false.true α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : false ≠ true ⊢ Disjoint (D (false :: l)) (D (true :: l)) [PROOFSTEP] contradiction [GOAL] case true.false α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : true ≠ false ⊢ Disjoint (D (true :: l)) (D (false :: l)) [PROOFSTEP] try contradiction [GOAL] case true.false α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : true ≠ false ⊢ Disjoint (D (true :: l)) (D (false :: l)) [PROOFSTEP] contradiction [GOAL] case true.true α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : true ≠ true ⊢ Disjoint (D (true :: l)) (D (true :: l)) [PROOFSTEP] try contradiction [GOAL] case true.true α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : true ≠ true ⊢ Disjoint (D (true :: l)) (D (true :: l)) [PROOFSTEP] contradiction [GOAL] case false.true α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : false ≠ true ⊢ Disjoint (D (false :: l)) (D (true :: l)) [PROOFSTEP] exact hdisj _ _ _ [GOAL] case true.false α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D l : List Bool hab : true ≠ false ⊢ Disjoint (D (true :: l)) (D (false :: l)) [PROOFSTEP] exact (hdisj _ _ _).symm [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] have hdom : ∀ {x : ℕ → Bool}, x ∈ (inducedMap D).1 := fun {x} => by rw [hanti.map_of_vanishingDiam hdiam fun l => (DP l).property.2] apply mem_univ [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D x : ℕ → Bool ⊢ x ∈ (inducedMap D).fst [PROOFSTEP] rw [hanti.map_of_vanishingDiam hdiam fun l => (DP l).property.2] [GOAL] α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D x : ℕ → Bool ⊢ x ∈ univ [PROOFSTEP] apply mem_univ [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D hdom : ∀ {x : ℕ → Bool}, x ∈ (inducedMap D).fst ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Injective f [PROOFSTEP] refine' ⟨fun x => (inducedMap D).2 ⟨x, hdom⟩, _, _, _⟩ [GOAL] case intro.intro.intro.refine'_1 α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D hdom : ∀ {x : ℕ → Bool}, x ∈ (inducedMap D).fst ⊢ (range fun x => Sigma.snd (inducedMap D) { val := x, property := (_ : x ∈ (inducedMap D).fst) }) ⊆ C [PROOFSTEP] rintro y ⟨x, rfl⟩ [GOAL] case intro.intro.intro.refine'_1.intro α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D hdom : ∀ {x : ℕ → Bool}, x ∈ (inducedMap D).fst x : ℕ → Bool ⊢ (fun x => Sigma.snd (inducedMap D) { val := x, property := (_ : x ∈ (inducedMap D).fst) }) x ∈ C [PROOFSTEP] exact map_mem ⟨_, hdom⟩ 0 [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D hdom : ∀ {x : ℕ → Bool}, x ∈ (inducedMap D).fst ⊢ Continuous fun x => Sigma.snd (inducedMap D) { val := x, property := (_ : x ∈ (inducedMap D).fst) } [PROOFSTEP] apply hdiam.map_continuous.comp [GOAL] case intro.intro.intro.refine'_2 α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D hdom : ∀ {x : ℕ → Bool}, x ∈ (inducedMap D).fst ⊢ Continuous fun x => { val := x, property := (_ : x ∈ (inducedMap D).fst) } [PROOFSTEP] continuity [GOAL] case intro.intro.intro.refine'_3 α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D hdom : ∀ {x : ℕ → Bool}, x ∈ (inducedMap D).fst ⊢ Injective fun x => Sigma.snd (inducedMap D) { val := x, property := (_ : x ∈ (inducedMap D).fst) } [PROOFSTEP] intro x y hxy [GOAL] case intro.intro.intro.refine'_3 α : Type u_1 inst✝¹ : MetricSpace α C : Set α hC : Perfect C ε : ℝ≥0∞ hnonempty : Set.Nonempty C inst✝ : CompleteSpace α u : ℕ → ℝ≥0∞ upos' : ∀ (n : ℕ), u n ∈ Ioo 0 1 hu : Tendsto u atTop (𝓝 0) upos : ∀ (n : ℕ), 0 < u n P : Type u_1 := { E // Perfect E ∧ Set.Nonempty E } C0 C1 : {C : Set α} → Perfect C → Set.Nonempty C → {ε : ℝ≥0∞} → 0 < ε → Set α h0 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C0 hC hnonempty hε) ∧ Set.Nonempty (C0 hC hnonempty hε) ∧ C0 hC hnonempty hε ⊆ C ∧ EMetric.diam (C0 hC hnonempty hε) ≤ ε h1 : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Perfect (C1 hC hnonempty hε) ∧ Set.Nonempty (C1 hC hnonempty hε) ∧ C1 hC hnonempty hε ⊆ C ∧ EMetric.diam (C1 hC hnonempty hε) ≤ ε hdisj : ∀ {C : Set α} (hC : Perfect C) (hnonempty : Set.Nonempty C) {ε : ℝ≥0∞} (hε : 0 < ε), Disjoint (C0 hC hnonempty hε) (C1 hC hnonempty hε) DP : List Bool → P := fun l => List.rec { val := C, property := (_ : Perfect C ∧ Set.Nonempty C) } (fun a l ih => Bool.casesOn (motive := fun t => a = t → P) a (fun h => (_ : false = a) ▸ { val := C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C0 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (fun h => (_ : true = a) ▸ { val := C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))), property := (_ : Perfect (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l)))) ∧ Set.Nonempty (C1 (_ : Perfect ↑ih) (_ : Set.Nonempty ↑ih) (_ : 0 < u (Nat.succ (List.length l))))) }) (_ : a = a)) l D : List Bool → Set α := fun l => ↑(DP l) hanti : ClosureAntitone D hdiam : VanishingDiam D hdisj' : CantorScheme.Disjoint D hdom : ∀ {x : ℕ → Bool}, x ∈ (inducedMap D).fst x y : ℕ → Bool hxy : (fun x => Sigma.snd (inducedMap D) { val := x, property := (_ : x ∈ (inducedMap D).fst) }) x = (fun x => Sigma.snd (inducedMap D) { val := x, property := (_ : x ∈ (inducedMap D).fst) }) y ⊢ x = y [PROOFSTEP] simpa only [← Subtype.val_inj] using hdisj'.map_injective hxy [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α C : Set α hC : IsClosed C hunc : ¬Set.Countable C ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f [PROOFSTEP] letI := upgradePolishSpace α [GOAL] α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α C : Set α hC : IsClosed C hunc : ¬Set.Countable C this : UpgradedPolishSpace α := upgradePolishSpace α ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f [PROOFSTEP] obtain ⟨D, hD, Dnonempty, hDC⟩ := exists_perfect_nonempty_of_isClosed_of_not_countable hC hunc [GOAL] case intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α C : Set α hC : IsClosed C hunc : ¬Set.Countable C this : UpgradedPolishSpace α := upgradePolishSpace α D : Set α hD : Perfect D Dnonempty : Set.Nonempty D hDC : D ⊆ C ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f [PROOFSTEP] obtain ⟨f, hfD, hf⟩ := hD.exists_nat_bool_injection Dnonempty [GOAL] case intro.intro.intro.intro.intro α : Type u_1 inst✝¹ : TopologicalSpace α inst✝ : PolishSpace α C : Set α hC : IsClosed C hunc : ¬Set.Countable C this : UpgradedPolishSpace α := upgradePolishSpace α D : Set α hD : Perfect D Dnonempty : Set.Nonempty D hDC : D ⊆ C f : (ℕ → Bool) → α hfD : range f ⊆ D hf : Continuous f ∧ Function.Injective f ⊢ ∃ f, range f ⊆ C ∧ Continuous f ∧ Function.Injective f [PROOFSTEP] exact ⟨f, hfD.trans hDC, hf⟩
{"mathlib_filename": "Mathlib.Topology.Perfect", "llama_tokens": 92588}
[GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x : X ⊢ sum (zipWith d [x] ([] ++ [x])) = 0 [PROOFSTEP] simp [dist_self] [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y : X ⊢ ⨅ (l : List X), sum (zipWith d (x :: l) (l ++ [y])) = ⨅ (l : List X), sum (zipWith d (y :: l) (l ++ [x])) [PROOFSTEP] refine' reverse_surjective.iInf_congr _ fun l => _ [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y : X l : List X ⊢ sum (zipWith d (y :: reverse l) (reverse l ++ [x])) = sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] rw [← sum_reverse, zipWith_distrib_reverse, reverse_append, reverse_reverse, reverse_singleton, singleton_append, reverse_cons, reverse_reverse, zipWith_comm_of_comm _ dist_comm] [GOAL] case h X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y : X l : List X ⊢ length (y :: reverse l) = length (reverse l ++ [x]) [PROOFSTEP] simp only [length, length_append] [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y z : X ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] unfold dist [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y z : X ⊢ { dist := fun x y => ↑(⨅ (l : List X), sum (zipWith d (x :: l) (l ++ [y]))) }.1 x z ≤ { dist := fun x y => ↑(⨅ (l : List X), sum (zipWith d (x :: l) (l ++ [y]))) }.1 x y + { dist := fun x y => ↑(⨅ (l : List X), sum (zipWith d (x :: l) (l ++ [y]))) }.1 y z [PROOFSTEP] rw [← NNReal.coe_add, NNReal.coe_le_coe] [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y z : X ⊢ ⨅ (l : List X), sum (zipWith d (x :: l) (l ++ [z])) ≤ (⨅ (l : List X), sum (zipWith d (x :: l) (l ++ [y]))) + ⨅ (l : List X), sum (zipWith d (y :: l) (l ++ [z])) [PROOFSTEP] refine' NNReal.le_iInf_add_iInf fun lxy lyz => _ [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y z : X lxy lyz : List X ⊢ ⨅ (l : List X), sum (zipWith d (x :: l) (l ++ [z])) ≤ sum (zipWith d (x :: lxy) (lxy ++ [y])) + sum (zipWith d (y :: lyz) (lyz ++ [z])) [PROOFSTEP] calc ⨅ l, (zipWith d (x :: l) (l ++ [z])).sum ≤ (zipWith d (x :: lxy ++ y :: lyz) ((lxy ++ y :: lyz) ++ [z])).sum := ciInf_le (OrderBot.bddBelow _) (lxy ++ y :: lyz) _ = (zipWith d (x :: lxy) (lxy ++ [y])).sum + (zipWith d (y :: lyz) (lyz ++ [z])).sum := by rw [← sum_append, ← zipWith_append, cons_append, ← @singleton_append _ y, append_assoc, append_assoc, append_assoc] rw [length_cons, length_append, length_singleton] -- Porting note: `edist_dist` is no longer inferred [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y z : X lxy lyz : List X ⊢ sum (zipWith d (x :: lxy ++ y :: lyz) (lxy ++ y :: lyz ++ [z])) = sum (zipWith d (x :: lxy) (lxy ++ [y])) + sum (zipWith d (y :: lyz) (lyz ++ [z])) [PROOFSTEP] rw [← sum_append, ← zipWith_append, cons_append, ← @singleton_append _ y, append_assoc, append_assoc, append_assoc] [GOAL] case h X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y z : X lxy lyz : List X ⊢ length (x :: lxy) = length (lxy ++ [y]) [PROOFSTEP] rw [length_cons, length_append, length_singleton] -- Porting note: `edist_dist` is no longer inferred [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x x y : X ⊢ sum (zipWith d [x] ([] ++ [y])) = d x y [PROOFSTEP] simp [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x y : X ⊢ ↑(d x y) ≤ 2 * dist x y [PROOFSTEP] rw [dist_ofPreNNDist, ← NNReal.coe_two, ← NNReal.coe_mul, NNReal.mul_iInf, NNReal.coe_le_coe] [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x y : X ⊢ d x y ≤ ⨅ (i : List X), 2 * sum (zipWith d (x :: i) (i ++ [y])) [PROOFSTEP] refine' le_ciInf fun l => _ [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x y : X l : List X ⊢ d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] have hd₀_trans : Transitive fun x y => d x y = 0 := by intro a b c hab hbc rw [← nonpos_iff_eq_zero] simpa only [nonpos_iff_eq_zero, hab, hbc, dist_self c, max_self, mul_zero] using hd a b c c [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x y : X l : List X ⊢ Transitive fun x y => d x y = 0 [PROOFSTEP] intro a b c hab hbc [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x y : X l : List X a b c : X hab : d a b = 0 hbc : d b c = 0 ⊢ d a c = 0 [PROOFSTEP] rw [← nonpos_iff_eq_zero] [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x y : X l : List X a b c : X hab : d a b = 0 hbc : d b c = 0 ⊢ d a c ≤ 0 [PROOFSTEP] simpa only [nonpos_iff_eq_zero, hab, hbc, dist_self c, max_self, mul_zero] using hd a b c c [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x y : X l : List X hd₀_trans : Transitive fun x y => d x y = 0 ⊢ d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] haveI : IsTrans X fun x y => d x y = 0 := ⟨hd₀_trans⟩ [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x y : X l : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 ⊢ d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] induction' hn : length l using Nat.strong_induction_on with n ihn generalizing x y l [GOAL] case h X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn✝ : length l✝ = x✝ n : ℕ ihn : ∀ (m : ℕ), m < n → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) x y : X l : List X hn : length l = n ⊢ d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] simp only at ihn [GOAL] case h X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn✝ : length l✝ = x✝ n : ℕ ihn : ∀ (m : ℕ), m < n → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) x y : X l : List X hn : length l = n ⊢ d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] subst n [GOAL] case h X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) ⊢ d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] set L := zipWith d (x :: l) (l ++ [y]) [GOAL] case h X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) ⊢ d x y ≤ 2 * sum L [PROOFSTEP] have hL_len : length L = length l + 1 := by simp [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) ⊢ length L = length l + 1 [PROOFSTEP] simp [GOAL] case h X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 ⊢ d x y ≤ 2 * sum L [PROOFSTEP] cases' eq_or_ne (d x y) 0 with hd₀ hd₀ [GOAL] case h.inl X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y = 0 ⊢ d x y ≤ 2 * sum L [PROOFSTEP] simp only [hd₀, zero_le] [GOAL] case h.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 ⊢ d x y ≤ 2 * sum L [PROOFSTEP] rsuffices ⟨z, z', hxz, hzz', hz'y⟩ : ∃ z z' : X, d x z ≤ L.sum ∧ d z z' ≤ L.sum ∧ d z' y ≤ L.sum [GOAL] case h.inr.intro.intro.intro.intro X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 z z' : X hxz : d x z ≤ sum L hzz' : d z z' ≤ sum L hz'y : d z' y ≤ sum L ⊢ d x y ≤ 2 * sum L [PROOFSTEP] exact (hd x z z' y).trans (mul_le_mul_left' (max_le hxz (max_le hzz' hz'y)) _) [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 ⊢ ∃ z z', d x z ≤ sum L ∧ d z z' ≤ sum L ∧ d z' y ≤ sum L [PROOFSTEP] set s : Set ℕ := {m : ℕ | 2 * (take m L).sum ≤ L.sum} [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} ⊢ ∃ z z', d x z ≤ sum L ∧ d z z' ≤ sum L ∧ d z' y ≤ sum L [PROOFSTEP] have hs₀ : 0 ∈ s := by simp [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} ⊢ 0 ∈ s [PROOFSTEP] simp [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s ⊢ ∃ z z', d x z ≤ sum L ∧ d z z' ≤ sum L ∧ d z' y ≤ sum L [PROOFSTEP] have hsne : s.Nonempty := ⟨0, hs₀⟩ [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s ⊢ ∃ z z', d x z ≤ sum L ∧ d z z' ≤ sum L ∧ d z' y ≤ sum L [PROOFSTEP] obtain ⟨M, hMl, hMs⟩ : ∃ M ≤ length l, IsGreatest s M := by have hs_ub : length l ∈ upperBounds s := by intro m hm rw [← not_lt, Nat.lt_iff_add_one_le, ← hL_len] intro hLm rw [mem_setOf_eq, take_all_of_le hLm, two_mul, add_le_iff_nonpos_left, nonpos_iff_eq_zero, sum_eq_zero_iff, ← all₂_iff_forall, all₂_zipWith, ← chain_append_singleton_iff_forall₂] at hm <;> [skip; simp] exact hd₀ (hm.rel (mem_append.2 <| Or.inr <| mem_singleton_self _)) have hs_bdd : BddAbove s := ⟨length l, hs_ub⟩ exact ⟨sSup s, csSup_le hsne hs_ub, ⟨Nat.sSup_mem hsne hs_bdd, fun k => le_csSup hs_bdd⟩⟩ [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s ⊢ ∃ M, M ≤ length l ∧ IsGreatest s M [PROOFSTEP] have hs_ub : length l ∈ upperBounds s := by intro m hm rw [← not_lt, Nat.lt_iff_add_one_le, ← hL_len] intro hLm rw [mem_setOf_eq, take_all_of_le hLm, two_mul, add_le_iff_nonpos_left, nonpos_iff_eq_zero, sum_eq_zero_iff, ← all₂_iff_forall, all₂_zipWith, ← chain_append_singleton_iff_forall₂] at hm <;> [skip; simp] exact hd₀ (hm.rel (mem_append.2 <| Or.inr <| mem_singleton_self _)) [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s ⊢ length l ∈ upperBounds s [PROOFSTEP] intro m hm [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s m : ℕ hm : m ∈ s ⊢ m ≤ length l [PROOFSTEP] rw [← not_lt, Nat.lt_iff_add_one_le, ← hL_len] [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s m : ℕ hm : m ∈ s ⊢ ¬length L ≤ m [PROOFSTEP] intro hLm [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s m : ℕ hm : m ∈ s hLm : length L ≤ m ⊢ False [PROOFSTEP] rw [mem_setOf_eq, take_all_of_le hLm, two_mul, add_le_iff_nonpos_left, nonpos_iff_eq_zero, sum_eq_zero_iff, ← all₂_iff_forall, all₂_zipWith, ← chain_append_singleton_iff_forall₂] at hm <;> [skip; simp] [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s m : ℕ hm : m ∈ s hLm : length L ≤ m ⊢ False [PROOFSTEP] rw [mem_setOf_eq, take_all_of_le hLm, two_mul, add_le_iff_nonpos_left, nonpos_iff_eq_zero, sum_eq_zero_iff, ← all₂_iff_forall, all₂_zipWith, ← chain_append_singleton_iff_forall₂] at hm [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s m : ℕ hm : Chain (fun x y => d x y = 0) x (l ++ [y]) hLm : length L ≤ m ⊢ False [PROOFSTEP] skip [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s m : ℕ hm : All₂ (fun x => x = 0) L hLm : length L ≤ m ⊢ length (x :: l) = length (l ++ [y]) [PROOFSTEP] simp [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s m : ℕ hm : Chain (fun x y => d x y = 0) x (l ++ [y]) hLm : length L ≤ m ⊢ False [PROOFSTEP] exact hd₀ (hm.rel (mem_append.2 <| Or.inr <| mem_singleton_self _)) [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s hs_ub : length l ∈ upperBounds s ⊢ ∃ M, M ≤ length l ∧ IsGreatest s M [PROOFSTEP] have hs_bdd : BddAbove s := ⟨length l, hs_ub⟩ [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s hs_ub : length l ∈ upperBounds s hs_bdd : BddAbove s ⊢ ∃ M, M ≤ length l ∧ IsGreatest s M [PROOFSTEP] exact ⟨sSup s, csSup_le hsne hs_ub, ⟨Nat.sSup_mem hsne hs_bdd, fun k => le_csSup hs_bdd⟩⟩ [GOAL] case intro.intro X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M ⊢ ∃ z z', d x z ≤ sum L ∧ d z z' ≤ sum L ∧ d z' y ≤ sum L [PROOFSTEP] have hM_lt : M < length L := by rwa [hL_len, Nat.lt_succ_iff] [GOAL] X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M ⊢ M < length L [PROOFSTEP] rwa [hL_len, Nat.lt_succ_iff] [GOAL] case intro.intro X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L ⊢ ∃ z z', d x z ≤ sum L ∧ d z z' ≤ sum L ∧ d z' y ≤ sum L [PROOFSTEP] have hM_ltx : M < length (x :: l) := lt_length_left_of_zipWith hM_lt [GOAL] case intro.intro X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) ⊢ ∃ z z', d x z ≤ sum L ∧ d z z' ≤ sum L ∧ d z' y ≤ sum L [PROOFSTEP] have hM_lty : M < length (l ++ [y]) := lt_length_right_of_zipWith hM_lt [GOAL] case intro.intro X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) ⊢ ∃ z z', d x z ≤ sum L ∧ d z z' ≤ sum L ∧ d z' y ≤ sum L [PROOFSTEP] refine' ⟨(x :: l).get ⟨M, hM_ltx⟩, (l ++ [y]).get ⟨M, hM_lty⟩, _, _, _⟩ [GOAL] case intro.intro.refine'_1 X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) ⊢ d x (List.get (x :: l) { val := M, isLt := hM_ltx }) ≤ sum L [PROOFSTEP] cases M with | zero => simp [dist_self, List.get] | succ M => rw [Nat.succ_le_iff] at hMl have hMl' : length (take M l) = M := (length_take _ _).trans (min_eq_left hMl.le) simp only [List.get] refine' (ihn _ hMl _ _ _ hMl').trans _ convert hMs.1.out rw [zipWith_distrib_take, take, take_succ, get?_append hMl, get?_eq_get hMl, ← Option.coe_def, Option.to_list_some, take_append_of_le_length hMl.le] [GOAL] case intro.intro.refine'_1 X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) ⊢ d x (List.get (x :: l) { val := M, isLt := hM_ltx }) ≤ sum L [PROOFSTEP] cases M with | zero => simp [dist_self, List.get] | succ M => rw [Nat.succ_le_iff] at hMl have hMl' : length (take M l) = M := (length_take _ _).trans (min_eq_left hMl.le) simp only [List.get] refine' (ihn _ hMl _ _ _ hMl').trans _ convert hMs.1.out rw [zipWith_distrib_take, take, take_succ, get?_append hMl, get?_eq_get hMl, ← Option.coe_def, Option.to_list_some, take_append_of_le_length hMl.le] [GOAL] case intro.intro.refine'_1.zero X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s hMl : Nat.zero ≤ length l hMs : IsGreatest s Nat.zero hM_lt : Nat.zero < length L hM_ltx : Nat.zero < length (x :: l) hM_lty : Nat.zero < length (l ++ [y]) ⊢ d x (List.get (x :: l) { val := Nat.zero, isLt := hM_ltx }) ≤ sum L [PROOFSTEP] | zero => simp [dist_self, List.get] [GOAL] case intro.intro.refine'_1.zero X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s hMl : Nat.zero ≤ length l hMs : IsGreatest s Nat.zero hM_lt : Nat.zero < length L hM_ltx : Nat.zero < length (x :: l) hM_lty : Nat.zero < length (l ++ [y]) ⊢ d x (List.get (x :: l) { val := Nat.zero, isLt := hM_ltx }) ≤ sum L [PROOFSTEP] simp [dist_self, List.get] [GOAL] case intro.intro.refine'_1.succ X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : Nat.succ M ≤ length l hMs : IsGreatest s (Nat.succ M) hM_lt : Nat.succ M < length L hM_ltx : Nat.succ M < length (x :: l) hM_lty : Nat.succ M < length (l ++ [y]) ⊢ d x (List.get (x :: l) { val := Nat.succ M, isLt := hM_ltx }) ≤ sum L [PROOFSTEP] | succ M => rw [Nat.succ_le_iff] at hMl have hMl' : length (take M l) = M := (length_take _ _).trans (min_eq_left hMl.le) simp only [List.get] refine' (ihn _ hMl _ _ _ hMl').trans _ convert hMs.1.out rw [zipWith_distrib_take, take, take_succ, get?_append hMl, get?_eq_get hMl, ← Option.coe_def, Option.to_list_some, take_append_of_le_length hMl.le] [GOAL] case intro.intro.refine'_1.succ X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : Nat.succ M ≤ length l hMs : IsGreatest s (Nat.succ M) hM_lt : Nat.succ M < length L hM_ltx : Nat.succ M < length (x :: l) hM_lty : Nat.succ M < length (l ++ [y]) ⊢ d x (List.get (x :: l) { val := Nat.succ M, isLt := hM_ltx }) ≤ sum L [PROOFSTEP] rw [Nat.succ_le_iff] at hMl [GOAL] case intro.intro.refine'_1.succ X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M < length l hMs : IsGreatest s (Nat.succ M) hM_lt : Nat.succ M < length L hM_ltx : Nat.succ M < length (x :: l) hM_lty : Nat.succ M < length (l ++ [y]) ⊢ d x (List.get (x :: l) { val := Nat.succ M, isLt := hM_ltx }) ≤ sum L [PROOFSTEP] have hMl' : length (take M l) = M := (length_take _ _).trans (min_eq_left hMl.le) [GOAL] case intro.intro.refine'_1.succ X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M < length l hMs : IsGreatest s (Nat.succ M) hM_lt : Nat.succ M < length L hM_ltx : Nat.succ M < length (x :: l) hM_lty : Nat.succ M < length (l ++ [y]) hMl' : length (take M l) = M ⊢ d x (List.get (x :: l) { val := Nat.succ M, isLt := hM_ltx }) ≤ sum L [PROOFSTEP] simp only [List.get] [GOAL] case intro.intro.refine'_1.succ X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M < length l hMs : IsGreatest s (Nat.succ M) hM_lt : Nat.succ M < length L hM_ltx : Nat.succ M < length (x :: l) hM_lty : Nat.succ M < length (l ++ [y]) hMl' : length (take M l) = M ⊢ d x (List.get l { val := M, isLt := (_ : Nat.succ M ≤ length l) }) ≤ sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] refine' (ihn _ hMl _ _ _ hMl').trans _ [GOAL] case intro.intro.refine'_1.succ X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M < length l hMs : IsGreatest s (Nat.succ M) hM_lt : Nat.succ M < length L hM_ltx : Nat.succ M < length (x :: l) hM_lty : Nat.succ M < length (l ++ [y]) hMl' : length (take M l) = M ⊢ 2 * sum (zipWith d (x :: take M l) (take M l ++ [List.get l { val := M, isLt := (_ : Nat.succ M ≤ length l) }])) ≤ sum (zipWith d (x :: l) (l ++ [y])) [PROOFSTEP] convert hMs.1.out [GOAL] case h.e'_3.h.e'_6.h.e'_4 X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M < length l hMs : IsGreatest s (Nat.succ M) hM_lt : Nat.succ M < length L hM_ltx : Nat.succ M < length (x :: l) hM_lty : Nat.succ M < length (l ++ [y]) hMl' : length (take M l) = M ⊢ zipWith d (x :: take M l) (take M l ++ [List.get l { val := M, isLt := (_ : Nat.succ M ≤ length l) }]) = take (Nat.succ M) L [PROOFSTEP] rw [zipWith_distrib_take, take, take_succ, get?_append hMl, get?_eq_get hMl, ← Option.coe_def, Option.to_list_some, take_append_of_le_length hMl.le] [GOAL] case intro.intro.refine'_2 X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) ⊢ d (List.get (x :: l) { val := M, isLt := hM_ltx }) (List.get (l ++ [y]) { val := M, isLt := hM_lty }) ≤ sum L [PROOFSTEP] exact single_le_sum (fun x _ => zero_le x) _ (mem_iff_get.2 ⟨⟨M, hM_lt⟩, get_zipWith⟩) [GOAL] case intro.intro.refine'_3 X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) ⊢ d (List.get (l ++ [y]) { val := M, isLt := hM_lty }) y ≤ sum L [PROOFSTEP] rcases hMl.eq_or_lt with (rfl | hMl) [GOAL] case intro.intro.refine'_3.inl X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s hMl : length l ≤ length l hMs : IsGreatest s (length l) hM_lt : length l < length L hM_ltx : length l < length (x :: l) hM_lty : length l < length (l ++ [y]) ⊢ d (List.get (l ++ [y]) { val := length l, isLt := hM_lty }) y ≤ sum L [PROOFSTEP] simp only [get_append_right' le_rfl, sub_self, get_singleton, dist_self, zero_le] [GOAL] case intro.intro.refine'_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l ⊢ d (List.get (l ++ [y]) { val := M, isLt := hM_lty }) y ≤ sum L [PROOFSTEP] rw [get_append _ hMl] [GOAL] case intro.intro.refine'_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l ⊢ d (List.get l { val := M, isLt := hMl }) y ≤ sum L [PROOFSTEP] have hlen : length (drop (M + 1) l) = length l - (M + 1) := length_drop _ _ [GOAL] case intro.intro.refine'_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l hlen : length (drop (M + 1) l) = length l - (M + 1) ⊢ d (List.get l { val := M, isLt := hMl }) y ≤ sum L [PROOFSTEP] have hlen_lt : length l - (M + 1) < length l := Nat.sub_lt_of_pos_le M.succ_pos hMl [GOAL] case intro.intro.refine'_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l hlen : length (drop (M + 1) l) = length l - (M + 1) hlen_lt : length l - (M + 1) < length l ⊢ d (List.get l { val := M, isLt := hMl }) y ≤ sum L [PROOFSTEP] refine' (ihn _ hlen_lt _ y _ hlen).trans _ [GOAL] case intro.intro.refine'_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l hlen : length (drop (M + 1) l) = length l - (M + 1) hlen_lt : length l - (M + 1) < length l ⊢ 2 * sum (zipWith d (List.get l { val := M, isLt := hMl } :: drop (M + 1) l) (drop (M + 1) l ++ [y])) ≤ sum L [PROOFSTEP] rw [cons_get_drop_succ] [GOAL] case intro.intro.refine'_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l hlen : length (drop (M + 1) l) = length l - (M + 1) hlen_lt : length l - (M + 1) < length l ⊢ 2 * sum (zipWith d (drop (↑{ val := M, isLt := hMl }) l) (drop (M + 1) l ++ [y])) ≤ sum L [PROOFSTEP] have hMs' : L.sum ≤ 2 * (L.take (M + 1)).sum := not_lt.1 fun h => (hMs.2 h.le).not_lt M.lt_succ_self [GOAL] case intro.intro.refine'_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l hlen : length (drop (M + 1) l) = length l - (M + 1) hlen_lt : length l - (M + 1) < length l hMs' : sum L ≤ 2 * sum (take (M + 1) L) ⊢ 2 * sum (zipWith d (drop (↑{ val := M, isLt := hMl }) l) (drop (M + 1) l ++ [y])) ≤ sum L [PROOFSTEP] rw [← sum_take_add_sum_drop L (M + 1), two_mul, add_le_add_iff_left, ← add_le_add_iff_right, sum_take_add_sum_drop, ← two_mul] at hMs' [GOAL] case intro.intro.refine'_3.inr X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l hlen : length (drop (M + 1) l) = length l - (M + 1) hlen_lt : length l - (M + 1) < length l hMs'✝ : sum (drop (M + 1) L) ≤ sum (take (M + 1) L) hMs' : 2 * sum (drop (M + 1) L) ≤ sum L ⊢ 2 * sum (zipWith d (drop (↑{ val := M, isLt := hMl }) l) (drop (M + 1) l ++ [y])) ≤ sum L [PROOFSTEP] convert hMs' [GOAL] case h.e'_3.h.e'_6.h.e'_4 X : Type u_1 d : X → X → ℝ≥0 dist_self : ∀ (x : X), d x x = 0 dist_comm : ∀ (x y : X), d x y = d y x hd : ∀ (x₁ x₂ x₃ x₄ : X), d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) x✝¹ y✝ : X l✝ : List X hd₀_trans : Transitive fun x y => d x y = 0 this : IsTrans X fun x y => d x y = 0 x✝ : ℕ hn : length l✝ = x✝ x y : X l : List X ihn : ∀ (m : ℕ), m < length l → ∀ (x y : X) (l : List X), length l = m → d x y ≤ 2 * sum (zipWith d (x :: l) (l ++ [y])) L : List ℝ≥0 := zipWith d (x :: l) (l ++ [y]) hL_len : length L = length l + 1 hd₀ : d x y ≠ 0 s : Set ℕ := {m | 2 * sum (take m L) ≤ sum L} hs₀ : 0 ∈ s hsne : Set.Nonempty s M : ℕ hMl✝ : M ≤ length l hMs : IsGreatest s M hM_lt : M < length L hM_ltx : M < length (x :: l) hM_lty : M < length (l ++ [y]) hMl : M < length l hlen : length (drop (M + 1) l) = length l - (M + 1) hlen_lt : length l - (M + 1) < length l hMs'✝ : sum (drop (M + 1) L) ≤ sum (take (M + 1) L) hMs' : 2 * sum (drop (M + 1) L) ≤ sum L ⊢ zipWith d (drop (↑{ val := M, isLt := hMl }) l) (drop (M + 1) l ++ [y]) = drop (M + 1) L [PROOFSTEP] rwa [zipWith_distrib_drop, drop, drop_append_of_le_length] [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] classical /- Choose a fast decreasing antitone basis `U : ℕ → set (X × X)` of the uniformity filter `𝓤 X`. Define `d x y : ℝ≥0` to be `(1 / 2) ^ n`, where `n` is the minimal index of `U n` that separates `x` and `y`: `(x, y) ∉ U n`, or `0` if `x` is not separated from `y`. This function satisfies the assumptions of `PseudoMetricSpace.ofPreNNDist` and `PseudoMetricSpace.le_two_mul_dist_ofPreNNDist`, hence the distance given by the former pseudo metric space structure is Lipschitz equivalent to the `d`. Thus the uniformities generated by `d` and `dist` are equal. Since the former uniformity is equal to `𝓤 X`, the latter is equal to `𝓤 X` as well. -/ obtain ⟨U, hU_symm, hU_comp, hB⟩ : ∃ U : ℕ → Set (X × X), (∀ n, SymmetricRel (U n)) ∧ (∀ ⦃m n⦄, m < n → U n ○ (U n ○ U n) ⊆ U m) ∧ (𝓤 X).HasAntitoneBasis U := by rcases UniformSpace.has_seq_basis X with ⟨V, hB, hV_symm⟩ rcases hB.subbasis_with_rel fun m => hB.tendsto_smallSets.eventually (eventually_uniformity_iterate_comp_subset (hB.mem m) 2) with ⟨φ, -, hφ_comp, hφB⟩ exact ⟨V ∘ φ, fun n => hV_symm _, hφ_comp, hφB⟩ letI := UniformSpace.separationSetoid X set d : X → X → ℝ≥0 := fun x y => if h : ∃ n, (x, y) ∉ U n then (1 / 2) ^ Nat.find h else 0 have hd₀ : ∀ {x y}, d x y = 0 ↔ x ≈ y := by intro x y refine' Iff.trans _ hB.mem_separationRel.symm simp only [true_imp_iff] split_ifs with h · rw [← not_forall] at h simp [h, pow_eq_zero_iff'] · simpa only [not_exists, Classical.not_not, eq_self_iff_true, true_iff_iff] using h have hd_symm : ∀ x y, d x y = d y x := by intro x y simp only [@SymmetricRel.mk_mem_comm _ _ (hU_symm _) x y] have hr : (1 / 2 : ℝ≥0) ∈ Ioo (0 : ℝ≥0) 1 := ⟨half_pos one_pos, NNReal.half_lt_self one_ne_zero⟩ letI I := PseudoMetricSpace.ofPreNNDist d (fun x => hd₀.2 (Setoid.refl _)) hd_symm have hdist_le : ∀ x y, dist x y ≤ d x y := PseudoMetricSpace.dist_ofPreNNDist_le _ _ _ have hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ (x, y) ∉ U n := by intro x y n dsimp only [] split_ifs with h · rw [(strictAnti_pow hr.1 hr.2).le_iff_le, Nat.find_le_iff] exact ⟨fun ⟨m, hmn, hm⟩ hn => hm (hB.antitone hmn hn), fun h => ⟨n, le_rfl, h⟩⟩ · push_neg at h simp only [h, not_true, (pow_pos hr.1 _).not_le] have hd_le : ∀ x y, ↑(d x y) ≤ 2 * dist x y := by refine' PseudoMetricSpace.le_two_mul_dist_ofPreNNDist _ _ _ fun x₁ x₂ x₃ x₄ => _ by_cases H : ∃ n, (x₁, x₄) ∉ U n · refine' (dif_pos H).trans_le _ rw [← NNReal.div_le_iff' two_ne_zero, ← mul_one_div (_ ^ _), ← pow_succ'] simp only [le_max_iff, hle_d, ← not_and_or] rintro ⟨h₁₂, h₂₃, h₃₄⟩ refine' Nat.find_spec H (hU_comp (lt_add_one <| Nat.find H) _) exact ⟨x₂, h₁₂, x₃, h₂₃, h₃₄⟩ · exact (dif_neg H).trans_le (zero_le _) -- Porting note: without the next line, `uniformity_basis_dist_pow` ends up introducing some -- `Subtype.val` applications instead of `NNReal.toReal`. rw [mem_Ioo, ← NNReal.coe_lt_coe, ← NNReal.coe_lt_coe] at hr refine' ⟨I, uniformSpace_eq <| (uniformity_basis_dist_pow hr.1 hr.2).ext hB.toHasBasis _ _⟩ · refine' fun n hn => ⟨n, hn, fun x hx => (hdist_le _ _).trans_lt _⟩ rwa [← NNReal.coe_pow, NNReal.coe_lt_coe, ← not_le, hle_d, Classical.not_not, Prod.mk.eta] · refine' fun n _ => ⟨n + 1, trivial, fun x hx => _⟩ rw [mem_setOf_eq] at hx contrapose! hx refine' le_trans _ ((div_le_iff' (zero_lt_two' ℝ)).2 (hd_le x.1 x.2)) rwa [← NNReal.coe_two, ← NNReal.coe_div, ← NNReal.coe_pow, NNReal.coe_le_coe, pow_succ', mul_one_div, NNReal.div_le_iff two_ne_zero, div_mul_cancel _ (two_ne_zero' ℝ≥0), hle_d, Prod.mk.eta] [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] obtain ⟨U, hU_symm, hU_comp, hB⟩ : ∃ U : ℕ → Set (X × X), (∀ n, SymmetricRel (U n)) ∧ (∀ ⦃m n⦄, m < n → U n ○ (U n ○ U n) ⊆ U m) ∧ (𝓤 X).HasAntitoneBasis U := by rcases UniformSpace.has_seq_basis X with ⟨V, hB, hV_symm⟩ rcases hB.subbasis_with_rel fun m => hB.tendsto_smallSets.eventually (eventually_uniformity_iterate_comp_subset (hB.mem m) 2) with ⟨φ, -, hφ_comp, hφB⟩ exact ⟨V ∘ φ, fun n => hV_symm _, hφ_comp, hφB⟩ [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) ⊢ ∃ U, (∀ (n : ℕ), SymmetricRel (U n)) ∧ (∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m) ∧ HasAntitoneBasis (𝓤 X) U [PROOFSTEP] rcases UniformSpace.has_seq_basis X with ⟨V, hB, hV_symm⟩ [GOAL] case intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) V : ℕ → Set (X × X) hB : HasAntitoneBasis (𝓤 X) V hV_symm : ∀ (n : ℕ), SymmetricRel (V n) ⊢ ∃ U, (∀ (n : ℕ), SymmetricRel (U n)) ∧ (∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m) ∧ HasAntitoneBasis (𝓤 X) U [PROOFSTEP] rcases hB.subbasis_with_rel fun m => hB.tendsto_smallSets.eventually (eventually_uniformity_iterate_comp_subset (hB.mem m) 2) with ⟨φ, -, hφ_comp, hφB⟩ [GOAL] case intro.intro.intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) V : ℕ → Set (X × X) hB : HasAntitoneBasis (𝓤 X) V hV_symm : ∀ (n : ℕ), SymmetricRel (V n) φ : ℕ → ℕ hφ_comp : ∀ ⦃m n : ℕ⦄, m < n → (fun x => V (φ n) ○ x)^[2] (V (φ n)) ⊆ V (φ m) hφB : HasAntitoneBasis (𝓤 X) (V ∘ φ) ⊢ ∃ U, (∀ (n : ℕ), SymmetricRel (U n)) ∧ (∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m) ∧ HasAntitoneBasis (𝓤 X) U [PROOFSTEP] exact ⟨V ∘ φ, fun n => hV_symm _, hφ_comp, hφB⟩ [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] letI := UniformSpace.separationSetoid X [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] set d : X → X → ℝ≥0 := fun x y => if h : ∃ n, (x, y) ∉ U n then (1 / 2) ^ Nat.find h else 0 [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] have hd₀ : ∀ {x y}, d x y = 0 ↔ x ≈ y := by intro x y refine' Iff.trans _ hB.mem_separationRel.symm simp only [true_imp_iff] split_ifs with h · rw [← not_forall] at h simp [h, pow_eq_zero_iff'] · simpa only [not_exists, Classical.not_not, eq_self_iff_true, true_iff_iff] using h [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 ⊢ ∀ {x y : X}, d x y = 0 ↔ x ≈ y [PROOFSTEP] intro x y [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 x y : X ⊢ d x y = 0 ↔ x ≈ y [PROOFSTEP] refine' Iff.trans _ hB.mem_separationRel.symm [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 x y : X ⊢ d x y = 0 ↔ ∀ (i : ℕ), True → (x, y) ∈ U i [PROOFSTEP] simp only [true_imp_iff] [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 x y : X ⊢ (if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0) = 0 ↔ ∀ (i : ℕ), (x, y) ∈ U i [PROOFSTEP] split_ifs with h [GOAL] case pos X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 x y : X h : ∃ n, ¬(x, y) ∈ U n ⊢ (1 / 2) ^ Nat.find h = 0 ↔ ∀ (i : ℕ), (x, y) ∈ U i [PROOFSTEP] rw [← not_forall] at h [GOAL] case pos X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 x y : X h✝ : ∃ n, ¬(x, y) ∈ U n h : ¬∀ (x_1 : ℕ), (x, y) ∈ U x_1 ⊢ (1 / 2) ^ Nat.find h✝ = 0 ↔ ∀ (i : ℕ), (x, y) ∈ U i [PROOFSTEP] simp [h, pow_eq_zero_iff'] [GOAL] case neg X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 x y : X h : ¬∃ n, ¬(x, y) ∈ U n ⊢ 0 = 0 ↔ ∀ (i : ℕ), (x, y) ∈ U i [PROOFSTEP] simpa only [not_exists, Classical.not_not, eq_self_iff_true, true_iff_iff] using h [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] have hd_symm : ∀ x y, d x y = d y x := by intro x y simp only [@SymmetricRel.mk_mem_comm _ _ (hU_symm _) x y] [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y ⊢ ∀ (x y : X), d x y = d y x [PROOFSTEP] intro x y [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y x y : X ⊢ d x y = d y x [PROOFSTEP] simp only [@SymmetricRel.mk_mem_comm _ _ (hU_symm _) x y] [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] have hr : (1 / 2 : ℝ≥0) ∈ Ioo (0 : ℝ≥0) 1 := ⟨half_pos one_pos, NNReal.half_lt_self one_ne_zero⟩ [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] letI I := PseudoMetricSpace.ofPreNNDist d (fun x => hd₀.2 (Setoid.refl _)) hd_symm [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] have hdist_le : ∀ x y, dist x y ≤ d x y := PseudoMetricSpace.dist_ofPreNNDist_le _ _ _ [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] have hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ (x, y) ∉ U n := by intro x y n dsimp only [] split_ifs with h · rw [(strictAnti_pow hr.1 hr.2).le_iff_le, Nat.find_le_iff] exact ⟨fun ⟨m, hmn, hm⟩ hn => hm (hB.antitone hmn hn), fun h => ⟨n, le_rfl, h⟩⟩ · push_neg at h simp only [h, not_true, (pow_pos hr.1 _).not_le] [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) ⊢ ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n [PROOFSTEP] intro x y n [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) x y : X n : ℕ ⊢ (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n [PROOFSTEP] dsimp only [] [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) x y : X n : ℕ ⊢ ((1 / 2) ^ n ≤ if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0) ↔ ¬(x, y) ∈ U n [PROOFSTEP] split_ifs with h [GOAL] case pos X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) x y : X n : ℕ h : ∃ n, ¬(x, y) ∈ U n ⊢ (1 / 2) ^ n ≤ (1 / 2) ^ Nat.find h ↔ ¬(x, y) ∈ U n [PROOFSTEP] rw [(strictAnti_pow hr.1 hr.2).le_iff_le, Nat.find_le_iff] [GOAL] case pos X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) x y : X n : ℕ h : ∃ n, ¬(x, y) ∈ U n ⊢ (∃ m, m ≤ n ∧ ¬(x, y) ∈ U m) ↔ ¬(x, y) ∈ U n [PROOFSTEP] exact ⟨fun ⟨m, hmn, hm⟩ hn => hm (hB.antitone hmn hn), fun h => ⟨n, le_rfl, h⟩⟩ [GOAL] case neg X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) x y : X n : ℕ h : ¬∃ n, ¬(x, y) ∈ U n ⊢ (1 / 2) ^ n ≤ 0 ↔ ¬(x, y) ∈ U n [PROOFSTEP] push_neg at h [GOAL] case neg X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) x y : X n : ℕ h : ∀ (n : ℕ), (x, y) ∈ U n ⊢ (1 / 2) ^ n ≤ 0 ↔ ¬(x, y) ∈ U n [PROOFSTEP] simp only [h, not_true, (pow_pos hr.1 _).not_le] [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] have hd_le : ∀ x y, ↑(d x y) ≤ 2 * dist x y := by refine' PseudoMetricSpace.le_two_mul_dist_ofPreNNDist _ _ _ fun x₁ x₂ x₃ x₄ => _ by_cases H : ∃ n, (x₁, x₄) ∉ U n · refine' (dif_pos H).trans_le _ rw [← NNReal.div_le_iff' two_ne_zero, ← mul_one_div (_ ^ _), ← pow_succ'] simp only [le_max_iff, hle_d, ← not_and_or] rintro ⟨h₁₂, h₂₃, h₃₄⟩ refine' Nat.find_spec H (hU_comp (lt_add_one <| Nat.find H) _) exact ⟨x₂, h₁₂, x₃, h₂₃, h₃₄⟩ · exact (dif_neg H).trans_le (zero_le _) -- Porting note: without the next line, `uniformity_basis_dist_pow` ends up introducing some -- `Subtype.val` applications instead of `NNReal.toReal`. [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n ⊢ ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y [PROOFSTEP] refine' PseudoMetricSpace.le_two_mul_dist_ofPreNNDist _ _ _ fun x₁ x₂ x₃ x₄ => _ [GOAL] X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n x₁ x₂ x₃ x₄ : X ⊢ d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) [PROOFSTEP] by_cases H : ∃ n, (x₁, x₄) ∉ U n [GOAL] case pos X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n x₁ x₂ x₃ x₄ : X H : ∃ n, ¬(x₁, x₄) ∈ U n ⊢ d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) [PROOFSTEP] refine' (dif_pos H).trans_le _ [GOAL] case pos X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n x₁ x₂ x₃ x₄ : X H : ∃ n, ¬(x₁, x₄) ∈ U n ⊢ (1 / 2) ^ Nat.find H ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) [PROOFSTEP] rw [← NNReal.div_le_iff' two_ne_zero, ← mul_one_div (_ ^ _), ← pow_succ'] [GOAL] case pos X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n x₁ x₂ x₃ x₄ : X H : ∃ n, ¬(x₁, x₄) ∈ U n ⊢ (1 / 2) ^ (Nat.find H + 1) ≤ max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) [PROOFSTEP] simp only [le_max_iff, hle_d, ← not_and_or] [GOAL] case pos X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n x₁ x₂ x₃ x₄ : X H : ∃ n, ¬(x₁, x₄) ∈ U n ⊢ ¬((x₁, x₂) ∈ U (Nat.find H + 1) ∧ (x₂, x₃) ∈ U (Nat.find H + 1) ∧ (x₃, x₄) ∈ U (Nat.find H + 1)) [PROOFSTEP] rintro ⟨h₁₂, h₂₃, h₃₄⟩ [GOAL] case pos.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n x₁ x₂ x₃ x₄ : X H : ∃ n, ¬(x₁, x₄) ∈ U n h₁₂ : (x₁, x₂) ∈ U (Nat.find H + 1) h₂₃ : (x₂, x₃) ∈ U (Nat.find H + 1) h₃₄ : (x₃, x₄) ∈ U (Nat.find H + 1) ⊢ False [PROOFSTEP] refine' Nat.find_spec H (hU_comp (lt_add_one <| Nat.find H) _) [GOAL] case pos.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n x₁ x₂ x₃ x₄ : X H : ∃ n, ¬(x₁, x₄) ∈ U n h₁₂ : (x₁, x₂) ∈ U (Nat.find H + 1) h₂₃ : (x₂, x₃) ∈ U (Nat.find H + 1) h₃₄ : (x₃, x₄) ∈ U (Nat.find H + 1) ⊢ (x₁, x₄) ∈ U (Nat.find H + 1) ○ (U (Nat.find H + 1) ○ U (Nat.find H + 1)) [PROOFSTEP] exact ⟨x₂, h₁₂, x₃, h₂₃, h₃₄⟩ [GOAL] case neg X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n x₁ x₂ x₃ x₄ : X H : ¬∃ n, ¬(x₁, x₄) ∈ U n ⊢ d x₁ x₄ ≤ 2 * max (d x₁ x₂) (max (d x₂ x₃) (d x₃ x₄)) [PROOFSTEP] exact (dif_neg H).trans_le (zero_le _) -- Porting note: without the next line, `uniformity_basis_dist_pow` ends up introducing some -- `Subtype.val` applications instead of `NNReal.toReal`. [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : 1 / 2 ∈ Ioo 0 1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] rw [mem_Ioo, ← NNReal.coe_lt_coe, ← NNReal.coe_lt_coe] at hr [GOAL] case intro.intro.intro X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : ↑0 < ↑(1 / 2) ∧ ↑(1 / 2) < ↑1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y ⊢ ∃ I, PseudoMetricSpace.toUniformSpace = inst✝¹ [PROOFSTEP] refine' ⟨I, uniformSpace_eq <| (uniformity_basis_dist_pow hr.1 hr.2).ext hB.toHasBasis _ _⟩ [GOAL] case intro.intro.intro.refine'_1 X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : ↑0 < ↑(1 / 2) ∧ ↑(1 / 2) < ↑1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y ⊢ ∀ (i : ℕ), True → ∃ i', True ∧ U i' ⊆ {p | dist p.fst p.snd < ↑(1 / 2) ^ i} [PROOFSTEP] refine' fun n hn => ⟨n, hn, fun x hx => (hdist_le _ _).trans_lt _⟩ [GOAL] case intro.intro.intro.refine'_1 X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : ↑0 < ↑(1 / 2) ∧ ↑(1 / 2) < ↑1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y n : ℕ hn : True x : X × X hx : x ∈ U n ⊢ ↑(d x.fst x.snd) < ↑(1 / 2) ^ n [PROOFSTEP] rwa [← NNReal.coe_pow, NNReal.coe_lt_coe, ← not_le, hle_d, Classical.not_not, Prod.mk.eta] [GOAL] case intro.intro.intro.refine'_2 X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : ↑0 < ↑(1 / 2) ∧ ↑(1 / 2) < ↑1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y ⊢ ∀ (i' : ℕ), True → ∃ i, True ∧ {p | dist p.fst p.snd < ↑(1 / 2) ^ i} ⊆ U i' [PROOFSTEP] refine' fun n _ => ⟨n + 1, trivial, fun x hx => _⟩ [GOAL] case intro.intro.intro.refine'_2 X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : ↑0 < ↑(1 / 2) ∧ ↑(1 / 2) < ↑1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y n : ℕ x✝ : True x : X × X hx : x ∈ {p | dist p.fst p.snd < ↑(1 / 2) ^ (n + 1)} ⊢ x ∈ U n [PROOFSTEP] rw [mem_setOf_eq] at hx [GOAL] case intro.intro.intro.refine'_2 X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : ↑0 < ↑(1 / 2) ∧ ↑(1 / 2) < ↑1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y n : ℕ x✝ : True x : X × X hx : dist x.fst x.snd < ↑(1 / 2) ^ (n + 1) ⊢ x ∈ U n [PROOFSTEP] contrapose! hx [GOAL] case intro.intro.intro.refine'_2 X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : ↑0 < ↑(1 / 2) ∧ ↑(1 / 2) < ↑1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y n : ℕ x✝ : True x : X × X hx : ¬x ∈ U n ⊢ ↑(1 / 2) ^ (n + 1) ≤ dist x.fst x.snd [PROOFSTEP] refine' le_trans _ ((div_le_iff' (zero_lt_two' ℝ)).2 (hd_le x.1 x.2)) [GOAL] case intro.intro.intro.refine'_2 X✝ : Type u_1 X : Type u_2 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) U : ℕ → Set (X × X) hU_symm : ∀ (n : ℕ), SymmetricRel (U n) hU_comp : ∀ ⦃m n : ℕ⦄, m < n → U n ○ (U n ○ U n) ⊆ U m hB : HasAntitoneBasis (𝓤 X) U this : Setoid X := separationSetoid X d : X → X → ℝ≥0 := fun x y => if h : ∃ n, ¬(x, y) ∈ U n then (1 / 2) ^ Nat.find h else 0 hd₀ : ∀ {x y : X}, d x y = 0 ↔ x ≈ y hd_symm : ∀ (x y : X), d x y = d y x hr : ↑0 < ↑(1 / 2) ∧ ↑(1 / 2) < ↑1 I : PseudoMetricSpace X := PseudoMetricSpace.ofPreNNDist d (_ : ∀ (x : X), d x x = 0) hd_symm hdist_le : ∀ (x y : X), dist x y ≤ ↑(d x y) hle_d : ∀ {x y : X} {n : ℕ}, (1 / 2) ^ n ≤ d x y ↔ ¬(x, y) ∈ U n hd_le : ∀ (x y : X), ↑(d x y) ≤ 2 * dist x y n : ℕ x✝ : True x : X × X hx : ¬x ∈ U n ⊢ ↑(1 / 2) ^ (n + 1) ≤ ↑(d x.fst x.snd) / 2 [PROOFSTEP] rwa [← NNReal.coe_two, ← NNReal.coe_div, ← NNReal.coe_pow, NNReal.coe_le_coe, pow_succ', mul_one_div, NNReal.div_le_iff two_ne_zero, div_mul_cancel _ (two_ne_zero' ℝ≥0), hle_d, Prod.mk.eta] [GOAL] X : Type u_1 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) ⊢ TopologicalSpace.PseudoMetrizableSpace X [PROOFSTEP] letI := UniformSpace.pseudoMetricSpace X [GOAL] X : Type u_1 inst✝¹ : UniformSpace X inst✝ : IsCountablyGenerated (𝓤 X) this : PseudoMetricSpace X := UniformSpace.pseudoMetricSpace X ⊢ TopologicalSpace.PseudoMetrizableSpace X [PROOFSTEP] infer_instance [GOAL] X : Type u_1 inst✝² : UniformSpace X inst✝¹ : IsCountablyGenerated (𝓤 X) inst✝ : T0Space X ⊢ TopologicalSpace.MetrizableSpace X [PROOFSTEP] letI := UniformSpace.metricSpace X [GOAL] X : Type u_1 inst✝² : UniformSpace X inst✝¹ : IsCountablyGenerated (𝓤 X) inst✝ : T0Space X this : MetricSpace X := UniformSpace.metricSpace X ⊢ TopologicalSpace.MetrizableSpace X [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.MetricSpace.MetrizableUniformity", "llama_tokens": 49562}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β ⊢ AntilipschitzWith K f ↔ ∀ (x y : α), nndist x y ≤ K * nndist (f x) (f y) [PROOFSTEP] simp only [AntilipschitzWith, edist_nndist] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β ⊢ (∀ (x y : α), ↑(nndist x y) ≤ ↑K * ↑(nndist (f x) (f y))) ↔ ∀ (x y : α), nndist x y ≤ K * nndist (f x) (f y) [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β ⊢ AntilipschitzWith K f ↔ ∀ (x y : α), dist x y ≤ ↑K * dist (f x) (f y) [PROOFSTEP] simp only [antilipschitzWith_iff_le_mul_nndist, dist_nndist] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β ⊢ (∀ (x y : α), nndist x y ≤ K * nndist (f x) (f y)) ↔ ∀ (x y : α), ↑(nndist x y) ≤ ↑K * ↑(nndist (f x) (f y)) [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β hf : AntilipschitzWith K f x y : α ⊢ K⁻¹ * nndist x y ≤ nndist (f x) (f y) [PROOFSTEP] simpa only [div_eq_inv_mul] using NNReal.div_le_of_le_mul' (hf.le_mul_nndist x y) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β hf : AntilipschitzWith K f x y : α ⊢ ↑K⁻¹ * dist x y ≤ dist (f x) (f y) [PROOFSTEP] exact_mod_cast hf.mul_le_nndist x y [GOAL] α✝ : Type u_1 β✝ : Type u_2 γ : Type u_3 inst✝⁴ : PseudoEMetricSpace α✝ inst✝³ : PseudoEMetricSpace β✝ inst✝² : PseudoEMetricSpace γ K✝ : ℝ≥0 f✝ : α✝ → β✝ α : Type u_4 β : Type u_5 inst✝¹ : EMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 f : α → β hf : AntilipschitzWith K f x y : α h : f x = f y ⊢ x = y [PROOFSTEP] simpa only [h, edist_self, mul_zero, edist_le_zero] using hf x y [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f x y : α ⊢ (↑K)⁻¹ * edist x y ≤ edist (f x) (f y) [PROOFSTEP] rw [mul_comm, ← div_eq_mul_inv] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f x y : α ⊢ edist x y / ↑K ≤ edist (f x) (f y) [PROOFSTEP] exact ENNReal.div_le_of_le_mul' (hf x y) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β x y : α ⊢ edist x y ≤ ↑1 * edist (id x) (id y) [PROOFSTEP] simp only [ENNReal.coe_one, one_mul, id, le_refl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β Kg : ℝ≥0 g : β → γ hg : AntilipschitzWith Kg g Kf : ℝ≥0 f : α → β hf : AntilipschitzWith Kf f x y : α ⊢ ↑Kf * (↑Kg * edist (g (f x)) (g (f y))) = ↑(Kf * Kg) * edist ((g ∘ f) x) ((g ∘ f) y) [PROOFSTEP] rw [ENNReal.coe_mul, mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f✝ : α → β Kg : ℝ≥0 g : β → γ hg : AntilipschitzWith Kg g Kf : ℝ≥0 f : α → β hf : AntilipschitzWith Kf f x y : α ⊢ ↑Kf * (↑Kg * edist (g (f x)) (g (f y))) = ↑Kf * (↑Kg * edist ((g ∘ f) x) ((g ∘ f) y)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β s : Set α hf : AntilipschitzWith K (Set.restrict s f) g : β → α t : Set β g_maps : MapsTo g t s g_inv : RightInvOn g f t x y : ↑t ⊢ edist (Set.restrict t g x) (Set.restrict t g y) ≤ ↑K * edist x y [PROOFSTEP] simpa only [restrict_apply, g_inv x.mem, g_inv y.mem, Subtype.edist_eq, Subtype.coe_mk] using hf ⟨g x, g_maps x.mem⟩ ⟨g y, g_maps y.mem⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f g : β → α hg : Function.RightInverse g f ⊢ LipschitzWith K g [PROOFSTEP] intro x y [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f g : β → α hg : Function.RightInverse g f x y : β ⊢ edist (g x) (g y) ≤ ↑K * edist x y [PROOFSTEP] have := hf (g x) (g y) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f g : β → α hg : Function.RightInverse g f x y : β this : edist (g x) (g y) ≤ ↑K * edist (f (g x)) (f (g y)) ⊢ edist (g x) (g y) ≤ ↑K * edist x y [PROOFSTEP] rwa [hg x, hg y] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f ⊢ comap (Prod.map f f) (𝓤 β) ≤ 𝓤 α [PROOFSTEP] refine ((uniformity_basis_edist.comap _).le_basis_iff uniformity_basis_edist).2 fun ε h₀ => ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f ε : ℝ≥0∞ h₀ : 0 < ε ⊢ ∃ i, 0 < i ∧ Prod.map f f ⁻¹' {p | edist p.fst p.snd < i} ⊆ {p | edist p.fst p.snd < ε} [PROOFSTEP] refine ⟨(↑K)⁻¹ * ε, ENNReal.mul_pos (ENNReal.inv_ne_zero.2 ENNReal.coe_ne_top) h₀.ne', ?_⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f ε : ℝ≥0∞ h₀ : 0 < ε ⊢ Prod.map f f ⁻¹' {p | edist p.fst p.snd < (↑K)⁻¹ * ε} ⊆ {p | edist p.fst p.snd < ε} [PROOFSTEP] refine' fun x hx => (hf x.1 x.2).trans_lt _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f ε : ℝ≥0∞ h₀ : 0 < ε x : α × α hx : x ∈ Prod.map f f ⁻¹' {p | edist p.fst p.snd < (↑K)⁻¹ * ε} ⊢ ↑K * edist (f x.fst) (f x.snd) < ε [PROOFSTEP] rw [mul_comm, ← div_eq_mul_inv] at hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f ε : ℝ≥0∞ h₀ : 0 < ε x : α × α hx : x ∈ Prod.map f f ⁻¹' {p | edist p.fst p.snd < ε / ↑K} ⊢ ↑K * edist (f x.fst) (f x.snd) < ε [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ K : ℝ≥0 f : α → β hf : AntilipschitzWith K f ε : ℝ≥0∞ h₀ : 0 < ε x : α × α hx : x ∈ Prod.map f f ⁻¹' {p | edist p.fst p.snd < ε / ↑K} ⊢ edist (f x.fst) (f x.snd) * ↑K < ε [PROOFSTEP] exact ENNReal.mul_lt_of_lt_div hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : PseudoEMetricSpace α inst✝² : PseudoEMetricSpace β inst✝¹ : PseudoEMetricSpace γ K✝ : ℝ≥0 f : α → β inst✝ : Subsingleton α K : ℝ≥0 x y : α ⊢ edist x y ≤ ↑K * edist (f x) (f y) [PROOFSTEP] simp only [Subsingleton.elim x y, edist_self, zero_le] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β hf : AntilipschitzWith K f s : Set β hs : Metric.Bounded s x : α hx : x ∈ f ⁻¹' s y : α hy : y ∈ f ⁻¹' s ⊢ ↑K * dist (f x) (f y) ≤ ↑K * diam s [PROOFSTEP] gcongr [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β K : ℝ≥0 f : α → β hf : AntilipschitzWith K f s : Set β hs : Metric.Bounded s x : α hx : x ∈ f ⁻¹' s y : α hy : y ∈ f ⁻¹' s ⊢ dist (f x) (f y) ≤ diam s [PROOFSTEP] exact dist_le_diam_of_mem hs hx hy [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : PseudoMetricSpace α✝ inst✝² : PseudoMetricSpace β K✝ : ℝ≥0 f✝ : α✝ → β α : Type u_4 inst✝¹ : MetricSpace α K : ℝ≥0 f : α → β inst✝ : ProperSpace α hK : AntilipschitzWith K f f_cont : Continuous f hf : Function.Surjective f ⊢ ProperSpace β [PROOFSTEP] refine ⟨fun x₀ r => ?_⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : PseudoMetricSpace α✝ inst✝² : PseudoMetricSpace β K✝ : ℝ≥0 f✝ : α✝ → β α : Type u_4 inst✝¹ : MetricSpace α K : ℝ≥0 f : α → β inst✝ : ProperSpace α hK : AntilipschitzWith K f f_cont : Continuous f hf : Function.Surjective f x₀ : β r : ℝ ⊢ IsCompact (closedBall x₀ r) [PROOFSTEP] let K := f ⁻¹' closedBall x₀ r [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : PseudoMetricSpace α✝ inst✝² : PseudoMetricSpace β K✝¹ : ℝ≥0 f✝ : α✝ → β α : Type u_4 inst✝¹ : MetricSpace α K✝ : ℝ≥0 f : α → β inst✝ : ProperSpace α hK : AntilipschitzWith K✝ f f_cont : Continuous f hf : Function.Surjective f x₀ : β r : ℝ K : Set α := f ⁻¹' closedBall x₀ r ⊢ IsCompact (closedBall x₀ r) [PROOFSTEP] have A : IsClosed K := isClosed_ball.preimage f_cont [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : PseudoMetricSpace α✝ inst✝² : PseudoMetricSpace β K✝¹ : ℝ≥0 f✝ : α✝ → β α : Type u_4 inst✝¹ : MetricSpace α K✝ : ℝ≥0 f : α → β inst✝ : ProperSpace α hK : AntilipschitzWith K✝ f f_cont : Continuous f hf : Function.Surjective f x₀ : β r : ℝ K : Set α := f ⁻¹' closedBall x₀ r A : IsClosed K ⊢ IsCompact (closedBall x₀ r) [PROOFSTEP] have B : Bounded K := hK.bounded_preimage bounded_closedBall [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : PseudoMetricSpace α✝ inst✝² : PseudoMetricSpace β K✝¹ : ℝ≥0 f✝ : α✝ → β α : Type u_4 inst✝¹ : MetricSpace α K✝ : ℝ≥0 f : α → β inst✝ : ProperSpace α hK : AntilipschitzWith K✝ f f_cont : Continuous f hf : Function.Surjective f x₀ : β r : ℝ K : Set α := f ⁻¹' closedBall x₀ r A : IsClosed K B : Metric.Bounded K ⊢ IsCompact (closedBall x₀ r) [PROOFSTEP] have : IsCompact K := isCompact_iff_isClosed_bounded.2 ⟨A, B⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : PseudoMetricSpace α✝ inst✝² : PseudoMetricSpace β K✝¹ : ℝ≥0 f✝ : α✝ → β α : Type u_4 inst✝¹ : MetricSpace α K✝ : ℝ≥0 f : α → β inst✝ : ProperSpace α hK : AntilipschitzWith K✝ f f_cont : Continuous f hf : Function.Surjective f x₀ : β r : ℝ K : Set α := f ⁻¹' closedBall x₀ r A : IsClosed K B : Metric.Bounded K this : IsCompact K ⊢ IsCompact (closedBall x₀ r) [PROOFSTEP] convert this.image f_cont [GOAL] case h.e'_3 α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : PseudoMetricSpace α✝ inst✝² : PseudoMetricSpace β K✝¹ : ℝ≥0 f✝ : α✝ → β α : Type u_4 inst✝¹ : MetricSpace α K✝ : ℝ≥0 f : α → β inst✝ : ProperSpace α hK : AntilipschitzWith K✝ f f_cont : Continuous f hf : Function.Surjective f x₀ : β r : ℝ K : Set α := f ⁻¹' closedBall x₀ r A : IsClosed K B : Metric.Bounded K this : IsCompact K ⊢ closedBall x₀ r = f '' K [PROOFSTEP] exact (hf.image_preimage _).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β K : ℝ≥0 f : α → β hf : LipschitzWith K f g : β → α hg : Function.RightInverse g f x y : β ⊢ edist x y ≤ ↑K * edist (g x) (g y) [PROOFSTEP] simpa only [hg _] using hf (g x) (g y)
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Antilipschitz", "llama_tokens": 6144}
[GOAL] X : Type u_1 inst✝ : EMetricSpace X s t : Set X x✝ y : X h : IsMetricSeparated s t r : ENNReal r0 : r ≠ 0 hr : ∀ (x : X), x ∈ s → ∀ (y : X), y ∈ t → r ≤ edist x y x : X hx1 : x ∈ s hx2 : x ∈ t ⊢ r = 0 [PROOFSTEP] simpa using hr x hx1 x hx2 [GOAL] X : Type u_1 inst✝ : EMetricSpace X s t : Set X x y : X s' : Set X h : IsMetricSeparated s t h' : IsMetricSeparated s' t ⊢ IsMetricSeparated (s ∪ s') t [PROOFSTEP] rcases h, h' with ⟨⟨r, r0, hr⟩, ⟨r', r0', hr'⟩⟩ [GOAL] case intro.intro.intro.intro X : Type u_1 inst✝ : EMetricSpace X s t : Set X x y : X s' : Set X r : ENNReal r0 : r ≠ 0 hr : ∀ (x : X), x ∈ s → ∀ (y : X), y ∈ t → r ≤ edist x y r' : ENNReal r0' : r' ≠ 0 hr' : ∀ (x : X), x ∈ s' → ∀ (y : X), y ∈ t → r' ≤ edist x y ⊢ IsMetricSeparated (s ∪ s') t [PROOFSTEP] refine' ⟨min r r', _, fun x hx y hy => hx.elim _ _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 X : Type u_1 inst✝ : EMetricSpace X s t : Set X x y : X s' : Set X r : ENNReal r0 : r ≠ 0 hr : ∀ (x : X), x ∈ s → ∀ (y : X), y ∈ t → r ≤ edist x y r' : ENNReal r0' : r' ≠ 0 hr' : ∀ (x : X), x ∈ s' → ∀ (y : X), y ∈ t → r' ≤ edist x y ⊢ min r r' ≠ 0 [PROOFSTEP] rw [← pos_iff_ne_zero] at r0 r0' ⊢ [GOAL] case intro.intro.intro.intro.refine'_1 X : Type u_1 inst✝ : EMetricSpace X s t : Set X x y : X s' : Set X r : ENNReal r0 : 0 < r hr : ∀ (x : X), x ∈ s → ∀ (y : X), y ∈ t → r ≤ edist x y r' : ENNReal r0' : 0 < r' hr' : ∀ (x : X), x ∈ s' → ∀ (y : X), y ∈ t → r' ≤ edist x y ⊢ 0 < min r r' [PROOFSTEP] exact lt_min r0 r0' [GOAL] case intro.intro.intro.intro.refine'_2 X : Type u_1 inst✝ : EMetricSpace X s t : Set X x✝ y✝ : X s' : Set X r : ENNReal r0 : r ≠ 0 hr : ∀ (x : X), x ∈ s → ∀ (y : X), y ∈ t → r ≤ edist x y r' : ENNReal r0' : r' ≠ 0 hr' : ∀ (x : X), x ∈ s' → ∀ (y : X), y ∈ t → r' ≤ edist x y x : X hx : x ∈ s ∪ s' y : X hy : y ∈ t ⊢ x ∈ s → min r r' ≤ edist x y [PROOFSTEP] exact fun hx => (min_le_left _ _).trans (hr _ hx _ hy) [GOAL] case intro.intro.intro.intro.refine'_3 X : Type u_1 inst✝ : EMetricSpace X s t : Set X x✝ y✝ : X s' : Set X r : ENNReal r0 : r ≠ 0 hr : ∀ (x : X), x ∈ s → ∀ (y : X), y ∈ t → r ≤ edist x y r' : ENNReal r0' : r' ≠ 0 hr' : ∀ (x : X), x ∈ s' → ∀ (y : X), y ∈ t → r' ≤ edist x y x : X hx : x ∈ s ∪ s' y : X hy : y ∈ t ⊢ x ∈ s' → min r r' ≤ edist x y [PROOFSTEP] exact fun hx => (min_le_right _ _).trans (hr' _ hx _ hy) [GOAL] X : Type u_1 inst✝ : EMetricSpace X s✝ t✝ : Set X x y : X ι : Type u_2 I : Set ι hI : Set.Finite I s : ι → Set X t : Set X ⊢ IsMetricSeparated (⋃ (i : ι) (_ : i ∈ I), s i) t ↔ ∀ (i : ι), i ∈ I → IsMetricSeparated (s i) t [PROOFSTEP] refine' Finite.induction_on hI (by simp) @fun i I _ _ hI => _ [GOAL] X : Type u_1 inst✝ : EMetricSpace X s✝ t✝ : Set X x y : X ι : Type u_2 I : Set ι hI : Set.Finite I s : ι → Set X t : Set X ⊢ IsMetricSeparated (⋃ (i : ι) (_ : i ∈ ∅), s i) t ↔ ∀ (i : ι), i ∈ ∅ → IsMetricSeparated (s i) t [PROOFSTEP] simp [GOAL] X : Type u_1 inst✝ : EMetricSpace X s✝ t✝ : Set X x y : X ι : Type u_2 I✝ : Set ι hI✝ : Set.Finite I✝ s : ι → Set X t : Set X i : ι I : Set ι x✝¹ : ¬i ∈ I x✝ : Set.Finite I hI : IsMetricSeparated (⋃ (i : ι) (_ : i ∈ I), s i) t ↔ ∀ (i : ι), i ∈ I → IsMetricSeparated (s i) t ⊢ IsMetricSeparated (⋃ (i_1 : ι) (_ : i_1 ∈ insert i I), s i_1) t ↔ ∀ (i_1 : ι), i_1 ∈ insert i I → IsMetricSeparated (s i_1) t [PROOFSTEP] rw [biUnion_insert, ball_insert_iff, union_left_iff, hI] [GOAL] X : Type u_1 inst✝ : EMetricSpace X s✝ t✝ : Set X x y : X ι : Type u_2 I : Set ι hI : Set.Finite I s : Set X t : ι → Set X ⊢ IsMetricSeparated s (⋃ (i : ι) (_ : i ∈ I), t i) ↔ ∀ (i : ι), i ∈ I → IsMetricSeparated s (t i) [PROOFSTEP] simpa only [@comm _ _ s] using finite_iUnion_left_iff hI
{"mathlib_filename": "Mathlib.Topology.MetricSpace.MetricSeparated", "llama_tokens": 2065}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α ⊢ BaireSpace α [PROOFSTEP] refine' ⟨fun f ho hd => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) ⊢ Dense (⋂ (n : ℕ), f n) [PROOFSTEP] let B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n ⊢ Dense (⋂ (n : ℕ), f n) [PROOFSTEP] have Bpos : ∀ n, 0 < B n := by intro n simp only [one_div, one_mul, ENNReal.inv_pos] exact pow_ne_top two_ne_top [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n ⊢ ∀ (n : ℕ), 0 < B n [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n n : ℕ ⊢ 0 < B n [PROOFSTEP] simp only [one_div, one_mul, ENNReal.inv_pos] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n n : ℕ ⊢ 2 ^ n ≠ ⊤ [PROOFSTEP] exact pow_ne_top two_ne_top [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n ⊢ Dense (⋂ (n : ℕ), f n) [PROOFSTEP] have : ∀ n x δ, δ ≠ 0 → ∃ y r, 0 < r ∧ r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f n := by intro n x δ δpos have : x ∈ closure (f n) := hd n x rcases EMetric.mem_closure_iff.1 this (δ / 2) (ENNReal.half_pos δpos) with ⟨y, ys, xy⟩ rw [edist_comm] at xy obtain ⟨r, rpos, hr⟩ : ∃ r > 0, closedBall y r ⊆ f n := nhds_basis_closed_eball.mem_iff.1 (isOpen_iff_mem_nhds.1 (ho n) y ys) refine' ⟨y, min (min (δ / 2) r) (B (n + 1)), _, _, fun z hz => ⟨_, _⟩⟩ show 0 < min (min (δ / 2) r) (B (n + 1)) exact lt_min (lt_min (ENNReal.half_pos δpos) rpos) (Bpos (n + 1)) show min (min (δ / 2) r) (B (n + 1)) ≤ B (n + 1) exact min_le_right _ _ show z ∈ closedBall x δ exact calc edist z x ≤ edist z y + edist y x := edist_triangle _ _ _ _ ≤ min (min (δ / 2) r) (B (n + 1)) + δ / 2 := (add_le_add hz (le_of_lt xy)) _ ≤ δ / 2 + δ / 2 := (add_le_add (le_trans (min_le_left _ _) (min_le_left _ _)) le_rfl) _ = δ := ENNReal.add_halves δ show z ∈ f n exact hr (calc edist z y ≤ min (min (δ / 2) r) (B (n + 1)) := hz _ ≤ r := le_trans (min_le_left _ _) (min_le_right _ _)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n ⊢ ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → ∃ y r, 0 < r ∧ r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f n [PROOFSTEP] intro n x δ δpos [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 ⊢ ∃ y r, 0 < r ∧ r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f n [PROOFSTEP] have : x ∈ closure (f n) := hd n x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) ⊢ ∃ y r, 0 < r ∧ r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f n [PROOFSTEP] rcases EMetric.mem_closure_iff.1 this (δ / 2) (ENNReal.half_pos δpos) with ⟨y, ys, xy⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist x y < δ / 2 ⊢ ∃ y r, 0 < r ∧ r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f n [PROOFSTEP] rw [edist_comm] at xy [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 ⊢ ∃ y r, 0 < r ∧ r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f n [PROOFSTEP] obtain ⟨r, rpos, hr⟩ : ∃ r > 0, closedBall y r ⊆ f n := nhds_basis_closed_eball.mem_iff.1 (isOpen_iff_mem_nhds.1 (ho n) y ys) [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n ⊢ ∃ y r, 0 < r ∧ r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f n [PROOFSTEP] refine' ⟨y, min (min (δ / 2) r) (B (n + 1)), _, _, fun z hz => ⟨_, _⟩⟩ [GOAL] case intro.intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n ⊢ 0 < min (min (δ / 2) r) (B (n + 1)) case intro.intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n ⊢ min (min (δ / 2) r) (B (n + 1)) ≤ B (n + 1) case intro.intro.intro.intro.refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ closedBall x δ case intro.intro.intro.intro.refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ f n [PROOFSTEP] show 0 < min (min (δ / 2) r) (B (n + 1)) [GOAL] case intro.intro.intro.intro.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n ⊢ 0 < min (min (δ / 2) r) (B (n + 1)) case intro.intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n ⊢ min (min (δ / 2) r) (B (n + 1)) ≤ B (n + 1) case intro.intro.intro.intro.refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ closedBall x δ case intro.intro.intro.intro.refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ f n [PROOFSTEP] exact lt_min (lt_min (ENNReal.half_pos δpos) rpos) (Bpos (n + 1)) [GOAL] case intro.intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n ⊢ min (min (δ / 2) r) (B (n + 1)) ≤ B (n + 1) case intro.intro.intro.intro.refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ closedBall x δ case intro.intro.intro.intro.refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ f n [PROOFSTEP] show min (min (δ / 2) r) (B (n + 1)) ≤ B (n + 1) [GOAL] case intro.intro.intro.intro.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n ⊢ min (min (δ / 2) r) (B (n + 1)) ≤ B (n + 1) case intro.intro.intro.intro.refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ closedBall x δ case intro.intro.intro.intro.refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ f n [PROOFSTEP] exact min_le_right _ _ [GOAL] case intro.intro.intro.intro.refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ closedBall x δ case intro.intro.intro.intro.refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ f n [PROOFSTEP] show z ∈ closedBall x δ [GOAL] case intro.intro.intro.intro.refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ closedBall x δ case intro.intro.intro.intro.refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ f n [PROOFSTEP] exact calc edist z x ≤ edist z y + edist y x := edist_triangle _ _ _ _ ≤ min (min (δ / 2) r) (B (n + 1)) + δ / 2 := (add_le_add hz (le_of_lt xy)) _ ≤ δ / 2 + δ / 2 := (add_le_add (le_trans (min_le_left _ _) (min_le_left _ _)) le_rfl) _ = δ := ENNReal.add_halves δ [GOAL] case intro.intro.intro.intro.refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ f n [PROOFSTEP] show z ∈ f n [GOAL] case intro.intro.intro.intro.refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n n : ℕ x : α δ : ℝ≥0∞ δpos : δ ≠ 0 this : x ∈ closure (f n) y : α ys : y ∈ f n xy : edist y x < δ / 2 r : ℝ≥0∞ rpos : r > 0 hr : closedBall y r ⊆ f n z : α hz : z ∈ closedBall y (min (min (δ / 2) r) (B (n + 1))) ⊢ z ∈ f n [PROOFSTEP] exact hr (calc edist z y ≤ min (min (δ / 2) r) (B (n + 1)) := hz _ ≤ r := le_trans (min_le_left _ _) (min_le_right _ _)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n this : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → ∃ y r, 0 < r ∧ r ≤ B (n + 1) ∧ closedBall y r ⊆ closedBall x δ ∩ f n ⊢ Dense (⋂ (n : ℕ), f n) [PROOFSTEP] choose! center radius Hpos HB Hball using this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n ⊢ Dense (⋂ (n : ℕ), f n) [PROOFSTEP] refine' fun x => (mem_closure_iff_nhds_basis nhds_basis_closed_eball).2 fun ε εpos => _ /- `ε` is positive. We have to find a point in the ball of radius `ε` around `x` belonging to all `f n`. For this, we construct inductively a sequence `F n = (c n, r n)` such that the closed ball `closedBall (c n) (r n)` is included in the previous ball and in `f n`, and such that `r n` is small enough to ensure that `c n` is a Cauchy sequence. Then `c n` converges to a limit which belongs to all the `f n`. -/ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] let F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (Prod.mk x (min ε (B 0))) fun n p => Prod.mk (center n p.1 p.2) (radius n p.1 p.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] let c : ℕ → α := fun n => (F n).1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] let r : ℕ → ℝ≥0∞ := fun n => (F n).2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] have rpos : ∀ n, 0 < r n := by intro n induction' n with n hn exact lt_min εpos (Bpos 0) exact Hpos n (c n) (r n) hn.ne' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd ⊢ ∀ (n : ℕ), 0 < r n [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd n : ℕ ⊢ 0 < r n [PROOFSTEP] induction' n with n hn [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd ⊢ 0 < r Nat.zero case succ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd n : ℕ hn : 0 < r n ⊢ 0 < r (Nat.succ n) [PROOFSTEP] exact lt_min εpos (Bpos 0) [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd n : ℕ hn : 0 < r n ⊢ 0 < r (Nat.succ n) [PROOFSTEP] exact Hpos n (c n) (r n) hn.ne' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] have r0 : ∀ n, r n ≠ 0 := fun n => (rpos n).ne' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] have rB : ∀ n, r n ≤ B n := by intro n induction' n with n _ exact min_le_right _ _ exact HB n (c n) (r n) (r0 n) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 ⊢ ∀ (n : ℕ), r n ≤ B n [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 n : ℕ ⊢ r n ≤ B n [PROOFSTEP] induction' n with n _ [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 ⊢ r Nat.zero ≤ B Nat.zero case succ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 n : ℕ n_ih✝ : r n ≤ B n ⊢ r (Nat.succ n) ≤ B (Nat.succ n) [PROOFSTEP] exact min_le_right _ _ [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 n : ℕ n_ih✝ : r n ≤ B n ⊢ r (Nat.succ n) ≤ B (Nat.succ n) [PROOFSTEP] exact HB n (c n) (r n) (r0 n) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] have incl : ∀ n, closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n := fun n => Hball n (c n) (r n) (r0 n) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] have cdist : ∀ n, edist (c n) (c (n + 1)) ≤ B n := by intro n rw [edist_comm] have A : c (n + 1) ∈ closedBall (c (n + 1)) (r (n + 1)) := mem_closedBall_self have I := calc closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) := Subset.trans (incl n) (inter_subset_left _ _) _ ⊆ closedBall (c n) (B n) := closedBall_subset_closedBall (rB n) exact I A [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n ⊢ ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n n : ℕ ⊢ edist (c n) (c (n + 1)) ≤ B n [PROOFSTEP] rw [edist_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n n : ℕ ⊢ edist (c (n + 1)) (c n) ≤ B n [PROOFSTEP] have A : c (n + 1) ∈ closedBall (c (n + 1)) (r (n + 1)) := mem_closedBall_self [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n n : ℕ A : c (n + 1) ∈ closedBall (c (n + 1)) (r (n + 1)) ⊢ edist (c (n + 1)) (c n) ≤ B n [PROOFSTEP] have I := calc closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) := Subset.trans (incl n) (inter_subset_left _ _) _ ⊆ closedBall (c n) (B n) := closedBall_subset_closedBall (rB n) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n n : ℕ A : c (n + 1) ∈ closedBall (c (n + 1)) (r (n + 1)) I : closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (B n) ⊢ edist (c (n + 1)) (c n) ≤ B n [PROOFSTEP] exact I A [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] have : CauchySeq c := cauchySeq_of_edist_le_geometric_two _ one_ne_top cdist [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] rcases cauchySeq_tendsto_of_complete this with ⟨y, ylim⟩ -- this point `y` will be the desired point. We will check that it belongs to all -- `f n` and to `ball x ε`. [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) ⊢ ∃ y, y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] use y [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) ⊢ y ∈ ⋂ (n : ℕ), f n ∧ y ∈ closedBall x ε [PROOFSTEP] simp only [exists_prop, Set.mem_iInter] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) ⊢ (∀ (i : ℕ), y ∈ f i) ∧ y ∈ closedBall x ε [PROOFSTEP] have I : ∀ n, ∀ m ≥ n, closedBall (c m) (r m) ⊆ closedBall (c n) (r n) := by intro n refine' Nat.le_induction _ fun m _ h => _ · exact Subset.refl _ · exact Subset.trans (incl m) (Subset.trans (inter_subset_left _ _) h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) ⊢ ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) n : ℕ ⊢ ∀ (m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) [PROOFSTEP] refine' Nat.le_induction _ fun m _ h => _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) n : ℕ ⊢ closedBall (c n) (r n) ⊆ closedBall (c n) (r n) [PROOFSTEP] exact Subset.refl _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) n m : ℕ x✝ : n ≤ m h : closedBall (c m) (r m) ⊆ closedBall (c n) (r n) ⊢ closedBall (c (m + 1)) (r (m + 1)) ⊆ closedBall (c n) (r n) [PROOFSTEP] exact Subset.trans (incl m) (Subset.trans (inter_subset_left _ _) h) [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) ⊢ (∀ (i : ℕ), y ∈ f i) ∧ y ∈ closedBall x ε [PROOFSTEP] have yball : ∀ n, y ∈ closedBall (c n) (r n) := by intro n refine' isClosed_ball.mem_of_tendsto ylim _ refine' (Filter.eventually_ge_atTop n).mono fun m hm => _ exact I n m hm mem_closedBall_self [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) ⊢ ∀ (n : ℕ), y ∈ closedBall (c n) (r n) [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) n : ℕ ⊢ y ∈ closedBall (c n) (r n) [PROOFSTEP] refine' isClosed_ball.mem_of_tendsto ylim _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) n : ℕ ⊢ ∀ᶠ (x : ℕ) in atTop, c x ∈ closedBall (c n) (r n) [PROOFSTEP] refine' (Filter.eventually_ge_atTop n).mono fun m hm => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) n m : ℕ hm : n ≤ m ⊢ c m ∈ closedBall (c n) (r n) [PROOFSTEP] exact I n m hm mem_closedBall_self [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) yball : ∀ (n : ℕ), y ∈ closedBall (c n) (r n) ⊢ (∀ (i : ℕ), y ∈ f i) ∧ y ∈ closedBall x ε [PROOFSTEP] constructor [GOAL] case h.left α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) yball : ∀ (n : ℕ), y ∈ closedBall (c n) (r n) ⊢ ∀ (i : ℕ), y ∈ f i case h.right α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) yball : ∀ (n : ℕ), y ∈ closedBall (c n) (r n) ⊢ y ∈ closedBall x ε [PROOFSTEP] show ∀ n, y ∈ f n [GOAL] case h.left α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) yball : ∀ (n : ℕ), y ∈ closedBall (c n) (r n) ⊢ ∀ (n : ℕ), y ∈ f n [PROOFSTEP] intro n [GOAL] case h.left α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) yball : ∀ (n : ℕ), y ∈ closedBall (c n) (r n) n : ℕ ⊢ y ∈ f n [PROOFSTEP] have : closedBall (c (n + 1)) (r (n + 1)) ⊆ f n := Subset.trans (incl n) (inter_subset_right _ _) [GOAL] case h.left α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this✝ : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) yball : ∀ (n : ℕ), y ∈ closedBall (c n) (r n) n : ℕ this : closedBall (c (n + 1)) (r (n + 1)) ⊆ f n ⊢ y ∈ f n [PROOFSTEP] exact this (yball (n + 1)) [GOAL] case h.right α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) yball : ∀ (n : ℕ), y ∈ closedBall (c n) (r n) ⊢ y ∈ closedBall x ε [PROOFSTEP] show edist y x ≤ ε [GOAL] case h.right α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : PseudoEMetricSpace α inst✝ : CompleteSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) B : ℕ → ℝ≥0∞ := fun n => 1 / 2 ^ n Bpos : ∀ (n : ℕ), 0 < B n center : ℕ → α → ℝ≥0∞ → α radius : ℕ → α → ℝ≥0∞ → ℝ≥0∞ Hpos : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → 0 < radius n x δ HB : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → radius n x δ ≤ B (n + 1) Hball : ∀ (n : ℕ) (x : α) (δ : ℝ≥0∞), δ ≠ 0 → closedBall (center n x δ) (radius n x δ) ⊆ closedBall x δ ∩ f n x : α ε : ℝ≥0∞ εpos : 0 < ε F : ℕ → α × ℝ≥0∞ := fun n => Nat.recOn n (x, min ε (B 0)) fun n p => (center n p.fst p.snd, radius n p.fst p.snd) c : ℕ → α := fun n => (F n).fst r : ℕ → ℝ≥0∞ := fun n => (F n).snd rpos : ∀ (n : ℕ), 0 < r n r0 : ∀ (n : ℕ), r n ≠ 0 rB : ∀ (n : ℕ), r n ≤ B n incl : ∀ (n : ℕ), closedBall (c (n + 1)) (r (n + 1)) ⊆ closedBall (c n) (r n) ∩ f n cdist : ∀ (n : ℕ), edist (c n) (c (n + 1)) ≤ B n this : CauchySeq c y : α ylim : Tendsto c atTop (𝓝 y) I : ∀ (n m : ℕ), m ≥ n → closedBall (c m) (r m) ⊆ closedBall (c n) (r n) yball : ∀ (n : ℕ), y ∈ closedBall (c n) (r n) ⊢ edist y x ≤ ε [PROOFSTEP] exact le_trans (yball 0) (min_le_left _ _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α ⊢ BaireSpace α [PROOFSTEP] constructor [GOAL] case baire_property α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α ⊢ ∀ (f : ℕ → Set α), (∀ (n : ℕ), IsOpen (f n)) → (∀ (n : ℕ), Dense (f n)) → Dense (⋂ (n : ℕ), f n) [PROOFSTEP] intro f ho hd [GOAL] case baire_property α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) ⊢ Dense (⋂ (n : ℕ), f n) [PROOFSTEP] apply dense_iff_inter_open.2 [GOAL] case baire_property α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) ⊢ ∀ (U : Set α), IsOpen U → Set.Nonempty U → Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] intro U U_open U_nonempty [GOAL] case baire_property α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U ⊢ Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] rcases exists_positiveCompacts_subset U_open U_nonempty with ⟨K₀, hK₀⟩ [GOAL] case baire_property.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U ⊢ Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] have : ∀ (n) (K : PositiveCompacts α), ∃ K' : PositiveCompacts α, ↑K' ⊆ f n ∩ interior K := by refine' fun n K => exists_positiveCompacts_subset ((ho n).inter isOpen_interior) _ rw [inter_comm] exact (hd n).inter_open_nonempty _ isOpen_interior K.interior_nonempty [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U ⊢ ∀ (n : ℕ) (K : PositiveCompacts α), ∃ K', ↑K' ⊆ f n ∩ interior ↑K [PROOFSTEP] refine' fun n K => exists_positiveCompacts_subset ((ho n).inter isOpen_interior) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U n : ℕ K : PositiveCompacts α ⊢ Set.Nonempty (f n ∩ interior ↑K) [PROOFSTEP] rw [inter_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U n : ℕ K : PositiveCompacts α ⊢ Set.Nonempty (interior ↑K ∩ f n) [PROOFSTEP] exact (hd n).inter_open_nonempty _ isOpen_interior K.interior_nonempty [GOAL] case baire_property.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U this : ∀ (n : ℕ) (K : PositiveCompacts α), ∃ K', ↑K' ⊆ f n ∩ interior ↑K ⊢ Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] choose K_next hK_next using this [GOAL] case baire_property.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K ⊢ Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] let K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next [GOAL] case baire_property.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next ⊢ Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] have hK_decreasing : ∀ n : ℕ, ((K (n + 1)).carrier) ⊆ (f n ∩ (K n).carrier) := fun n => (hK_next n (K n)).trans <| inter_subset_inter_right _ interior_subset [GOAL] case baire_property.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier ⊢ Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] have hK_subset : (⋂ n, (K n).carrier : Set α) ⊆ U ∩ ⋂ n, f n := by intro x hx simp only [mem_iInter] at hx simp only [mem_inter_iff, mem_inter] at hx ⊢ refine' ⟨hK₀ <| hx 0, _⟩ simp only [mem_iInter] exact fun n => (hK_decreasing n (hx (n + 1))).1 /- Prove that `⋂ n : ℕ, K n` is not empty, as an intersection of a decreasing sequence of nonempty compact subsets. -/ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier ⊢ ⋂ (n : ℕ), (K n).carrier ⊆ U ∩ ⋂ (n : ℕ), f n [PROOFSTEP] intro x hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier x : α hx : x ∈ ⋂ (n : ℕ), (K n).carrier ⊢ x ∈ U ∩ ⋂ (n : ℕ), f n [PROOFSTEP] simp only [mem_iInter] at hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier x : α hx : ∀ (i : ℕ), x ∈ (Nat.rec K₀ K_next i).toCompacts.carrier ⊢ x ∈ U ∩ ⋂ (n : ℕ), f n [PROOFSTEP] simp only [mem_inter_iff, mem_inter] at hx ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier x : α hx : ∀ (i : ℕ), x ∈ (Nat.rec K₀ K_next i).toCompacts.carrier ⊢ x ∈ U ∧ x ∈ ⋂ (n : ℕ), f n [PROOFSTEP] refine' ⟨hK₀ <| hx 0, _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier x : α hx : ∀ (i : ℕ), x ∈ (Nat.rec K₀ K_next i).toCompacts.carrier ⊢ x ∈ ⋂ (n : ℕ), f n [PROOFSTEP] simp only [mem_iInter] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier x : α hx : ∀ (i : ℕ), x ∈ (Nat.rec K₀ K_next i).toCompacts.carrier ⊢ ∀ (i : ℕ), x ∈ f i [PROOFSTEP] exact fun n => (hK_decreasing n (hx (n + 1))).1 /- Prove that `⋂ n : ℕ, K n` is not empty, as an intersection of a decreasing sequence of nonempty compact subsets. -/ [GOAL] case baire_property.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier hK_subset : ⋂ (n : ℕ), (K n).carrier ⊆ U ∩ ⋂ (n : ℕ), f n ⊢ Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] have hK_nonempty : (⋂ n, (K n).carrier : Set α).Nonempty := IsCompact.nonempty_iInter_of_sequence_nonempty_compact_closed _ (fun n => (hK_decreasing n).trans (inter_subset_right _ _)) (fun n => (K n).nonempty) (K 0).isCompact fun n => (K n).isCompact.isClosed [GOAL] case baire_property.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : T2Space α inst✝ : LocallyCompactSpace α f : ℕ → Set α ho : ∀ (n : ℕ), IsOpen (f n) hd : ∀ (n : ℕ), Dense (f n) U : Set α U_open : IsOpen U U_nonempty : Set.Nonempty U K₀ : PositiveCompacts α hK₀ : ↑K₀ ⊆ U K_next : ℕ → PositiveCompacts α → PositiveCompacts α hK_next : ∀ (n : ℕ) (K : PositiveCompacts α), ↑(K_next n K) ⊆ f n ∩ interior ↑K K : ℕ → PositiveCompacts α := fun n => Nat.recOn n K₀ K_next hK_decreasing : ∀ (n : ℕ), (K (n + 1)).carrier ⊆ f n ∩ (K n).carrier hK_subset : ⋂ (n : ℕ), (K n).carrier ⊆ U ∩ ⋂ (n : ℕ), f n hK_nonempty : Set.Nonempty (⋂ (n : ℕ), (K n).carrier) ⊢ Set.Nonempty (U ∩ ⋂ (n : ℕ), f n) [PROOFSTEP] exact hK_nonempty.mono hK_subset [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set (Set α) ho : ∀ (s : Set α), s ∈ S → IsOpen s hS : Set.Countable S hd : ∀ (s : Set α), s ∈ S → Dense s ⊢ Dense (⋂₀ S) [PROOFSTEP] cases' S.eq_empty_or_nonempty with h h [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set (Set α) ho : ∀ (s : Set α), s ∈ S → IsOpen s hS : Set.Countable S hd : ∀ (s : Set α), s ∈ S → Dense s h : S = ∅ ⊢ Dense (⋂₀ S) [PROOFSTEP] simp [h] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set (Set α) ho : ∀ (s : Set α), s ∈ S → IsOpen s hS : Set.Countable S hd : ∀ (s : Set α), s ∈ S → Dense s h : Set.Nonempty S ⊢ Dense (⋂₀ S) [PROOFSTEP] rcases hS.exists_eq_range h with ⟨f, hf⟩ [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set (Set α) ho : ∀ (s : Set α), s ∈ S → IsOpen s hS : Set.Countable S hd : ∀ (s : Set α), s ∈ S → Dense s h : Set.Nonempty S f : ℕ → Set α hf : S = range f ⊢ Dense (⋂₀ S) [PROOFSTEP] have F : ∀ n, f n ∈ S := fun n => by rw [hf]; exact mem_range_self _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set (Set α) ho : ∀ (s : Set α), s ∈ S → IsOpen s hS : Set.Countable S hd : ∀ (s : Set α), s ∈ S → Dense s h : Set.Nonempty S f : ℕ → Set α hf : S = range f n : ℕ ⊢ f n ∈ S [PROOFSTEP] rw [hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set (Set α) ho : ∀ (s : Set α), s ∈ S → IsOpen s hS : Set.Countable S hd : ∀ (s : Set α), s ∈ S → Dense s h : Set.Nonempty S f : ℕ → Set α hf : S = range f n : ℕ ⊢ f n ∈ range f [PROOFSTEP] exact mem_range_self _ [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set (Set α) ho : ∀ (s : Set α), s ∈ S → IsOpen s hS : Set.Countable S hd : ∀ (s : Set α), s ∈ S → Dense s h : Set.Nonempty S f : ℕ → Set α hf : S = range f F : ∀ (n : ℕ), f n ∈ S ⊢ Dense (⋂₀ S) [PROOFSTEP] rw [hf, sInter_range] [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set (Set α) ho : ∀ (s : Set α), s ∈ S → IsOpen s hS : Set.Countable S hd : ∀ (s : Set α), s ∈ S → Dense s h : Set.Nonempty S f : ℕ → Set α hf : S = range f F : ∀ (n : ℕ), f n ∈ S ⊢ Dense (⋂ (x : ℕ), f x) [PROOFSTEP] exact dense_iInter_of_open_nat (fun n => ho _ (F n)) fun n => hd _ (F n) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set β f : β → Set α ho : ∀ (s : β), s ∈ S → IsOpen (f s) hS : Set.Countable S hd : ∀ (s : β), s ∈ S → Dense (f s) ⊢ Dense (⋂ (s : β) (_ : s ∈ S), f s) [PROOFSTEP] rw [← sInter_image] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set β f : β → Set α ho : ∀ (s : β), s ∈ S → IsOpen (f s) hS : Set.Countable S hd : ∀ (s : β), s ∈ S → Dense (f s) ⊢ Dense (⋂₀ ((fun s => f s) '' S)) [PROOFSTEP] apply dense_sInter_of_open [GOAL] case ho α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set β f : β → Set α ho : ∀ (s : β), s ∈ S → IsOpen (f s) hS : Set.Countable S hd : ∀ (s : β), s ∈ S → Dense (f s) ⊢ ∀ (s : Set α), s ∈ (fun s => f s) '' S → IsOpen s [PROOFSTEP] rwa [ball_image_iff] [GOAL] case hS α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set β f : β → Set α ho : ∀ (s : β), s ∈ S → IsOpen (f s) hS : Set.Countable S hd : ∀ (s : β), s ∈ S → Dense (f s) ⊢ Set.Countable ((fun s => f s) '' S) [PROOFSTEP] exact hS.image _ [GOAL] case hd α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set β f : β → Set α ho : ∀ (s : β), s ∈ S → IsOpen (f s) hS : Set.Countable S hd : ∀ (s : β), s ∈ S → Dense (f s) ⊢ ∀ (s : Set α), s ∈ (fun s => f s) '' S → Dense s [PROOFSTEP] rwa [ball_image_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable β f : β → Set α ho : ∀ (s : β), IsOpen (f s) hd : ∀ (s : β), Dense (f s) ⊢ Dense (⋂ (s : β), f s) [PROOFSTEP] rw [← sInter_range] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable β f : β → Set α ho : ∀ (s : β), IsOpen (f s) hd : ∀ (s : β), Dense (f s) ⊢ Dense (⋂₀ range fun s => f s) [PROOFSTEP] apply dense_sInter_of_open [GOAL] case ho α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable β f : β → Set α ho : ∀ (s : β), IsOpen (f s) hd : ∀ (s : β), Dense (f s) ⊢ ∀ (s : Set α), (s ∈ range fun s => f s) → IsOpen s [PROOFSTEP] rwa [forall_range_iff] [GOAL] case hS α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable β f : β → Set α ho : ∀ (s : β), IsOpen (f s) hd : ∀ (s : β), Dense (f s) ⊢ Set.Countable (range fun s => f s) [PROOFSTEP] exact countable_range _ [GOAL] case hd α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable β f : β → Set α ho : ∀ (s : β), IsOpen (f s) hd : ∀ (s : β), Dense (f s) ⊢ ∀ (s : Set α), (s ∈ range fun s => f s) → Dense s [PROOFSTEP] rwa [forall_range_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s : Set α ⊢ s ∈ residual α ↔ ∃ t x, IsGδ t ∧ Dense t [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s : Set α ⊢ s ∈ residual α → ∃ t x, IsGδ t ∧ Dense t [PROOFSTEP] rw [mem_residual_iff] [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s : Set α ⊢ (∃ S, (∀ (t : Set α), t ∈ S → IsOpen t) ∧ (∀ (t : Set α), t ∈ S → Dense t) ∧ Set.Countable S ∧ ⋂₀ S ⊆ s) → ∃ t x, IsGδ t ∧ Dense t [PROOFSTEP] rintro ⟨S, hSo, hSd, Sct, Ss⟩ [GOAL] case mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s : Set α S : Set (Set α) hSo : ∀ (t : Set α), t ∈ S → IsOpen t hSd : ∀ (t : Set α), t ∈ S → Dense t Sct : Set.Countable S Ss : ⋂₀ S ⊆ s ⊢ ∃ t x, IsGδ t ∧ Dense t [PROOFSTEP] refine' ⟨_, Ss, ⟨_, fun t ht => hSo _ ht, Sct, rfl⟩, _⟩ [GOAL] case mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s : Set α S : Set (Set α) hSo : ∀ (t : Set α), t ∈ S → IsOpen t hSd : ∀ (t : Set α), t ∈ S → Dense t Sct : Set.Countable S Ss : ⋂₀ S ⊆ s ⊢ Dense (⋂₀ S) [PROOFSTEP] exact dense_sInter_of_open hSo Sct hSd [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s : Set α ⊢ (∃ t x, IsGδ t ∧ Dense t) → s ∈ residual α [PROOFSTEP] rintro ⟨t, ts, ho, hd⟩ [GOAL] case mpr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s t : Set α ts : t ⊆ s ho : IsGδ t hd : Dense t ⊢ s ∈ residual α [PROOFSTEP] exact mem_of_superset (residual_of_dense_Gδ ho hd) ts [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α p : α → Prop ⊢ (∀ᶠ (x : α) in residual α, p x) ↔ ∃ t, IsGδ t ∧ Dense t ∧ ∀ (x : α), x ∈ t → p x [PROOFSTEP] convert @mem_residual _ _ _ p [GOAL] case h.e'_2.h.e'_2.h.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α p : α → Prop x✝ : Set α ⊢ (IsGδ x✝ ∧ Dense x✝ ∧ ∀ (x : α), x ∈ x✝ → p x) ↔ ∃ x, IsGδ x✝ ∧ Dense x✝ [PROOFSTEP] simp_rw [exists_prop, @and_comm ((_ : Set α) ⊆ p), and_assoc] [GOAL] case h.e'_2.h.e'_2.h.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α p : α → Prop x✝ : Set α ⊢ (IsGδ x✝ ∧ Dense x✝ ∧ ∀ (x : α), x ∈ x✝ → p x) ↔ IsGδ x✝ ∧ Dense x✝ ∧ x✝ ⊆ p [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable β f : β → Set α ho : ∀ (s : β), IsGδ (f s) hd : ∀ (s : β), Dense (f s) ⊢ Dense (⋂ (s : β), f s) [PROOFSTEP] rw [← sInter_range] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable β f : β → Set α ho : ∀ (s : β), IsGδ (f s) hd : ∀ (s : β), Dense (f s) ⊢ Dense (⋂₀ range fun s => f s) [PROOFSTEP] exact dense_sInter_of_Gδ (forall_range_iff.2 ‹_›) (countable_range _) (forall_range_iff.2 ‹_›) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set β f : (x : β) → x ∈ S → Set α ho : ∀ (s : β) (H : s ∈ S), IsGδ (f s H) hS : Set.Countable S hd : ∀ (s : β) (H : s ∈ S), Dense (f s H) ⊢ Dense (⋂ (s : β) (h : s ∈ S), f s h) [PROOFSTEP] rw [biInter_eq_iInter] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set β f : (x : β) → x ∈ S → Set α ho : ∀ (s : β) (H : s ∈ S), IsGδ (f s H) hS : Set.Countable S hd : ∀ (s : β) (H : s ∈ S), Dense (f s H) ⊢ Dense (⋂ (x : ↑S), f ↑x (_ : ↑x ∈ S)) [PROOFSTEP] haveI := hS.toEncodable [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α S : Set β f : (x : β) → x ∈ S → Set α ho : ∀ (s : β) (H : s ∈ S), IsGδ (f s H) hS : Set.Countable S hd : ∀ (s : β) (H : s ∈ S), Dense (f s H) this : Encodable ↑S ⊢ Dense (⋂ (x : ↑S), f ↑x (_ : ↑x ∈ S)) [PROOFSTEP] exact dense_iInter_of_Gδ (fun s => ho s s.2) fun s => hd s s.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s t : Set α hs : IsGδ s ht : IsGδ t hsc : Dense s htc : Dense t ⊢ Dense (s ∩ t) [PROOFSTEP] rw [inter_eq_iInter] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s t : Set α hs : IsGδ s ht : IsGδ t hsc : Dense s htc : Dense t ⊢ Dense (⋂ (b : Bool), bif b then s else t) [PROOFSTEP] apply dense_iInter_of_Gδ [GOAL] case ho α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s t : Set α hs : IsGδ s ht : IsGδ t hsc : Dense s htc : Dense t ⊢ ∀ (s_1 : Bool), IsGδ (bif s_1 then s else t) [PROOFSTEP] simp [Bool.forall_bool, *] [GOAL] case hd α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α s t : Set α hs : IsGδ s ht : IsGδ t hsc : Dense s htc : Dense t ⊢ ∀ (s_1 : Bool), Dense (bif s_1 then s else t) [PROOFSTEP] simp [Bool.forall_bool, *] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i ⊢ Dense (⋃ (i : ι), interior (f i)) [PROOFSTEP] let g i := (frontier (f i))ᶜ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ ⊢ Dense (⋃ (i : ι), interior (f i)) [PROOFSTEP] have hgo : ∀ i, IsOpen (g i) := fun i => isClosed_frontier.isOpen_compl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) ⊢ Dense (⋃ (i : ι), interior (f i)) [PROOFSTEP] have hgd : Dense (⋂ i, g i) := by refine' dense_iInter_of_open hgo fun i x => _ rw [closure_compl, interior_frontier (hc _)] exact id [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) ⊢ Dense (⋂ (i : ι), g i) [PROOFSTEP] refine' dense_iInter_of_open hgo fun i x => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) i : ι x : α ⊢ x ∈ closure (g i) [PROOFSTEP] rw [closure_compl, interior_frontier (hc _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) i : ι x : α ⊢ x ∈ ∅ᶜ [PROOFSTEP] exact id [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) hgd : Dense (⋂ (i : ι), g i) ⊢ Dense (⋃ (i : ι), interior (f i)) [PROOFSTEP] refine' (hd.inter_of_Gδ hs (isGδ_iInter_of_open fun i => (hgo i)) hgd).mono _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) hgd : Dense (⋂ (i : ι), g i) ⊢ s ∩ ⋂ (i : ι), g i ⊆ ⋃ (i : ι), interior (f i) [PROOFSTEP] rintro x ⟨hxs, hxg⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) hgd : Dense (⋂ (i : ι), g i) x : α hxs : x ∈ s hxg : x ∈ ⋂ (i : ι), g i ⊢ x ∈ ⋃ (i : ι), interior (f i) [PROOFSTEP] rw [mem_iInter] at hxg [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) hgd : Dense (⋂ (i : ι), g i) x : α hxs : x ∈ s hxg : ∀ (i : ι), x ∈ g i ⊢ x ∈ ⋃ (i : ι), interior (f i) [PROOFSTEP] rcases mem_iUnion.1 (hU hxs) with ⟨i, hi⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝² : TopologicalSpace α inst✝¹ : BaireSpace α inst✝ : Encodable ι s : Set α hs : IsGδ s hd : Dense s f : ι → Set α hc : ∀ (i : ι), IsClosed (f i) hU : s ⊆ ⋃ (i : ι), f i g : ι → Set α := fun i => (frontier (f i))ᶜ hgo : ∀ (i : ι), IsOpen (g i) hgd : Dense (⋂ (i : ι), g i) x : α hxs : x ∈ s hxg : ∀ (i : ι), x ∈ g i i : ι hi : x ∈ f i ⊢ x ∈ ⋃ (i : ι), interior (f i) [PROOFSTEP] exact mem_iUnion.2 ⟨i, self_diff_frontier (f i) ▸ ⟨hi, hxg _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α t : Set ι s : Set α hs : IsGδ s hd : Dense s ht : Set.Countable t f : ι → Set α hc : ∀ (i : ι), i ∈ t → IsClosed (f i) hU : s ⊆ ⋃ (i : ι) (_ : i ∈ t), f i ⊢ Dense (⋃ (i : ι) (_ : i ∈ t), interior (f i)) [PROOFSTEP] haveI := ht.toEncodable [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α t : Set ι s : Set α hs : IsGδ s hd : Dense s ht : Set.Countable t f : ι → Set α hc : ∀ (i : ι), i ∈ t → IsClosed (f i) hU : s ⊆ ⋃ (i : ι) (_ : i ∈ t), f i this : Encodable ↑t ⊢ Dense (⋃ (i : ι) (_ : i ∈ t), interior (f i)) [PROOFSTEP] simp only [biUnion_eq_iUnion, SetCoe.forall'] at * [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α t : Set ι s : Set α hs : IsGδ s hd : Dense s ht : Set.Countable t f : ι → Set α this : Encodable ↑t hc : ∀ (x : ↑t), IsClosed (f ↑x) hU : s ⊆ ⋃ (x : ↑t), f ↑x ⊢ Dense (⋃ (x : ↑t), interior (f ↑x)) [PROOFSTEP] exact hs.dense_iUnion_interior_of_closed hd hc hU [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝¹ : TopologicalSpace α inst✝ : BaireSpace α T : Set (Set α) s : Set α hs : IsGδ s hd : Dense s hc : Set.Countable T hc' : ∀ (t : Set α), t ∈ T → IsClosed t hU : s ⊆ ⋃₀ T ⊢ s ⊆ ⋃ (i : Set α) (_ : i ∈ T), i [PROOFSTEP] rwa [← sUnion_eq_biUnion] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 inst✝³ : TopologicalSpace α inst✝² : BaireSpace α inst✝¹ : Nonempty α inst✝ : Encodable β f : β → Set α hc : ∀ (s : β), IsClosed (f s) hU : ⋃ (s : β), f s = univ ⊢ ∃ s, Set.Nonempty (interior (f s)) [PROOFSTEP] simpa using (dense_iUnion_interior_of_closed hc hU).nonempty
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Baire", "llama_tokens": 53012}
[GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α d : ℝ≥0∞ ⊢ d ≤ einfsep s ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → d ≤ edist x y [PROOFSTEP] simp_rw [einfsep, le_iInf_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ einfsep s = 0 ↔ ∀ (C : ℝ≥0∞), 0 < C → ∃ x x_1 y x_2 _hxy, edist x y < C [PROOFSTEP] simp_rw [einfsep, ← _root_.bot_eq_zero, iInf_eq_bot, iInf_lt_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ 0 < einfsep s ↔ ∃ C _hC, ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → C ≤ edist x y [PROOFSTEP] rw [pos_iff_ne_zero, Ne.def, einfsep_zero] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ (¬∀ (C : ℝ≥0∞), 0 < C → ∃ x x_1 y x_2 _hxy, edist x y < C) ↔ ∃ C _hC, ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → C ≤ edist x y [PROOFSTEP] simp only [not_forall, not_exists, not_lt] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ einfsep s = ⊤ ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → edist x y = ⊤ [PROOFSTEP] simp_rw [einfsep, iInf_eq_top] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ einfsep s < ⊤ ↔ ∃ x x_1 y x_2 _hxy, edist x y < ⊤ [PROOFSTEP] simp_rw [einfsep, iInf_lt_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ einfsep s ≠ ⊤ ↔ ∃ x x_1 y x_2 _hxy, edist x y ≠ ⊤ [PROOFSTEP] simp_rw [← lt_top_iff_ne_top, einfsep_lt_top] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α d : ℝ≥0∞ ⊢ einfsep s < d ↔ ∃ x x_1 y x_2 _h, edist x y < d [PROOFSTEP] simp_rw [einfsep, iInf_lt_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α hs : einfsep s < ⊤ ⊢ Set.Nontrivial s [PROOFSTEP] rcases einfsep_lt_top.1 hs with ⟨_, hx, _, hy, hxy, _⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α hs : einfsep s < ⊤ w✝¹ : α hx : w✝¹ ∈ s w✝ : α hy : w✝ ∈ s hxy : w✝¹ ≠ w✝ h✝ : edist w✝¹ w✝ < ⊤ ⊢ Set.Nontrivial s [PROOFSTEP] exact ⟨_, hx, _, hy, hxy⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α hs : Set.Subsingleton s ⊢ Set.einfsep s = ⊤ [PROOFSTEP] rw [einfsep_top] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α hs : Set.Subsingleton s ⊢ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → edist x y = ⊤ [PROOFSTEP] exact fun _ hx _ hy hxy => (hxy <| hs hx hy).elim [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s✝ t : Set α d : ℝ≥0∞ f : β → α s : Set β ⊢ d ≤ einfsep (f '' s) ↔ ∀ (x : β), x ∈ s → ∀ (y : β), y ∈ s → f x ≠ f y → d ≤ edist (f x) (f y) [PROOFSTEP] simp_rw [le_einfsep_iff, ball_image_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s✝ t : Set α ι : Type u_3 o : Option ι s : ι → Set α ⊢ einfsep (⋃ (i : ι) (_ : i ∈ o), s i) = ⨅ (i : ι) (_ : i ∈ o), einfsep (s i) [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s✝ t : Set α ι : Type u_3 s : ι → Set α ⊢ einfsep (⋃ (i : ι) (_ : i ∈ none), s i) = ⨅ (i : ι) (_ : i ∈ none), einfsep (s i) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s✝ t : Set α ι : Type u_3 s : ι → Set α val✝ : ι ⊢ einfsep (⋃ (i : ι) (_ : i ∈ Option.some val✝), s i) = ⨅ (i : ι) (_ : i ∈ Option.some val✝), einfsep (s i) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ einfsep (insert x s) ≤ ⨅ (y : α) (_ : y ∈ s) (_ : x ≠ y), edist x y [PROOFSTEP] simp_rw [le_iInf_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ ∀ (i : α), i ∈ s → x ≠ i → einfsep (insert x s) ≤ edist x i [PROOFSTEP] refine' fun _ hy hxy => einfsep_le_edist_of_mem (mem_insert _ _) (mem_insert_of_mem _ hy) hxy [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ edist x y ⊓ edist y x ≤ einfsep {x, y} [PROOFSTEP] simp_rw [le_einfsep_iff, inf_le_iff, mem_insert_iff, mem_singleton_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ ∀ (x_1 : α), x_1 = x ∨ x_1 = y → ∀ (y_1 : α), y_1 = x ∨ y_1 = y → x_1 ≠ y_1 → edist x y ≤ edist x_1 y_1 ∨ edist y x ≤ edist x_1 y_1 [PROOFSTEP] rintro a (rfl | rfl) b (rfl | rfl) hab [GOAL] case inl.inl α : Type u_1 β : Type u_2 inst✝ : EDist α y : α s t : Set α b : α hab : b ≠ b ⊢ edist b y ≤ edist b b ∨ edist y b ≤ edist b b [PROOFSTEP] try simp only [le_refl, true_or, or_true] [GOAL] case inl.inl α : Type u_1 β : Type u_2 inst✝ : EDist α y : α s t : Set α b : α hab : b ≠ b ⊢ edist b y ≤ edist b b ∨ edist y b ≤ edist b b [PROOFSTEP] simp only [le_refl, true_or, or_true] [GOAL] case inl.inr α : Type u_1 β : Type u_2 inst✝ : EDist α s t : Set α a b : α hab : a ≠ b ⊢ edist a b ≤ edist a b ∨ edist b a ≤ edist a b [PROOFSTEP] try simp only [le_refl, true_or, or_true] [GOAL] case inl.inr α : Type u_1 β : Type u_2 inst✝ : EDist α s t : Set α a b : α hab : a ≠ b ⊢ edist a b ≤ edist a b ∨ edist b a ≤ edist a b [PROOFSTEP] simp only [le_refl, true_or, or_true] [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝ : EDist α s t : Set α a b : α hab : a ≠ b ⊢ edist b a ≤ edist a b ∨ edist a b ≤ edist a b [PROOFSTEP] try simp only [le_refl, true_or, or_true] [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝ : EDist α s t : Set α a b : α hab : a ≠ b ⊢ edist b a ≤ edist a b ∨ edist a b ≤ edist a b [PROOFSTEP] simp only [le_refl, true_or, or_true] [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝ : EDist α x : α s t : Set α b : α hab : b ≠ b ⊢ edist x b ≤ edist b b ∨ edist b x ≤ edist b b [PROOFSTEP] try simp only [le_refl, true_or, or_true] [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝ : EDist α x : α s t : Set α b : α hab : b ≠ b ⊢ edist x b ≤ edist b b ∨ edist b x ≤ edist b b [PROOFSTEP] simp only [le_refl, true_or, or_true] [GOAL] case inl.inl α : Type u_1 β : Type u_2 inst✝ : EDist α y : α s t : Set α b : α hab : b ≠ b ⊢ edist b y ≤ edist b b ∨ edist y b ≤ edist b b [PROOFSTEP] contradiction [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝ : EDist α x : α s t : Set α b : α hab : b ≠ b ⊢ edist x b ≤ edist b b ∨ edist b x ≤ edist b b [PROOFSTEP] contradiction [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α hxy : x ≠ y ⊢ einfsep {x, y} ≤ edist y x [PROOFSTEP] rw [pair_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α hxy : x ≠ y ⊢ einfsep {y, x} ≤ edist y x [PROOFSTEP] exact einfsep_pair_le_left hxy.symm [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α ⊢ einfsep s = ⨅ (d : ↑(offDiag s)), uncurry edist ↑d [PROOFSTEP] refine' eq_of_forall_le_iff fun _ => _ [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α x✝ : ℝ≥0∞ ⊢ x✝ ≤ einfsep s ↔ x✝ ≤ ⨅ (d : ↑(offDiag s)), uncurry edist ↑d [PROOFSTEP] simp_rw [le_einfsep_iff, le_iInf_iff, imp_forall_iff, SetCoe.forall, mem_offDiag, Prod.forall, uncurry_apply_pair, and_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝² : EDist α x y : α s t : Set α inst✝¹ : DecidableEq α inst✝ : Fintype ↑s ⊢ einfsep s = Finset.inf (toFinset (offDiag s)) (uncurry edist) [PROOFSTEP] refine' eq_of_forall_le_iff fun _ => _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : EDist α x y : α s t : Set α inst✝¹ : DecidableEq α inst✝ : Fintype ↑s x✝ : ℝ≥0∞ ⊢ x✝ ≤ einfsep s ↔ x✝ ≤ Finset.inf (toFinset (offDiag s)) (uncurry edist) [PROOFSTEP] simp_rw [le_einfsep_iff, imp_forall_iff, Finset.le_inf_iff, mem_toFinset, mem_offDiag, Prod.forall, uncurry_apply_pair, and_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α hs : Set.Finite s ⊢ Set.einfsep s = Finset.inf (Finite.toFinset (_ : Set.Finite (offDiag s))) (uncurry edist) [PROOFSTEP] refine' eq_of_forall_le_iff fun _ => _ [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s t : Set α hs : Set.Finite s x✝ : ℝ≥0∞ ⊢ x✝ ≤ Set.einfsep s ↔ x✝ ≤ Finset.inf (Finite.toFinset (_ : Set.Finite (offDiag s))) (uncurry edist) [PROOFSTEP] simp_rw [le_einfsep_iff, imp_forall_iff, Finset.le_inf_iff, Finite.mem_toFinset, mem_offDiag, Prod.forall, uncurry_apply_pair, and_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : EDist α x y : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α ⊢ einfsep ↑s = Finset.inf (Finset.offDiag s) (uncurry edist) [PROOFSTEP] simp_rw [einfsep_of_fintype, ← Finset.coe_offDiag, Finset.toFinset_coe] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : EDist α x y : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s ⊢ ∃ x x_1 y x_2 _hxy, einfsep s = edist x y [PROOFSTEP] classical cases nonempty_fintype s simp_rw [einfsep_of_fintype] rcases@Finset.exists_mem_eq_inf _ _ _ _ s.offDiag.toFinset (by simpa) (uncurry edist) with ⟨w, hxy, hed⟩ simp_rw [mem_toFinset] at hxy refine' ⟨w.fst, hxy.1, w.snd, hxy.2.1, hxy.2.2, hed⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : EDist α x y : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s ⊢ ∃ x x_1 y x_2 _hxy, einfsep s = edist x y [PROOFSTEP] cases nonempty_fintype s [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : EDist α x y : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s ⊢ ∃ x x_1 y x_2 _hxy, einfsep s = edist x y [PROOFSTEP] simp_rw [einfsep_of_fintype] [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : EDist α x y : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s ⊢ ∃ x h y h h, Finset.inf (toFinset (offDiag s)) (uncurry edist) = edist x y [PROOFSTEP] rcases@Finset.exists_mem_eq_inf _ _ _ _ s.offDiag.toFinset (by simpa) (uncurry edist) with ⟨w, hxy, hed⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : EDist α x y : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s ⊢ Finset.Nonempty (toFinset (offDiag s)) [PROOFSTEP] simpa [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : EDist α x y : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s w : α × α hxy : w ∈ toFinset (offDiag s) hed : Finset.inf (toFinset (offDiag s)) (uncurry edist) = uncurry edist w ⊢ ∃ x h y h h, Finset.inf (toFinset (offDiag s)) (uncurry edist) = edist x y [PROOFSTEP] simp_rw [mem_toFinset] at hxy [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : EDist α x y : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s w : α × α hed : Finset.inf (toFinset (offDiag s)) (uncurry edist) = uncurry edist w hxy : w ∈ offDiag s ⊢ ∃ x h y h h, Finset.inf (toFinset (offDiag s)) (uncurry edist) = edist x y [PROOFSTEP] refine' ⟨w.fst, hxy.1, w.snd, hxy.2.1, hxy.2.2, hed⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y z : α s t : Set α hxy : x ≠ y ⊢ einfsep {x, y} = edist x y [PROOFSTEP] nth_rw 1 [← min_self (edist x y)] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y z : α s t : Set α hxy : x ≠ y ⊢ einfsep {x, y} = min (edist x y) (edist x y) [PROOFSTEP] convert einfsep_pair_eq_inf hxy using 2 [GOAL] case h.e'_3.h.e'_2 α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y z : α s t : Set α hxy : x ≠ y ⊢ edist x y = edist y x [PROOFSTEP] rw [edist_comm] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y z : α s t : Set α ⊢ einfsep (insert x s) = (⨅ (y : α) (_ : y ∈ s) (_ : x ≠ y), edist x y) ⊓ einfsep s [PROOFSTEP] refine' le_antisymm (le_min einfsep_insert_le (einfsep_anti (subset_insert _ _))) _ [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y z : α s t : Set α ⊢ (⨅ (y : α) (_ : y ∈ s) (_ : x ≠ y), edist x y) ⊓ einfsep s ≤ einfsep (insert x s) [PROOFSTEP] simp_rw [le_einfsep_iff, inf_le_iff, mem_insert_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y z : α s t : Set α ⊢ ∀ (x_1 : α), x_1 = x ∨ x_1 ∈ s → ∀ (y : α), y = x ∨ y ∈ s → x_1 ≠ y → ⨅ (y : α) (_ : y ∈ s) (_ : x ≠ y), edist x y ≤ edist x_1 y ∨ einfsep s ≤ edist x_1 y [PROOFSTEP] rintro y (rfl | hy) z (rfl | hz) hyz [GOAL] case inl.inl α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α y z✝ : α s t : Set α z : α hyz : z ≠ z ⊢ ⨅ (y : α) (_ : y ∈ s) (_ : z ≠ y), edist z y ≤ edist z z ∨ einfsep s ≤ edist z z [PROOFSTEP] exact False.elim (hyz rfl) [GOAL] case inl.inr α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α y✝ z✝ : α s t : Set α y z : α hz : z ∈ s hyz : y ≠ z ⊢ ⨅ (y_1 : α) (_ : y_1 ∈ s) (_ : y ≠ y_1), edist y y_1 ≤ edist y z ∨ einfsep s ≤ edist y z [PROOFSTEP] exact Or.inl (iInf_le_of_le _ (iInf₂_le hz hyz)) [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α y✝ z✝ : α s t : Set α y : α hy : y ∈ s z : α hyz : y ≠ z ⊢ ⨅ (y : α) (_ : y ∈ s) (_ : z ≠ y), edist z y ≤ edist y z ∨ einfsep s ≤ edist y z [PROOFSTEP] rw [edist_comm] [GOAL] case inr.inl α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α y✝ z✝ : α s t : Set α y : α hy : y ∈ s z : α hyz : y ≠ z ⊢ ⨅ (y : α) (_ : y ∈ s) (_ : z ≠ y), edist z y ≤ edist z y ∨ einfsep s ≤ edist z y [PROOFSTEP] exact Or.inl (iInf_le_of_le _ (iInf₂_le hy hyz.symm)) [GOAL] case inr.inr α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y✝ z✝ : α s t : Set α y : α hy : y ∈ s z : α hz : z ∈ s hyz : y ≠ z ⊢ ⨅ (y : α) (_ : y ∈ s) (_ : x ≠ y), edist x y ≤ edist y z ∨ einfsep s ≤ edist y z [PROOFSTEP] exact Or.inr (einfsep_le_edist_of_mem hy hz hyz) [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y z : α s t : Set α hxy : x ≠ y hyz : y ≠ z hxz : x ≠ z ⊢ einfsep {x, y, z} = edist x y ⊓ edist x z ⊓ edist y z [PROOFSTEP] simp_rw [einfsep_insert, iInf_insert, iInf_singleton, einfsep_singleton, inf_top_eq, ciInf_pos hxy, ciInf_pos hyz, ciInf_pos hxz] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PseudoEMetricSpace α x y z : α s✝ t : Set α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) s : (b : β) → Set (π b) c : ℝ≥0∞ h : ∀ (b : β), c ≤ einfsep (s b) ⊢ c ≤ einfsep (pi univ s) [PROOFSTEP] refine' le_einfsep fun x hx y hy hxy => _ [GOAL] α : Type u_1 β : Type u_2 inst✝² : PseudoEMetricSpace α x✝ y✝ z : α s✝ t : Set α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) s : (b : β) → Set (π b) c : ℝ≥0∞ h : ∀ (b : β), c ≤ einfsep (s b) x : (i : β) → π i hx : x ∈ pi univ s y : (i : β) → π i hy : y ∈ pi univ s hxy : x ≠ y ⊢ c ≤ edist x y [PROOFSTEP] rw [mem_univ_pi] at hx hy [GOAL] α : Type u_1 β : Type u_2 inst✝² : PseudoEMetricSpace α x✝ y✝ z : α s✝ t : Set α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) s : (b : β) → Set (π b) c : ℝ≥0∞ h : ∀ (b : β), c ≤ einfsep (s b) x : (i : β) → π i hx : ∀ (i : β), x i ∈ s i y : (i : β) → π i hy : ∀ (i : β), y i ∈ s i hxy : x ≠ y ⊢ c ≤ edist x y [PROOFSTEP] rcases Function.ne_iff.mp hxy with ⟨i, hi⟩ [GOAL] case intro α : Type u_1 β : Type u_2 inst✝² : PseudoEMetricSpace α x✝ y✝ z : α s✝ t : Set α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) s : (b : β) → Set (π b) c : ℝ≥0∞ h : ∀ (b : β), c ≤ einfsep (s b) x : (i : β) → π i hx : ∀ (i : β), x i ∈ s i y : (i : β) → π i hy : ∀ (i : β), y i ∈ s i hxy : x ≠ y i : β hi : x i ≠ y i ⊢ c ≤ edist x y [PROOFSTEP] exact le_trans (le_einfsep_iff.1 (h i) _ (hx _) _ (hy _) hi) (edist_le_pi_edist _ _ i) [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : einfsep s = ⊤ ⊢ Set.Subsingleton s [PROOFSTEP] rw [einfsep_top] at hs [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → edist x y = ⊤ ⊢ Set.Subsingleton s [PROOFSTEP] exact fun _ hx _ hy => of_not_not fun hxy => edist_ne_top _ _ (hs _ hx _ hy hxy) [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : Set.Nontrivial s ⊢ einfsep s ≠ ⊤ [PROOFSTEP] contrapose! hs [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : einfsep s = ⊤ ⊢ ¬Set.Nontrivial s [PROOFSTEP] rw [not_nontrivial_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : einfsep s = ⊤ ⊢ Set.Subsingleton s [PROOFSTEP] exact subsingleton_of_einfsep_eq_top hs [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : Set.Nontrivial s ⊢ einfsep s < ⊤ [PROOFSTEP] rw [lt_top_iff_ne_top] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α s : Set α hs : Set.Nontrivial s ⊢ einfsep s ≠ ⊤ [PROOFSTEP] exact hs.einfsep_ne_top [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : EMetricSpace α x y z : α s t : Set α C : ℝ≥0∞ sC : Set ℝ≥0∞ inst✝ : Finite ↑s ⊢ 0 < einfsep s [PROOFSTEP] cases nonempty_fintype s [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : EMetricSpace α x y z : α s t : Set α C : ℝ≥0∞ sC : Set ℝ≥0∞ inst✝ : Finite ↑s val✝ : Fintype ↑s ⊢ 0 < einfsep s [PROOFSTEP] by_cases hs : s.Nontrivial [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : EMetricSpace α x y z : α s t : Set α C : ℝ≥0∞ sC : Set ℝ≥0∞ inst✝ : Finite ↑s val✝ : Fintype ↑s hs : Set.Nontrivial s ⊢ 0 < einfsep s [PROOFSTEP] rcases hs.einfsep_exists_of_finite with ⟨x, _hx, y, _hy, hxy, hxy'⟩ [GOAL] case pos.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : EMetricSpace α x✝ y✝ z : α s t : Set α C : ℝ≥0∞ sC : Set ℝ≥0∞ inst✝ : Finite ↑s val✝ : Fintype ↑s hs : Set.Nontrivial s x : α _hx : x ∈ s y : α _hy : y ∈ s hxy : x ≠ y hxy' : einfsep s = edist x y ⊢ 0 < einfsep s [PROOFSTEP] exact hxy'.symm ▸ edist_pos.2 hxy [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : EMetricSpace α x y z : α s t : Set α C : ℝ≥0∞ sC : Set ℝ≥0∞ inst✝ : Finite ↑s val✝ : Fintype ↑s hs : ¬Set.Nontrivial s ⊢ 0 < einfsep s [PROOFSTEP] rw [not_nontrivial_iff] at hs [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : EMetricSpace α x y z : α s t : Set α C : ℝ≥0∞ sC : Set ℝ≥0∞ inst✝ : Finite ↑s val✝ : Fintype ↑s hs : Set.Subsingleton s ⊢ 0 < einfsep s [PROOFSTEP] exact hs.einfsep.symm ▸ WithTop.zero_lt_top [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : EMetricSpace α x y z : α s t : Set α C : ℝ≥0∞ sC : Set ℝ≥0∞ inst✝ : Finite ↑s ⊢ ∃ C _hC, ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → C ≤ edist x y [PROOFSTEP] rw [← einfsep_pos] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : EMetricSpace α x y z : α s t : Set α C : ℝ≥0∞ sC : Set ℝ≥0∞ inst✝ : Finite ↑s ⊢ 0 < einfsep s [PROOFSTEP] exact einfsep_pos_of_finite [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α ⊢ infsep s = 0 ↔ einfsep s = 0 ∨ einfsep s = ⊤ [PROOFSTEP] rw [infsep, ENNReal.toReal_eq_zero_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α ⊢ 0 < infsep s ↔ 0 < einfsep s ∧ einfsep s < ⊤ [PROOFSTEP] simp_rw [infsep, ENNReal.toReal_pos_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α hs : Set.Subsingleton s ⊢ infsep s = 0 [PROOFSTEP] rw [infsep_zero.mpr] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α hs : Set.Subsingleton s ⊢ Set.einfsep s = 0 ∨ Set.einfsep s = ⊤ [PROOFSTEP] right [GOAL] case h α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α hs : Set.Subsingleton s ⊢ Set.einfsep s = ⊤ [PROOFSTEP] exact hs.einfsep [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α hs : 0 < infsep s ⊢ Set.Nontrivial s [PROOFSTEP] contrapose hs [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α hs : ¬Set.Nontrivial s ⊢ ¬0 < infsep s [PROOFSTEP] rw [not_nontrivial_iff] at hs [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α hs : Set.Subsingleton s ⊢ ¬0 < infsep s [PROOFSTEP] exact hs.infsep_zero ▸ lt_irrefl _ [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α hxy : x ≠ y ⊢ infsep {x, y} ≤ ENNReal.toReal (edist x y ⊓ edist y x) [PROOFSTEP] simp_rw [infsep, einfsep_pair_eq_inf hxy] [GOAL] α : Type u_1 β : Type u_2 inst✝ : EDist α x y : α s : Set α hxy : x ≠ y ⊢ ENNReal.toReal (edist x y ⊓ edist y x) ≤ ENNReal.toReal (edist x y ⊓ edist y x) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y : α s : Set α ⊢ infsep {x, y} = ENNReal.toReal (edist x y) [PROOFSTEP] by_cases hxy : x = y [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y : α s : Set α hxy : x = y ⊢ infsep {x, y} = ENNReal.toReal (edist x y) [PROOFSTEP] rw [hxy] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y : α s : Set α hxy : x = y ⊢ infsep {y, y} = ENNReal.toReal (edist y y) [PROOFSTEP] simp only [infsep_singleton, pair_eq_singleton, edist_self, ENNReal.zero_toReal] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝ : PseudoEMetricSpace α x y : α s : Set α hxy : ¬x = y ⊢ infsep {x, y} = ENNReal.toReal (edist x y) [PROOFSTEP] rw [infsep, einfsep_pair hxy] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α d : ℝ hs : Set.Nontrivial s ⊢ d ≤ infsep s ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → d ≤ dist x y [PROOFSTEP] simp_rw [infsep, ← ENNReal.ofReal_le_iff_le_toReal hs.einfsep_ne_top, le_einfsep_iff, edist_dist, ENNReal.ofReal_le_ofReal_iff dist_nonneg] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α d : ℝ hs : Set.Nontrivial s ⊢ infsep s < d ↔ ∃ x x_1 y x_2 _hxy, dist x y < d [PROOFSTEP] rw [← not_iff_not] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α d : ℝ hs : Set.Nontrivial s ⊢ ¬infsep s < d ↔ ¬∃ x x_1 y x_2 _hxy, dist x y < d [PROOFSTEP] push_neg [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α d : ℝ hs : Set.Nontrivial s ⊢ d ≤ infsep s ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → d ≤ dist x y [PROOFSTEP] exact hs.le_infsep_iff [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α s t : Set α d : ℝ x : α hx : x ∈ s y : α hy : y ∈ s hxy : x ≠ y hd : d ≤ infsep s ⊢ d ≤ dist x y [PROOFSTEP] by_cases hs : s.Nontrivial [GOAL] case pos α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α s t : Set α d : ℝ x : α hx : x ∈ s y : α hy : y ∈ s hxy : x ≠ y hd : d ≤ infsep s hs : Set.Nontrivial s ⊢ d ≤ dist x y [PROOFSTEP] exact hs.le_infsep_iff.1 hd x hx y hy hxy [GOAL] case neg α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α s t : Set α d : ℝ x : α hx : x ∈ s y : α hy : y ∈ s hxy : x ≠ y hd : d ≤ infsep s hs : ¬Set.Nontrivial s ⊢ d ≤ dist x y [PROOFSTEP] rw [not_nontrivial_iff] at hs [GOAL] case neg α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α s t : Set α d : ℝ x : α hx : x ∈ s y : α hy : y ∈ s hxy : x ≠ y hd : d ≤ infsep s hs : Set.Subsingleton s ⊢ d ≤ dist x y [PROOFSTEP] rw [hs.infsep_zero] at hd [GOAL] case neg α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α s t : Set α d : ℝ x : α hx : x ∈ s y : α hy : y ∈ s hxy : x ≠ y hd : d ≤ 0 hs : Set.Subsingleton s ⊢ d ≤ dist x y [PROOFSTEP] exact le_trans hd dist_nonneg [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α ⊢ infsep {x, y} = dist x y [PROOFSTEP] rw [infsep_pair_eq_toReal, edist_dist] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α ⊢ ENNReal.toReal (ENNReal.ofReal (dist x y)) = dist x y [PROOFSTEP] exact ENNReal.toReal_ofReal dist_nonneg [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α hxy : x ≠ y hyz : y ≠ z hxz : x ≠ z ⊢ infsep {x, y, z} = dist x y ⊓ dist x z ⊓ dist y z [PROOFSTEP] simp only [infsep, einfsep_triple hxy hyz hxz, ENNReal.toReal_inf, edist_ne_top x y, edist_ne_top x z, edist_ne_top y z, dist_edist, Ne.def, inf_eq_top_iff, and_self_iff, not_false_iff] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) ⊢ infsep s = if Set.Nontrivial s then ⨅ (d : ↑(offDiag s)), uncurry dist ↑d else 0 [PROOFSTEP] split_ifs with hs [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hs : Set.Nontrivial s ⊢ infsep s = ⨅ (d : ↑(offDiag s)), uncurry dist ↑d [PROOFSTEP] have hb : BddBelow (uncurry dist '' s.offDiag) := by refine' ⟨0, fun d h => _⟩ simp_rw [mem_image, Prod.exists, uncurry_apply_pair] at h rcases h with ⟨_, _, _, rfl⟩ exact dist_nonneg [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hs : Set.Nontrivial s ⊢ BddBelow (uncurry dist '' offDiag s) [PROOFSTEP] refine' ⟨0, fun d h => _⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hs : Set.Nontrivial s d : ℝ h : d ∈ uncurry dist '' offDiag s ⊢ 0 ≤ d [PROOFSTEP] simp_rw [mem_image, Prod.exists, uncurry_apply_pair] at h [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hs : Set.Nontrivial s d : ℝ h : ∃ a b, (a, b) ∈ offDiag s ∧ dist a b = d ⊢ 0 ≤ d [PROOFSTEP] rcases h with ⟨_, _, _, rfl⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hs : Set.Nontrivial s w✝¹ w✝ : α left✝ : (w✝¹, w✝) ∈ offDiag s ⊢ 0 ≤ dist w✝¹ w✝ [PROOFSTEP] exact dist_nonneg [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hs : Set.Nontrivial s hb : BddBelow (uncurry dist '' offDiag s) ⊢ infsep s = ⨅ (d : ↑(offDiag s)), uncurry dist ↑d [PROOFSTEP] refine' eq_of_forall_le_iff fun _ => _ [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hs : Set.Nontrivial s hb : BddBelow (uncurry dist '' offDiag s) x✝ : ℝ ⊢ x✝ ≤ infsep s ↔ x✝ ≤ ⨅ (d : ↑(offDiag s)), uncurry dist ↑d [PROOFSTEP] simp_rw [hs.le_infsep_iff, le_ciInf_set_iff (offDiag_nonempty.mpr hs) hb, imp_forall_iff, mem_offDiag, Prod.forall, uncurry_apply_pair, and_imp] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hs : ¬Set.Nontrivial s ⊢ infsep s = 0 [PROOFSTEP] exact (not_nontrivial_iff.mp hs).infsep_zero [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α hs : Set.Nontrivial s ⊢ infsep s = ⨅ (d : ↑(offDiag s)), uncurry dist ↑d [PROOFSTEP] classical rw [Set.infsep_eq_iInf, if_pos hs] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α hs : Set.Nontrivial s ⊢ infsep s = ⨅ (d : ↑(offDiag s)), uncurry dist ↑d [PROOFSTEP] rw [Set.infsep_eq_iInf, if_pos hs] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α x y z : α s t : Set α inst✝² : Decidable (Set.Nontrivial s) inst✝¹ : DecidableEq α inst✝ : Fintype ↑s hs : Set.Nontrivial s ⊢ Finset.Nonempty (toFinset (offDiag s)) [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α x y z : α s t : Set α inst✝² : Decidable (Set.Nontrivial s) inst✝¹ : DecidableEq α inst✝ : Fintype ↑s ⊢ infsep s = if hs : Set.Nontrivial s then Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) else 0 [PROOFSTEP] split_ifs with hs [GOAL] case pos α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α x y z : α s t : Set α inst✝² : Decidable (Set.Nontrivial s) inst✝¹ : DecidableEq α inst✝ : Fintype ↑s hs : Set.Nontrivial s ⊢ infsep s = Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) [PROOFSTEP] refine' eq_of_forall_le_iff fun _ => _ [GOAL] case pos α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α x y z : α s t : Set α inst✝² : Decidable (Set.Nontrivial s) inst✝¹ : DecidableEq α inst✝ : Fintype ↑s hs : Set.Nontrivial s x✝ : ℝ ⊢ x✝ ≤ infsep s ↔ x✝ ≤ Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) [PROOFSTEP] simp_rw [hs.le_infsep_iff, imp_forall_iff, Finset.le_inf'_iff, mem_toFinset, mem_offDiag, Prod.forall, uncurry_apply_pair, and_imp] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α x y z : α s t : Set α inst✝² : Decidable (Set.Nontrivial s) inst✝¹ : DecidableEq α inst✝ : Fintype ↑s hs : ¬Set.Nontrivial s ⊢ infsep s = 0 [PROOFSTEP] rw [not_nontrivial_iff] at hs [GOAL] case neg α : Type u_1 β : Type u_2 inst✝³ : PseudoMetricSpace α x y z : α s t : Set α inst✝² : Decidable (Set.Nontrivial s) inst✝¹ : DecidableEq α inst✝ : Fintype ↑s hs : Set.Subsingleton s ⊢ infsep s = 0 [PROOFSTEP] exact hs.infsep_zero [GOAL] α : Type u_1 β : Type u_2 inst✝² : PseudoMetricSpace α x y z : α s t : Set α inst✝¹ : DecidableEq α inst✝ : Fintype ↑s hs : Set.Nontrivial s ⊢ Finset.Nonempty (toFinset (offDiag s)) [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 inst✝² : PseudoMetricSpace α x y z : α s t : Set α inst✝¹ : DecidableEq α inst✝ : Fintype ↑s hs : Set.Nontrivial s ⊢ infsep s = Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) [PROOFSTEP] classical rw [Set.infsep_of_fintype, dif_pos hs] [GOAL] α : Type u_1 β : Type u_2 inst✝² : PseudoMetricSpace α x y z : α s t : Set α inst✝¹ : DecidableEq α inst✝ : Fintype ↑s hs : Set.Nontrivial s ⊢ infsep s = Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) [PROOFSTEP] rw [Set.infsep_of_fintype, dif_pos hs] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hsf : Set.Finite s hs : Set.Nontrivial s ⊢ Finset.Nonempty (Finite.toFinset (_ : Set.Finite (offDiag s))) [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hsf : Set.Finite s ⊢ Set.infsep s = if hs : Set.Nontrivial s then Finset.inf' (Finite.toFinset (_ : Set.Finite (offDiag s))) (_ : Finset.Nonempty (Finite.toFinset (_ : Set.Finite (offDiag s)))) (uncurry dist) else 0 [PROOFSTEP] split_ifs with hs [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hsf : Set.Finite s hs : Set.Nontrivial s ⊢ Set.infsep s = Finset.inf' (Finite.toFinset (_ : Set.Finite (offDiag s))) (_ : Finset.Nonempty (Finite.toFinset (_ : Set.Finite (offDiag s)))) (uncurry dist) [PROOFSTEP] refine' eq_of_forall_le_iff fun _ => _ [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hsf : Set.Finite s hs : Set.Nontrivial s x✝ : ℝ ⊢ x✝ ≤ Set.infsep s ↔ x✝ ≤ Finset.inf' (Finite.toFinset (_ : Set.Finite (offDiag s))) (_ : Finset.Nonempty (Finite.toFinset (_ : Set.Finite (offDiag s)))) (uncurry dist) [PROOFSTEP] simp_rw [hs.le_infsep_iff, imp_forall_iff, Finset.le_inf'_iff, Finite.mem_toFinset, mem_offDiag, Prod.forall, uncurry_apply_pair, and_imp] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hsf : Set.Finite s hs : ¬Set.Nontrivial s ⊢ Set.infsep s = 0 [PROOFSTEP] rw [not_nontrivial_iff] at hs [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Decidable (Set.Nontrivial s) hsf : Set.Finite s hs : Set.Subsingleton s ⊢ Set.infsep s = 0 [PROOFSTEP] exact hs.infsep_zero [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α hsf : Set.Finite s hs : Set.Nontrivial s ⊢ Finset.Nonempty (Finite.toFinset (_ : Set.Finite (offDiag s))) [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α hsf : Set.Finite s hs : Set.Nontrivial s ⊢ Set.infsep s = Finset.inf' (Finite.toFinset (_ : Set.Finite (offDiag s))) (_ : Finset.Nonempty (Finite.toFinset (_ : Set.Finite (offDiag s)))) (uncurry dist) [PROOFSTEP] classical simp_rw [hsf.infsep, dif_pos hs] [GOAL] α : Type u_1 β : Type u_2 inst✝ : PseudoMetricSpace α x y z : α s t : Set α hsf : Set.Finite s hs : Set.Nontrivial s ⊢ Set.infsep s = Finset.inf' (Finite.toFinset (_ : Set.Finite (offDiag s))) (_ : Finset.Nonempty (Finite.toFinset (_ : Set.Finite (offDiag s)))) (uncurry dist) [PROOFSTEP] simp_rw [hsf.infsep, dif_pos hs] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α ⊢ infsep ↑s = if hs : Finset.Nonempty (Finset.offDiag s) then Finset.inf' (Finset.offDiag s) hs (uncurry dist) else 0 [PROOFSTEP] have H : (s : Set α).Nontrivial ↔ s.offDiag.Nonempty := by rw [← Set.offDiag_nonempty, ← Finset.coe_offDiag, Finset.coe_nonempty] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α ⊢ Set.Nontrivial ↑s ↔ Finset.Nonempty (Finset.offDiag s) [PROOFSTEP] rw [← Set.offDiag_nonempty, ← Finset.coe_offDiag, Finset.coe_nonempty] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α H : Set.Nontrivial ↑s ↔ Finset.Nonempty (Finset.offDiag s) ⊢ infsep ↑s = if hs : Finset.Nonempty (Finset.offDiag s) then Finset.inf' (Finset.offDiag s) hs (uncurry dist) else 0 [PROOFSTEP] split_ifs with hs [GOAL] case pos α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α H : Set.Nontrivial ↑s ↔ Finset.Nonempty (Finset.offDiag s) hs : Finset.Nonempty (Finset.offDiag s) ⊢ infsep ↑s = Finset.inf' (Finset.offDiag s) hs (uncurry dist) [PROOFSTEP] simp_rw [(H.mpr hs).infsep_of_fintype, ← Finset.coe_offDiag, Finset.toFinset_coe] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α H : Set.Nontrivial ↑s ↔ Finset.Nonempty (Finset.offDiag s) hs : ¬Finset.Nonempty (Finset.offDiag s) ⊢ infsep ↑s = 0 [PROOFSTEP] exact (not_nontrivial_iff.mp (H.mp.mt hs)).infsep_zero [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α hs : Finset.Nonempty (Finset.offDiag s) ⊢ infsep ↑s = Finset.inf' (Finset.offDiag s) hs (uncurry dist) [PROOFSTEP] rw [Finset.coe_infsep, dif_pos hs] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α hs : Finset.offDiag s = ∅ ⊢ infsep ↑s = 0 [PROOFSTEP] rw [← Finset.not_nonempty_iff_eq_empty] at hs [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s✝ t : Set α inst✝ : DecidableEq α s : Finset α hs : ¬Finset.Nonempty (Finset.offDiag s) ⊢ infsep ↑s = 0 [PROOFSTEP] rw [Finset.coe_infsep, dif_neg hs] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s ⊢ ∃ x x_1 y x_2 _hxy, infsep s = dist x y [PROOFSTEP] classical cases nonempty_fintype s simp_rw [hs.infsep_of_fintype] rcases@Finset.exists_mem_eq_inf' _ _ _ s.offDiag.toFinset (by simpa) (uncurry dist) with ⟨w, hxy, hed⟩ simp_rw [mem_toFinset] at hxy exact ⟨w.fst, hxy.1, w.snd, hxy.2.1, hxy.2.2, hed⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s ⊢ ∃ x x_1 y x_2 _hxy, infsep s = dist x y [PROOFSTEP] cases nonempty_fintype s [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s ⊢ ∃ x x_1 y x_2 _hxy, infsep s = dist x y [PROOFSTEP] simp_rw [hs.infsep_of_fintype] [GOAL] case intro α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s ⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y [PROOFSTEP] rcases@Finset.exists_mem_eq_inf' _ _ _ s.offDiag.toFinset (by simpa) (uncurry dist) with ⟨w, hxy, hed⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s ⊢ Finset.Nonempty (toFinset (offDiag s)) [PROOFSTEP] simpa [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s w : α × α hxy : w ∈ toFinset (offDiag s) hed : Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = uncurry dist w ⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y [PROOFSTEP] simp_rw [mem_toFinset] at hxy [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α s t : Set α inst✝ : Finite ↑s hs : Set.Nontrivial s val✝ : Fintype ↑s w : α × α hed : Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = uncurry dist w hxy : w ∈ offDiag s ⊢ ∃ x h y h h, Finset.inf' (toFinset (offDiag s)) (_ : Finset.Nonempty (toFinset (offDiag s))) (uncurry dist) = dist x y [PROOFSTEP] exact ⟨w.fst, hxy.1, w.snd, hxy.2.1, hxy.2.2, hed⟩ [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Set α inst✝ : Finite ↑s ⊢ infsep s = 0 ↔ Set.Subsingleton s [PROOFSTEP] rw [infsep_zero, einfsep_eq_top_iff, or_iff_right_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Set α inst✝ : Finite ↑s ⊢ einfsep s = 0 → Set.Subsingleton s [PROOFSTEP] exact fun H => (einfsep_pos_of_finite.ne' H).elim [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Set α inst✝ : Finite ↑s ⊢ 0 < infsep s ↔ Set.Nontrivial s [PROOFSTEP] rw [infsep_pos, einfsep_lt_top_iff, and_iff_right_iff_imp] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : MetricSpace α s : Set α inst✝ : Finite ↑s ⊢ Set.Nontrivial s → 0 < einfsep s [PROOFSTEP] exact fun _ => einfsep_pos_of_finite
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Infsep", "llama_tokens": 19536}
[GOAL] N : Type u_1 inst✝ : DecidableEq N i : N t₀ : ↑I t : { j // j ≠ i } → ↑I H : (t₀ = 0 ∨ t₀ = 1) ∨ t ∈ boundary { j // j ≠ i } ⊢ ↑(insertAt i) (t₀, t) ∈ boundary N [PROOFSTEP] obtain H | ⟨j, H⟩ := H [GOAL] case inl N : Type u_1 inst✝ : DecidableEq N i : N t₀ : ↑I t : { j // j ≠ i } → ↑I H : t₀ = 0 ∨ t₀ = 1 ⊢ ↑(insertAt i) (t₀, t) ∈ boundary N [PROOFSTEP] use i [GOAL] case h N : Type u_1 inst✝ : DecidableEq N i : N t₀ : ↑I t : { j // j ≠ i } → ↑I H : t₀ = 0 ∨ t₀ = 1 ⊢ ↑(insertAt i) (t₀, t) i = 0 ∨ ↑(insertAt i) (t₀, t) i = 1 [PROOFSTEP] rwa [funSplitAt_symm_apply, dif_pos rfl] [GOAL] case inr.intro N : Type u_1 inst✝ : DecidableEq N i : N t₀ : ↑I t : { j // j ≠ i } → ↑I j : { j // j ≠ i } H : t j = 0 ∨ t j = 1 ⊢ ↑(insertAt i) (t₀, t) ∈ boundary N [PROOFSTEP] use j [GOAL] case h N : Type u_1 inst✝ : DecidableEq N i : N t₀ : ↑I t : { j // j ≠ i } → ↑I j : { j // j ≠ i } H : t j = 0 ∨ t j = 1 ⊢ ↑(insertAt i) (t₀, t) ↑j = 0 ∨ ↑(insertAt i) (t₀, t) ↑j = 1 [PROOFSTEP] rwa [funSplitAt_symm_apply, dif_neg j.prop, Subtype.coe_eta] [GOAL] N : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X x : X x✝² x✝¹ : ↑(Ω^ N X x) f : (N → ↑I) → X continuous_toFun✝¹ : Continuous f property✝¹ : ContinuousMap.mk f ∈ Ω^ N X x g : (N → ↑I) → X continuous_toFun✝ : Continuous g property✝ : ContinuousMap.mk g ∈ Ω^ N X x x✝ : (fun f => ↑↑f) { val := ContinuousMap.mk f, property := property✝¹ } = (fun f => ↑↑f) { val := ContinuousMap.mk g, property := property✝ } ⊢ { val := ContinuousMap.mk f, property := property✝¹ } = { val := ContinuousMap.mk g, property := property✝ } [PROOFSTEP] congr [GOAL] N : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X x : X f : ↑(Ω^ N X x) g : (N → ↑I) → X h : g = ↑f ⊢ ContinuousMap.mk g ∈ Ω^ N X x [PROOFSTEP] convert f.2 [GOAL] N : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X x : X f : ↑(Ω^ N X x) g : (N → ↑I) → X h : g = ↑f ⊢ copy f g h = f [PROOFSTEP] ext x [GOAL] case H N : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X x✝ : X f : ↑(Ω^ N X x✝) g : (N → ↑I) → X h : g = ↑f x : N → ↑I ⊢ ↑(copy f g h) x = ↑f x [PROOFSTEP] exact congr_fun h x [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : ↑(Ω^ N X x) ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.comp (↑p) (Homeomorph.toContinuousMap (Cube.insertAt i)))) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑↑p (↑(Cube.insertAt i) (t, y)) = x) }) 0 = const [PROOFSTEP] ext t [GOAL] case H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : ↑(Ω^ N X x) t : { j // j ≠ i } → ↑I ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.comp (↑p) (Homeomorph.toContinuousMap (Cube.insertAt i)))) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑↑p (↑(Cube.insertAt i) (t, y)) = x) }) 0) t = ↑const t [PROOFSTEP] refine' p.property (Cube.insertAt i (0, t)) ⟨i, Or.inl _⟩ [GOAL] case H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : ↑(Ω^ N X x) t : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) (0, t) i = 0 [PROOFSTEP] simp [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : ↑(Ω^ N X x) ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.comp (↑p) (Homeomorph.toContinuousMap (Cube.insertAt i)))) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑↑p (↑(Cube.insertAt i) (t, y)) = x) }) 1 = const [PROOFSTEP] ext t [GOAL] case H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : ↑(Ω^ N X x) t : { j // j ≠ i } → ↑I ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.comp (↑p) (Homeomorph.toContinuousMap (Cube.insertAt i)))) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑↑p (↑(Cube.insertAt i) (t, y)) = x) }) 1) t = ↑const t [PROOFSTEP] refine' p.property (Cube.insertAt i (1, t)) ⟨i, Or.inr _⟩ [GOAL] case H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : ↑(Ω^ N X x) t : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) (1, t) i = 1 [PROOFSTEP] simp [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : Ω (↑(Ω^ { j // j ≠ i } X x)) const ⊢ Continuous Subtype.val [PROOFSTEP] continuity [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : Ω (↑(Ω^ { j // j ≠ i } X x)) const ⊢ ContinuousMap.comp (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap)) (Homeomorph.toContinuousMap (Cube.splitAt i)) ∈ Ω^ N X x [PROOFSTEP] rintro y ⟨j, Hj⟩ [GOAL] case intro N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : Ω (↑(Ω^ { j // j ≠ i } X x)) const y : N → ↑I j : N Hj : y j = 0 ∨ y j = 1 ⊢ ↑(ContinuousMap.comp (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap)) (Homeomorph.toContinuousMap (Cube.splitAt i))) y = x [PROOFSTEP] simp only [ContinuousMap.comp_apply, toContinuousMap_apply, funSplitAt_apply, ContinuousMap.uncurry_apply, ContinuousMap.coe_mk, Function.uncurry_apply_pair] [GOAL] case intro N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : Ω (↑(Ω^ { j // j ≠ i } X x)) const y : N → ↑I j : N Hj : y j = 0 ∨ y j = 1 ⊢ (↑↑(↑p.toContinuousMap (y i)) fun j => y ↑j) = x [PROOFSTEP] obtain rfl | Hne := eq_or_ne j i [GOAL] case intro.inl N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N y : N → ↑I j : N Hj : y j = 0 ∨ y j = 1 p : Ω (↑(Ω^ { j_1 // j_1 ≠ j } X x)) const ⊢ (↑↑(↑p.toContinuousMap (y j)) fun j_1 => y ↑j_1) = x [PROOFSTEP] cases' Hj with Hj Hj [GOAL] case intro.inl.inl N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N y : N → ↑I j : N p : Ω (↑(Ω^ { j_1 // j_1 ≠ j } X x)) const Hj : y j = 0 ⊢ (↑↑(↑p.toContinuousMap (y j)) fun j_1 => y ↑j_1) = x [PROOFSTEP] simp only [Hj, p.coe_toContinuousMap, p.source, p.target] [GOAL] case intro.inl.inr N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N y : N → ↑I j : N p : Ω (↑(Ω^ { j_1 // j_1 ≠ j } X x)) const Hj : y j = 1 ⊢ (↑↑(↑p.toContinuousMap (y j)) fun j_1 => y ↑j_1) = x [PROOFSTEP] simp only [Hj, p.coe_toContinuousMap, p.source, p.target] [GOAL] case intro.inl.inl N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N y : N → ↑I j : N p : Ω (↑(Ω^ { j_1 // j_1 ≠ j } X x)) const Hj : y j = 0 ⊢ (↑↑const fun j_1 => y ↑j_1) = x [PROOFSTEP] rfl [GOAL] case intro.inl.inr N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N y : N → ↑I j : N p : Ω (↑(Ω^ { j_1 // j_1 ≠ j } X x)) const Hj : y j = 1 ⊢ (↑↑const fun j_1 => y ↑j_1) = x [PROOFSTEP] rfl [GOAL] case intro.inr N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : Ω (↑(Ω^ { j // j ≠ i } X x)) const y : N → ↑I j : N Hj : y j = 0 ∨ y j = 1 Hne : j ≠ i ⊢ (↑↑(↑p.toContinuousMap (y i)) fun j => y ↑j) = x [PROOFSTEP] exact GenLoop.boundary _ _ ⟨⟨j, Hne⟩, Hj⟩ [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : Ω (↑(Ω^ { j // j ≠ i } X x)) const ⊢ toLoop i (fromLoop i p) = p [PROOFSTEP] simp_rw [toLoop, fromLoop, ContinuousMap.comp_assoc, toContinuousMap_comp_symm, ContinuousMap.comp_id] [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : Ω (↑(Ω^ { j // j ≠ i } X x)) const ⊢ { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t, property := (_ : (fun x_1 => x_1 ∈ Ω^ { j // j ≠ i } X x) (↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t)) }, source' := (_ : ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t, property := (_ : (fun x_1 => x_1 ∈ Ω^ { j // j ≠ i } X x) (↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t)) }) 0 = const), target' := (_ : ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t, property := (_ : (fun x_1 => x_1 ∈ Ω^ { j // j ≠ i } X x) (↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t)) }) 1 = const) } = p [PROOFSTEP] ext [GOAL] case a.h.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : Ω (↑(Ω^ { j // j ≠ i } X x)) const x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑(↑{ toContinuousMap := ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t, property := (_ : (fun x_1 => x_1 ∈ Ω^ { j // j ≠ i } X x) (↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t)) }, source' := (_ : ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t, property := (_ : (fun x_1 => x_1 ∈ Ω^ { j // j ≠ i } X x) (↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t)) }) 0 = const), target' := (_ : ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t, property := (_ : (fun x_1 => x_1 ∈ Ω^ { j // j ≠ i } X x) (↑(ContinuousMap.curry (ContinuousMap.uncurry (ContinuousMap.comp (ContinuousMap.mk Subtype.val) p.toContinuousMap))) t)) }) 1 = const) } x✝) y✝ = ↑(↑p x✝) y✝ [PROOFSTEP] rfl [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : ↑(Ω^ N X x) ⊢ fromLoop i (toLoop i p) = p [PROOFSTEP] ext [GOAL] case H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p : ↑(Ω^ N X x) y✝ : N → ↑I ⊢ ↑(fromLoop i (toLoop i p)) y✝ = ↑p y✝ [PROOFSTEP] exact congr_arg p (Equiv.apply_symm_apply _ _) [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) ⊢ Homotopic p q → Path.Homotopic (toLoop i p) (toLoop i q) [PROOFSTEP] refine' Nonempty.map fun H => ⟨⟨⟨fun t => ⟨homotopyTo i H t, _⟩, _⟩, _, _⟩, _⟩ [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I ⊢ ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x [PROOFSTEP] rintro y ⟨i, iH⟩ [GOAL] case refine'_1.intro N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ ↑(↑(homotopyTo i✝ H) t) y = x [PROOFSTEP] rw [homotopyTo_apply, H.eq_fst, p.2] [GOAL] case refine'_1.intro.a N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ ↑(Cube.insertAt i✝) (t.snd, y) ∈ Cube.boundary N case refine'_1.intro.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ ↑(Cube.insertAt i✝) (t.snd, y) ∈ Cube.boundary N [PROOFSTEP] all_goals apply Cube.insertAt_boundary; right; exact ⟨i, iH⟩ [GOAL] case refine'_1.intro.a N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ ↑(Cube.insertAt i✝) (t.snd, y) ∈ Cube.boundary N [PROOFSTEP] apply Cube.insertAt_boundary [GOAL] case refine'_1.intro.a.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ (t.snd = 0 ∨ t.snd = 1) ∨ y ∈ Cube.boundary { j // j ≠ i✝ } [PROOFSTEP] right [GOAL] case refine'_1.intro.a.H.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ y ∈ Cube.boundary { j // j ≠ i✝ } [PROOFSTEP] exact ⟨i, iH⟩ [GOAL] case refine'_1.intro.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ ↑(Cube.insertAt i✝) (t.snd, y) ∈ Cube.boundary N [PROOFSTEP] apply Cube.insertAt_boundary [GOAL] case refine'_1.intro.hx.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ (t.snd = 0 ∨ t.snd = 1) ∨ y ∈ Cube.boundary { j // j ≠ i✝ } [PROOFSTEP] right [GOAL] case refine'_1.intro.hx.H.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i✝ : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t : ↑I × ↑I y : { j // j ≠ i✝ } → ↑I i : { j // j ≠ i✝ } iH : y i = 0 ∨ y i = 1 ⊢ y ∈ Cube.boundary { j // j ≠ i✝ } [PROOFSTEP] exact ⟨i, iH⟩ [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ Continuous fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) } [PROOFSTEP] continuity [GOAL] case refine'_3 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_1) = ↑(toLoop i p).toContinuousMap x_1 case refine'_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_1) = ↑(toLoop i q).toContinuousMap x_1 case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := ?refine'_3, map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := ?refine'_3, map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] iterate 2 intro; ext; erw [homotopyTo_apply, toLoop_apply]; swap [GOAL] case refine'_3 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_1) = ↑(toLoop i p).toContinuousMap x_1 case refine'_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_1) = ↑(toLoop i q).toContinuousMap x_1 case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := ?refine'_3, map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := ?refine'_3, map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] intro [GOAL] case refine'_3 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x✝) = ↑(toLoop i p).toContinuousMap x✝ case refine'_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_1) = ↑(toLoop i q).toContinuousMap x_1 case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] ext [GOAL] case refine'_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x✝)) y✝ = ↑(↑(toLoop i p).toContinuousMap x✝) y✝ case refine'_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_1) = ↑(toLoop i q).toContinuousMap x_1 case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] erw [homotopyTo_apply, toLoop_apply] [GOAL] case refine'_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((0, x✝).fst, ↑(Cube.insertAt i) ((0, x✝).snd, y✝)) = ↑p (↑(Cube.insertAt i) (x✝, y✝)) case refine'_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_1) = ↑(toLoop i q).toContinuousMap x_1 case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] swap [GOAL] case refine'_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (x_1 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_1) = ↑(toLoop i q).toContinuousMap x_1 case refine'_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((0, x✝).fst, ↑(Cube.insertAt i) ((0, x✝).snd, y✝)) = ↑p (↑(Cube.insertAt i) (x✝, y✝)) case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := ?refine'_4 }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] intro [GOAL] case refine'_4 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x✝) = ↑(toLoop i q).toContinuousMap x✝ case refine'_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((0, x✝).fst, ↑(Cube.insertAt i) ((0, x✝).snd, y✝)) = ↑p (↑(Cube.insertAt i) (x✝, y✝)) case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (1, x_3) = ↑(toLoop i q).toContinuousMap x_3) }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (1, x_3) = ↑(toLoop i q).toContinuousMap x_3) }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] ext [GOAL] case refine'_4.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x✝)) y✝ = ↑(↑(toLoop i q).toContinuousMap x✝) y✝ case refine'_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((0, x✝).fst, ↑(Cube.insertAt i) ((0, x✝).snd, y✝)) = ↑p (↑(Cube.insertAt i) (x✝, y✝)) case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (1, x_3) = ↑(toLoop i q).toContinuousMap x_3) }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (1, x_3) = ↑(toLoop i q).toContinuousMap x_3) }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] erw [homotopyTo_apply, toLoop_apply] [GOAL] case refine'_4.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((1, x✝).fst, ↑(Cube.insertAt i) ((1, x✝).snd, y✝)) = ↑q (↑(Cube.insertAt i) (x✝, y✝)) case refine'_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((0, x✝).fst, ↑(Cube.insertAt i) ((0, x✝).snd, y✝)) = ↑p (↑(Cube.insertAt i) (x✝, y✝)) case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (1, x_3) = ↑(toLoop i q).toContinuousMap x_3) }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ↑(homotopyTo i H) t ∈ Ω^ { j // j ≠ i } X x) }) (1, x_3) = ↑(toLoop i q).toContinuousMap x_3) }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] swap [GOAL] case refine'_3.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((0, x✝).fst, ↑(Cube.insertAt i) ((0, x✝).snd, y✝)) = ↑p (↑(Cube.insertAt i) (x✝, y✝)) [PROOFSTEP] apply H.apply_zero [GOAL] case refine'_4.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) x✝ : ↑I y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((1, x✝).fst, ↑(Cube.insertAt i) ((1, x✝).snd, y✝)) = ↑q (↑(Cube.insertAt i) (x✝, y✝)) [PROOFSTEP] apply H.apply_one [GOAL] case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) ⊢ ∀ (t x_1 : ↑I), x_1 ∈ {0, 1} → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_3) = ↑(toLoop i q).toContinuousMap x_3) }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i p).toContinuousMap x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_3) = ↑(toLoop i p).toContinuousMap x_3), map_one_left := (_ : ∀ (x_3 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_3) = ↑(toLoop i q).toContinuousMap x_3) }.toContinuousMap (t, x_2)) x_1 = ↑(toLoop i q).toContinuousMap x_1 [PROOFSTEP] intro t y yH [GOAL] case refine'_5 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_2) = ↑(toLoop i p).toContinuousMap x_2), map_one_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_2) = ↑(toLoop i q).toContinuousMap x_2) }.toContinuousMap (t, x_1)) y = ↑(toLoop i p).toContinuousMap y ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_2) = ↑(toLoop i p).toContinuousMap x_2), map_one_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_2) = ↑(toLoop i q).toContinuousMap x_2) }.toContinuousMap (t, x_1)) y = ↑(toLoop i q).toContinuousMap y [PROOFSTEP] constructor [GOAL] case refine'_5.left N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_2) = ↑(toLoop i p).toContinuousMap x_2), map_one_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_2) = ↑(toLoop i q).toContinuousMap x_2) }.toContinuousMap (t, x_1)) y = ↑(toLoop i p).toContinuousMap y [PROOFSTEP] ext [GOAL] case refine'_5.right N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_2) = ↑(toLoop i p).toContinuousMap x_2), map_one_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_2) = ↑(toLoop i q).toContinuousMap x_2) }.toContinuousMap (t, x_1)) y = ↑(toLoop i q).toContinuousMap y [PROOFSTEP] ext [GOAL] case refine'_5.left.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_2) = ↑(toLoop i p).toContinuousMap x_2), map_one_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_2) = ↑(toLoop i q).toContinuousMap x_2) }.toContinuousMap (t, x_1)) y) y✝ = ↑(↑(toLoop i p).toContinuousMap y) y✝ [PROOFSTEP] erw [homotopyTo_apply] [GOAL] case refine'_5.right.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }, map_zero_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (0, x_2) = ↑(toLoop i p).toContinuousMap x_2), map_one_left := (_ : ∀ (x_2 : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun t => { val := ↑(homotopyTo i H) t, property := (_ : ∀ (y : { j // j ≠ i } → ↑I), y ∈ Cube.boundary { j // j ≠ i } → ↑(↑(homotopyTo i H) t) y = x) }) (1, x_2) = ↑(toLoop i q).toContinuousMap x_2) }.toContinuousMap (t, x_1)) y) y✝ = ↑(↑(toLoop i q).toContinuousMap y) y✝ [PROOFSTEP] erw [homotopyTo_apply] [GOAL] case refine'_5.left.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((t, y).fst, ↑(Cube.insertAt i) ((t, y).snd, y✝)) = ↑(↑(toLoop i p).toContinuousMap y) y✝ case refine'_5.right.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((t, y).fst, ↑(Cube.insertAt i) ((t, y).snd, y✝)) = ↑(↑(toLoop i q).toContinuousMap y) y✝ [PROOFSTEP] apply H.eq_fst [GOAL] case refine'_5.left.H.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) ((t, y).snd, y✝) ∈ Cube.boundary N case refine'_5.right.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((t, y).fst, ↑(Cube.insertAt i) ((t, y).snd, y✝)) = ↑(↑(toLoop i q).toContinuousMap y) y✝ [PROOFSTEP] on_goal 2 => apply H.eq_snd [GOAL] case refine'_5.left.H.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) ((t, y).snd, y✝) ∈ Cube.boundary N case refine'_5.right.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((t, y).fst, ↑(Cube.insertAt i) ((t, y).snd, y✝)) = ↑(↑(toLoop i q).toContinuousMap y) y✝ [PROOFSTEP] on_goal 2 => apply H.eq_snd [GOAL] case refine'_5.right.H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑H ((t, y).fst, ↑(Cube.insertAt i) ((t, y).snd, y✝)) = ↑(↑(toLoop i q).toContinuousMap y) y✝ [PROOFSTEP] apply H.eq_snd [GOAL] case refine'_5.left.H.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) ((t, y).snd, y✝) ∈ Cube.boundary N case refine'_5.right.H.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) ((t, y).snd, y✝) ∈ Cube.boundary N [PROOFSTEP] all_goals use i; rw [funSplitAt_symm_apply, dif_pos rfl]; exact yH [GOAL] case refine'_5.left.H.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) ((t, y).snd, y✝) ∈ Cube.boundary N [PROOFSTEP] use i [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) ((t, y).snd, y✝) i = 0 ∨ ↑(Cube.insertAt i) ((t, y).snd, y✝) i = 1 [PROOFSTEP] rw [funSplitAt_symm_apply, dif_pos rfl] [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ((t, y).snd, y✝).fst = 0 ∨ ((t, y).snd, y✝).fst = 1 [PROOFSTEP] exact yH [GOAL] case refine'_5.right.H.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) ((t, y).snd, y✝) ∈ Cube.boundary N [PROOFSTEP] use i [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ↑(Cube.insertAt i) ((t, y).snd, y✝) i = 0 ∨ ↑(Cube.insertAt i) ((t, y).snd, y✝) i = 1 [PROOFSTEP] rw [funSplitAt_symm_apply, dif_pos rfl] [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑p) (↑q) (Cube.boundary N) t y : ↑I yH : y ∈ {0, 1} y✝ : { j // j ≠ i } → ↑I ⊢ ((t, y).snd, y✝).fst = 0 ∨ ((t, y).snd, y✝).fst = 1 [PROOFSTEP] exact yH [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ Continuous Subtype.val [PROOFSTEP] continuity [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) ⊢ Path.Homotopic (toLoop i p) (toLoop i q) → Homotopic p q [PROOFSTEP] refine' Nonempty.map fun H => ⟨⟨homotopyFrom i H, _, _⟩, _⟩ [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (x_1 : N → ↑I), ContinuousMap.toFun (homotopyFrom i H) (0, x_1) = ↑↑p x_1 case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (x_1 : N → ↑I), ContinuousMap.toFun (homotopyFrom i H) (1, x_1) = ↑↑q x_1 case refine'_3 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (t : ↑I) (x_1 : N → ↑I), x_1 ∈ Cube.boundary N → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := homotopyFrom i H, map_zero_left := ?refine'_1, map_one_left := ?refine'_2 }.toContinuousMap (t, x_2)) x_1 = ↑↑p x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := homotopyFrom i H, map_zero_left := ?refine'_1, map_one_left := ?refine'_2 }.toContinuousMap (t, x_2)) x_1 = ↑↑q x_1 [PROOFSTEP] pick_goal 3 [GOAL] case refine'_3 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (t : ↑I) (x_1 : N → ↑I), x_1 ∈ Cube.boundary N → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := homotopyFrom i H, map_zero_left := ?refine'_1, map_one_left := ?refine'_2 }.toContinuousMap (t, x_2)) x_1 = ↑↑p x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := homotopyFrom i H, map_zero_left := ?refine'_1, map_one_left := ?refine'_2 }.toContinuousMap (t, x_2)) x_1 = ↑↑q x_1 [PROOFSTEP] rintro t y ⟨j, jH⟩ [GOAL] case refine'_3.intro N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := homotopyFrom i H, map_zero_left := ?refine'_1, map_one_left := ?refine'_2 }.toContinuousMap (t, x_1)) y = ↑↑p y ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := homotopyFrom i H, map_zero_left := ?refine'_1, map_one_left := ?refine'_2 }.toContinuousMap (t, x_1)) y = ↑↑q y [PROOFSTEP] erw [homotopyFrom_apply] [GOAL] case refine'_3.intro N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 ⊢ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) i)) fun j => Prod.snd (t, y) ↑j) = ↑↑p y ∧ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) i)) fun j => Prod.snd (t, y) ↑j) = ↑↑q y case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (x_1 : N → ↑I), ContinuousMap.toFun (homotopyFrom i H) (0, x_1) = ↑↑p x_1 case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (x_1 : N → ↑I), ContinuousMap.toFun (homotopyFrom i H) (1, x_1) = ↑↑q x_1 [PROOFSTEP] obtain rfl | h := eq_or_ne j i [GOAL] case refine'_3.intro.inl N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N p q : ↑(Ω^ N X x) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 H : Path.Homotopy (toLoop j p) (toLoop j q) ⊢ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) j)) fun j_1 => Prod.snd (t, y) ↑j_1) = ↑↑p y ∧ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) j)) fun j_1 => Prod.snd (t, y) ↑j_1) = ↑↑q y [PROOFSTEP] constructor [GOAL] case refine'_3.intro.inl.left N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N p q : ↑(Ω^ N X x) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 H : Path.Homotopy (toLoop j p) (toLoop j q) ⊢ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) j)) fun j_1 => Prod.snd (t, y) ↑j_1) = ↑↑p y [PROOFSTEP] rw [H.eq_fst] [GOAL] case refine'_3.intro.inl.left N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N p q : ↑(Ω^ N X x) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 H : Path.Homotopy (toLoop j p) (toLoop j q) ⊢ (↑↑(↑(toLoop j p).toContinuousMap (Prod.snd (t, y) j)) fun j_1 => Prod.snd (t, y) ↑j_1) = ↑↑p y case refine'_3.intro.inl.left.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N p q : ↑(Ω^ N X x) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 H : Path.Homotopy (toLoop j p) (toLoop j q) ⊢ Prod.snd (t, y) j ∈ {0, 1} [PROOFSTEP] exacts [congr_arg p ((Cube.splitAt j).left_inv _), jH] [GOAL] case refine'_3.intro.inl.right N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N p q : ↑(Ω^ N X x) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 H : Path.Homotopy (toLoop j p) (toLoop j q) ⊢ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) j)) fun j_1 => Prod.snd (t, y) ↑j_1) = ↑↑q y [PROOFSTEP] rw [H.eq_snd] [GOAL] case refine'_3.intro.inl.right N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N p q : ↑(Ω^ N X x) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 H : Path.Homotopy (toLoop j p) (toLoop j q) ⊢ (↑↑(↑(toLoop j q).toContinuousMap (Prod.snd (t, y) j)) fun j_1 => Prod.snd (t, y) ↑j_1) = ↑↑q y case refine'_3.intro.inl.right.hx N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N p q : ↑(Ω^ N X x) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 H : Path.Homotopy (toLoop j p) (toLoop j q) ⊢ Prod.snd (t, y) j ∈ {0, 1} [PROOFSTEP] exacts [congr_arg q ((Cube.splitAt j).left_inv _), jH] [GOAL] case refine'_3.intro.inr N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 h : j ≠ i ⊢ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) i)) fun j => Prod.snd (t, y) ↑j) = ↑↑p y ∧ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) i)) fun j => Prod.snd (t, y) ↑j) = ↑↑q y [PROOFSTEP] rw [p.2 _ ⟨j, jH⟩, q.2 _ ⟨j, jH⟩] [GOAL] case refine'_3.intro.inr N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 h : j ≠ i ⊢ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) i)) fun j => Prod.snd (t, y) ↑j) = x ∧ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) i)) fun j => Prod.snd (t, y) ↑j) = x [PROOFSTEP] constructor [GOAL] case refine'_3.intro.inr.left N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 h : j ≠ i ⊢ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) i)) fun j => Prod.snd (t, y) ↑j) = x [PROOFSTEP] apply boundary [GOAL] case refine'_3.intro.inr.left.a N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 h : j ≠ i ⊢ (fun j => Prod.snd (t, y) ↑j) ∈ Cube.boundary { j // ¬j = i } [PROOFSTEP] exact ⟨⟨j, h⟩, jH⟩ /- porting note: the following is indented two spaces more than it should be due to strange behavior of `erw` -/ [GOAL] case refine'_3.intro.inr.right N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 h : j ≠ i ⊢ (↑↑(↑H ((t, y).fst, Prod.snd (t, y) i)) fun j => Prod.snd (t, y) ↑j) = x [PROOFSTEP] apply boundary [GOAL] case refine'_3.intro.inr.right.a N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) t : ↑I y : N → ↑I j : N jH : y j = 0 ∨ y j = 1 h : j ≠ i ⊢ (fun j => Prod.snd (t, y) ↑j) ∈ Cube.boundary { j // ¬j = i } [PROOFSTEP] exact ⟨⟨j, h⟩, jH⟩ /- porting note: the following is indented two spaces more than it should be due to strange behavior of `erw` -/ [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (x_1 : N → ↑I), ContinuousMap.toFun (homotopyFrom i H) (0, x_1) = ↑↑p x_1 case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (x_1 : N → ↑I), ContinuousMap.toFun (homotopyFrom i H) (1, x_1) = ↑↑q x_1 [PROOFSTEP] all_goals intro apply (homotopyFrom_apply _ _ _).trans first | rw [H.apply_zero] | rw [H.apply_one] first | apply congr_arg p | apply congr_arg q apply (Cube.splitAt i).left_inv [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (x_1 : N → ↑I), ContinuousMap.toFun (homotopyFrom i H) (0, x_1) = ↑↑p x_1 [PROOFSTEP] intro [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ ContinuousMap.toFun (homotopyFrom i H) (0, x✝) = ↑↑p x✝ [PROOFSTEP] apply (homotopyFrom_apply _ _ _).trans [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑H ((0, x✝).fst, Prod.snd (0, x✝) i)) fun j => Prod.snd (0, x✝) ↑j) = ↑↑p x✝ [PROOFSTEP] first | rw [H.apply_zero] | rw [H.apply_one] [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑H ((0, x✝).fst, Prod.snd (0, x✝) i)) fun j => Prod.snd (0, x✝) ↑j) = ↑↑p x✝ [PROOFSTEP] rw [H.apply_zero] [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑(toLoop i p).toContinuousMap (Prod.snd (0, x✝) i)) fun j => Prod.snd (0, x✝) ↑j) = ↑↑p x✝ [PROOFSTEP] first | apply congr_arg p | apply congr_arg q [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑(toLoop i p).toContinuousMap (Prod.snd (0, x✝) i)) fun j => Prod.snd (0, x✝) ↑j) = ↑↑p x✝ [PROOFSTEP] apply congr_arg p [GOAL] case refine'_1 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ ↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (Prod.snd (0, x✝) i, fun j => Prod.snd (0, x✝) ↑j) = x✝ [PROOFSTEP] apply (Cube.splitAt i).left_inv [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) ⊢ ∀ (x_1 : N → ↑I), ContinuousMap.toFun (homotopyFrom i H) (1, x_1) = ↑↑q x_1 [PROOFSTEP] intro [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ ContinuousMap.toFun (homotopyFrom i H) (1, x✝) = ↑↑q x✝ [PROOFSTEP] apply (homotopyFrom_apply _ _ _).trans [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑H ((1, x✝).fst, Prod.snd (1, x✝) i)) fun j => Prod.snd (1, x✝) ↑j) = ↑↑q x✝ [PROOFSTEP] first | rw [H.apply_zero] | rw [H.apply_one] [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑H ((1, x✝).fst, Prod.snd (1, x✝) i)) fun j => Prod.snd (1, x✝) ↑j) = ↑↑q x✝ [PROOFSTEP] rw [H.apply_zero] [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑H ((1, x✝).fst, Prod.snd (1, x✝) i)) fun j => Prod.snd (1, x✝) ↑j) = ↑↑q x✝ [PROOFSTEP] rw [H.apply_one] [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑(toLoop i q).toContinuousMap (Prod.snd (1, x✝) i)) fun j => Prod.snd (1, x✝) ↑j) = ↑↑q x✝ [PROOFSTEP] first | apply congr_arg p | apply congr_arg q [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑(toLoop i q).toContinuousMap (Prod.snd (1, x✝) i)) fun j => Prod.snd (1, x✝) ↑j) = ↑↑q x✝ [PROOFSTEP] apply congr_arg p [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ (↑↑(↑(toLoop i q).toContinuousMap (Prod.snd (1, x✝) i)) fun j => Prod.snd (1, x✝) ↑j) = ↑↑q x✝ [PROOFSTEP] apply congr_arg q [GOAL] case refine'_2 N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N p q : ↑(Ω^ N X x) H : Path.Homotopy (toLoop i p) (toLoop i q) x✝ : N → ↑I ⊢ ↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (Prod.snd (1, x✝) i, fun j => Prod.snd (1, x✝) ↑j) = x✝ [PROOFSTEP] apply (Cube.splitAt i).left_inv [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) ⊢ (fun t => if ↑(t i) ≤ 1 / 2 then ↑f (Function.update t i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(t i)))) else ↑g (Function.update t i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(t i) - 1)))) = ↑(fromLoop i (Path.trans (toLoop i f) (toLoop i g))) [PROOFSTEP] ext1 [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I ⊢ (if ↑(x✝ i) ≤ 1 / 2 then ↑f (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i)))) else ↑g (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i) - 1)))) = ↑(fromLoop i (Path.trans (toLoop i f) (toLoop i g))) x✝ [PROOFSTEP] symm [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I ⊢ ↑(fromLoop i (Path.trans (toLoop i f) (toLoop i g))) x✝ = if ↑(x✝ i) ≤ 1 / 2 then ↑f (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i)))) else ↑g (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i) - 1))) [PROOFSTEP] dsimp only [Path.trans, fromLoop, Path.coe_mk_mk, Function.comp_apply, mk_apply, ContinuousMap.comp_apply, toContinuousMap_apply, funSplitAt_apply, ContinuousMap.uncurry_apply, ContinuousMap.coe_mk, Function.uncurry_apply_pair] [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I ⊢ (↑↑(if ↑(x✝ i) ≤ 1 / 2 then Path.extend (toLoop i f) (2 * ↑(x✝ i)) else Path.extend (toLoop i g) (2 * ↑(x✝ i) - 1)) fun j => x✝ ↑j) = if ↑(x✝ i) ≤ 1 / 2 then ↑f (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i)))) else ↑g (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i) - 1))) [PROOFSTEP] split_ifs [GOAL] case pos N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ↑(x✝ i) ≤ 1 / 2 ⊢ (↑↑(Path.extend (toLoop i f) (2 * ↑(x✝ i))) fun j => x✝ ↑j) = ↑f (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i)))) case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ¬↑(x✝ i) ≤ 1 / 2 ⊢ (↑↑(Path.extend (toLoop i g) (2 * ↑(x✝ i) - 1)) fun j => x✝ ↑j) = ↑g (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i) - 1))) [PROOFSTEP] change f _ = _ [GOAL] case pos N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ↑(x✝ i) ≤ 1 / 2 ⊢ ↑f (↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (Set.projIcc 0 1 Path.extend.proof_1 (2 * ↑(x✝ i)), fun j => x✝ ↑j)) = ↑f (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i)))) case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ¬↑(x✝ i) ≤ 1 / 2 ⊢ (↑↑(Path.extend (toLoop i g) (2 * ↑(x✝ i) - 1)) fun j => x✝ ↑j) = ↑g (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i) - 1))) [PROOFSTEP] swap [GOAL] case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ¬↑(x✝ i) ≤ 1 / 2 ⊢ (↑↑(Path.extend (toLoop i g) (2 * ↑(x✝ i) - 1)) fun j => x✝ ↑j) = ↑g (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i) - 1))) case pos N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ↑(x✝ i) ≤ 1 / 2 ⊢ ↑f (↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (Set.projIcc 0 1 Path.extend.proof_1 (2 * ↑(x✝ i)), fun j => x✝ ↑j)) = ↑f (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i)))) [PROOFSTEP] change g _ = _ [GOAL] case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ¬↑(x✝ i) ≤ 1 / 2 ⊢ ↑g (↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (Set.projIcc 0 1 Path.extend.proof_1 (2 * ↑(x✝ i) - 1), fun j => x✝ ↑j)) = ↑g (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i) - 1))) case pos N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ↑(x✝ i) ≤ 1 / 2 ⊢ ↑f (↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (Set.projIcc 0 1 Path.extend.proof_1 (2 * ↑(x✝ i)), fun j => x✝ ↑j)) = ↑f (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i)))) [PROOFSTEP] all_goals congr 1 [GOAL] case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ¬↑(x✝ i) ≤ 1 / 2 ⊢ ↑g (↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (Set.projIcc 0 1 Path.extend.proof_1 (2 * ↑(x✝ i) - 1), fun j => x✝ ↑j)) = ↑g (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i) - 1))) [PROOFSTEP] congr 1 [GOAL] case pos N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f g : ↑(Ω^ N X x) x✝ : N → ↑I h✝ : ↑(x✝ i) ≤ 1 / 2 ⊢ ↑f (↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (Set.projIcc 0 1 Path.extend.proof_1 (2 * ↑(x✝ i)), fun j => x✝ ↑j)) = ↑f (Function.update x✝ i (Set.projIcc 0 1 (_ : 0 ≤ 1) (2 * ↑(x✝ i)))) [PROOFSTEP] congr 1 [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f : ↑(Ω^ N X x) ⊢ (fun t => ↑f fun j => if j = i then σ (t i) else t j) = ↑(fromLoop i (Path.symm (toLoop i f))) [PROOFSTEP] ext1 [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f : ↑(Ω^ N X x) x✝ : N → ↑I ⊢ (↑f fun j => if j = i then σ (x✝ i) else x✝ j) = ↑(fromLoop i (Path.symm (toLoop i f))) x✝ [PROOFSTEP] change _ = f _ [GOAL] case h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f : ↑(Ω^ N X x) x✝ : N → ↑I ⊢ (↑f fun j => if j = i then σ (x✝ i) else x✝ j) = ↑f (↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (σ (↑(Homeomorph.toContinuousMap (Cube.splitAt i)) x✝).fst, (↑(Homeomorph.toContinuousMap (Cube.splitAt i)) x✝).snd)) [PROOFSTEP] congr [GOAL] case h.h.e_6.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f : ↑(Ω^ N X x) x✝ : N → ↑I ⊢ (fun j => if j = i then σ (x✝ i) else x✝ j) = ↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (σ (↑(Homeomorph.toContinuousMap (Cube.splitAt i)) x✝).fst, (↑(Homeomorph.toContinuousMap (Cube.splitAt i)) x✝).snd) [PROOFSTEP] ext1 [GOAL] case h.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N f : ↑(Ω^ N X x) x✝¹ : N → ↑I x✝ : N ⊢ (if x✝ = i then σ (x✝¹ i) else x✝¹ x✝) = ↑(Homeomorph.toContinuousMap (Cube.insertAt i)) (σ (↑(Homeomorph.toContinuousMap (Cube.splitAt i)) x✝¹).fst, (↑(Homeomorph.toContinuousMap (Cube.splitAt i)) x✝¹).snd) x✝ [PROOFSTEP] simp [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) ⊢ transAt i (transAt j a b) (transAt j c d) = transAt j (transAt i a c) (transAt i b d) [PROOFSTEP] ext [GOAL] case H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I ⊢ ↑(transAt i (transAt j a b) (transAt j c d)) y✝ = ↑(transAt j (transAt i a c) (transAt i b d)) y✝ [PROOFSTEP] simp_rw [transAt, coe_copy, Function.update_apply, if_neg h, if_neg h.symm] [GOAL] case H N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I ⊢ (if ↑(y✝ i) ≤ 1 / 2 then if ↑(y✝ j) ≤ 1 / 2 then ↑a (Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) else ↑b (Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) else if ↑(y✝ j) ≤ 1 / 2 then ↑c (Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) else ↑d (Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1)))) = if ↑(y✝ j) ≤ 1 / 2 then if ↑(y✝ i) ≤ 1 / 2 then ↑a (Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) else ↑c (Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) else if ↑(y✝ i) ≤ 1 / 2 then ↑b (Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) else ↑d (Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) [PROOFSTEP] split_ifs [GOAL] case pos N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 ⊢ ↑a (Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) = ↑a (Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) [PROOFSTEP] congr 1 [GOAL] case pos.h.e_6.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 ⊢ Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j))) = Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i))) [PROOFSTEP] ext1 [GOAL] case pos.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j))) x✝ = Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i))) x✝ [PROOFSTEP] simp only [Function.update, eq_rec_constant, dite_eq_ite] [GOAL] case pos.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ (if x✝ = j then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)) else if x✝ = i then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)) else y✝ x✝) = if x✝ = i then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)) else if x✝ = j then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)) else y✝ x✝ [PROOFSTEP] apply ite_ite_comm [GOAL] case pos.h.e_6.h.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ x✝ = j → ¬x✝ = i [PROOFSTEP] rintro rfl [GOAL] case pos.h.e_6.h.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 x✝ : N h : i ≠ x✝ h✝ : ↑(y✝ x✝) ≤ 1 / 2 ⊢ ¬x✝ = i [PROOFSTEP] exact h.symm [GOAL] case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 ⊢ ↑b (Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) = ↑b (Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) [PROOFSTEP] congr 1 [GOAL] case neg.h.e_6.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 ⊢ Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1)) = Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i))) [PROOFSTEP] ext1 [GOAL] case neg.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1)) x✝ = Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i))) x✝ [PROOFSTEP] simp only [Function.update, eq_rec_constant, dite_eq_ite] [GOAL] case neg.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ (if x✝ = j then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1) else if x✝ = i then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)) else y✝ x✝) = if x✝ = i then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i)) else if x✝ = j then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1) else y✝ x✝ [PROOFSTEP] apply ite_ite_comm [GOAL] case neg.h.e_6.h.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ x✝ = j → ¬x✝ = i [PROOFSTEP] rintro rfl [GOAL] case neg.h.e_6.h.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ↑(y✝ i) ≤ 1 / 2 x✝ : N h : i ≠ x✝ h✝ : ¬↑(y✝ x✝) ≤ 1 / 2 ⊢ ¬x✝ = i [PROOFSTEP] exact h.symm [GOAL] case pos N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 ⊢ ↑c (Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) = ↑c (Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) [PROOFSTEP] congr 1 [GOAL] case pos.h.e_6.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 ⊢ Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j))) = Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1)) [PROOFSTEP] ext1 [GOAL] case pos.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j))) x✝ = Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1)) x✝ [PROOFSTEP] simp only [Function.update, eq_rec_constant, dite_eq_ite] [GOAL] case pos.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ (if x✝ = j then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)) else if x✝ = i then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1) else y✝ x✝) = if x✝ = i then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1) else if x✝ = j then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j)) else y✝ x✝ [PROOFSTEP] apply ite_ite_comm [GOAL] case pos.h.e_6.h.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ x✝ = j → ¬x✝ = i [PROOFSTEP] rintro rfl [GOAL] case pos.h.e_6.h.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 x✝ : N h : i ≠ x✝ h✝ : ↑(y✝ x✝) ≤ 1 / 2 ⊢ ¬x✝ = i [PROOFSTEP] exact h.symm [GOAL] case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 ⊢ ↑d (Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) = ↑d (Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) [PROOFSTEP] congr 1 [GOAL] case neg.h.e_6.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 ⊢ Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1)) = Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1)) [PROOFSTEP] ext1 [GOAL] case neg.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ Function.update (Function.update y✝ i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1))) j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1)) x✝ = Function.update (Function.update y✝ j (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1))) i (Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1)) x✝ [PROOFSTEP] simp only [Function.update, eq_rec_constant, dite_eq_ite] [GOAL] case neg.h.e_6.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ (if x✝ = j then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1) else if x✝ = i then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1) else y✝ x✝) = if x✝ = i then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ i) - 1) else if x✝ = j then Set.projIcc 0 1 transAt.proof_2 (2 * ↑(y✝ j) - 1) else y✝ x✝ [PROOFSTEP] apply ite_ite_comm [GOAL] case neg.h.e_6.h.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i ≠ j a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 h✝ : ¬↑(y✝ j) ≤ 1 / 2 x✝ : N ⊢ x✝ = j → ¬x✝ = i [PROOFSTEP] rintro rfl [GOAL] case neg.h.e_6.h.h.h N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N a b c d : ↑(Ω^ N X x) y✝ : N → ↑I h✝¹ : ¬↑(y✝ i) ≤ 1 / 2 x✝ : N h : i ≠ x✝ h✝ : ¬↑(y✝ x✝) ≤ 1 / 2 ⊢ ¬x✝ = i [PROOFSTEP] exact h.symm [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N ⊢ HomotopyGroup N X x ≃ FundamentalGroup (↑(Ω^ { j // j ≠ i } X x)) const [PROOFSTEP] refine' Equiv.trans _ (CategoryTheory.Groupoid.isoEquivHom _ _).symm [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N ⊢ HomotopyGroup N X x ≃ (const ⟶ const) [PROOFSTEP] apply Quotient.congr (loopHomeo i).toEquiv [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i : N ⊢ ∀ (a₁ a₂ : ↑(Ω^ N X x)), Setoid.r a₁ a₂ ↔ Setoid.r (↑(loopHomeo i).toEquiv a₁) (↑(loopHomeo i).toEquiv a₂) [PROOFSTEP] exact fun p q => ⟨homotopicTo i, homotopicFrom i⟩ [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x✝ : X inst✝¹ : DecidableEq N✝ N : Type ?u.533751 x : X inst✝ : IsEmpty N f : ↑(Ω^ N X x) ⊢ (fun y => { val := ContinuousMap.const (N → ↑I) y, property := (_ : ∀ (x_1 : N → ↑I), x_1 ∈ Cube.boundary N → ↑(ContinuousMap.const (N → ↑I) y) x_1 = x) }) ((fun f => ↑f 0) f) = f [PROOFSTEP] ext [GOAL] case H N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x✝ : X inst✝¹ : DecidableEq N✝ N : Type ?u.533751 x : X inst✝ : IsEmpty N f : ↑(Ω^ N X x) y✝ : N → ↑I ⊢ ↑((fun y => { val := ContinuousMap.const (N → ↑I) y, property := (_ : ∀ (x_1 : N → ↑I), x_1 ∈ Cube.boundary N → ↑(ContinuousMap.const (N → ↑I) y) x_1 = x) }) ((fun f => ↑f 0) f)) y✝ = ↑f y✝ [PROOFSTEP] exact congr_arg f (Subsingleton.elim _ _) [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x✝ : X inst✝¹ : DecidableEq N✝ N : Type ?u.536140 x : X inst✝ : IsEmpty N ⊢ ∀ (a₁ a₂ : ↑(Ω^ N X x)), Setoid.r a₁ a₂ ↔ Setoid.r (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₁) (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₂) [PROOFSTEP] intros a₁ a₂ [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x✝ : X inst✝¹ : DecidableEq N✝ N : Type ?u.536140 x : X inst✝ : IsEmpty N a₁ a₂ : ↑(Ω^ N X x) ⊢ Setoid.r a₁ a₂ ↔ Setoid.r (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₁) (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₂) [PROOFSTEP] constructor [GOAL] case mp N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x✝ : X inst✝¹ : DecidableEq N✝ N : Type ?u.536140 x : X inst✝ : IsEmpty N a₁ a₂ : ↑(Ω^ N X x) ⊢ Setoid.r a₁ a₂ → Setoid.r (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₁) (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₂) [PROOFSTEP] rintro ⟨H⟩ [GOAL] case mpr N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x✝ : X inst✝¹ : DecidableEq N✝ N : Type ?u.536140 x : X inst✝ : IsEmpty N a₁ a₂ : ↑(Ω^ N X x) ⊢ Setoid.r (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₁) (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₂) → Setoid.r a₁ a₂ [PROOFSTEP] rintro ⟨H⟩ [GOAL] case mp.intro N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x✝ : X inst✝¹ : DecidableEq N✝ N : Type ?u.536140 x : X inst✝ : IsEmpty N a₁ a₂ : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑a₁) (↑a₂) (Cube.boundary N) ⊢ Setoid.r (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₁) (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₂) case mpr.intro N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x✝ : X inst✝¹ : DecidableEq N✝ N : Type ?u.536140 x : X inst✝ : IsEmpty N a₁ a₂ : ↑(Ω^ N X x) H : Path (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₁) (↑(genLoopHomeoOfIsEmpty N x).toEquiv a₂) ⊢ Setoid.r a₁ a₂ [PROOFSTEP] exacts [⟨{ toFun := fun t => H ⟨t, isEmptyElim⟩ source' := (H.apply_zero _).trans (congr_arg a₁ <| Subsingleton.elim _ _) target' := (H.apply_one _).trans (congr_arg a₂ <| Subsingleton.elim _ _) }⟩, ⟨{ toFun := fun t0 => H t0.fst map_zero_left := fun _ => H.source.trans (congr_arg a₁ <| Subsingleton.elim _ _) map_one_left := fun _ => H.target.trans (congr_arg a₂ <| Subsingleton.elim _ _) prop' := fun _ _ ⟨i, _⟩ => isEmptyElim i }⟩] [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : ↑(Ω^ N X x) ⊢ Continuous fun t => ↑p fun x => t [PROOFSTEP] continuity [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x ⊢ Continuous fun c => ↑p (c default) [PROOFSTEP] continuity [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x ⊢ (ContinuousMap.mk fun c => ↑p (c default)) ∈ Ω^ N X x [PROOFSTEP] rintro y ⟨i, iH | iH⟩ [GOAL] case intro.inl N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x y : N → ↑I i : N iH : y i = 0 ⊢ ↑(ContinuousMap.mk fun c => ↑p (c default)) y = x [PROOFSTEP] cases Unique.eq_default i [GOAL] case intro.inr N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x y : N → ↑I i : N iH : y i = 1 ⊢ ↑(ContinuousMap.mk fun c => ↑p (c default)) y = x [PROOFSTEP] cases Unique.eq_default i [GOAL] case intro.inl.refl N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x y : N → ↑I iH : y default = 0 ⊢ ↑(ContinuousMap.mk fun c => ↑p (c default)) y = x [PROOFSTEP] apply (congr_arg p iH).trans [GOAL] case intro.inr.refl N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x y : N → ↑I iH : y default = 1 ⊢ ↑(ContinuousMap.mk fun c => ↑p (c default)) y = x [PROOFSTEP] apply (congr_arg p iH).trans [GOAL] case intro.inl.refl N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x y : N → ↑I iH : y default = 0 ⊢ ↑p 0 = x case intro.inr.refl N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x y : N → ↑I iH : y default = 1 ⊢ ↑p 1 = x [PROOFSTEP] exacts [p.source, p.target] [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : ↑(Ω^ N X x) ⊢ (fun p => { val := ContinuousMap.mk fun c => ↑p (c default), property := (_ : ∀ (y : N → ↑I), y ∈ Cube.boundary N → ↑(ContinuousMap.mk fun c => ↑p (c default)) y = x) }) ((fun p => { toContinuousMap := ContinuousMap.mk fun t => ↑p fun x => t, source' := (_ : (↑p fun x => 0) = x), target' := (_ : (↑p fun x => 1) = x) }) p) = p [PROOFSTEP] ext y [GOAL] case H N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : ↑(Ω^ N X x) y : N → ↑I ⊢ ↑((fun p => { val := ContinuousMap.mk fun c => ↑p (c default), property := (_ : ∀ (y : N → ↑I), y ∈ Cube.boundary N → ↑(ContinuousMap.mk fun c => ↑p (c default)) y = x) }) ((fun p => { toContinuousMap := ContinuousMap.mk fun t => ↑p fun x => t, source' := (_ : (↑p fun x => 0) = x), target' := (_ : (↑p fun x => 1) = x) }) p)) y = ↑p y [PROOFSTEP] exact congr_arg p (eq_const_of_unique y).symm [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x ⊢ (fun p => { toContinuousMap := ContinuousMap.mk fun t => ↑p fun x => t, source' := (_ : (↑p fun x => 0) = x), target' := (_ : (↑p fun x => 1) = x) }) ((fun p => { val := ContinuousMap.mk fun c => ↑p (c default), property := (_ : ∀ (y : N → ↑I), y ∈ Cube.boundary N → ↑(ContinuousMap.mk fun c => ↑p (c default)) y = x) }) p) = p [PROOFSTEP] ext [GOAL] case a.h N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.636077 inst✝ : Unique N p : Ω X x x✝ : ↑I ⊢ ↑((fun p => { toContinuousMap := ContinuousMap.mk fun t => ↑p fun x => t, source' := (_ : (↑p fun x => 0) = x), target' := (_ : (↑p fun x => 1) = x) }) ((fun p => { val := ContinuousMap.mk fun c => ↑p (c default), property := (_ : ∀ (y : N → ↑I), y ∈ Cube.boundary N → ↑(ContinuousMap.mk fun c => ↑p (c default)) y = x) }) p)) x✝ = ↑p x✝ [PROOFSTEP] rfl [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N ⊢ HomotopyGroup N X x ≃ FundamentalGroup X x [PROOFSTEP] refine' Equiv.trans _ (CategoryTheory.Groupoid.isoEquivHom _ _).symm [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N ⊢ HomotopyGroup N X x ≃ (x ⟶ x) [PROOFSTEP] refine' Quotient.congr (genLoopEquivOfUnique N) _ [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N ⊢ ∀ (a₁ a₂ : ↑(Ω^ N X x)), Setoid.r a₁ a₂ ↔ Setoid.r (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) [PROOFSTEP] intros a₁ a₂ [GOAL] N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) ⊢ Setoid.r a₁ a₂ ↔ Setoid.r (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) [PROOFSTEP] constructor [GOAL] case mp N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) ⊢ Setoid.r a₁ a₂ → Setoid.r (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) [PROOFSTEP] rintro ⟨H⟩ [GOAL] case mpr N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) ⊢ Setoid.r (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) → Setoid.r a₁ a₂ [PROOFSTEP] rintro ⟨H⟩ [GOAL] case mp.intro N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : ContinuousMap.HomotopyRel (↑a₁) (↑a₂) (Cube.boundary N) ⊢ Setoid.r (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) [PROOFSTEP] exact ⟨{ toFun := fun tx => H (tx.fst, fun _ => tx.snd) map_zero_left := fun _ => H.apply_zero _ map_one_left := fun _ => H.apply_one _ prop' := fun t y iH => H.prop' _ _ ⟨default, iH⟩ }⟩ [GOAL] case mpr.intro N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) ⊢ Setoid.r a₁ a₂ [PROOFSTEP] refine' ⟨⟨⟨⟨fun tx => H (tx.fst, tx.snd default), H.continuous.comp _⟩, fun y => _, fun y => _⟩, _⟩⟩ [GOAL] case mpr.intro.refine'_1 N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) ⊢ Continuous fun tx => (tx.fst, Prod.snd tx default) [PROOFSTEP] exact continuous_fst.prod_mk ((continuous_apply _).comp continuous_snd) [GOAL] case mpr.intro.refine'_2 N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) y : N → ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default)) (0, y) = ↑↑a₁ y [PROOFSTEP] exact (H.apply_zero _).trans (congr_arg a₁ (eq_const_of_unique y).symm) [GOAL] case mpr.intro.refine'_3 N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) y : N → ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default)) (1, y) = ↑↑a₂ y [PROOFSTEP] exact (H.apply_one _).trans (congr_arg a₂ (eq_const_of_unique y).symm) [GOAL] case mpr.intro.refine'_4 N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) ⊢ ∀ (t : ↑I) (x_1 : N → ↑I), x_1 ∈ Cube.boundary N → ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default), map_zero_left := (_ : ∀ (y : N → ↑I), ↑H (0, Prod.snd (0, y) default) = ↑↑a₁ y), map_one_left := (_ : ∀ (y : N → ↑I), ↑H (1, Prod.snd (1, y) default) = ↑↑a₂ y) }.toContinuousMap (t, x_2)) x_1 = ↑↑a₁ x_1 ∧ ↑(ContinuousMap.mk fun x_2 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default), map_zero_left := (_ : ∀ (y : N → ↑I), ↑H (0, Prod.snd (0, y) default) = ↑↑a₁ y), map_one_left := (_ : ∀ (y : N → ↑I), ↑H (1, Prod.snd (1, y) default) = ↑↑a₂ y) }.toContinuousMap (t, x_2)) x_1 = ↑↑a₂ x_1 [PROOFSTEP] rintro t y ⟨i, iH⟩ [GOAL] case mpr.intro.refine'_4.intro N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) t : ↑I y : N → ↑I i : N iH : y i = 0 ∨ y i = 1 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default), map_zero_left := (_ : ∀ (y : N → ↑I), ↑H (0, Prod.snd (0, y) default) = ↑↑a₁ y), map_one_left := (_ : ∀ (y : N → ↑I), ↑H (1, Prod.snd (1, y) default) = ↑↑a₂ y) }.toContinuousMap (t, x_1)) y = ↑↑a₁ y ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default), map_zero_left := (_ : ∀ (y : N → ↑I), ↑H (0, Prod.snd (0, y) default) = ↑↑a₁ y), map_one_left := (_ : ∀ (y : N → ↑I), ↑H (1, Prod.snd (1, y) default) = ↑↑a₂ y) }.toContinuousMap (t, x_1)) y = ↑↑a₂ y [PROOFSTEP] cases Unique.eq_default i [GOAL] case mpr.intro.refine'_4.intro.refl N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) t : ↑I y : N → ↑I iH : y default = 0 ∨ y default = 1 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default), map_zero_left := (_ : ∀ (y : N → ↑I), ↑H (0, Prod.snd (0, y) default) = ↑↑a₁ y), map_one_left := (_ : ∀ (y : N → ↑I), ↑H (1, Prod.snd (1, y) default) = ↑↑a₂ y) }.toContinuousMap (t, x_1)) y = ↑↑a₁ y ∧ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default), map_zero_left := (_ : ∀ (y : N → ↑I), ↑H (0, Prod.snd (0, y) default) = ↑↑a₁ y), map_one_left := (_ : ∀ (y : N → ↑I), ↑H (1, Prod.snd (1, y) default) = ↑↑a₂ y) }.toContinuousMap (t, x_1)) y = ↑↑a₂ y [PROOFSTEP] constructor [GOAL] case mpr.intro.refine'_4.intro.refl.left N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) t : ↑I y : N → ↑I iH : y default = 0 ∨ y default = 1 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default), map_zero_left := (_ : ∀ (y : N → ↑I), ↑H (0, Prod.snd (0, y) default) = ↑↑a₁ y), map_one_left := (_ : ∀ (y : N → ↑I), ↑H (1, Prod.snd (1, y) default) = ↑↑a₂ y) }.toContinuousMap (t, x_1)) y = ↑↑a₁ y [PROOFSTEP] exact (H.eq_fst _ iH).trans (congr_arg a₁ (eq_const_of_unique y).symm) [GOAL] case mpr.intro.refine'_4.intro.refl.right N✝ : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N✝ N : Type ?u.712366 inst✝ : Unique N a₁ a₂ : ↑(Ω^ N X x) H : Path.Homotopy (↑(genLoopEquivOfUnique N) a₁) (↑(genLoopEquivOfUnique N) a₂) t : ↑I y : N → ↑I iH : y default = 0 ∨ y default = 1 ⊢ ↑(ContinuousMap.mk fun x_1 => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun tx => ↑H (tx.fst, Prod.snd tx default), map_zero_left := (_ : ∀ (y : N → ↑I), ↑H (0, Prod.snd (0, y) default) = ↑↑a₁ y), map_one_left := (_ : ∀ (y : N → ↑I), ↑H (1, Prod.snd (1, y) default) = ↑↑a₂ y) }.toContinuousMap (t, x_1)) y = ↑↑a₂ y [PROOFSTEP] exact (H.eq_snd _ iH).trans (congr_arg a₂ (eq_const_of_unique y).symm) [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N ⊢ auxGroup i = auxGroup j [PROOFSTEP] by_cases h : i = j [GOAL] case pos N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : i = j ⊢ auxGroup i = auxGroup j [PROOFSTEP] rw [h] [GOAL] case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : ¬i = j ⊢ auxGroup i = auxGroup j [PROOFSTEP] refine' Group.ext (EckmannHilton.mul (isUnital_auxGroup i) (isUnital_auxGroup j) _) [GOAL] case neg N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : ¬i = j ⊢ ∀ (a b c d : HomotopyGroup N X x), Mul.mul (Mul.mul a b) (Mul.mul c d) = Mul.mul (Mul.mul a c) (Mul.mul b d) [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ ⟨d⟩ [GOAL] case neg.mk.mk.mk.mk N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : ¬i = j a✝ : HomotopyGroup N X x a : ↑(Ω^ N X x) b✝ : HomotopyGroup N X x b : ↑(Ω^ N X x) c✝ : HomotopyGroup N X x c : ↑(Ω^ N X x) d✝ : HomotopyGroup N X x d : ↑(Ω^ N X x) ⊢ Mul.mul (Mul.mul (Quot.mk Setoid.r a) (Quot.mk Setoid.r b)) (Mul.mul (Quot.mk Setoid.r c) (Quot.mk Setoid.r d)) = Mul.mul (Mul.mul (Quot.mk Setoid.r a) (Quot.mk Setoid.r c)) (Mul.mul (Quot.mk Setoid.r b) (Quot.mk Setoid.r d)) [PROOFSTEP] change Quotient.mk' _ = _ [GOAL] case neg.mk.mk.mk.mk N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : ¬i = j a✝ : HomotopyGroup N X x a : ↑(Ω^ N X x) b✝ : HomotopyGroup N X x b : ↑(Ω^ N X x) c✝ : HomotopyGroup N X x c : ↑(Ω^ N X x) d✝ : HomotopyGroup N X x d : ↑(Ω^ N X x) ⊢ Quotient.mk' (↑(loopHomeo i).symm (Path.trans (↑(loopHomeo i).toEquiv (↑(loopHomeo j).symm (Path.trans (↑(loopHomeo j).toEquiv d) (↑(loopHomeo j).toEquiv c)))) (↑(loopHomeo i).toEquiv (↑(loopHomeo j).symm (Path.trans (↑(loopHomeo j).toEquiv b) (↑(loopHomeo j).toEquiv a)))))) = Mul.mul (Mul.mul (Quot.mk Setoid.r a) (Quot.mk Setoid.r c)) (Mul.mul (Quot.mk Setoid.r b) (Quot.mk Setoid.r d)) [PROOFSTEP] apply congr_arg Quotient.mk' [GOAL] case neg.mk.mk.mk.mk N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N h : ¬i = j a✝ : HomotopyGroup N X x a : ↑(Ω^ N X x) b✝ : HomotopyGroup N X x b : ↑(Ω^ N X x) c✝ : HomotopyGroup N X x c : ↑(Ω^ N X x) d✝ : HomotopyGroup N X x d : ↑(Ω^ N X x) ⊢ ↑(loopHomeo i).symm (Path.trans (↑(loopHomeo i).toEquiv (↑(loopHomeo j).symm (Path.trans (↑(loopHomeo j).toEquiv d) (↑(loopHomeo j).toEquiv c)))) (↑(loopHomeo i).toEquiv (↑(loopHomeo j).symm (Path.trans (↑(loopHomeo j).toEquiv b) (↑(loopHomeo j).toEquiv a))))) = ↑(loopHomeo j).symm (Path.trans (↑(loopHomeo j).toEquiv (↑(loopHomeo i).symm (Path.trans (↑(loopHomeo i).toEquiv d) (↑(loopHomeo i).toEquiv b)))) (↑(loopHomeo j).toEquiv (↑(loopHomeo i).symm (Path.trans (↑(loopHomeo i).toEquiv c) (↑(loopHomeo i).toEquiv a))))) [PROOFSTEP] simp only [fromLoop_trans_toLoop, transAt_distrib h, coe_toEquiv, loopHomeo_apply, coe_symm_toEquiv, loopHomeo_symm_apply] [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N f g : ↑(Ω^ N X x) ⊢ Quotient.mk (Homotopic.setoid N x) (transAt i f g) = Quotient.mk (Homotopic.setoid N x) (transAt j f g) [PROOFSTEP] simp_rw [← fromLoop_trans_toLoop] [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N f g : ↑(Ω^ N X x) ⊢ Quotient.mk (Homotopic.setoid N x) (fromLoop i (Path.trans (toLoop i f) (toLoop i g))) = Quotient.mk (Homotopic.setoid N x) (fromLoop j (Path.trans (toLoop j f) (toLoop j g))) [PROOFSTEP] let m := fun (G) (_ : Group G) => ((· * ·) : G → G → G) [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N f g : ↑(Ω^ N X x) m : (G : Type ?u.799968) → Group G → G → G → G := fun G x x_1 x_2 => x_1 * x_2 ⊢ Quotient.mk (Homotopic.setoid N x) (fromLoop i (Path.trans (toLoop i f) (toLoop i g))) = Quotient.mk (Homotopic.setoid N x) (fromLoop j (Path.trans (toLoop j f) (toLoop j g))) [PROOFSTEP] exact congr_fun₂ (congr_arg (m <| HomotopyGroup N X x) <| auxGroup_indep i j) ⟦g⟧ ⟦f⟧ [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N f : ↑(Ω^ N X x) ⊢ Quotient.mk (Homotopic.setoid N x) (symmAt i f) = Quotient.mk (Homotopic.setoid N x) (symmAt j f) [PROOFSTEP] simp_rw [← fromLoop_symm_toLoop] [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N f : ↑(Ω^ N X x) ⊢ Quotient.mk (Homotopic.setoid N x) (fromLoop i (Path.symm (toLoop i f))) = Quotient.mk (Homotopic.setoid N x) (fromLoop j (Path.symm (toLoop j f))) [PROOFSTEP] let inv := fun (G) (_ : Group G) => ((·⁻¹) : G → G) [GOAL] N : Type u_1 X : Type u_2 inst✝¹ : TopologicalSpace X x : X inst✝ : DecidableEq N i j : N f : ↑(Ω^ N X x) inv : (G : Type ?u.802068) → Group G → G → G := fun G x x_1 => x_1⁻¹ ⊢ Quotient.mk (Homotopic.setoid N x) (fromLoop i (Path.symm (toLoop i f))) = Quotient.mk (Homotopic.setoid N x) (fromLoop j (Path.symm (toLoop j f))) [PROOFSTEP] exact congr_fun (congr_arg (inv <| HomotopyGroup N X x) <| auxGroup_indep i j) ⟦f⟧ [GOAL] N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p q : ↑(Ω^ N X x) ⊢ (fun x_1 x_2 => x_1 * x_2) (Quotient.mk (Homotopic.setoid N x) p) (Quotient.mk (Homotopic.setoid N x) q) = Quotient.mk (Homotopic.setoid N x) (transAt i q p) [PROOFSTEP] rw [transAt_indep _ q, ← fromLoop_trans_toLoop] [GOAL] N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p q : ↑(Ω^ N X x) ⊢ (fun x_1 x_2 => x_1 * x_2) (Quotient.mk (Homotopic.setoid N x) p) (Quotient.mk (Homotopic.setoid N x) q) = Quotient.mk (Homotopic.setoid N x) (fromLoop ?m.837545 (Path.trans (toLoop ?m.837545 q) (toLoop ?m.837545 p))) N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p q : ↑(Ω^ N X x) ⊢ N [PROOFSTEP] apply Quotient.sound [GOAL] case a N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p q : ↑(Ω^ N X x) ⊢ ↑(loopHomeo (Classical.arbitrary N)).symm (Path.trans (↑(loopHomeo (Classical.arbitrary N)).toEquiv q) (↑(loopHomeo (Classical.arbitrary N)).toEquiv p)) ≈ fromLoop ?m.837545 (Path.trans (toLoop ?m.837545 q) (toLoop ?m.837545 p)) N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p q : ↑(Ω^ N X x) ⊢ N [PROOFSTEP] rfl [GOAL] N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p : ↑(Ω^ N X x) ⊢ (Quotient.mk (Homotopic.setoid N x) p)⁻¹ = Quotient.mk (Homotopic.setoid N x) (symmAt i p) [PROOFSTEP] rw [symmAt_indep _ p, ← fromLoop_symm_toLoop] [GOAL] N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p : ↑(Ω^ N X x) ⊢ (Quotient.mk (Homotopic.setoid N x) p)⁻¹ = Quotient.mk (Homotopic.setoid N x) (fromLoop ?m.838706 (Path.symm (toLoop ?m.838706 p))) N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p : ↑(Ω^ N X x) ⊢ N [PROOFSTEP] apply Quotient.sound [GOAL] case a N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p : ↑(Ω^ N X x) ⊢ ↑(loopHomeo (Classical.arbitrary N)).symm (Path.symm (↑(loopHomeo (Classical.arbitrary N)).toEquiv p)) ≈ fromLoop ?m.838706 (Path.symm (toLoop ?m.838706 p)) N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nonempty N i : N p : ↑(Ω^ N X x) ⊢ N [PROOFSTEP] rfl [GOAL] N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nontrivial N h : ∃ y, y ≠ Classical.arbitrary N := exists_ne (Classical.arbitrary N) ⊢ ∀ (a b c d : HomotopyGroup N X x), Mul.mul (a * b) (c * d) = Mul.mul a c * Mul.mul b d [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ ⟨d⟩ [GOAL] case mk.mk.mk.mk N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nontrivial N h : ∃ y, y ≠ Classical.arbitrary N := exists_ne (Classical.arbitrary N) a✝ : HomotopyGroup N X x a : ↑(Ω^ N X x) b✝ : HomotopyGroup N X x b : ↑(Ω^ N X x) c✝ : HomotopyGroup N X x c : ↑(Ω^ N X x) d✝ : HomotopyGroup N X x d : ↑(Ω^ N X x) ⊢ Mul.mul (Quot.mk Setoid.r a * Quot.mk Setoid.r b) (Quot.mk Setoid.r c * Quot.mk Setoid.r d) = Mul.mul (Quot.mk Setoid.r a) (Quot.mk Setoid.r c) * Mul.mul (Quot.mk Setoid.r b) (Quot.mk Setoid.r d) [PROOFSTEP] apply congr_arg Quotient.mk' [GOAL] case mk.mk.mk.mk N : Type u_1 X : Type u_2 inst✝² : TopologicalSpace X x : X inst✝¹ : DecidableEq N inst✝ : Nontrivial N h : ∃ y, y ≠ Classical.arbitrary N := exists_ne (Classical.arbitrary N) a✝ : HomotopyGroup N X x a : ↑(Ω^ N X x) b✝ : HomotopyGroup N X x b : ↑(Ω^ N X x) c✝ : HomotopyGroup N X x c : ↑(Ω^ N X x) d✝ : HomotopyGroup N X x d : ↑(Ω^ N X x) ⊢ ↑(loopHomeo (Classical.choose h)).symm (Path.trans (↑(loopHomeo (Classical.choose h)).toEquiv (↑(loopHomeo (Classical.arbitrary N)).symm (Path.trans (↑(loopHomeo (Classical.arbitrary N)).toEquiv d) (↑(loopHomeo (Classical.arbitrary N)).toEquiv c)))) (↑(loopHomeo (Classical.choose h)).toEquiv (↑(loopHomeo (Classical.arbitrary N)).symm (Path.trans (↑(loopHomeo (Classical.arbitrary N)).toEquiv b) (↑(loopHomeo (Classical.arbitrary N)).toEquiv a))))) = ↑(loopHomeo (Classical.arbitrary N)).symm (Path.trans (↑(loopHomeo (Classical.arbitrary N)).toEquiv (↑(loopHomeo (Classical.choose h)).symm (Path.trans (↑(loopHomeo (Classical.choose h)).toEquiv d) (↑(loopHomeo (Classical.choose h)).toEquiv b)))) (↑(loopHomeo (Classical.arbitrary N)).toEquiv (↑(loopHomeo (Classical.choose h)).symm (Path.trans (↑(loopHomeo (Classical.choose h)).toEquiv c) (↑(loopHomeo (Classical.choose h)).toEquiv a))))) [PROOFSTEP] simp only [fromLoop_trans_toLoop, transAt_distrib <| Classical.choose_spec h, coe_toEquiv, loopHomeo_apply, coe_symm_toEquiv, loopHomeo_symm_apply]
{"mathlib_filename": "Mathlib.Topology.Homotopy.HomotopyGroup", "llama_tokens": 61049}
[GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ Continuous (thickenedIndicatorAux δ E) [PROOFSTEP] unfold thickenedIndicatorAux [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ Continuous fun x => 1 - infEdist x E / ENNReal.ofReal δ [PROOFSTEP] let f := fun x : α => (⟨1, infEdist x E / ENNReal.ofReal δ⟩ : ℝ≥0 × ℝ≥0∞) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α f : α → ℝ≥0 × ℝ≥0∞ := fun x => (1, infEdist x E / ENNReal.ofReal δ) ⊢ Continuous fun x => 1 - infEdist x E / ENNReal.ofReal δ [PROOFSTEP] let sub := fun p : ℝ≥0 × ℝ≥0∞ => (p.1 : ℝ≥0∞) - p.2 [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α f : α → ℝ≥0 × ℝ≥0∞ := fun x => (1, infEdist x E / ENNReal.ofReal δ) sub : ℝ≥0 × ℝ≥0∞ → ℝ≥0∞ := fun p => ↑p.fst - p.snd ⊢ Continuous fun x => 1 - infEdist x E / ENNReal.ofReal δ [PROOFSTEP] rw [show (fun x : α => (1 : ℝ≥0∞) - infEdist x E / ENNReal.ofReal δ) = sub ∘ f by rfl] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α f : α → ℝ≥0 × ℝ≥0∞ := fun x => (1, infEdist x E / ENNReal.ofReal δ) sub : ℝ≥0 × ℝ≥0∞ → ℝ≥0∞ := fun p => ↑p.fst - p.snd ⊢ (fun x => 1 - infEdist x E / ENNReal.ofReal δ) = sub ∘ f [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α f : α → ℝ≥0 × ℝ≥0∞ := fun x => (1, infEdist x E / ENNReal.ofReal δ) sub : ℝ≥0 × ℝ≥0∞ → ℝ≥0∞ := fun p => ↑p.fst - p.snd ⊢ Continuous (sub ∘ f) [PROOFSTEP] apply (@ENNReal.continuous_nnreal_sub 1).comp [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α f : α → ℝ≥0 × ℝ≥0∞ := fun x => (1, infEdist x E / ENNReal.ofReal δ) sub : ℝ≥0 × ℝ≥0∞ → ℝ≥0∞ := fun p => ↑p.fst - p.snd ⊢ Continuous fun x => (f x).snd [PROOFSTEP] apply (ENNReal.continuous_div_const (ENNReal.ofReal δ) _).comp continuous_infEdist [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α f : α → ℝ≥0 × ℝ≥0∞ := fun x => (1, infEdist x E / ENNReal.ofReal δ) sub : ℝ≥0 × ℝ≥0∞ → ℝ≥0∞ := fun p => ↑p.fst - p.snd ⊢ ENNReal.ofReal δ ≠ 0 [PROOFSTEP] norm_num [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α f : α → ℝ≥0 × ℝ≥0∞ := fun x => (1, infEdist x E / ENNReal.ofReal δ) sub : ℝ≥0 × ℝ≥0∞ → ℝ≥0∞ := fun p => ↑p.fst - p.snd ⊢ 0 < δ [PROOFSTEP] exact δ_pos [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α x : α ⊢ thickenedIndicatorAux δ E x ≤ 1 [PROOFSTEP] apply @tsub_le_self _ _ _ _ (1 : ℝ≥0∞) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α ⊢ thickenedIndicatorAux δ (closure E) = thickenedIndicatorAux δ E [PROOFSTEP] simp_rw [thickenedIndicatorAux, infEdist_closure] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α x : α x_in_E : x ∈ E ⊢ thickenedIndicatorAux δ E x = 1 [PROOFSTEP] simp [thickenedIndicatorAux, infEdist_zero_of_mem x_in_E, tsub_zero] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α x : α x_mem : x ∈ closure E ⊢ thickenedIndicatorAux δ E x = 1 [PROOFSTEP] rw [← thickenedIndicatorAux_closure_eq, thickenedIndicatorAux_one δ (closure E) x_mem] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α x_out : ¬x ∈ thickening δ E ⊢ thickenedIndicatorAux δ E x = 0 [PROOFSTEP] rw [thickening, mem_setOf_eq, not_lt] at x_out [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α x_out : ENNReal.ofReal δ ≤ infEdist x E ⊢ thickenedIndicatorAux δ E x = 0 [PROOFSTEP] unfold thickenedIndicatorAux [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α x_out : ENNReal.ofReal δ ≤ infEdist x E ⊢ 1 - infEdist x E / ENNReal.ofReal δ = 0 [PROOFSTEP] apply le_antisymm _ bot_le [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α x_out : ENNReal.ofReal δ ≤ infEdist x E ⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥ [PROOFSTEP] have key := tsub_le_tsub (@rfl _ (1 : ℝ≥0∞)).le (ENNReal.div_le_div x_out (@rfl _ (ENNReal.ofReal δ : ℝ≥0∞)).le) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α x_out : ENNReal.ofReal δ ≤ infEdist x E key : 1 - infEdist x E / ENNReal.ofReal δ ≤ 1 - ENNReal.ofReal δ / ENNReal.ofReal δ ⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥ [PROOFSTEP] rw [ENNReal.div_self (ne_of_gt (ENNReal.ofReal_pos.mpr δ_pos)) ofReal_ne_top] at key [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α x_out : ENNReal.ofReal δ ≤ infEdist x E key : 1 - infEdist x E / ENNReal.ofReal δ ≤ 1 - 1 ⊢ 1 - infEdist x E / ENNReal.ofReal δ ≤ ⊥ [PROOFSTEP] simpa using key [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α ⊢ (indicator E fun x => 1) ≤ thickenedIndicatorAux δ E [PROOFSTEP] intro a [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α a : α ⊢ indicator E (fun x => 1) a ≤ thickenedIndicatorAux δ E a [PROOFSTEP] by_cases a ∈ E [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α a : α ⊢ indicator E (fun x => 1) a ≤ thickenedIndicatorAux δ E a [PROOFSTEP] by_cases a ∈ E [GOAL] case pos α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α a : α h : a ∈ E ⊢ indicator E (fun x => 1) a ≤ thickenedIndicatorAux δ E a [PROOFSTEP] simp only [h, indicator_of_mem, thickenedIndicatorAux_one δ E h, le_refl] [GOAL] case neg α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ E : Set α a : α h : ¬a ∈ E ⊢ indicator E (fun x => 1) a ≤ thickenedIndicatorAux δ E a [PROOFSTEP] simp only [h, indicator_of_not_mem, not_false_iff, zero_le] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α ⊢ Tendsto (fun n => thickenedIndicatorAux (δseq n) E) atTop (𝓝 (indicator (closure E) fun x => 1)) [PROOFSTEP] rw [tendsto_pi_nhds] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α ⊢ ∀ (x : α), Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) [PROOFSTEP] intro x [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) [PROOFSTEP] by_cases x_mem_closure : x ∈ closure E [GOAL] case pos α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α x_mem_closure : x ∈ closure E ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) [PROOFSTEP] simp_rw [thickenedIndicatorAux_one_of_mem_closure _ E x_mem_closure] [GOAL] case pos α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α x_mem_closure : x ∈ closure E ⊢ Tendsto (fun i => 1) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) [PROOFSTEP] rw [show (indicator (closure E) fun _ => (1 : ℝ≥0∞)) x = 1 by simp only [x_mem_closure, indicator_of_mem]] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α x_mem_closure : x ∈ closure E ⊢ indicator (closure E) (fun x => 1) x = 1 [PROOFSTEP] simp only [x_mem_closure, indicator_of_mem] [GOAL] case pos α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α x_mem_closure : x ∈ closure E ⊢ Tendsto (fun i => 1) atTop (𝓝 1) [PROOFSTEP] exact tendsto_const_nhds [GOAL] case neg α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α x_mem_closure : ¬x ∈ closure E ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) [PROOFSTEP] rw [show (closure E).indicator (fun _ => (1 : ℝ≥0∞)) x = 0 by simp only [x_mem_closure, indicator_of_not_mem, not_false_iff]] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α x_mem_closure : ¬x ∈ closure E ⊢ indicator (closure E) (fun x => 1) x = 0 [PROOFSTEP] simp only [x_mem_closure, indicator_of_not_mem, not_false_iff] [GOAL] case neg α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α x_mem_closure : ¬x ∈ closure E ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 0) [PROOFSTEP] rcases exists_real_pos_lt_infEdist_of_not_mem_closure x_mem_closure with ⟨ε, ⟨ε_pos, ε_lt⟩⟩ [GOAL] case neg.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 0) [PROOFSTEP] rw [Metric.tendsto_nhds] at δseq_lim [GOAL] case neg.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_lim : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : ℕ) in atTop, dist (δseq x) 0 < ε E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 0) [PROOFSTEP] specialize δseq_lim ε ε_pos [GOAL] case neg.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E δseq_lim : ∀ᶠ (x : ℕ) in atTop, dist (δseq x) 0 < ε ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 0) [PROOFSTEP] simp only [dist_zero_right, Real.norm_eq_abs, eventually_atTop, ge_iff_le] at δseq_lim [GOAL] case neg.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E δseq_lim : ∃ a, ∀ (b : ℕ), a ≤ b → |δseq b| < ε ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 0) [PROOFSTEP] rcases δseq_lim with ⟨N, hN⟩ [GOAL] case neg.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ (b : ℕ), N ≤ b → |δseq b| < ε ⊢ Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 0) [PROOFSTEP] apply @tendsto_atTop_of_eventually_const _ _ _ _ _ _ _ N [GOAL] case neg.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ (b : ℕ), N ≤ b → |δseq b| < ε ⊢ ∀ (i : ℕ), i ≥ N → thickenedIndicatorAux (δseq i) E x = 0 [PROOFSTEP] intro n n_large [GOAL] case neg.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ (b : ℕ), N ≤ b → |δseq b| < ε n : ℕ n_large : n ≥ N ⊢ thickenedIndicatorAux (δseq n) E x = 0 [PROOFSTEP] have key : x ∉ thickening ε E := by simpa only [thickening, mem_setOf_eq, not_lt] using ε_lt.le [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ (b : ℕ), N ≤ b → |δseq b| < ε n : ℕ n_large : n ≥ N ⊢ ¬x ∈ thickening ε E [PROOFSTEP] simpa only [thickening, mem_setOf_eq, not_lt] using ε_lt.le [GOAL] case neg.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ (b : ℕ), N ≤ b → |δseq b| < ε n : ℕ n_large : n ≥ N key : ¬x ∈ thickening ε E ⊢ thickenedIndicatorAux (δseq n) E x = 0 [PROOFSTEP] refine' le_antisymm _ bot_le [GOAL] case neg.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ (b : ℕ), N ≤ b → |δseq b| < ε n : ℕ n_large : n ≥ N key : ¬x ∈ thickening ε E ⊢ thickenedIndicatorAux (δseq n) E x ≤ 0 [PROOFSTEP] apply (thickenedIndicatorAux_mono (lt_of_abs_lt (hN n n_large)).le E x).trans [GOAL] case neg.intro.intro.intro α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ E : Set α x : α x_mem_closure : ¬x ∈ closure E ε : ℝ ε_pos : 0 < ε ε_lt : ENNReal.ofReal ε < infEdist x E N : ℕ hN : ∀ (b : ℕ), N ≤ b → |δseq b| < ε n : ℕ n_large : n ≥ N key : ¬x ∈ thickening ε E ⊢ thickenedIndicatorAux ε E x ≤ 0 [PROOFSTEP] exact (thickenedIndicatorAux_zero ε_pos E key).le [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ Continuous fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x) [PROOFSTEP] apply ContinuousOn.comp_continuous continuousOn_toNNReal (continuous_thickenedIndicatorAux δ_pos E) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ ∀ (x : α), thickenedIndicatorAux δ E x ∈ {a | a ≠ ⊤} [PROOFSTEP] intro x [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α ⊢ thickenedIndicatorAux δ E x ∈ {a | a ≠ ⊤} [PROOFSTEP] exact (lt_of_le_of_lt (@thickenedIndicatorAux_le_one _ _ δ E x) one_lt_top).ne [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x) (ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y) ≤ C [PROOFSTEP] use 2 [GOAL] case h α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x) (ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y) ≤ 2 [PROOFSTEP] intro x y [GOAL] case h α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α ⊢ dist (ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x) (ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y) ≤ 2 [PROOFSTEP] rw [NNReal.dist_eq] [GOAL] case h α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α ⊢ |↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x) - ↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y)| ≤ 2 [PROOFSTEP] apply (abs_sub _ _).trans [GOAL] case h α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α ⊢ |↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x)| + |↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y)| ≤ 2 [PROOFSTEP] rw [NNReal.abs_eq, NNReal.abs_eq, ← one_add_one_eq_two] [GOAL] case h α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x) + ↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y) ≤ 1 + 1 [PROOFSTEP] have key := @thickenedIndicatorAux_le_one _ _ δ E [GOAL] case h α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α key : ∀ (x : α), thickenedIndicatorAux δ E x ≤ 1 ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x) + ↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y) ≤ 1 + 1 [PROOFSTEP] apply add_le_add [GOAL] case h.h₁ α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α key : ∀ (x : α), thickenedIndicatorAux δ E x ≤ 1 ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x) ≤ 1 [PROOFSTEP] norm_cast [GOAL] case h.h₁ α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α key : ∀ (x : α), thickenedIndicatorAux δ E x ≤ 1 ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) x ≤ 1 [PROOFSTEP] refine' (toNNReal_le_toNNReal (lt_of_le_of_lt (key _) one_lt_top).ne one_ne_top).mpr (key _) [GOAL] case h.h₂ α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α key : ∀ (x : α), thickenedIndicatorAux δ E x ≤ 1 ⊢ ↑(ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y) ≤ 1 [PROOFSTEP] norm_cast [GOAL] case h.h₂ α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x y : α key : ∀ (x : α), thickenedIndicatorAux δ E x ≤ 1 ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => ENNReal.toNNReal (thickenedIndicatorAux δ E x)) y ≤ 1 [PROOFSTEP] refine' (toNNReal_le_toNNReal (lt_of_le_of_lt (key _) one_lt_top).ne one_ne_top).mpr (key _) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α ⊢ ↑(thickenedIndicator δ_pos E) x ≤ 1 [PROOFSTEP] rw [thickenedIndicator.coeFn_eq_comp] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α ⊢ (ENNReal.toNNReal ∘ thickenedIndicatorAux δ E) x ≤ 1 [PROOFSTEP] simpa using (toNNReal_le_toNNReal thickenedIndicatorAux_lt_top.ne one_ne_top).mpr (thickenedIndicatorAux_le_one δ E x) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α x_mem : x ∈ closure E ⊢ ↑(thickenedIndicator δ_pos E) x = 1 [PROOFSTEP] rw [thickenedIndicator_apply, thickenedIndicatorAux_one_of_mem_closure δ E x_mem, one_toNNReal] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α x : α x_out : ¬x ∈ thickening δ E ⊢ ↑(thickenedIndicator δ_pos E) x = 0 [PROOFSTEP] rw [thickenedIndicator_apply, thickenedIndicatorAux_zero δ_pos E x_out, zero_toNNReal] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α ⊢ (indicator E fun x => 1) ≤ ↑(thickenedIndicator δ_pos E) [PROOFSTEP] intro a [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α a : α ⊢ indicator E (fun x => 1) a ≤ ↑(thickenedIndicator δ_pos E) a [PROOFSTEP] by_cases a ∈ E [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α a : α ⊢ indicator E (fun x => 1) a ≤ ↑(thickenedIndicator δ_pos E) a [PROOFSTEP] by_cases a ∈ E [GOAL] case pos α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α a : α h : a ∈ E ⊢ indicator E (fun x => 1) a ≤ ↑(thickenedIndicator δ_pos E) a [PROOFSTEP] simp only [h, indicator_of_mem, thickenedIndicator_one δ_pos E h, le_refl] [GOAL] case neg α : Type u_1 inst✝ : PseudoEMetricSpace α δ : ℝ δ_pos : 0 < δ E : Set α a : α h : ¬a ∈ E ⊢ indicator E (fun x => 1) a ≤ ↑(thickenedIndicator δ_pos E) a [PROOFSTEP] simp only [h, indicator_of_not_mem, not_false_iff, zero_le] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ₁ δ₂ : ℝ δ₁_pos : 0 < δ₁ δ₂_pos : 0 < δ₂ hle : δ₁ ≤ δ₂ E : Set α ⊢ ↑(thickenedIndicator δ₁_pos E) ≤ ↑(thickenedIndicator δ₂_pos E) [PROOFSTEP] intro x [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ₁ δ₂ : ℝ δ₁_pos : 0 < δ₁ δ₂_pos : 0 < δ₂ hle : δ₁ ≤ δ₂ E : Set α x : α ⊢ ↑(thickenedIndicator δ₁_pos E) x ≤ ↑(thickenedIndicator δ₂_pos E) x [PROOFSTEP] apply (toNNReal_le_toNNReal thickenedIndicatorAux_lt_top.ne thickenedIndicatorAux_lt_top.ne).mpr [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δ₁ δ₂ : ℝ δ₁_pos : 0 < δ₁ δ₂_pos : 0 < δ₂ hle : δ₁ ≤ δ₂ E : Set α x : α ⊢ thickenedIndicatorAux δ₁ E x ≤ thickenedIndicatorAux δ₂ E x [PROOFSTEP] apply thickenedIndicatorAux_mono hle [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α ⊢ Tendsto (fun n => ↑(thickenedIndicator (_ : 0 < δseq n) E)) atTop (𝓝 (indicator (closure E) fun x => 1)) [PROOFSTEP] have key := thickenedIndicatorAux_tendsto_indicator_closure δseq_lim E [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α key : Tendsto (fun n => thickenedIndicatorAux (δseq n) E) atTop (𝓝 (indicator (closure E) fun x => 1)) ⊢ Tendsto (fun n => ↑(thickenedIndicator (_ : 0 < δseq n) E)) atTop (𝓝 (indicator (closure E) fun x => 1)) [PROOFSTEP] rw [tendsto_pi_nhds] at * [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α key : ∀ (x : α), Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) ⊢ ∀ (x : α), Tendsto (fun i => ↑(thickenedIndicator (_ : 0 < δseq i) E) x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) [PROOFSTEP] intro x [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α key : ∀ (x : α), Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) x : α ⊢ Tendsto (fun i => ↑(thickenedIndicator (_ : 0 < δseq i) E) x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) [PROOFSTEP] rw [show indicator (closure E) (fun _ => (1 : ℝ≥0)) x = (indicator (closure E) (fun _ => (1 : ℝ≥0∞)) x).toNNReal by refine' (congr_fun (comp_indicator_const 1 ENNReal.toNNReal zero_toNNReal) x).symm] [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α key : ∀ (x : α), Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) x : α ⊢ indicator (closure E) (fun x => 1) x = ENNReal.toNNReal (indicator (closure E) (fun x => 1) x) [PROOFSTEP] refine' (congr_fun (comp_indicator_const 1 ENNReal.toNNReal zero_toNNReal) x).symm [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α key : ∀ (x : α), Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) x : α ⊢ Tendsto (fun i => ↑(thickenedIndicator (_ : 0 < δseq i) E) x) atTop (𝓝 (ENNReal.toNNReal (indicator (closure E) (fun x => 1) x))) [PROOFSTEP] refine' Tendsto.comp (tendsto_toNNReal _) (key x) [GOAL] α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α key : ∀ (x : α), Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) x : α ⊢ indicator (closure E) (fun x => 1) x ≠ ⊤ [PROOFSTEP] by_cases x_mem : x ∈ closure E [GOAL] case pos α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α key : ∀ (x : α), Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) x : α x_mem : x ∈ closure E ⊢ indicator (closure E) (fun x => 1) x ≠ ⊤ [PROOFSTEP] simp [x_mem] [GOAL] case neg α : Type u_1 inst✝ : PseudoEMetricSpace α δseq : ℕ → ℝ δseq_pos : ∀ (n : ℕ), 0 < δseq n δseq_lim : Tendsto δseq atTop (𝓝 0) E : Set α key : ∀ (x : α), Tendsto (fun i => thickenedIndicatorAux (δseq i) E x) atTop (𝓝 (indicator (closure E) (fun x => 1) x)) x : α x_mem : ¬x ∈ closure E ⊢ indicator (closure E) (fun x => 1) x ≠ ⊤ [PROOFSTEP] simp [x_mem] [GOAL] α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Ioi 0] 0, mulIndicator (thickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] by_cases x_mem_closure : x ∈ closure E [GOAL] case pos α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : x ∈ closure E ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Ioi 0] 0, mulIndicator (thickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] filter_upwards [self_mem_nhdsWithin] with δ δ_pos [GOAL] case h α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : x ∈ closure E δ : ℝ δ_pos : δ ∈ Ioi 0 ⊢ mulIndicator (thickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] simp only [closure_subset_thickening δ_pos E x_mem_closure, mulIndicator_of_mem, x_mem_closure] [GOAL] case neg α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : ¬x ∈ closure E ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Ioi 0] 0, mulIndicator (thickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] have obs := eventually_not_mem_thickening_of_infEdist_pos x_mem_closure [GOAL] case neg α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : ¬x ∈ closure E obs : ∀ᶠ (δ : ℝ) in 𝓝 0, ¬x ∈ thickening δ E ⊢ ∀ᶠ (δ : ℝ) in 𝓝[Ioi 0] 0, mulIndicator (thickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] filter_upwards [mem_nhdsWithin_of_mem_nhds obs, self_mem_nhdsWithin] with δ x_notin_thE _ [GOAL] case h α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : ¬x ∈ closure E obs : ∀ᶠ (δ : ℝ) in 𝓝 0, ¬x ∈ thickening δ E δ : ℝ x_notin_thE : ¬x ∈ thickening δ E a✝ : δ ∈ Ioi 0 ⊢ mulIndicator (thickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] simp only [x_notin_thE, not_false_eq_true, mulIndicator_of_not_mem, x_mem_closure] [GOAL] α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α ⊢ ∀ᶠ (δ : ℝ) in 𝓝 0, mulIndicator (cthickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] by_cases x_mem_closure : x ∈ closure E [GOAL] case pos α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : x ∈ closure E ⊢ ∀ᶠ (δ : ℝ) in 𝓝 0, mulIndicator (cthickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] filter_upwards [univ_mem] with δ _ [GOAL] case h α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : x ∈ closure E δ : ℝ a✝ : δ ∈ univ ⊢ mulIndicator (cthickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] have obs : x ∈ cthickening δ E := closure_subset_cthickening δ E x_mem_closure [GOAL] case h α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : x ∈ closure E δ : ℝ a✝ : δ ∈ univ obs : x ∈ cthickening δ E ⊢ mulIndicator (cthickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] rw [mulIndicator_of_mem obs f, mulIndicator_of_mem x_mem_closure f] [GOAL] case neg α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : ¬x ∈ closure E ⊢ ∀ᶠ (δ : ℝ) in 𝓝 0, mulIndicator (cthickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] filter_upwards [eventually_not_mem_cthickening_of_infEdist_pos x_mem_closure] with δ hδ [GOAL] case h α : Type u_1 inst✝¹ : PseudoEMetricSpace α β : Type u_2 inst✝ : One β f : α → β E : Set α x : α x_mem_closure : ¬x ∈ closure E δ : ℝ hδ : ¬x ∈ cthickening δ E ⊢ mulIndicator (cthickening δ E) f x = mulIndicator (closure E) f x [PROOFSTEP] simp only [hδ, not_false_eq_true, mulIndicator_of_not_mem, x_mem_closure] [GOAL] α : Type u_1 inst✝² : PseudoEMetricSpace α β : Type u_2 inst✝¹ : One β inst✝ : TopologicalSpace β f : α → β E : Set α ⊢ Tendsto (fun δ => mulIndicator (thickening δ E) f) (𝓝[Ioi 0] 0) (𝓝 (mulIndicator (closure E) f)) [PROOFSTEP] rw [tendsto_pi_nhds] [GOAL] α : Type u_1 inst✝² : PseudoEMetricSpace α β : Type u_2 inst✝¹ : One β inst✝ : TopologicalSpace β f : α → β E : Set α ⊢ ∀ (x : α), Tendsto (fun i => mulIndicator (thickening i E) f x) (𝓝[Ioi 0] 0) (𝓝 (mulIndicator (closure E) f x)) [PROOFSTEP] intro x [GOAL] α : Type u_1 inst✝² : PseudoEMetricSpace α β : Type u_2 inst✝¹ : One β inst✝ : TopologicalSpace β f : α → β E : Set α x : α ⊢ Tendsto (fun i => mulIndicator (thickening i E) f x) (𝓝[Ioi 0] 0) (𝓝 (mulIndicator (closure E) f x)) [PROOFSTEP] rw [tendsto_congr' (mulIndicator_thickening_eventually_eq_mulIndicator_closure f E x)] [GOAL] α : Type u_1 inst✝² : PseudoEMetricSpace α β : Type u_2 inst✝¹ : One β inst✝ : TopologicalSpace β f : α → β E : Set α x : α ⊢ Tendsto (fun x_1 => mulIndicator (closure E) f x) (𝓝[Ioi 0] 0) (𝓝 (mulIndicator (closure E) f x)) [PROOFSTEP] apply tendsto_const_nhds [GOAL] α : Type u_1 inst✝² : PseudoEMetricSpace α β : Type u_2 inst✝¹ : One β inst✝ : TopologicalSpace β f : α → β E : Set α ⊢ Tendsto (fun δ => mulIndicator (cthickening δ E) f) (𝓝 0) (𝓝 (mulIndicator (closure E) f)) [PROOFSTEP] rw [tendsto_pi_nhds] [GOAL] α : Type u_1 inst✝² : PseudoEMetricSpace α β : Type u_2 inst✝¹ : One β inst✝ : TopologicalSpace β f : α → β E : Set α ⊢ ∀ (x : α), Tendsto (fun i => mulIndicator (cthickening i E) f x) (𝓝 0) (𝓝 (mulIndicator (closure E) f x)) [PROOFSTEP] intro x [GOAL] α : Type u_1 inst✝² : PseudoEMetricSpace α β : Type u_2 inst✝¹ : One β inst✝ : TopologicalSpace β f : α → β E : Set α x : α ⊢ Tendsto (fun i => mulIndicator (cthickening i E) f x) (𝓝 0) (𝓝 (mulIndicator (closure E) f x)) [PROOFSTEP] rw [tendsto_congr' (mulIndicator_cthickening_eventually_eq_mulIndicator_closure f E x)] [GOAL] α : Type u_1 inst✝² : PseudoEMetricSpace α β : Type u_2 inst✝¹ : One β inst✝ : TopologicalSpace β f : α → β E : Set α x : α ⊢ Tendsto (fun x_1 => mulIndicator (closure E) f x) (𝓝 0) (𝓝 (mulIndicator (closure E) f x)) [PROOFSTEP] apply tendsto_const_nhds
{"mathlib_filename": "Mathlib.Topology.MetricSpace.ThickenedIndicator", "llama_tokens": 14482}
[GOAL] α : Type u_1 inst✝¹ : UniformSpace α inst✝ : SeparatedSpace α s : Set α h : IsComplete s a : α ha : ClusterPt a (𝓟 s) ⊢ a ∈ s [PROOFSTEP] let f := 𝓝[s] a [GOAL] α : Type u_1 inst✝¹ : UniformSpace α inst✝ : SeparatedSpace α s : Set α h : IsComplete s a : α ha : ClusterPt a (𝓟 s) f : Filter α := 𝓝[s] a ⊢ a ∈ s [PROOFSTEP] have : Cauchy f := cauchy_nhds.mono' ha inf_le_left [GOAL] α : Type u_1 inst✝¹ : UniformSpace α inst✝ : SeparatedSpace α s : Set α h : IsComplete s a : α ha : ClusterPt a (𝓟 s) f : Filter α := 𝓝[s] a this : Cauchy f ⊢ a ∈ s [PROOFSTEP] rcases h f this inf_le_right with ⟨y, ys, fy⟩ [GOAL] case intro.intro α : Type u_1 inst✝¹ : UniformSpace α inst✝ : SeparatedSpace α s : Set α h : IsComplete s a : α ha : ClusterPt a (𝓟 s) f : Filter α := 𝓝[s] a this : Cauchy f y : α ys : y ∈ s fy : f ≤ 𝓝 y ⊢ a ∈ s [PROOFSTEP] rwa [(tendsto_nhds_unique' ha inf_le_left fy : a = y)]
{"mathlib_filename": "Mathlib.Topology.UniformSpace.CompleteSeparated", "llama_tokens": 468}
[GOAL] ⊢ AbsoluteValue.uniformSpace AbsoluteValue.abs = PseudoMetricSpace.toUniformSpace [PROOFSTEP] ext s [GOAL] case a.a s : Set (ℚ × ℚ) ⊢ s ∈ uniformity ℚ ↔ s ∈ uniformity ℚ [PROOFSTEP] rw [(AbsoluteValue.hasBasis_uniformity _).mem_iff, Metric.uniformity_basis_dist_rat.mem_iff] [GOAL] case a.a s : Set (ℚ × ℚ) ⊢ (∃ i, 0 < i ∧ {p | ↑AbsoluteValue.abs (p.snd - p.fst) < i} ⊆ s) ↔ ∃ i, 0 < i ∧ {p | dist p.fst p.snd < ↑i} ⊆ s [PROOFSTEP] simp only [Rat.dist_eq, AbsoluteValue.abs_apply, ← Rat.cast_sub, ← Rat.cast_abs, Rat.cast_lt, abs_sub_comm] [GOAL] ⊢ UniformSpace ℝ [PROOFSTEP] infer_instance [GOAL] ⊢ CompleteSpace ℝ [PROOFSTEP] infer_instance [GOAL] ⊢ SeparatedSpace ℝ [PROOFSTEP] infer_instance [GOAL] ⊢ UniformInducing Rat.cast [PROOFSTEP] rw [Rat.uniformSpace_eq] [GOAL] ⊢ UniformInducing Rat.cast [PROOFSTEP] exact Rat.uniformEmbedding_coe_real.toUniformInducing
{"mathlib_filename": "Mathlib.Topology.UniformSpace.CompareReals", "llama_tokens": 414}
[GOAL] m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝ : UniformSpace 𝕜 ⊢ UniformSpace (m → n → 𝕜) [PROOFSTEP] infer_instance [GOAL] m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝ : UniformSpace 𝕜 ⊢ 𝓤 (Matrix m n 𝕜) = ⨅ (i : m) (j : n), Filter.comap (fun a => (Prod.fst a i j, Prod.snd a i j)) (𝓤 𝕜) [PROOFSTEP] erw [Pi.uniformity, Pi.uniformity] [GOAL] m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝ : UniformSpace 𝕜 ⊢ ⨅ (i : m), Filter.comap (fun a => (Prod.fst a i, Prod.snd a i)) (⨅ (i : n), Filter.comap (fun a => (Prod.fst a i, Prod.snd a i)) (𝓤 𝕜)) = ⨅ (i : m) (j : n), Filter.comap (fun a => (Prod.fst a i j, Prod.snd a i j)) (𝓤 𝕜) [PROOFSTEP] simp_rw [Filter.comap_iInf, Filter.comap_comap] [GOAL] m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝ : UniformSpace 𝕜 ⊢ ⨅ (i : m) (i_1 : n), Filter.comap ((fun a => (Prod.fst a i_1, Prod.snd a i_1)) ∘ fun a => (Prod.fst a i, Prod.snd a i)) (𝓤 𝕜) = ⨅ (i : m) (j : n), Filter.comap (fun a => (Prod.fst a i j, Prod.snd a i j)) (𝓤 𝕜) [PROOFSTEP] rfl [GOAL] m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝¹ : UniformSpace 𝕜 β : Type u_4 inst✝ : UniformSpace β f : β → Matrix m n 𝕜 ⊢ UniformContinuous f ↔ ∀ (i : m) (j : n), UniformContinuous fun x => f x i j [PROOFSTEP] simp only [UniformContinuous, Matrix.uniformity, Filter.tendsto_iInf, Filter.tendsto_comap_iff] [GOAL] m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝¹ : UniformSpace 𝕜 β : Type u_4 inst✝ : UniformSpace β f : β → Matrix m n 𝕜 ⊢ (∀ (i : m) (i_1 : n), Filter.Tendsto ((fun a => (Prod.fst a i i_1, Prod.snd a i i_1)) ∘ fun x => (f x.fst, f x.snd)) (𝓤 β) (𝓤 𝕜)) ↔ ∀ (i : m) (j : n), Filter.Tendsto (fun x => (f x.fst i j, f x.snd i j)) (𝓤 β) (𝓤 𝕜) [PROOFSTEP] apply Iff.intro [GOAL] case mp m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝¹ : UniformSpace 𝕜 β : Type u_4 inst✝ : UniformSpace β f : β → Matrix m n 𝕜 ⊢ (∀ (i : m) (i_1 : n), Filter.Tendsto ((fun a => (Prod.fst a i i_1, Prod.snd a i i_1)) ∘ fun x => (f x.fst, f x.snd)) (𝓤 β) (𝓤 𝕜)) → ∀ (i : m) (j : n), Filter.Tendsto (fun x => (f x.fst i j, f x.snd i j)) (𝓤 β) (𝓤 𝕜) [PROOFSTEP] intro a [GOAL] case mpr m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝¹ : UniformSpace 𝕜 β : Type u_4 inst✝ : UniformSpace β f : β → Matrix m n 𝕜 ⊢ (∀ (i : m) (j : n), Filter.Tendsto (fun x => (f x.fst i j, f x.snd i j)) (𝓤 β) (𝓤 𝕜)) → ∀ (i : m) (i_1 : n), Filter.Tendsto ((fun a => (Prod.fst a i i_1, Prod.snd a i i_1)) ∘ fun x => (f x.fst, f x.snd)) (𝓤 β) (𝓤 𝕜) [PROOFSTEP] intro a [GOAL] case mp m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝¹ : UniformSpace 𝕜 β : Type u_4 inst✝ : UniformSpace β f : β → Matrix m n 𝕜 a : ∀ (i : m) (i_1 : n), Filter.Tendsto ((fun a => (Prod.fst a i i_1, Prod.snd a i i_1)) ∘ fun x => (f x.fst, f x.snd)) (𝓤 β) (𝓤 𝕜) ⊢ ∀ (i : m) (j : n), Filter.Tendsto (fun x => (f x.fst i j, f x.snd i j)) (𝓤 β) (𝓤 𝕜) [PROOFSTEP] apply a [GOAL] case mpr m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝¹ : UniformSpace 𝕜 β : Type u_4 inst✝ : UniformSpace β f : β → Matrix m n 𝕜 a : ∀ (i : m) (j : n), Filter.Tendsto (fun x => (f x.fst i j, f x.snd i j)) (𝓤 β) (𝓤 𝕜) ⊢ ∀ (i : m) (i_1 : n), Filter.Tendsto ((fun a => (Prod.fst a i i_1, Prod.snd a i i_1)) ∘ fun x => (f x.fst, f x.snd)) (𝓤 β) (𝓤 𝕜) [PROOFSTEP] apply a [GOAL] m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝¹ : UniformSpace 𝕜 inst✝ : CompleteSpace 𝕜 ⊢ CompleteSpace (m → n → 𝕜) [PROOFSTEP] infer_instance [GOAL] m : Type u_1 n : Type u_2 𝕜 : Type u_3 inst✝¹ : UniformSpace 𝕜 inst✝ : SeparatedSpace 𝕜 ⊢ SeparatedSpace (m → n → 𝕜) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Matrix", "llama_tokens": 1956}
[GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α x : Completion α ⊢ dist x x = 0 [PROOFSTEP] refine' induction_on x _ _ [GOAL] case refine'_1 α : Type u β : Type v inst✝ : PseudoMetricSpace α x : Completion α ⊢ IsClosed {a | dist a a = 0} [PROOFSTEP] refine' isClosed_eq _ continuous_const [GOAL] case refine'_1 α : Type u β : Type v inst✝ : PseudoMetricSpace α x : Completion α ⊢ Continuous fun a => dist a a [PROOFSTEP] exact Completion.continuous_dist continuous_id continuous_id [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α x : Completion α ⊢ ∀ (a : α), dist (↑α a) (↑α a) = 0 [PROOFSTEP] intro a [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α x : Completion α a : α ⊢ dist (↑α a) (↑α a) = 0 [PROOFSTEP] rw [Completion.dist_eq, dist_self] [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α ⊢ dist x y = dist y x [PROOFSTEP] refine' induction_on₂ x y _ _ [GOAL] case refine'_1 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α ⊢ IsClosed {x | dist x.fst x.snd = dist x.snd x.fst} [PROOFSTEP] exact isClosed_eq (Completion.continuous_dist continuous_fst continuous_snd) (Completion.continuous_dist continuous_snd continuous_fst) [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α ⊢ ∀ (a b : α), dist (↑α a) (↑α b) = dist (↑α b) (↑α a) [PROOFSTEP] intro a b [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α a b : α ⊢ dist (↑α a) (↑α b) = dist (↑α b) (↑α a) [PROOFSTEP] rw [Completion.dist_eq, Completion.dist_eq, dist_comm] [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α x y z : Completion α ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] refine' induction_on₃ x y z _ _ [GOAL] case refine'_1 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y z : Completion α ⊢ IsClosed {x | dist x.fst x.snd.snd ≤ dist x.fst x.snd.fst + dist x.snd.fst x.snd.snd} [PROOFSTEP] refine' isClosed_le _ (Continuous.add _ _) [GOAL] case refine'_1.refine'_1 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y z : Completion α ⊢ Continuous fun x => dist x.fst x.snd.snd [PROOFSTEP] apply_rules [Completion.continuous_dist, Continuous.fst, Continuous.snd, continuous_id] [GOAL] case refine'_1.refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y z : Completion α ⊢ Continuous fun x => dist x.fst x.snd.fst [PROOFSTEP] apply_rules [Completion.continuous_dist, Continuous.fst, Continuous.snd, continuous_id] [GOAL] case refine'_1.refine'_3 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y z : Completion α ⊢ Continuous fun x => dist x.snd.fst x.snd.snd [PROOFSTEP] apply_rules [Completion.continuous_dist, Continuous.fst, Continuous.snd, continuous_id] [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y z : Completion α ⊢ ∀ (a b c : α), dist (↑α a) (↑α c) ≤ dist (↑α a) (↑α b) + dist (↑α b) (↑α c) [PROOFSTEP] intro a b c [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y z : Completion α a b c : α ⊢ dist (↑α a) (↑α c) ≤ dist (↑α a) (↑α b) + dist (↑α b) (↑α c) [PROOFSTEP] rw [Completion.dist_eq, Completion.dist_eq, Completion.dist_eq] [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α x y z : Completion α a b c : α ⊢ dist a c ≤ dist a b + dist b c [PROOFSTEP] exact dist_triangle a b c [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ⊢ s ∈ 𝓤 (Completion α) ↔ ∃ ε, ε > 0 ∧ ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ⊢ s ∈ 𝓤 (Completion α) → ∃ ε, ε > 0 ∧ ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s [PROOFSTEP] intro hs [GOAL] case mp α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) ⊢ ∃ ε, ε > 0 ∧ ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s [PROOFSTEP] rcases mem_uniformity_isClosed hs with ⟨t, ht, ⟨tclosed, ts⟩⟩ [GOAL] case mp.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s ⊢ ∃ ε, ε > 0 ∧ ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s [PROOFSTEP] have A : {x : α × α | (↑x.1, ↑x.2) ∈ t} ∈ uniformity α := uniformContinuous_def.1 (uniformContinuous_coe α) t ht [GOAL] case mp.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ⊢ ∃ ε, ε > 0 ∧ ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s [PROOFSTEP] rcases mem_uniformity_dist.1 A with ⟨ε, εpos, hε⟩ [GOAL] case mp.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} ⊢ ∃ ε, ε > 0 ∧ ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s [PROOFSTEP] refine' ⟨ε, εpos, @fun x y hxy ↦ _⟩ [GOAL] case mp.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε ⊢ (x, y) ∈ s [PROOFSTEP] have : ε ≤ dist x y ∨ (x, y) ∈ t := by refine' induction_on₂ x y _ _ · have : {x : Completion α × Completion α | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} = {p : Completion α × Completion α | ε ≤ dist p.1 p.2} ∪ t := by ext; simp rw [this] apply IsClosed.union _ tclosed exact isClosed_le continuous_const Completion.uniformContinuous_dist.continuous · intro x y rw [Completion.dist_eq] by_cases h : ε ≤ dist x y · exact Or.inl h · have Z := hε (not_le.1 h) simp only [Set.mem_setOf_eq] at Z exact Or.inr Z [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε ⊢ ε ≤ dist x y ∨ (x, y) ∈ t [PROOFSTEP] refine' induction_on₂ x y _ _ [GOAL] case refine'_1 α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε ⊢ IsClosed {x | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} [PROOFSTEP] have : {x : Completion α × Completion α | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} = {p : Completion α × Completion α | ε ≤ dist p.1 p.2} ∪ t := by ext; simp [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε ⊢ {x | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} = {p | ε ≤ dist p.fst p.snd} ∪ t [PROOFSTEP] ext [GOAL] case h α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε x✝ : Completion α × Completion α ⊢ x✝ ∈ {x | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} ↔ x✝ ∈ {p | ε ≤ dist p.fst p.snd} ∪ t [PROOFSTEP] simp [GOAL] case refine'_1 α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε this : {x | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} = {p | ε ≤ dist p.fst p.snd} ∪ t ⊢ IsClosed {x | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} [PROOFSTEP] rw [this] [GOAL] case refine'_1 α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε this : {x | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} = {p | ε ≤ dist p.fst p.snd} ∪ t ⊢ IsClosed ({p | ε ≤ dist p.fst p.snd} ∪ t) [PROOFSTEP] apply IsClosed.union _ tclosed [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε this : {x | ε ≤ dist x.fst x.snd ∨ (x.fst, x.snd) ∈ t} = {p | ε ≤ dist p.fst p.snd} ∪ t ⊢ IsClosed {p | ε ≤ dist p.fst p.snd} [PROOFSTEP] exact isClosed_le continuous_const Completion.uniformContinuous_dist.continuous [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε ⊢ ∀ (a b : α), ε ≤ dist (↑α a) (↑α b) ∨ (↑α a, ↑α b) ∈ t [PROOFSTEP] intro x y [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x✝ y✝ : Completion α hxy : dist x✝ y✝ < ε x y : α ⊢ ε ≤ dist (↑α x) (↑α y) ∨ (↑α x, ↑α y) ∈ t [PROOFSTEP] rw [Completion.dist_eq] [GOAL] case refine'_2 α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x✝ y✝ : Completion α hxy : dist x✝ y✝ < ε x y : α ⊢ ε ≤ dist x y ∨ (↑α x, ↑α y) ∈ t [PROOFSTEP] by_cases h : ε ≤ dist x y [GOAL] case pos α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x✝ y✝ : Completion α hxy : dist x✝ y✝ < ε x y : α h : ε ≤ dist x y ⊢ ε ≤ dist x y ∨ (↑α x, ↑α y) ∈ t [PROOFSTEP] exact Or.inl h [GOAL] case neg α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x✝ y✝ : Completion α hxy : dist x✝ y✝ < ε x y : α h : ¬ε ≤ dist x y ⊢ ε ≤ dist x y ∨ (↑α x, ↑α y) ∈ t [PROOFSTEP] have Z := hε (not_le.1 h) [GOAL] case neg α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x✝ y✝ : Completion α hxy : dist x✝ y✝ < ε x y : α h : ¬ε ≤ dist x y Z : (x, y) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} ⊢ ε ≤ dist x y ∨ (↑α x, ↑α y) ∈ t [PROOFSTEP] simp only [Set.mem_setOf_eq] at Z [GOAL] case neg α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x✝ y✝ : Completion α hxy : dist x✝ y✝ < ε x y : α h : ¬ε ≤ dist x y Z : (↑α x, ↑α y) ∈ t ⊢ ε ≤ dist x y ∨ (↑α x, ↑α y) ∈ t [PROOFSTEP] exact Or.inr Z [GOAL] case mp.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε this : ε ≤ dist x y ∨ (x, y) ∈ t ⊢ (x, y) ∈ s [PROOFSTEP] simp only [not_le.mpr hxy, false_or_iff, not_le] at this [GOAL] case mp.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) t : Set (Completion α × Completion α) ht : t ∈ 𝓤 (Completion α) tclosed : IsClosed t ts : t ⊆ s A : {x | (↑α x.fst, ↑α x.snd) ∈ t} ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ {x | (↑α x.fst, ↑α x.snd) ∈ t} x y : Completion α hxy : dist x y < ε this : (x, y) ∈ t ⊢ (x, y) ∈ s [PROOFSTEP] exact ts this [GOAL] case mpr α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ⊢ (∃ ε, ε > 0 ∧ ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s) → s ∈ 𝓤 (Completion α) [PROOFSTEP] rintro ⟨ε, εpos, hε⟩ [GOAL] case mpr.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s ⊢ s ∈ 𝓤 (Completion α) [PROOFSTEP] let r : Set (ℝ × ℝ) := {p | dist p.1 p.2 < ε} [GOAL] case mpr.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} ⊢ s ∈ 𝓤 (Completion α) [PROOFSTEP] have : r ∈ uniformity ℝ := Metric.dist_mem_uniformity εpos [GOAL] case mpr.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ ⊢ s ∈ 𝓤 (Completion α) [PROOFSTEP] have T := uniformContinuous_def.1 (@Completion.uniformContinuous_dist α _) r this [GOAL] case mpr.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ T : {x | (dist x.fst.fst x.fst.snd, dist x.snd.fst x.snd.snd) ∈ r} ∈ 𝓤 (Completion α × Completion α) ⊢ s ∈ 𝓤 (Completion α) [PROOFSTEP] simp only [uniformity_prod_eq_prod, mem_prod_iff, exists_prop, Filter.mem_map, Set.mem_setOf_eq] at T [GOAL] case mpr.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ T : ∃ t₁, t₁ ∈ 𝓤 (Completion α) ∧ ∃ t₂, t₂ ∈ 𝓤 (Completion α) ∧ t₁ ×ˢ t₂ ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} ⊢ s ∈ 𝓤 (Completion α) [PROOFSTEP] rcases T with ⟨t1, ht1, t2, ht2, ht⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} ⊢ s ∈ 𝓤 (Completion α) [PROOFSTEP] refine' mem_of_superset ht1 _ [GOAL] case mpr.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} ⊢ t1 ⊆ s [PROOFSTEP] have A : ∀ a b : Completion α, (a, b) ∈ t1 → dist a b < ε := by intro a b hab have : ((a, b), (a, a)) ∈ t1 ×ˢ t2 := ⟨hab, refl_mem_uniformity ht2⟩ have I := ht this simp [Completion.dist_self, Real.dist_eq, Completion.dist_comm] at I exact lt_of_le_of_lt (le_abs_self _) I [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} ⊢ ∀ (a b : Completion α), (a, b) ∈ t1 → dist a b < ε [PROOFSTEP] intro a b hab [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} a b : Completion α hab : (a, b) ∈ t1 ⊢ dist a b < ε [PROOFSTEP] have : ((a, b), (a, a)) ∈ t1 ×ˢ t2 := ⟨hab, refl_mem_uniformity ht2⟩ [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this✝ : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} a b : Completion α hab : (a, b) ∈ t1 this : ((a, b), a, a) ∈ t1 ×ˢ t2 ⊢ dist a b < ε [PROOFSTEP] have I := ht this [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this✝ : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} a b : Completion α hab : (a, b) ∈ t1 this : ((a, b), a, a) ∈ t1 ×ˢ t2 I : ((a, b), a, a) ∈ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} ⊢ dist a b < ε [PROOFSTEP] simp [Completion.dist_self, Real.dist_eq, Completion.dist_comm] at I [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this✝ : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} a b : Completion α hab : (a, b) ∈ t1 this : ((a, b), a, a) ∈ t1 ×ˢ t2 I : |dist a b| < ε ⊢ dist a b < ε [PROOFSTEP] exact lt_of_le_of_lt (le_abs_self _) I [GOAL] case mpr.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} A : ∀ (a b : Completion α), (a, b) ∈ t1 → dist a b < ε ⊢ t1 ⊆ s [PROOFSTEP] show t1 ⊆ s [GOAL] case mpr.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} A : ∀ (a b : Completion α), (a, b) ∈ t1 → dist a b < ε ⊢ t1 ⊆ s [PROOFSTEP] rintro ⟨a, b⟩ hp [GOAL] case mpr.intro.intro.intro.intro.intro.intro.mk α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} A : ∀ (a b : Completion α), (a, b) ∈ t1 → dist a b < ε a b : Completion α hp : (a, b) ∈ t1 ⊢ (a, b) ∈ s [PROOFSTEP] have : dist a b < ε := A a b hp [GOAL] case mpr.intro.intro.intro.intro.intro.intro.mk α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s r : Set (ℝ × ℝ) := {p | dist p.fst p.snd < ε} this✝ : r ∈ 𝓤 ℝ t1 : Set (Completion α × Completion α) ht1 : t1 ∈ 𝓤 (Completion α) t2 : Set (Completion α × Completion α) ht2 : t2 ∈ 𝓤 (Completion α) ht : t1 ×ˢ t2 ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' {x | dist (dist x.fst.fst x.fst.snd) (dist x.snd.fst x.snd.snd) < ε} A : ∀ (a b : Completion α), (a, b) ∈ t1 → dist a b < ε a b : Completion α hp : (a, b) ∈ t1 this : dist a b < ε ⊢ (a, b) ∈ s [PROOFSTEP] exact hε this [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α h : dist x y = 0 ⊢ x = y [PROOFSTEP] have : SeparatedSpace (Completion α) := by infer_instance [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α h : dist x y = 0 ⊢ SeparatedSpace (Completion α) [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α h : dist x y = 0 this : SeparatedSpace (Completion α) ⊢ x = y [PROOFSTEP] refine' separated_def.1 this x y fun s hs ↦ _ [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α h : dist x y = 0 this : SeparatedSpace (Completion α) s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) ⊢ (x, y) ∈ s [PROOFSTEP] rcases(Completion.mem_uniformity_dist s).1 hs with ⟨ε, εpos, hε⟩ [GOAL] case intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α h : dist x y = 0 this : SeparatedSpace (Completion α) s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) ε : ℝ εpos : ε > 0 hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s ⊢ (x, y) ∈ s [PROOFSTEP] rw [← h] at εpos [GOAL] case intro.intro α : Type u β : Type v inst✝ : PseudoMetricSpace α x y : Completion α h : dist x y = 0 this : SeparatedSpace (Completion α) s : Set (Completion α × Completion α) hs : s ∈ 𝓤 (Completion α) ε : ℝ εpos : ε > dist x y hε : ∀ {a b : Completion α}, dist a b < ε → (a, b) ∈ s ⊢ (x, y) ∈ s [PROOFSTEP] exact hε εpos [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α ⊢ 𝓤 (Completion α) = ⨅ (ε : { ε // 0 < ε }), 𝓟 {p | dist p.fst p.snd < ↑ε} [PROOFSTEP] ext s [GOAL] case a α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ⊢ s ∈ 𝓤 (Completion α) ↔ s ∈ ⨅ (ε : { ε // 0 < ε }), 𝓟 {p | dist p.fst p.snd < ↑ε} [PROOFSTEP] rw [mem_iInf_of_directed] [GOAL] case a α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ⊢ s ∈ 𝓤 (Completion α) ↔ ∃ i, s ∈ 𝓟 {p | dist p.fst p.snd < ↑i} [PROOFSTEP] simp [Completion.mem_uniformity_dist, subset_def] [GOAL] case a.h α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) ⊢ Directed (fun x x_1 => x ≥ x_1) fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε} [PROOFSTEP] rintro ⟨r, hr⟩ ⟨p, hp⟩ [GOAL] case a.h.mk.mk α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) r : ℝ hr : 0 < r p : ℝ hp : 0 < p ⊢ ∃ z, (fun x x_1 => x ≥ x_1) ((fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε}) { val := r, property := hr }) ((fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε}) z) ∧ (fun x x_1 => x ≥ x_1) ((fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε}) { val := p, property := hp }) ((fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε}) z) [PROOFSTEP] use⟨min r p, lt_min hr hp⟩ [GOAL] case h α : Type u β : Type v inst✝ : PseudoMetricSpace α s : Set (Completion α × Completion α) r : ℝ hr : 0 < r p : ℝ hp : 0 < p ⊢ (fun x x_1 => x ≥ x_1) ((fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε}) { val := r, property := hr }) ((fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε}) { val := min r p, property := (_ : 0 < min r p) }) ∧ (fun x x_1 => x ≥ x_1) ((fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε}) { val := p, property := hp }) ((fun ε => 𝓟 {p | dist p.fst p.snd < ↑ε}) { val := min r p, property := (_ : 0 < min r p) }) [PROOFSTEP] simp (config := { contextual := true }) [lt_min_iff] [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α ⊢ 𝓤 (Completion α) = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] simpa [iInf_subtype] using @Completion.uniformity_dist' α _ [GOAL] α : Type u β : Type v inst✝ : PseudoMetricSpace α ⊢ UniformSpace (Completion α) [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : MetricSpace β inst✝ : CompleteSpace β f : α → β K : ℝ≥0 h : LipschitzWith K f x y : Completion α ⊢ Continuous fun x => dist (Completion.extension f x.fst) (Completion.extension f x.snd) [PROOFSTEP] continuity [GOAL] α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : MetricSpace β inst✝ : CompleteSpace β f : α → β K : ℝ≥0 h : LipschitzWith K f x y : Completion α ⊢ Continuous fun x => ↑K * dist x.fst x.snd [PROOFSTEP] continuity [GOAL] α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : MetricSpace β inst✝ : CompleteSpace β f : α → β K : ℝ≥0 h : LipschitzWith K f x y : Completion α ⊢ ∀ (a b : α), dist (Completion.extension f (↑α a)) (Completion.extension f (↑α b)) ≤ ↑K * dist (↑α a) (↑α b) [PROOFSTEP] simpa only [extension_coe h.uniformContinuous, Completion.dist_eq] using h.dist_le_mul [GOAL] α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : MetricSpace β inst✝ : CompleteSpace β f : α → β h : Isometry f x y : Completion α ⊢ Continuous fun x => dist (Completion.extension f x.fst) (Completion.extension f x.snd) [PROOFSTEP] continuity [GOAL] α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : MetricSpace β inst✝ : CompleteSpace β f : α → β h : Isometry f x y : Completion α ⊢ Continuous fun x => dist x.fst x.snd [PROOFSTEP] continuity [GOAL] α : Type u β : Type v inst✝² : PseudoMetricSpace α inst✝¹ : MetricSpace β inst✝ : CompleteSpace β f : α → β h : Isometry f x y : Completion α x✝¹ x✝ : α ⊢ dist (Completion.extension f (↑α x✝¹)) (Completion.extension f (↑α x✝)) = dist (↑α x✝¹) (↑α x✝) [PROOFSTEP] simp only [extension_coe h.uniformContinuous, Completion.dist_eq, h.dist_eq]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Completion", "llama_tokens": 15553}
[GOAL] ι : Type uι R : Type uR A : Type uA M₁ : Type uM₁ M₂ : Type uM₂ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring A inst✝⁸ : AddCommMonoid M₁ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Algebra R A inst✝⁵ : Module R M₁ inst✝⁴ : Module A M₁ inst✝³ : SMulCommClass R A M₁ inst✝² : SMulCommClass A R M₁ inst✝¹ : IsScalarTower R A M₁ inst✝ : Module R M₂ B₁ : BilinForm A M₁ B₂ : BilinForm R M₂ hB₁ : IsSymm B₁ hB₂ : IsSymm B₂ ⊢ IsSymm (BilinForm.tmul B₁ B₂) [PROOFSTEP] rw [isSymm_iff_flip R] [GOAL] ι : Type uι R : Type uR A : Type uA M₁ : Type uM₁ M₂ : Type uM₂ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring A inst✝⁸ : AddCommMonoid M₁ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Algebra R A inst✝⁵ : Module R M₁ inst✝⁴ : Module A M₁ inst✝³ : SMulCommClass R A M₁ inst✝² : SMulCommClass A R M₁ inst✝¹ : IsScalarTower R A M₁ inst✝ : Module R M₂ B₁ : BilinForm A M₁ B₂ : BilinForm R M₂ hB₁ : IsSymm B₁ hB₂ : IsSymm B₂ ⊢ ↑(flipHom R) (BilinForm.tmul B₁ B₂) = BilinForm.tmul B₁ B₂ [PROOFSTEP] apply toLin.injective [GOAL] case a ι : Type uι R : Type uR A : Type uA M₁ : Type uM₁ M₂ : Type uM₂ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring A inst✝⁸ : AddCommMonoid M₁ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Algebra R A inst✝⁵ : Module R M₁ inst✝⁴ : Module A M₁ inst✝³ : SMulCommClass R A M₁ inst✝² : SMulCommClass A R M₁ inst✝¹ : IsScalarTower R A M₁ inst✝ : Module R M₂ B₁ : BilinForm A M₁ B₂ : BilinForm R M₂ hB₁ : IsSymm B₁ hB₂ : IsSymm B₂ ⊢ ↑toLin (↑(flipHom R) (BilinForm.tmul B₁ B₂)) = ↑toLin (BilinForm.tmul B₁ B₂) [PROOFSTEP] ext x₁ x₂ y₁ y₂ [GOAL] case a.a.h.h.a.h.h ι : Type uι R : Type uR A : Type uA M₁ : Type uM₁ M₂ : Type uM₂ inst✝¹⁰ : CommSemiring R inst✝⁹ : CommSemiring A inst✝⁸ : AddCommMonoid M₁ inst✝⁷ : AddCommMonoid M₂ inst✝⁶ : Algebra R A inst✝⁵ : Module R M₁ inst✝⁴ : Module A M₁ inst✝³ : SMulCommClass R A M₁ inst✝² : SMulCommClass A R M₁ inst✝¹ : IsScalarTower R A M₁ inst✝ : Module R M₂ B₁ : BilinForm A M₁ B₂ : BilinForm R M₂ hB₁ : IsSymm B₁ hB₂ : IsSymm B₂ x₁ : M₁ x₂ : M₂ y₁ : M₁ y₂ : M₂ ⊢ ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (↑toLin (↑(flipHom R) (BilinForm.tmul B₁ B₂)))) x₁) x₂)) y₁) y₂ = ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (↑toLin (BilinForm.tmul B₁ B₂))) x₁) x₂)) y₁) y₂ [PROOFSTEP] exact (congr_arg₂ (HSMul.hSMul) (hB₂ x₂ y₂) (hB₁ x₁ y₁)).symm [GOAL] ι : Type uι R : Type uR A : Type uA M₁ : Type uM₁ M₂ : Type uM₂ inst✝⁹ : CommRing R inst✝⁸ : AddCommGroup M₁ inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₁ inst✝⁵ : Module R M₂ inst✝⁴ : Module.Free R M₁ inst✝³ : Module.Finite R M₁ inst✝² : Module.Free R M₂ inst✝¹ : Module.Finite R M₂ inst✝ : Nontrivial R ⊢ ↑(tensorDistribEquiv R) = tensorDistrib R R [PROOFSTEP] ext B₁ B₂ : 3 [GOAL] case a.h.h ι : Type uι R : Type uR A : Type uA M₁ : Type uM₁ M₂ : Type uM₂ inst✝⁹ : CommRing R inst✝⁸ : AddCommGroup M₁ inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₁ inst✝⁵ : Module R M₂ inst✝⁴ : Module.Free R M₁ inst✝³ : Module.Finite R M₁ inst✝² : Module.Free R M₂ inst✝¹ : Module.Finite R M₂ inst✝ : Nontrivial R B₁ : BilinForm R M₁ B₂ : BilinForm R M₂ ⊢ ↑(↑(AlgebraTensorModule.curry ↑(tensorDistribEquiv R)) B₁) B₂ = ↑(↑(AlgebraTensorModule.curry (tensorDistrib R R)) B₁) B₂ [PROOFSTEP] apply toLin.injective [GOAL] case a.h.h.a ι : Type uι R : Type uR A : Type uA M₁ : Type uM₁ M₂ : Type uM₂ inst✝⁹ : CommRing R inst✝⁸ : AddCommGroup M₁ inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₁ inst✝⁵ : Module R M₂ inst✝⁴ : Module.Free R M₁ inst✝³ : Module.Finite R M₁ inst✝² : Module.Free R M₂ inst✝¹ : Module.Finite R M₂ inst✝ : Nontrivial R B₁ : BilinForm R M₁ B₂ : BilinForm R M₂ ⊢ ↑toLin (↑(↑(AlgebraTensorModule.curry ↑(tensorDistribEquiv R)) B₁) B₂) = ↑toLin (↑(↑(AlgebraTensorModule.curry (tensorDistrib R R)) B₁) B₂) [PROOFSTEP] ext [GOAL] case a.h.h.a.a.h.h.a.h.h ι : Type uι R : Type uR A : Type uA M₁ : Type uM₁ M₂ : Type uM₂ inst✝⁹ : CommRing R inst✝⁸ : AddCommGroup M₁ inst✝⁷ : AddCommGroup M₂ inst✝⁶ : Module R M₁ inst✝⁵ : Module R M₂ inst✝⁴ : Module.Free R M₁ inst✝³ : Module.Finite R M₁ inst✝² : Module.Free R M₂ inst✝¹ : Module.Finite R M₂ inst✝ : Nontrivial R B₁ : BilinForm R M₁ B₂ : BilinForm R M₂ x✝³ : M₁ x✝² : M₂ x✝¹ : M₁ x✝ : M₂ ⊢ ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (↑toLin (↑(↑(AlgebraTensorModule.curry ↑(tensorDistribEquiv R)) B₁) B₂))) x✝³) x✝²)) x✝¹) x✝ = ↑(↑(AlgebraTensorModule.curry (↑(↑(AlgebraTensorModule.curry (↑toLin (↑(↑(AlgebraTensorModule.curry (tensorDistrib R R)) B₁) B₂))) x✝³) x✝²)) x✝¹) x✝ [PROOFSTEP] exact mul_comm _ _
{"mathlib_filename": "Mathlib.LinearAlgebra.BilinearForm.TensorProduct", "llama_tokens": 2385}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : CompactSpace α ⊢ 𝓝ˢ (diagonal α) = 𝓤 α [PROOFSTEP] refine' nhdsSet_diagonal_le_uniformity.antisymm _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : CompactSpace α ⊢ 𝓤 α ≤ 𝓝ˢ (diagonal α) [PROOFSTEP] have : (𝓤 (α × α)).HasBasis (fun U => U ∈ 𝓤 α) fun U => (fun p : (α × α) × α × α => ((p.1.1, p.2.1), p.1.2, p.2.2)) ⁻¹' U ×ˢ U := by rw [uniformity_prod_eq_comap_prod] exact (𝓤 α).basis_sets.prod_self.comap _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : CompactSpace α ⊢ HasBasis (𝓤 (α × α)) (fun U => U ∈ 𝓤 α) fun U => (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' U ×ˢ U [PROOFSTEP] rw [uniformity_prod_eq_comap_prod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : CompactSpace α ⊢ HasBasis (Filter.comap (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (𝓤 α ×ˢ 𝓤 α)) (fun U => U ∈ 𝓤 α) fun U => (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' U ×ˢ U [PROOFSTEP] exact (𝓤 α).basis_sets.prod_self.comap _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : CompactSpace α this : HasBasis (𝓤 (α × α)) (fun U => U ∈ 𝓤 α) fun U => (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' U ×ˢ U ⊢ 𝓤 α ≤ 𝓝ˢ (diagonal α) [PROOFSTEP] refine' (isCompact_diagonal.nhdsSet_basis_uniformity this).ge_iff.2 fun U hU => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : CompactSpace α this : HasBasis (𝓤 (α × α)) (fun U => U ∈ 𝓤 α) fun U => (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' U ×ˢ U U : Set (α × α) hU : U ∈ 𝓤 α ⊢ ⋃ (x : α × α) (_ : x ∈ diagonal α), ball x ((fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' U ×ˢ U) ∈ 𝓤 α [PROOFSTEP] exact mem_of_superset hU fun ⟨x, y⟩ hxy => mem_iUnion₂.2 ⟨(x, x), rfl, refl_mem_uniformity hU, hxy⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β t : TopologicalSpace γ inst✝ : CompactSpace γ u u' : UniformSpace γ h : toTopologicalSpace = t h' : toTopologicalSpace = t ⊢ u = u' [PROOFSTEP] refine uniformSpace_eq ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β t : TopologicalSpace γ inst✝ : CompactSpace γ u u' : UniformSpace γ h : toTopologicalSpace = t h' : toTopologicalSpace = t ⊢ 𝓤 γ = 𝓤 γ [PROOFSTEP] have : @CompactSpace γ u.toTopologicalSpace := by rwa [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β t : TopologicalSpace γ inst✝ : CompactSpace γ u u' : UniformSpace γ h : toTopologicalSpace = t h' : toTopologicalSpace = t ⊢ CompactSpace γ [PROOFSTEP] rwa [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β t : TopologicalSpace γ inst✝ : CompactSpace γ u u' : UniformSpace γ h : toTopologicalSpace = t h' : toTopologicalSpace = t this : CompactSpace γ ⊢ 𝓤 γ = 𝓤 γ [PROOFSTEP] have : @CompactSpace γ u'.toTopologicalSpace := by rwa [h'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β t : TopologicalSpace γ inst✝ : CompactSpace γ u u' : UniformSpace γ h : toTopologicalSpace = t h' : toTopologicalSpace = t this : CompactSpace γ ⊢ CompactSpace γ [PROOFSTEP] rwa [h'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β t : TopologicalSpace γ inst✝ : CompactSpace γ u u' : UniformSpace γ h : toTopologicalSpace = t h' : toTopologicalSpace = t this✝ : CompactSpace γ this : CompactSpace γ ⊢ 𝓤 γ = 𝓤 γ [PROOFSTEP] rw [@compactSpace_uniformity _ u, compactSpace_uniformity, h, h'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ ⊢ (Filter.lift' (𝓝ˢ (diagonal γ)) fun s => s ○ s) ≤ 𝓝ˢ (diagonal γ) [PROOFSTEP] set 𝓝Δ := 𝓝ˢ (diagonal γ) -- The filter of neighborhoods of Δ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) ⊢ (Filter.lift' 𝓝Δ fun s => s ○ s) ≤ 𝓝Δ [PROOFSTEP] set F := 𝓝Δ.lift' fun s : Set (γ × γ) => s ○ s [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s ⊢ F ≤ 𝓝Δ [PROOFSTEP] rw [le_iff_forall_inf_principal_compl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s ⊢ ∀ (V : Set (γ × γ)), V ∈ 𝓝Δ → F ⊓ 𝓟 Vᶜ = ⊥ [PROOFSTEP] intro V V_in [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ ⊢ F ⊓ 𝓟 Vᶜ = ⊥ [PROOFSTEP] by_contra H [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ ⊢ False [PROOFSTEP] haveI : NeBot (F ⊓ 𝓟 Vᶜ) := ⟨H⟩ -- Hence compactness would give us a cluster point (x, y) for F ⊓ 𝓟 Vᶜ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this : NeBot (F ⊓ 𝓟 Vᶜ) ⊢ False [PROOFSTEP] obtain ⟨⟨x, y⟩, hxy⟩ : ∃ p : γ × γ, ClusterPt p (F ⊓ 𝓟 Vᶜ) := cluster_point_of_compact _ -- In particular (x, y) is a cluster point of 𝓟 Vᶜ, hence is not in the interior of V, -- and a fortiori not in Δ, so x ≠ y [GOAL] case intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) ⊢ False [PROOFSTEP] have clV : ClusterPt (x, y) (𝓟 <| Vᶜ) := hxy.of_inf_right [GOAL] case intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) ⊢ False [PROOFSTEP] have : (x, y) ∉ interior V := by have : (x, y) ∈ closure Vᶜ := by rwa [mem_closure_iff_clusterPt] rwa [closure_compl] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) ⊢ ¬(x, y) ∈ interior V [PROOFSTEP] have : (x, y) ∈ closure Vᶜ := by rwa [mem_closure_iff_clusterPt] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) ⊢ (x, y) ∈ closure Vᶜ [PROOFSTEP] rwa [mem_closure_iff_clusterPt] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this : (x, y) ∈ closure Vᶜ ⊢ ¬(x, y) ∈ interior V [PROOFSTEP] rwa [closure_compl] at this [GOAL] case intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this : ¬(x, y) ∈ interior V ⊢ False [PROOFSTEP] have diag_subset : diagonal γ ⊆ interior V := subset_interior_iff_mem_nhdsSet.2 V_in [GOAL] case intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V ⊢ False [PROOFSTEP] have x_ne_y : x ≠ y := mt (@diag_subset (x, y)) this [GOAL] case intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y ⊢ False [PROOFSTEP] haveI : NormalSpace γ := normalOfCompactT2 [GOAL] case intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ ⊢ False [PROOFSTEP] obtain ⟨U₁, _, V₁, V₁_in, U₂, _, V₂, V₂_in, V₁_cl, V₂_cl, U₁_op, U₂_op, VU₁, VU₂, hU₁₂⟩ := disjoint_nested_nhds x_ne_y [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ ⊢ False [PROOFSTEP] let U₃ := (V₁ ∪ V₂)ᶜ [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ ⊢ False [PROOFSTEP] have U₃_op : IsOpen U₃ := (V₁_cl.union V₂_cl).isOpen_compl [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ ⊢ False [PROOFSTEP] let W := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ ⊢ False [PROOFSTEP] have W_in : W ∈ 𝓝Δ := by rw [mem_nhdsSet_iff_forall] rintro ⟨z, z'⟩ (rfl : z = z') refine' IsOpen.mem_nhds _ _ · apply_rules [IsOpen.union, IsOpen.prod] · simp only [mem_union, mem_prod, and_self_iff] exact (_root_.em _).imp_left fun h => union_subset_union VU₁ VU₂ h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ ⊢ W ∈ 𝓝Δ [PROOFSTEP] rw [mem_nhdsSet_iff_forall] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ ⊢ ∀ (x : γ × γ), x ∈ diagonal γ → W ∈ 𝓝 x [PROOFSTEP] rintro ⟨z, z'⟩ (rfl : z = z') [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ z : γ ⊢ W ∈ 𝓝 (z, z) [PROOFSTEP] refine' IsOpen.mem_nhds _ _ [GOAL] case mk.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ z : γ ⊢ IsOpen W [PROOFSTEP] apply_rules [IsOpen.union, IsOpen.prod] [GOAL] case mk.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ z : γ ⊢ (z, z) ∈ W [PROOFSTEP] simp only [mem_union, mem_prod, and_self_iff] [GOAL] case mk.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ z : γ ⊢ (z ∈ U₁ ∨ z ∈ U₂) ∨ z ∈ (V₁ ∪ V₂)ᶜ [PROOFSTEP] exact (_root_.em _).imp_left fun h => union_subset_union VU₁ VU₂ h [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝¹ : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ W_in : W ∈ 𝓝Δ ⊢ False [PROOFSTEP] have : W ○ W ∈ F := @mem_lift' _ _ _ (fun s => s ○ s) _ W_in [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝² : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝¹ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this✝ : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ W_in : W ∈ 𝓝Δ this : W ○ W ∈ F ⊢ False [PROOFSTEP] have hV₁₂ : V₁ ×ˢ V₂ ∈ 𝓝 (x, y) := prod_mem_nhds V₁_in V₂_in [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝² : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝¹ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this✝ : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ W_in : W ∈ 𝓝Δ this : W ○ W ∈ F hV₁₂ : V₁ ×ˢ V₂ ∈ 𝓝 (x, y) ⊢ False [PROOFSTEP] obtain ⟨⟨u, v⟩, ⟨u_in, v_in⟩, w, huw, hwv⟩ := clusterPt_iff.mp hxy.of_inf_left hV₁₂ this [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝² : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝¹ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this✝ : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ W_in : W ∈ 𝓝Δ this : W ○ W ∈ F hV₁₂ : V₁ ×ˢ V₂ ∈ 𝓝 (x, y) u v : γ u_in : (u, v).fst ∈ V₁ v_in : (u, v).snd ∈ V₂ w : γ huw : ((u, v).fst, w) ∈ W hwv : (w, (u, v).snd) ∈ W ⊢ False [PROOFSTEP] have uw_in : (u, w) ∈ U₁ ×ˢ U₁ := (huw.resolve_right fun h => h.1 <| Or.inl u_in).resolve_right fun h => hU₁₂.le_bot ⟨VU₁ u_in, h.1⟩ -- Similarly, because v ∈ V₂, (w ,v) ∈ W forces (w, v) ∈ U₂ ×ˢ U₂. [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝² : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝¹ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this✝ : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ W_in : W ∈ 𝓝Δ this : W ○ W ∈ F hV₁₂ : V₁ ×ˢ V₂ ∈ 𝓝 (x, y) u v : γ u_in : (u, v).fst ∈ V₁ v_in : (u, v).snd ∈ V₂ w : γ huw : ((u, v).fst, w) ∈ W hwv : (w, (u, v).snd) ∈ W uw_in : (u, w) ∈ U₁ ×ˢ U₁ ⊢ False [PROOFSTEP] have wv_in : (w, v) ∈ U₂ ×ˢ U₂ := (hwv.resolve_right fun h => h.2 <| Or.inr v_in).resolve_left fun h => hU₁₂.le_bot ⟨h.2, VU₂ v_in⟩ -- Hence w ∈ U₁ ∩ U₂ which is empty. -- So we have a contradiction [GOAL] case intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ 𝓝Δ : Filter (γ × γ) := 𝓝ˢ (diagonal γ) F : Filter (γ × γ) := Filter.lift' 𝓝Δ fun s => s ○ s V : Set (γ × γ) V_in : V ∈ 𝓝Δ H : ¬F ⊓ 𝓟 Vᶜ = ⊥ this✝² : NeBot (F ⊓ 𝓟 Vᶜ) x y : γ hxy : ClusterPt (x, y) (F ⊓ 𝓟 Vᶜ) clV : ClusterPt (x, y) (𝓟 Vᶜ) this✝¹ : ¬(x, y) ∈ interior V diag_subset : diagonal γ ⊆ interior V x_ne_y : x ≠ y this✝ : NormalSpace γ U₁ : Set γ left✝¹ : U₁ ∈ 𝓝 x V₁ : Set γ V₁_in : V₁ ∈ 𝓝 x U₂ : Set γ left✝ : U₂ ∈ 𝓝 y V₂ : Set γ V₂_in : V₂ ∈ 𝓝 y V₁_cl : IsClosed V₁ V₂_cl : IsClosed V₂ U₁_op : IsOpen U₁ U₂_op : IsOpen U₂ VU₁ : V₁ ⊆ U₁ VU₂ : V₂ ⊆ U₂ hU₁₂ : Disjoint U₁ U₂ U₃ : Set γ := (V₁ ∪ V₂)ᶜ U₃_op : IsOpen U₃ W : Set (γ × γ) := U₁ ×ˢ U₁ ∪ U₂ ×ˢ U₂ ∪ U₃ ×ˢ U₃ W_in : W ∈ 𝓝Δ this : W ○ W ∈ F hV₁₂ : V₁ ×ˢ V₂ ∈ 𝓝 (x, y) u v : γ u_in : (u, v).fst ∈ V₁ v_in : (u, v).snd ∈ V₂ w : γ huw : ((u, v).fst, w) ∈ W hwv : (w, (u, v).snd) ∈ W uw_in : (u, w) ∈ U₁ ×ˢ U₁ wv_in : (w, v) ∈ U₂ ×ˢ U₂ ⊢ False [PROOFSTEP] exact hU₁₂.le_bot ⟨uw_in.2, wv_in.1⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ ⊢ ∀ (s : Set γ), IsOpen s ↔ ∀ (x : γ), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := 𝓝ˢ (diagonal γ), refl := (_ : 𝓟 idRel ≤ 𝓝ˢ idRel), symm := (_ : Tendsto Prod.swap (𝓝ˢ (diagonal γ)) (𝓝ˢ (diagonal γ))), comp := (_ : (Filter.lift' (𝓝ˢ (diagonal γ)) fun s => s ○ s) ≤ 𝓝ˢ (diagonal γ)) }.uniformity [PROOFSTEP] suffices ∀ x : γ, Filter.comap (Prod.mk x) (𝓝ˢ (diagonal γ)) = 𝓝 x by intro s simp_rw [isOpen_iff_mem_nhds, ← mem_comap_prod_mk, this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ this : ∀ (x : γ), Filter.comap (Prod.mk x) (𝓝ˢ (diagonal γ)) = 𝓝 x ⊢ ∀ (s : Set γ), IsOpen s ↔ ∀ (x : γ), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := 𝓝ˢ (diagonal γ), refl := (_ : 𝓟 idRel ≤ 𝓝ˢ idRel), symm := (_ : Tendsto Prod.swap (𝓝ˢ (diagonal γ)) (𝓝ˢ (diagonal γ))), comp := (_ : (Filter.lift' (𝓝ˢ (diagonal γ)) fun s => s ○ s) ≤ 𝓝ˢ (diagonal γ)) }.uniformity [PROOFSTEP] intro s [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ this : ∀ (x : γ), Filter.comap (Prod.mk x) (𝓝ˢ (diagonal γ)) = 𝓝 x s : Set γ ⊢ IsOpen s ↔ ∀ (x : γ), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := 𝓝ˢ (diagonal γ), refl := (_ : 𝓟 idRel ≤ 𝓝ˢ idRel), symm := (_ : Tendsto Prod.swap (𝓝ˢ (diagonal γ)) (𝓝ˢ (diagonal γ))), comp := (_ : (Filter.lift' (𝓝ˢ (diagonal γ)) fun s => s ○ s) ≤ 𝓝ˢ (diagonal γ)) }.uniformity [PROOFSTEP] simp_rw [isOpen_iff_mem_nhds, ← mem_comap_prod_mk, this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ ⊢ ∀ (x : γ), Filter.comap (Prod.mk x) (𝓝ˢ (diagonal γ)) = 𝓝 x [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ x : γ ⊢ Filter.comap (Prod.mk x) (𝓝ˢ (diagonal γ)) = 𝓝 x [PROOFSTEP] simp_rw [nhdsSet_diagonal, comap_iSup, nhds_prod_eq, comap_prod, (· ∘ ·), comap_id'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ x : γ ⊢ ⨆ (i : γ), Filter.comap (fun x_1 => x) (𝓝 i) ⊓ 𝓝 i = 𝓝 x [PROOFSTEP] rw [iSup_split_single _ x, comap_const_of_mem fun V => mem_of_mem_nhds] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ x : γ ⊢ ⊤ ⊓ 𝓝 x ⊔ ⨆ (i : γ) (_ : i ≠ x), Filter.comap (fun x_2 => x) (𝓝 i) ⊓ 𝓝 i = 𝓝 x [PROOFSTEP] suffices ∀ (y) (_ : y ≠ x), comap (fun _ : γ => x) (𝓝 y) ⊓ 𝓝 y ≤ 𝓝 x by simpa [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ x : γ this : ∀ (y : γ), y ≠ x → Filter.comap (fun x_2 => x) (𝓝 y) ⊓ 𝓝 y ≤ 𝓝 x ⊢ ⊤ ⊓ 𝓝 x ⊔ ⨆ (i : γ) (_ : i ≠ x), Filter.comap (fun x_2 => x) (𝓝 i) ⊓ 𝓝 i = 𝓝 x [PROOFSTEP] simpa [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ x : γ ⊢ ∀ (y : γ), y ≠ x → Filter.comap (fun x_2 => x) (𝓝 y) ⊓ 𝓝 y ≤ 𝓝 x [PROOFSTEP] intro y hxy [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : TopologicalSpace γ inst✝¹ : CompactSpace γ inst✝ : T2Space γ x y : γ hxy : y ≠ x ⊢ Filter.comap (fun x_1 => x) (𝓝 y) ⊓ 𝓝 y ≤ 𝓝 x [PROOFSTEP] simp [comap_const_of_not_mem (compl_singleton_mem_nhds hxy) (Classical.not_not.2 rfl)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : CompactSpace α f : α → β h : Continuous f ⊢ map (Prod.map f f) (𝓤 α) = map (Prod.map f f) (𝓝ˢ (diagonal α)) [PROOFSTEP] rw [nhdsSet_diagonal_eq_uniformity] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set α f : α → β hs : IsCompact s hf : ContinuousOn f s ⊢ UniformContinuousOn f s [PROOFSTEP] rw [uniformContinuousOn_iff_restrict] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set α f : α → β hs : IsCompact s hf : ContinuousOn f s ⊢ UniformContinuous (restrict s f) [PROOFSTEP] rw [isCompact_iff_compactSpace] at hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set α f : α → β hs : CompactSpace ↑s hf : ContinuousOn f s ⊢ UniformContinuous (restrict s f) [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] at hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set α f : α → β hs : CompactSpace ↑s hf : Continuous (restrict s f) ⊢ UniformContinuous (restrict s f) [PROOFSTEP] exact CompactSpace.uniformContinuous_of_continuous hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β ⊢ {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ r} ∈ 𝓤 α [PROOFSTEP] obtain ⟨t, ht, htsymm, htr⟩ := comp_symm_mem_uniformity_sets hr [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r ⊢ {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ r} ∈ 𝓤 α [PROOFSTEP] choose U hU T hT hb using fun a ha => exists_mem_nhds_ball_subset_of_mem_nhds ((hf a ha).preimage_mem_nhds <| mem_nhds_left _ ht) [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r U : (a : α) → a ∈ s → Set α hU : ∀ (a : α) (ha : a ∈ s), U a ha ∈ 𝓝 a T : (a : α) → a ∈ s → Set (α × α) hT : ∀ (a : α) (ha : a ∈ s), T a ha ∈ 𝓤 α hb : ∀ (a : α) (ha : a ∈ s) (a' : α), a' ∈ U a ha → ball a' (T a ha) ⊆ f ⁻¹' {y | (f a, y) ∈ t} ⊢ {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ r} ∈ 𝓤 α [PROOFSTEP] obtain ⟨fs, hsU⟩ := hs.elim_nhds_subcover' U hU [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r U : (a : α) → a ∈ s → Set α hU : ∀ (a : α) (ha : a ∈ s), U a ha ∈ 𝓝 a T : (a : α) → a ∈ s → Set (α × α) hT : ∀ (a : α) (ha : a ∈ s), T a ha ∈ 𝓤 α hb : ∀ (a : α) (ha : a ∈ s) (a' : α), a' ∈ U a ha → ball a' (T a ha) ⊆ f ⁻¹' {y | (f a, y) ∈ t} fs : Finset ↑s hsU : s ⊆ ⋃ (x : ↑s) (_ : x ∈ fs), U ↑x (_ : ↑x ∈ s) ⊢ {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ r} ∈ 𝓤 α [PROOFSTEP] apply mem_of_superset ((biInter_finset_mem fs).2 fun a _ => hT a a.2) [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r U : (a : α) → a ∈ s → Set α hU : ∀ (a : α) (ha : a ∈ s), U a ha ∈ 𝓝 a T : (a : α) → a ∈ s → Set (α × α) hT : ∀ (a : α) (ha : a ∈ s), T a ha ∈ 𝓤 α hb : ∀ (a : α) (ha : a ∈ s) (a' : α), a' ∈ U a ha → ball a' (T a ha) ⊆ f ⁻¹' {y | (f a, y) ∈ t} fs : Finset ↑s hsU : s ⊆ ⋃ (x : ↑s) (_ : x ∈ fs), U ↑x (_ : ↑x ∈ s) ⊢ ⋂ (i : ↑s) (_ : i ∈ fs), T ↑i (_ : ↑i ∈ s) ⊆ {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ r} [PROOFSTEP] rintro ⟨a₁, a₂⟩ h h₁ [GOAL] case intro.intro.intro.intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r U : (a : α) → a ∈ s → Set α hU : ∀ (a : α) (ha : a ∈ s), U a ha ∈ 𝓝 a T : (a : α) → a ∈ s → Set (α × α) hT : ∀ (a : α) (ha : a ∈ s), T a ha ∈ 𝓤 α hb : ∀ (a : α) (ha : a ∈ s) (a' : α), a' ∈ U a ha → ball a' (T a ha) ⊆ f ⁻¹' {y | (f a, y) ∈ t} fs : Finset ↑s hsU : s ⊆ ⋃ (x : ↑s) (_ : x ∈ fs), U ↑x (_ : ↑x ∈ s) a₁ a₂ : α h : (a₁, a₂) ∈ ⋂ (i : ↑s) (_ : i ∈ fs), T ↑i (_ : ↑i ∈ s) h₁ : (a₁, a₂).fst ∈ s ⊢ (f (a₁, a₂).fst, f (a₁, a₂).snd) ∈ r [PROOFSTEP] obtain ⟨a, ha, haU⟩ := Set.mem_iUnion₂.1 (hsU h₁) [GOAL] case intro.intro.intro.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r U : (a : α) → a ∈ s → Set α hU : ∀ (a : α) (ha : a ∈ s), U a ha ∈ 𝓝 a T : (a : α) → a ∈ s → Set (α × α) hT : ∀ (a : α) (ha : a ∈ s), T a ha ∈ 𝓤 α hb : ∀ (a : α) (ha : a ∈ s) (a' : α), a' ∈ U a ha → ball a' (T a ha) ⊆ f ⁻¹' {y | (f a, y) ∈ t} fs : Finset ↑s hsU : s ⊆ ⋃ (x : ↑s) (_ : x ∈ fs), U ↑x (_ : ↑x ∈ s) a₁ a₂ : α h : (a₁, a₂) ∈ ⋂ (i : ↑s) (_ : i ∈ fs), T ↑i (_ : ↑i ∈ s) h₁ : (a₁, a₂).fst ∈ s a : ↑s ha : a ∈ fs haU : (a₁, a₂).fst ∈ U ↑a (_ : ↑a ∈ s) ⊢ (f (a₁, a₂).fst, f (a₁, a₂).snd) ∈ r [PROOFSTEP] apply htr [GOAL] case intro.intro.intro.intro.mk.intro.intro.a α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r U : (a : α) → a ∈ s → Set α hU : ∀ (a : α) (ha : a ∈ s), U a ha ∈ 𝓝 a T : (a : α) → a ∈ s → Set (α × α) hT : ∀ (a : α) (ha : a ∈ s), T a ha ∈ 𝓤 α hb : ∀ (a : α) (ha : a ∈ s) (a' : α), a' ∈ U a ha → ball a' (T a ha) ⊆ f ⁻¹' {y | (f a, y) ∈ t} fs : Finset ↑s hsU : s ⊆ ⋃ (x : ↑s) (_ : x ∈ fs), U ↑x (_ : ↑x ∈ s) a₁ a₂ : α h : (a₁, a₂) ∈ ⋂ (i : ↑s) (_ : i ∈ fs), T ↑i (_ : ↑i ∈ s) h₁ : (a₁, a₂).fst ∈ s a : ↑s ha : a ∈ fs haU : (a₁, a₂).fst ∈ U ↑a (_ : ↑a ∈ s) ⊢ (f (a₁, a₂).fst, f (a₁, a₂).snd) ∈ t ○ t [PROOFSTEP] refine' ⟨f a, htsymm.mk_mem_comm.1 (hb _ _ _ haU _), hb _ _ _ haU _⟩ [GOAL] case intro.intro.intro.intro.mk.intro.intro.a.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r U : (a : α) → a ∈ s → Set α hU : ∀ (a : α) (ha : a ∈ s), U a ha ∈ 𝓝 a T : (a : α) → a ∈ s → Set (α × α) hT : ∀ (a : α) (ha : a ∈ s), T a ha ∈ 𝓤 α hb : ∀ (a : α) (ha : a ∈ s) (a' : α), a' ∈ U a ha → ball a' (T a ha) ⊆ f ⁻¹' {y | (f a, y) ∈ t} fs : Finset ↑s hsU : s ⊆ ⋃ (x : ↑s) (_ : x ∈ fs), U ↑x (_ : ↑x ∈ s) a₁ a₂ : α h : (a₁, a₂) ∈ ⋂ (i : ↑s) (_ : i ∈ fs), T ↑i (_ : ↑i ∈ s) h₁ : (a₁, a₂).fst ∈ s a : ↑s ha : a ∈ fs haU : (a₁, a₂).fst ∈ U ↑a (_ : ↑a ∈ s) ⊢ (a₁, a₂).fst ∈ ball (a₁, a₂).fst (T ↑a (_ : ↑a ∈ s)) case intro.intro.intro.intro.mk.intro.intro.a.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set (β × β) s : Set α hs : IsCompact s f : α → β hf : ∀ (a : α), a ∈ s → ContinuousAt f a hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r U : (a : α) → a ∈ s → Set α hU : ∀ (a : α) (ha : a ∈ s), U a ha ∈ 𝓝 a T : (a : α) → a ∈ s → Set (α × α) hT : ∀ (a : α) (ha : a ∈ s), T a ha ∈ 𝓤 α hb : ∀ (a : α) (ha : a ∈ s) (a' : α), a' ∈ U a ha → ball a' (T a ha) ⊆ f ⁻¹' {y | (f a, y) ∈ t} fs : Finset ↑s hsU : s ⊆ ⋃ (x : ↑s) (_ : x ∈ fs), U ↑x (_ : ↑x ∈ s) a₁ a₂ : α h : (a₁, a₂) ∈ ⋂ (i : ↑s) (_ : i ∈ fs), T ↑i (_ : ↑i ∈ s) h₁ : (a₁, a₂).fst ∈ s a : ↑s ha : a ∈ fs haU : (a₁, a₂).fst ∈ U ↑a (_ : ↑a ∈ s) ⊢ (a₁, a₂).snd ∈ ball (a₁, a₂).fst (T ↑a (_ : ↑a ∈ s)) [PROOFSTEP] exacts [mem_ball_self _ (hT a a.2), mem_iInter₂.1 h a ha] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β ⊢ {x | (f x.fst, f x.snd) ∈ r} ∈ 𝓤 α [PROOFSTEP] obtain ⟨t, ht, htsymm, htr⟩ := comp_symm_mem_uniformity_sets hr [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r ⊢ {x | (f x.fst, f x.snd) ∈ r} ∈ 𝓤 α [PROOFSTEP] obtain ⟨s, hs, hst⟩ := mem_cocompact.1 (hx <| mem_nhds_left _ ht) [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r s : Set α hs : IsCompact s hst : sᶜ ⊆ f ⁻¹' {y | (x, y) ∈ t} ⊢ {x | (f x.fst, f x.snd) ∈ r} ∈ 𝓤 α [PROOFSTEP] apply mem_of_superset (symmetrize_mem_uniformity <| (hs.uniformContinuousAt_of_continuousAt f fun _ _ => h_cont.continuousAt) <| symmetrize_mem_uniformity hr) [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r s : Set α hs : IsCompact s hst : sᶜ ⊆ f ⁻¹' {y | (x, y) ∈ t} ⊢ symmetrizeRel {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ symmetrizeRel r} ⊆ {x | (f x.fst, f x.snd) ∈ r} [PROOFSTEP] rintro ⟨b₁, b₂⟩ h [GOAL] case intro.intro.intro.intro.intro.mk α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r s : Set α hs : IsCompact s hst : sᶜ ⊆ f ⁻¹' {y | (x, y) ∈ t} b₁ b₂ : α h : (b₁, b₂) ∈ symmetrizeRel {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ symmetrizeRel r} ⊢ (b₁, b₂) ∈ {x | (f x.fst, f x.snd) ∈ r} [PROOFSTEP] by_cases h₁ : b₁ ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r s : Set α hs : IsCompact s hst : sᶜ ⊆ f ⁻¹' {y | (x, y) ∈ t} b₁ b₂ : α h : (b₁, b₂) ∈ symmetrizeRel {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ symmetrizeRel r} h₁ : b₁ ∈ s ⊢ (b₁, b₂) ∈ {x | (f x.fst, f x.snd) ∈ r} [PROOFSTEP] exact (h.1 h₁).1 [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r s : Set α hs : IsCompact s hst : sᶜ ⊆ f ⁻¹' {y | (x, y) ∈ t} b₁ b₂ : α h : (b₁, b₂) ∈ symmetrizeRel {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ symmetrizeRel r} h₁ : ¬b₁ ∈ s ⊢ (b₁, b₂) ∈ {x | (f x.fst, f x.snd) ∈ r} [PROOFSTEP] by_cases h₂ : b₂ ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r s : Set α hs : IsCompact s hst : sᶜ ⊆ f ⁻¹' {y | (x, y) ∈ t} b₁ b₂ : α h : (b₁, b₂) ∈ symmetrizeRel {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ symmetrizeRel r} h₁ : ¬b₁ ∈ s h₂ : b₂ ∈ s ⊢ (b₁, b₂) ∈ {x | (f x.fst, f x.snd) ∈ r} [PROOFSTEP] exact (h.2 h₂).2 [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r s : Set α hs : IsCompact s hst : sᶜ ⊆ f ⁻¹' {y | (x, y) ∈ t} b₁ b₂ : α h : (b₁, b₂) ∈ symmetrizeRel {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ symmetrizeRel r} h₁ : ¬b₁ ∈ s h₂ : ¬b₂ ∈ s ⊢ (b₁, b₂) ∈ {x | (f x.fst, f x.snd) ∈ r} [PROOFSTEP] apply htr [GOAL] case neg.a α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β x : β h_cont : Continuous f hx : Tendsto f (cocompact α) (𝓝 x) r : Set (β × β) hr : r ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : SymmetricRel t htr : t ○ t ⊆ r s : Set α hs : IsCompact s hst : sᶜ ⊆ f ⁻¹' {y | (x, y) ∈ t} b₁ b₂ : α h : (b₁, b₂) ∈ symmetrizeRel {x | x.fst ∈ s → (f x.fst, f x.snd) ∈ symmetrizeRel r} h₁ : ¬b₁ ∈ s h₂ : ¬b₂ ∈ s ⊢ (f (b₁, b₂).fst, f (b₁, b₂).snd) ∈ t ○ t [PROOFSTEP] exact ⟨x, htsymm.mk_mem_comm.1 (hst h₁), hst h₂⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β f : α → γ inst✝¹ : TopologicalSpace γ inst✝ : One γ h : HasCompactMulSupport f ⊢ Tendsto f (cocompact α) (𝓝 1) [PROOFSTEP] intro N hN [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β f : α → γ inst✝¹ : TopologicalSpace γ inst✝ : One γ h : HasCompactMulSupport f N : Set γ hN : N ∈ 𝓝 1 ⊢ N ∈ map f (cocompact α) [PROOFSTEP] rw [mem_map, mem_cocompact'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β f : α → γ inst✝¹ : TopologicalSpace γ inst✝ : One γ h : HasCompactMulSupport f N : Set γ hN : N ∈ 𝓝 1 ⊢ ∃ t, IsCompact t ∧ (f ⁻¹' N)ᶜ ⊆ t [PROOFSTEP] refine' ⟨mulTSupport f, h.isCompact, _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β f : α → γ inst✝¹ : TopologicalSpace γ inst✝ : One γ h : HasCompactMulSupport f N : Set γ hN : N ∈ 𝓝 1 ⊢ (f ⁻¹' N)ᶜ ⊆ mulTSupport f [PROOFSTEP] rw [compl_subset_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β f : α → γ inst✝¹ : TopologicalSpace γ inst✝ : One γ h : HasCompactMulSupport f N : Set γ hN : N ∈ 𝓝 1 ⊢ (mulTSupport f)ᶜ ⊆ f ⁻¹' N [PROOFSTEP] intro v hv [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β f : α → γ inst✝¹ : TopologicalSpace γ inst✝ : One γ h : HasCompactMulSupport f N : Set γ hN : N ∈ 𝓝 1 v : α hv : v ∈ (mulTSupport f)ᶜ ⊢ v ∈ f ⁻¹' N [PROOFSTEP] rw [mem_preimage, image_eq_one_of_nmem_mulTSupport hv] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β f : α → γ inst✝¹ : TopologicalSpace γ inst✝ : One γ h : HasCompactMulSupport f N : Set γ hN : N ∈ 𝓝 1 v : α hv : v ∈ (mulTSupport f)ᶜ ⊢ 1 ∈ N [PROOFSTEP] exact mem_of_mem_nhds hN [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : LocallyCompactSpace α inst✝¹ : CompactSpace β inst✝ : UniformSpace γ f : α → β → γ x : α U : Set α hxU : U ∈ 𝓝 x h : ContinuousOn (↿f) (U ×ˢ univ) ⊢ TendstoUniformly f (f x) (𝓝 x) [PROOFSTEP] rcases LocallyCompactSpace.local_compact_nhds _ _ hxU with ⟨K, hxK, hKU, hK⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : LocallyCompactSpace α inst✝¹ : CompactSpace β inst✝ : UniformSpace γ f : α → β → γ x : α U : Set α hxU : U ∈ 𝓝 x h : ContinuousOn (↿f) (U ×ˢ univ) K : Set α hxK : K ∈ 𝓝 x hKU : K ⊆ U hK : IsCompact K ⊢ TendstoUniformly f (f x) (𝓝 x) [PROOFSTEP] have : UniformContinuousOn (↿f) (K ×ˢ univ) := IsCompact.uniformContinuousOn_of_continuous (hK.prod isCompact_univ) (h.mono <| prod_mono hKU Subset.rfl) [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : LocallyCompactSpace α inst✝¹ : CompactSpace β inst✝ : UniformSpace γ f : α → β → γ x : α U : Set α hxU : U ∈ 𝓝 x h : ContinuousOn (↿f) (U ×ˢ univ) K : Set α hxK : K ∈ 𝓝 x hKU : K ⊆ U hK : IsCompact K this : UniformContinuousOn (↿f) (K ×ˢ univ) ⊢ TendstoUniformly f (f x) (𝓝 x) [PROOFSTEP] exact this.tendstoUniformly hxK [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β ι : Type u_4 F : ι → β → α inst✝ : CompactSpace β h : Equicontinuous F ⊢ UniformEquicontinuous F [PROOFSTEP] rw [equicontinuous_iff_continuous] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β ι : Type u_4 F : ι → β → α inst✝ : CompactSpace β h : Continuous (↑UniformFun.ofFun ∘ Function.swap F) ⊢ UniformEquicontinuous F [PROOFSTEP] rw [uniformEquicontinuous_iff_uniformContinuous] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : UniformSpace α inst✝¹ : UniformSpace β ι : Type u_4 F : ι → β → α inst✝ : CompactSpace β h : Continuous (↑UniformFun.ofFun ∘ Function.swap F) ⊢ UniformContinuous (↑UniformFun.ofFun ∘ Function.swap F) [PROOFSTEP] exact CompactSpace.uniformContinuous_of_continuous h
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Compact", "llama_tokens": 28659}
[GOAL] 𝕜 : Type u_1 inst✝¹ : LinearOrderedField 𝕜 R : Type u_2 inst✝ : CommRing R abv : AbsoluteValue R 𝕜 ⊢ ∀ (x : R), (fun x y => ↑abv (y - x)) x x = 0 [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Topology.UniformSpace.AbsoluteValue", "llama_tokens": 89}
[GOAL] M : Type u G : Type v X : Type w inst✝⁴ : PseudoEMetricSpace X inst✝³ : SMul M X inst✝² : SMul Mᵐᵒᵖ X inst✝¹ : IsCentralScalar M X inst✝ : IsometricSMul M X c : Mᵐᵒᵖ x y : X ⊢ edist ((fun x => c • x) x) ((fun x => c • x) y) = edist x y [PROOFSTEP] simpa only [← op_smul_eq_smul] using isometry_smul X c.unop x y [GOAL] M : Type u G : Type v X : Type w inst✝⁶ : PseudoEMetricSpace X inst✝⁵ : Group G inst✝⁴ : MulAction G X inst✝³ : IsometricSMul G X inst✝² : DivInvMonoid M inst✝¹ : PseudoEMetricSpace M inst✝ : IsometricSMul Mᵐᵒᵖ M a b c : M ⊢ edist (a / c) (b / c) = edist a b [PROOFSTEP] simp only [div_eq_mul_inv, edist_mul_right] [GOAL] M : Type u G : Type v X : Type w inst✝⁶ : PseudoEMetricSpace X inst✝⁵ : Group G inst✝⁴ : MulAction G X inst✝³ : IsometricSMul G X inst✝² : PseudoEMetricSpace G inst✝¹ : IsometricSMul G G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G ⊢ edist a⁻¹ b⁻¹ = edist a b [PROOFSTEP] rw [← edist_mul_left a, ← edist_mul_right _ _ b, mul_right_inv, one_mul, inv_mul_cancel_right, edist_comm] [GOAL] M : Type u G : Type v X : Type w inst✝⁶ : PseudoEMetricSpace X inst✝⁵ : Group G inst✝⁴ : MulAction G X inst✝³ : IsometricSMul G X inst✝² : PseudoEMetricSpace G inst✝¹ : IsometricSMul G G inst✝ : IsometricSMul Gᵐᵒᵖ G x y : G ⊢ edist x⁻¹ y = edist x y⁻¹ [PROOFSTEP] rw [← edist_inv_inv, inv_inv] [GOAL] M : Type u G : Type v X : Type w inst✝⁶ : PseudoEMetricSpace X inst✝⁵ : Group G inst✝⁴ : MulAction G X inst✝³ : IsometricSMul G X inst✝² : PseudoEMetricSpace G inst✝¹ : IsometricSMul G G inst✝ : IsometricSMul Gᵐᵒᵖ G a b c : G ⊢ edist (a / b) (a / c) = edist b c [PROOFSTEP] rw [div_eq_mul_inv, div_eq_mul_inv, edist_mul_left, edist_inv_inv] [GOAL] M : Type u G : Type v X : Type w inst✝³ : PseudoEMetricSpace X inst✝² : Group G inst✝¹ : MulAction G X inst✝ : IsometricSMul G X c : G x : X r : ℝ≥0∞ ⊢ (fun x x_1 => x • x_1) c ⁻¹' ball x r = ball (c⁻¹ • x) r [PROOFSTEP] rw [preimage_smul, smul_ball] [GOAL] M : Type u G : Type v X : Type w inst✝³ : PseudoEMetricSpace X inst✝² : Group G inst✝¹ : MulAction G X inst✝ : IsometricSMul G X c : G x : X r : ℝ≥0∞ ⊢ (fun x x_1 => x • x_1) c ⁻¹' closedBall x r = closedBall (c⁻¹ • x) r [PROOFSTEP] rw [preimage_smul, smul_closedBall] [GOAL] M : Type u G : Type v X : Type w inst✝⁵ : PseudoEMetricSpace X inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : IsometricSMul G X inst✝¹ : PseudoEMetricSpace G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G r : ℝ≥0∞ ⊢ (fun x => x * a) ⁻¹' ball b r = ball (b / a) r [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] M : Type u G : Type v X : Type w inst✝⁵ : PseudoEMetricSpace X inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : IsometricSMul G X inst✝¹ : PseudoEMetricSpace G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G r : ℝ≥0∞ ⊢ (fun x => x * a) ⁻¹' ball b r = ball (b * a⁻¹) r [PROOFSTEP] exact preimage_smul_ball (MulOpposite.op a) b r [GOAL] M : Type u G : Type v X : Type w inst✝⁵ : PseudoEMetricSpace X inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : IsometricSMul G X inst✝¹ : PseudoEMetricSpace G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G r : ℝ≥0∞ ⊢ (fun x => x * a) ⁻¹' closedBall b r = closedBall (b / a) r [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] M : Type u G : Type v X : Type w inst✝⁵ : PseudoEMetricSpace X inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : IsometricSMul G X inst✝¹ : PseudoEMetricSpace G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G r : ℝ≥0∞ ⊢ (fun x => x * a) ⁻¹' closedBall b r = closedBall (b * a⁻¹) r [PROOFSTEP] exact preimage_smul_closedBall (MulOpposite.op a) b r [GOAL] M : Type u G : Type v X : Type w inst✝² : DivInvMonoid M inst✝¹ : PseudoMetricSpace M inst✝ : IsometricSMul Mᵐᵒᵖ M a b c : M ⊢ dist (a / c) (b / c) = dist a b [PROOFSTEP] simp only [div_eq_mul_inv, dist_mul_right] [GOAL] M : Type u G : Type v X : Type w inst✝² : DivInvMonoid M inst✝¹ : PseudoMetricSpace M inst✝ : IsometricSMul Mᵐᵒᵖ M a b c : M ⊢ nndist (a / c) (b / c) = nndist a b [PROOFSTEP] simp only [div_eq_mul_inv, nndist_mul_right] [GOAL] M : Type u G : Type v X : Type w inst✝³ : Group G inst✝² : PseudoMetricSpace G inst✝¹ : IsometricSMul G G inst✝ : IsometricSMul Gᵐᵒᵖ G a b c : G ⊢ dist (a / b) (a / c) = dist b c [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] M : Type u G : Type v X : Type w inst✝³ : Group G inst✝² : PseudoMetricSpace G inst✝¹ : IsometricSMul G G inst✝ : IsometricSMul Gᵐᵒᵖ G a b c : G ⊢ nndist (a / b) (a / c) = nndist b c [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] M : Type u G : Type v X : Type w inst✝³ : PseudoMetricSpace X inst✝² : Group G inst✝¹ : MulAction G X inst✝ : IsometricSMul G X c : G x : X r : ℝ ⊢ (fun x x_1 => x • x_1) c ⁻¹' ball x r = ball (c⁻¹ • x) r [PROOFSTEP] rw [preimage_smul, smul_ball] [GOAL] M : Type u G : Type v X : Type w inst✝³ : PseudoMetricSpace X inst✝² : Group G inst✝¹ : MulAction G X inst✝ : IsometricSMul G X c : G x : X r : ℝ ⊢ (fun x x_1 => x • x_1) c ⁻¹' closedBall x r = closedBall (c⁻¹ • x) r [PROOFSTEP] rw [preimage_smul, smul_closedBall] [GOAL] M : Type u G : Type v X : Type w inst✝³ : PseudoMetricSpace X inst✝² : Group G inst✝¹ : MulAction G X inst✝ : IsometricSMul G X c : G x : X r : ℝ ⊢ (fun x x_1 => x • x_1) c ⁻¹' sphere x r = sphere (c⁻¹ • x) r [PROOFSTEP] rw [preimage_smul, smul_sphere] [GOAL] M : Type u G : Type v X : Type w inst✝⁵ : PseudoMetricSpace X inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : IsometricSMul G X inst✝¹ : PseudoMetricSpace G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G r : ℝ ⊢ (fun x => x * a) ⁻¹' ball b r = ball (b / a) r [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] M : Type u G : Type v X : Type w inst✝⁵ : PseudoMetricSpace X inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : IsometricSMul G X inst✝¹ : PseudoMetricSpace G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G r : ℝ ⊢ (fun x => x * a) ⁻¹' ball b r = ball (b * a⁻¹) r [PROOFSTEP] exact preimage_smul_ball (MulOpposite.op a) b r [GOAL] M : Type u G : Type v X : Type w inst✝⁵ : PseudoMetricSpace X inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : IsometricSMul G X inst✝¹ : PseudoMetricSpace G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G r : ℝ ⊢ (fun x => x * a) ⁻¹' closedBall b r = closedBall (b / a) r [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] M : Type u G : Type v X : Type w inst✝⁵ : PseudoMetricSpace X inst✝⁴ : Group G inst✝³ : MulAction G X inst✝² : IsometricSMul G X inst✝¹ : PseudoMetricSpace G inst✝ : IsometricSMul Gᵐᵒᵖ G a b : G r : ℝ ⊢ (fun x => x * a) ⁻¹' closedBall b r = closedBall (b * a⁻¹) r [PROOFSTEP] exact preimage_smul_closedBall (MulOpposite.op a) b r [GOAL] M : Type u G : Type v X : Type w Y : Type u_1 inst✝³ : PseudoEMetricSpace X inst✝² : PseudoEMetricSpace Y inst✝¹ : SMul M X inst✝ : IsometricSMul M X c : M x y : Xᵐᵒᵖ ⊢ edist ((fun x => c • x) x) ((fun x => c • x) y) = edist x y [PROOFSTEP] simpa only using edist_smul_left c x.unop y.unop [GOAL] M : Type u G : Type v X : Type w Y : Type u_1 inst✝³ : PseudoEMetricSpace X inst✝² : PseudoEMetricSpace Y inst✝¹ : SMul M X inst✝ : IsometricSMul M X c : ULift M ⊢ Isometry fun x => c • x [PROOFSTEP] simpa only using isometry_smul X c.down [GOAL] M : Type u G : Type v X : Type w Y : Type u_1 inst✝³ : PseudoEMetricSpace X inst✝² : PseudoEMetricSpace Y inst✝¹ : SMul M X inst✝ : IsometricSMul M X c : M x y : ULift X ⊢ edist ((fun x => c • x) x) ((fun x => c • x) y) = edist x y [PROOFSTEP] simpa only using edist_smul_left c x.1 y.1
{"mathlib_filename": "Mathlib.Topology.MetricSpace.IsometricSMul", "llama_tokens": 3755}
[GOAL] α : Type u inst✝ : EMetricSpace α s : Set α ⊢ Continuous fun p => infEdist p.fst ↑p.snd [PROOFSTEP] refine' continuous_of_le_add_edist 2 (by simp) _ [GOAL] α : Type u inst✝ : EMetricSpace α s : Set α ⊢ 2 ≠ ⊤ [PROOFSTEP] simp [GOAL] α : Type u inst✝ : EMetricSpace α s : Set α ⊢ ∀ (x y : α × Closeds α), infEdist x.fst ↑x.snd ≤ infEdist y.fst ↑y.snd + 2 * edist x y [PROOFSTEP] rintro ⟨x, s⟩ ⟨y, t⟩ [GOAL] case mk.mk α : Type u inst✝ : EMetricSpace α s✝ : Set α x : α s : Closeds α y : α t : Closeds α ⊢ infEdist (x, s).fst ↑(x, s).snd ≤ infEdist (y, t).fst ↑(y, t).snd + 2 * edist (x, s) (y, t) [PROOFSTEP] calc infEdist x s ≤ infEdist x t + hausdorffEdist (t : Set α) s := infEdist_le_infEdist_add_hausdorffEdist _ ≤ infEdist y t + edist x y + hausdorffEdist (t : Set α) s := (add_le_add_right infEdist_le_infEdist_add_edist _) _ = infEdist y t + (edist x y + hausdorffEdist (s : Set α) t) := by rw [add_assoc, hausdorffEdist_comm] _ ≤ infEdist y t + (edist (x, s) (y, t) + edist (x, s) (y, t)) := (add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _) _ = infEdist y t + 2 * edist (x, s) (y, t) := by rw [← mul_two, mul_comm] [GOAL] α : Type u inst✝ : EMetricSpace α s✝ : Set α x : α s : Closeds α y : α t : Closeds α ⊢ infEdist y ↑t + edist x y + hausdorffEdist ↑t ↑s = infEdist y ↑t + (edist x y + hausdorffEdist ↑s ↑t) [PROOFSTEP] rw [add_assoc, hausdorffEdist_comm] [GOAL] α : Type u inst✝ : EMetricSpace α s✝ : Set α x : α s : Closeds α y : α t : Closeds α ⊢ infEdist y ↑t + (edist (x, s) (y, t) + edist (x, s) (y, t)) = infEdist y ↑t + 2 * edist (x, s) (y, t) [PROOFSTEP] rw [← mul_two, mul_comm] [GOAL] α : Type u inst✝ : EMetricSpace α s : Set α hs : IsClosed s ⊢ IsClosed {t | ↑t ⊆ s} [PROOFSTEP] refine' isClosed_of_closure_subset fun t ht x hx => _ -- t : Closeds α, ht : t ∈ closure {t : Closeds α | t ⊆ s}, -- x : α, hx : x ∈ t -- goal : x ∈ s [GOAL] α : Type u inst✝ : EMetricSpace α s : Set α hs : IsClosed s t : Closeds α ht : t ∈ closure {t | ↑t ⊆ s} x : α hx : x ∈ ↑t ⊢ x ∈ s [PROOFSTEP] have : x ∈ closure s := by refine' mem_closure_iff.2 fun ε εpos => _ rcases mem_closure_iff.1 ht ε εpos with ⟨u, hu, Dtu⟩ -- u : Closeds α, hu : u ∈ {t : Closeds α | t ⊆ s}, hu' : edist t u < ε rcases exists_edist_lt_of_hausdorffEdist_lt hx Dtu with ⟨y, hy, Dxy⟩ -- y : α, hy : y ∈ u, Dxy : edist x y < ε exact ⟨y, hu hy, Dxy⟩ [GOAL] α : Type u inst✝ : EMetricSpace α s : Set α hs : IsClosed s t : Closeds α ht : t ∈ closure {t | ↑t ⊆ s} x : α hx : x ∈ ↑t ⊢ x ∈ closure s [PROOFSTEP] refine' mem_closure_iff.2 fun ε εpos => _ [GOAL] α : Type u inst✝ : EMetricSpace α s : Set α hs : IsClosed s t : Closeds α ht : t ∈ closure {t | ↑t ⊆ s} x : α hx : x ∈ ↑t ε : ℝ≥0∞ εpos : ε > 0 ⊢ ∃ y, y ∈ s ∧ edist x y < ε [PROOFSTEP] rcases mem_closure_iff.1 ht ε εpos with ⟨u, hu, Dtu⟩ -- u : Closeds α, hu : u ∈ {t : Closeds α | t ⊆ s}, hu' : edist t u < ε [GOAL] case intro.intro α : Type u inst✝ : EMetricSpace α s : Set α hs : IsClosed s t : Closeds α ht : t ∈ closure {t | ↑t ⊆ s} x : α hx : x ∈ ↑t ε : ℝ≥0∞ εpos : ε > 0 u : Closeds α hu : u ∈ {t | ↑t ⊆ s} Dtu : edist t u < ε ⊢ ∃ y, y ∈ s ∧ edist x y < ε [PROOFSTEP] rcases exists_edist_lt_of_hausdorffEdist_lt hx Dtu with ⟨y, hy, Dxy⟩ -- y : α, hy : y ∈ u, Dxy : edist x y < ε [GOAL] case intro.intro.intro.intro α : Type u inst✝ : EMetricSpace α s : Set α hs : IsClosed s t : Closeds α ht : t ∈ closure {t | ↑t ⊆ s} x : α hx : x ∈ ↑t ε : ℝ≥0∞ εpos : ε > 0 u : Closeds α hu : u ∈ {t | ↑t ⊆ s} Dtu : edist t u < ε y : α hy : y ∈ ↑u Dxy : edist x y < ε ⊢ ∃ y, y ∈ s ∧ edist x y < ε [PROOFSTEP] exact ⟨y, hu hy, Dxy⟩ [GOAL] α : Type u inst✝ : EMetricSpace α s : Set α hs : IsClosed s t : Closeds α ht : t ∈ closure {t | ↑t ⊆ s} x : α hx : x ∈ ↑t this : x ∈ closure s ⊢ x ∈ s [PROOFSTEP] rwa [hs.closure_eq] at this [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α ⊢ CompleteSpace (Closeds α) [PROOFSTEP] let B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n ⊢ CompleteSpace (Closeds α) [PROOFSTEP] have B_pos : ∀ n, (0 : ℝ≥0∞) < B n := by simp [ENNReal.pow_pos] [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n ⊢ ∀ (n : ℕ), 0 < B n [PROOFSTEP] simp [ENNReal.pow_pos] [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n ⊢ CompleteSpace (Closeds α) [PROOFSTEP] have B_ne_top : ∀ n, B n ≠ ⊤ := by simp [ENNReal.pow_ne_top] /- Consider a sequence of closed sets `s n` with `edist (s n) (s (n+1)) < B n`. We will show that it converges. The limit set is `t0 = ⋂n, closure (⋃m≥n, s m)`. We will have to show that a point in `s n` is close to a point in `t0`, and a point in `t0` is close to a point in `s n`. The completeness then follows from a standard criterion. -/ [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n ⊢ ∀ (n : ℕ), B n ≠ ⊤ [PROOFSTEP] simp [ENNReal.pow_ne_top] /- Consider a sequence of closed sets `s n` with `edist (s n) (s (n+1)) < B n`. We will show that it converges. The limit set is `t0 = ⋂n, closure (⋃m≥n, s m)`. We will have to show that a point in `s n` is close to a point in `t0`, and a point in `t0` is close to a point in `s n`. The completeness then follows from a standard criterion. -/ [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ ⊢ CompleteSpace (Closeds α) [PROOFSTEP] refine' complete_of_convergent_controlled_sequences B B_pos fun s hs => _ [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N ⊢ ∃ x, Tendsto s atTop (𝓝 x) [PROOFSTEP] let t0 := ⋂ n, closure (⋃ m ≥ n, s m : Set α) [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) ⊢ ∃ x, Tendsto s atTop (𝓝 x) [PROOFSTEP] let t : Closeds α := ⟨t0, isClosed_iInter fun _ => isClosed_closure⟩ [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } ⊢ ∃ x, Tendsto s atTop (𝓝 x) [PROOFSTEP] use t [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } ⊢ Tendsto s atTop (𝓝 t) [PROOFSTEP] have I1 : ∀ n, ∀ x ∈ s n, ∃ y ∈ t0, edist x y ≤ 2 * B n := by /- This is the main difficulty of the proof. Starting from `x ∈ s n`, we want to find a point in `t0` which is close to `x`. Define inductively a sequence of points `z m` with `z n = x` and `z m ∈ s m` and `edist (z m) (z (m+1)) ≤ B m`. This is possible since the Hausdorff distance between `s m` and `s (m+1)` is at most `B m`. This sequence is a Cauchy sequence, therefore converging as the space is complete, to a limit which satisfies the required properties. -/ intro n x hx obtain ⟨z, hz₀, hz⟩ : ∃ z : ∀ l, s (n + l), (z 0 : α) = x ∧ ∀ k, edist (z k : α) (z (k + 1) : α) ≤ B n / 2 ^ k := by -- We prove existence of the sequence by induction. have : ∀ (l) (z : s (n + l)), ∃ z' : s (n + l + 1), edist (z : α) z' ≤ B n / 2 ^ l := by intro l z obtain ⟨z', z'_mem, hz'⟩ : ∃ z' ∈ s (n + l + 1), edist (z : α) z' < B n / 2 ^ l := by refine' exists_edist_lt_of_hausdorffEdist_lt _ _ · exact (s (n + l) : Set α) · exact z.2 simp only [ENNReal.inv_pow, div_eq_mul_inv] rw [← pow_add] apply hs <;> simp exact ⟨⟨z', z'_mem⟩, le_of_lt hz'⟩ use fun k => Nat.recOn k ⟨x, hx⟩ fun l z => choose (this l z) simp only [Nat.add_zero, Nat.zero_eq, Nat.rec_zero, Nat.rec_add_one, true_and] exact fun k => choose_spec (this k _) -- it follows from the previous bound that `z` is a Cauchy sequence have : CauchySeq fun k => (z k : α) := cauchySeq_of_edist_le_geometric_two (B n) (B_ne_top n) hz rcases cauchySeq_tendsto_of_complete this with ⟨y, y_lim⟩ use y have : y ∈ t0 := mem_iInter.2 fun k => mem_closure_of_tendsto y_lim (by simp only [exists_prop, Set.mem_iUnion, Filter.eventually_atTop, Set.mem_preimage, Set.preimage_iUnion] exact ⟨k, fun m hm => ⟨n + m, zero_add k ▸ add_le_add (zero_le n) hm, (z m).2⟩⟩) use this rw [← hz₀] exact edist_le_of_edist_le_geometric_two_of_tendsto₀ (B n) hz y_lim [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } ⊢ ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n [PROOFSTEP] intro n x hx [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n ⊢ ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n [PROOFSTEP] obtain ⟨z, hz₀, hz⟩ : ∃ z : ∀ l, s (n + l), (z 0 : α) = x ∧ ∀ k, edist (z k : α) (z (k + 1) : α) ≤ B n / 2 ^ k := by -- We prove existence of the sequence by induction. have : ∀ (l) (z : s (n + l)), ∃ z' : s (n + l + 1), edist (z : α) z' ≤ B n / 2 ^ l := by intro l z obtain ⟨z', z'_mem, hz'⟩ : ∃ z' ∈ s (n + l + 1), edist (z : α) z' < B n / 2 ^ l := by refine' exists_edist_lt_of_hausdorffEdist_lt _ _ · exact (s (n + l) : Set α) · exact z.2 simp only [ENNReal.inv_pow, div_eq_mul_inv] rw [← pow_add] apply hs <;> simp exact ⟨⟨z', z'_mem⟩, le_of_lt hz'⟩ use fun k => Nat.recOn k ⟨x, hx⟩ fun l z => choose (this l z) simp only [Nat.add_zero, Nat.zero_eq, Nat.rec_zero, Nat.rec_add_one, true_and] exact fun k => choose_spec (this k _) -- it follows from the previous bound that `z` is a Cauchy sequence [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n ⊢ ∃ z, ↑(z 0) = x ∧ ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k [PROOFSTEP] have : ∀ (l) (z : s (n + l)), ∃ z' : s (n + l + 1), edist (z : α) z' ≤ B n / 2 ^ l := by intro l z obtain ⟨z', z'_mem, hz'⟩ : ∃ z' ∈ s (n + l + 1), edist (z : α) z' < B n / 2 ^ l := by refine' exists_edist_lt_of_hausdorffEdist_lt _ _ · exact (s (n + l) : Set α) · exact z.2 simp only [ENNReal.inv_pow, div_eq_mul_inv] rw [← pow_add] apply hs <;> simp exact ⟨⟨z', z'_mem⟩, le_of_lt hz'⟩ [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n ⊢ ∀ (l : ℕ) (z : { x // x ∈ s (n + l) }), ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l [PROOFSTEP] intro l z [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l [PROOFSTEP] obtain ⟨z', z'_mem, hz'⟩ : ∃ z' ∈ s (n + l + 1), edist (z : α) z' < B n / 2 ^ l := by refine' exists_edist_lt_of_hausdorffEdist_lt _ _ · exact (s (n + l) : Set α) · exact z.2 simp only [ENNReal.inv_pow, div_eq_mul_inv] rw [← pow_add] apply hs <;> simp [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ ∃ z', z' ∈ s (n + l + 1) ∧ edist (↑z) z' < B n / 2 ^ l [PROOFSTEP] refine' exists_edist_lt_of_hausdorffEdist_lt _ _ [GOAL] case refine'_1 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ Set α [PROOFSTEP] exact (s (n + l) : Set α) [GOAL] case refine'_2 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ ↑z ∈ ↑(s (n + l)) [PROOFSTEP] exact z.2 [GOAL] case refine'_3 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ hausdorffEdist ↑(s (n + l)) ↑(s (n + l + 1)) < B n / 2 ^ l [PROOFSTEP] simp only [ENNReal.inv_pow, div_eq_mul_inv] [GOAL] case refine'_3 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ hausdorffEdist ↑(s (n + l)) ↑(s (n + l + 1)) < 2⁻¹ ^ n * 2⁻¹ ^ l [PROOFSTEP] rw [← pow_add] [GOAL] case refine'_3 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ hausdorffEdist ↑(s (n + l)) ↑(s (n + l + 1)) < 2⁻¹ ^ (n + l) [PROOFSTEP] apply hs [GOAL] case refine'_3.a α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ n + l ≤ n + l [PROOFSTEP] simp [GOAL] case refine'_3.a α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } ⊢ n + l ≤ n + l + 1 [PROOFSTEP] simp [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n l : ℕ z : { x // x ∈ s (n + l) } z' : α z'_mem : z' ∈ s (n + l + 1) hz' : edist (↑z) z' < B n / 2 ^ l ⊢ ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l [PROOFSTEP] exact ⟨⟨z', z'_mem⟩, le_of_lt hz'⟩ [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n this : ∀ (l : ℕ) (z : { x // x ∈ s (n + l) }), ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l ⊢ ∃ z, ↑(z 0) = x ∧ ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k [PROOFSTEP] use fun k => Nat.recOn k ⟨x, hx⟩ fun l z => choose (this l z) [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n this : ∀ (l : ℕ) (z : { x // x ∈ s (n + l) }), ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l ⊢ ↑(Nat.recOn 0 { val := x, property := hx } fun l z => choose (_ : ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l)) = x ∧ ∀ (k : ℕ), edist ↑(Nat.recOn k { val := x, property := hx } fun l z => choose (_ : ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l)) ↑(Nat.recOn (k + 1) { val := x, property := hx } fun l z => choose (_ : ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l)) ≤ B n / 2 ^ k [PROOFSTEP] simp only [Nat.add_zero, Nat.zero_eq, Nat.rec_zero, Nat.rec_add_one, true_and] [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n this : ∀ (l : ℕ) (z : { x // x ∈ s (n + l) }), ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l ⊢ ∀ (k : ℕ), edist ↑(Nat.rec { val := x, property := hx } (fun l z => choose (_ : ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l)) k) ↑(choose (_ : ∃ z', edist ↑(Nat.rec { val := x, property := hx } (fun l z => choose (_ : ∃ z', edist ↑z ↑z' ≤ B n / 2 ^ l)) k) ↑z' ≤ B n / 2 ^ k)) ≤ 2⁻¹ ^ n / 2 ^ k [PROOFSTEP] exact fun k => choose_spec (this k _) -- it follows from the previous bound that `z` is a Cauchy sequence [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k ⊢ ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n [PROOFSTEP] have : CauchySeq fun k => (z k : α) := cauchySeq_of_edist_le_geometric_two (B n) (B_ne_top n) hz [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k this : CauchySeq fun k => ↑(z k) ⊢ ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n [PROOFSTEP] rcases cauchySeq_tendsto_of_complete this with ⟨y, y_lim⟩ [GOAL] case intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k this : CauchySeq fun k => ↑(z k) y : α y_lim : Tendsto (fun k => ↑(z k)) atTop (𝓝 y) ⊢ ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n [PROOFSTEP] use y [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k this : CauchySeq fun k => ↑(z k) y : α y_lim : Tendsto (fun k => ↑(z k)) atTop (𝓝 y) ⊢ y ∈ t0 ∧ edist x y ≤ 2 * B n [PROOFSTEP] have : y ∈ t0 := mem_iInter.2 fun k => mem_closure_of_tendsto y_lim (by simp only [exists_prop, Set.mem_iUnion, Filter.eventually_atTop, Set.mem_preimage, Set.preimage_iUnion] exact ⟨k, fun m hm => ⟨n + m, zero_add k ▸ add_le_add (zero_le n) hm, (z m).2⟩⟩) [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k this : CauchySeq fun k => ↑(z k) y : α y_lim : Tendsto (fun k => ↑(z k)) atTop (𝓝 y) k : ℕ ⊢ ∀ᶠ (x : ℕ) in atTop, ↑(z x) ∈ ⋃ (m : ℕ) (_ : m ≥ k), ↑(s m) [PROOFSTEP] simp only [exists_prop, Set.mem_iUnion, Filter.eventually_atTop, Set.mem_preimage, Set.preimage_iUnion] [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k this : CauchySeq fun k => ↑(z k) y : α y_lim : Tendsto (fun k => ↑(z k)) atTop (𝓝 y) k : ℕ ⊢ ∃ a, ∀ (b : ℕ), b ≥ a → ∃ i, i ≥ k ∧ ↑(z b) ∈ ↑(s i) [PROOFSTEP] exact ⟨k, fun m hm => ⟨n + m, zero_add k ▸ add_le_add (zero_le n) hm, (z m).2⟩⟩ [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k this✝ : CauchySeq fun k => ↑(z k) y : α y_lim : Tendsto (fun k => ↑(z k)) atTop (𝓝 y) this : y ∈ t0 ⊢ y ∈ t0 ∧ edist x y ≤ 2 * B n [PROOFSTEP] use this [GOAL] case right α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k this✝ : CauchySeq fun k => ↑(z k) y : α y_lim : Tendsto (fun k => ↑(z k)) atTop (𝓝 y) this : y ∈ t0 ⊢ edist x y ≤ 2 * B n [PROOFSTEP] rw [← hz₀] [GOAL] case right α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } n : ℕ x : α hx : x ∈ s n z : (l : ℕ) → { x // x ∈ s (n + l) } hz₀ : ↑(z 0) = x hz : ∀ (k : ℕ), edist ↑(z k) ↑(z (k + 1)) ≤ B n / 2 ^ k this✝ : CauchySeq fun k => ↑(z k) y : α y_lim : Tendsto (fun k => ↑(z k)) atTop (𝓝 y) this : y ∈ t0 ⊢ edist (↑(z 0)) y ≤ 2 * B n [PROOFSTEP] exact edist_le_of_edist_le_geometric_two_of_tendsto₀ (B n) hz y_lim [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n ⊢ Tendsto s atTop (𝓝 t) [PROOFSTEP] have I2 : ∀ n, ∀ x ∈ t0, ∃ y ∈ s n, edist x y ≤ 2 * B n := by /- For the (much easier) reverse inequality, we start from a point `x ∈ t0` and we want to find a point `y ∈ s n` which is close to `x`. `x` belongs to `t0`, the intersection of the closures. In particular, it is well approximated by a point `z` in `⋃m≥n, s m`, say in `s m`. Since `s m` and `s n` are close, this point is itself well approximated by a point `y` in `s n`, as required. -/ intro n x xt0 have : x ∈ closure (⋃ m ≥ n, s m : Set α) := by apply mem_iInter.1 xt0 n rcases mem_closure_iff.1 this (B n) (B_pos n) with ⟨z, hz, Dxz⟩ -- z : α, Dxz : edist x z < B n, simp only [exists_prop, Set.mem_iUnion] at hz rcases hz with ⟨m, ⟨m_ge_n, hm⟩⟩ -- m : ℕ, m_ge_n : m ≥ n, hm : z ∈ s m have : hausdorffEdist (s m : Set α) (s n) < B n := hs n m n m_ge_n (le_refl n) rcases exists_edist_lt_of_hausdorffEdist_lt hm this with ⟨y, hy, Dzy⟩ -- y : α, hy : y ∈ s n, Dzy : edist z y < B n exact ⟨y, hy, calc edist x y ≤ edist x z + edist z y := edist_triangle _ _ _ _ ≤ B n + B n := (add_le_add (le_of_lt Dxz) (le_of_lt Dzy)) _ = 2 * B n := (two_mul _).symm⟩ -- Deduce from the above inequalities that the distance between `s n` and `t0` is at most `2 B n`. [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n ⊢ ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n [PROOFSTEP] intro n x xt0 [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n n : ℕ x : α xt0 : x ∈ t0 ⊢ ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n [PROOFSTEP] have : x ∈ closure (⋃ m ≥ n, s m : Set α) := by apply mem_iInter.1 xt0 n [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n n : ℕ x : α xt0 : x ∈ t0 ⊢ x ∈ closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) [PROOFSTEP] apply mem_iInter.1 xt0 n [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n n : ℕ x : α xt0 : x ∈ t0 this : x ∈ closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) ⊢ ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n [PROOFSTEP] rcases mem_closure_iff.1 this (B n) (B_pos n) with ⟨z, hz, Dxz⟩ -- z : α, Dxz : edist x z < B n, [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n n : ℕ x : α xt0 : x ∈ t0 this : x ∈ closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) z : α hz : z ∈ ⋃ (m : ℕ) (_ : m ≥ n), ↑(s m) Dxz : edist x z < B n ⊢ ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n [PROOFSTEP] simp only [exists_prop, Set.mem_iUnion] at hz [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n n : ℕ x : α xt0 : x ∈ t0 this : x ∈ closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) z : α Dxz : edist x z < B n hz : ∃ i, i ≥ n ∧ z ∈ ↑(s i) ⊢ ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n [PROOFSTEP] rcases hz with ⟨m, ⟨m_ge_n, hm⟩⟩ -- m : ℕ, m_ge_n : m ≥ n, hm : z ∈ s m [GOAL] case intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n n : ℕ x : α xt0 : x ∈ t0 this : x ∈ closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) z : α Dxz : edist x z < B n m : ℕ m_ge_n : m ≥ n hm : z ∈ ↑(s m) ⊢ ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n [PROOFSTEP] have : hausdorffEdist (s m : Set α) (s n) < B n := hs n m n m_ge_n (le_refl n) [GOAL] case intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n n : ℕ x : α xt0 : x ∈ t0 this✝ : x ∈ closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) z : α Dxz : edist x z < B n m : ℕ m_ge_n : m ≥ n hm : z ∈ ↑(s m) this : hausdorffEdist ↑(s m) ↑(s n) < B n ⊢ ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n [PROOFSTEP] rcases exists_edist_lt_of_hausdorffEdist_lt hm this with ⟨y, hy, Dzy⟩ -- y : α, hy : y ∈ s n, Dzy : edist z y < B n [GOAL] case intro.intro.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n n : ℕ x : α xt0 : x ∈ t0 this✝ : x ∈ closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) z : α Dxz : edist x z < B n m : ℕ m_ge_n : m ≥ n hm : z ∈ ↑(s m) this : hausdorffEdist ↑(s m) ↑(s n) < B n y : α hy : y ∈ ↑(s n) Dzy : edist z y < B n ⊢ ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n [PROOFSTEP] exact ⟨y, hy, calc edist x y ≤ edist x z + edist z y := edist_triangle _ _ _ _ ≤ B n + B n := (add_le_add (le_of_lt Dxz) (le_of_lt Dzy)) _ = 2 * B n := (two_mul _).symm⟩ -- Deduce from the above inequalities that the distance between `s n` and `t0` is at most `2 B n`. [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n I2 : ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n ⊢ Tendsto s atTop (𝓝 t) [PROOFSTEP] have main : ∀ n : ℕ, edist (s n) t ≤ 2 * B n := fun n => hausdorffEdist_le_of_mem_edist (I1 n) (I2 n) -- from this, the convergence of `s n` to `t0` follows. [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n I2 : ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n main : ∀ (n : ℕ), edist (s n) t ≤ 2 * B n ⊢ Tendsto s atTop (𝓝 t) [PROOFSTEP] refine' tendsto_atTop.2 fun ε εpos => _ [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n I2 : ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n main : ∀ (n : ℕ), edist (s n) t ≤ 2 * B n ε : ℝ≥0∞ εpos : ε > 0 ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → edist (s n) t < ε [PROOFSTEP] have : Tendsto (fun n => 2 * B n) atTop (𝓝 (2 * 0)) := ENNReal.Tendsto.const_mul (ENNReal.tendsto_pow_atTop_nhds_0_of_lt_1 <| by simp [ENNReal.one_lt_two]) (Or.inr <| by simp) [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n I2 : ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n main : ∀ (n : ℕ), edist (s n) t ≤ 2 * B n ε : ℝ≥0∞ εpos : ε > 0 ⊢ 2⁻¹ < 1 [PROOFSTEP] simp [ENNReal.one_lt_two] [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n I2 : ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n main : ∀ (n : ℕ), edist (s n) t ≤ 2 * B n ε : ℝ≥0∞ εpos : ε > 0 ⊢ 2 ≠ ⊤ [PROOFSTEP] simp [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n I2 : ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n main : ∀ (n : ℕ), edist (s n) t ≤ 2 * B n ε : ℝ≥0∞ εpos : ε > 0 this : Tendsto (fun n => 2 * B n) atTop (𝓝 (2 * 0)) ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → edist (s n) t < ε [PROOFSTEP] rw [mul_zero] at this [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n I2 : ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n main : ∀ (n : ℕ), edist (s n) t ≤ 2 * B n ε : ℝ≥0∞ εpos : ε > 0 this : Tendsto (fun n => 2 * B n) atTop (𝓝 0) ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → edist (s n) t < ε [PROOFSTEP] obtain ⟨N, hN⟩ : ∃ N, ∀ b ≥ N, ε > 2 * B b := ((tendsto_order.1 this).2 ε εpos).exists_forall_of_atTop [GOAL] case h.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α B : ℕ → ℝ≥0∞ := fun n => 2⁻¹ ^ n B_pos : ∀ (n : ℕ), 0 < B n B_ne_top : ∀ (n : ℕ), B n ≠ ⊤ s : ℕ → Closeds α hs : ∀ (N n m : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) < B N t0 : Set α := ⋂ (n : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ n), ↑(s m)) t : Closeds α := { carrier := t0, closed' := (_ : IsClosed (⋂ (i : ℕ), closure (⋃ (m : ℕ) (_ : m ≥ i), ↑(s m)))) } I1 : ∀ (n : ℕ) (x : α), x ∈ s n → ∃ y, y ∈ t0 ∧ edist x y ≤ 2 * B n I2 : ∀ (n : ℕ) (x : α), x ∈ t0 → ∃ y, y ∈ s n ∧ edist x y ≤ 2 * B n main : ∀ (n : ℕ), edist (s n) t ≤ 2 * B n ε : ℝ≥0∞ εpos : ε > 0 this : Tendsto (fun n => 2 * B n) atTop (𝓝 0) N : ℕ hN : ∀ (b : ℕ), b ≥ N → ε > 2 * B b ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → edist (s n) t < ε [PROOFSTEP] exact ⟨N, fun n hn => lt_of_le_of_lt (main n) (hN n hn)⟩ [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompactSpace α ⊢ IsCompact univ [PROOFSTEP] refine' isCompact_of_totallyBounded_isClosed (EMetric.totallyBounded_iff.2 fun ε εpos => _) isClosed_univ [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 ⊢ ∃ t, Set.Finite t ∧ univ ⊆ ⋃ (y : Closeds α) (_ : y ∈ t), ball y ε [PROOFSTEP] rcases exists_between εpos with ⟨δ, δpos, δlt⟩ [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε ⊢ ∃ t, Set.Finite t ∧ univ ⊆ ⋃ (y : Closeds α) (_ : y ∈ t), ball y ε [PROOFSTEP] rcases EMetric.totallyBounded_iff.1 (isCompact_iff_totallyBounded_isComplete.1 (@isCompact_univ α _ _)).1 δ δpos with ⟨s, fs, hs⟩ -- s : Set α, fs : s.Finite, hs : univ ⊆ ⋃ (y : α) (H : y ∈ s), eball y δ -- we first show that any set is well approximated by a subset of `s`. [GOAL] case intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ ⊢ ∃ t, Set.Finite t ∧ univ ⊆ ⋃ (y : Closeds α) (_ : y ∈ t), ball y ε [PROOFSTEP] have main : ∀ u : Set α, ∃ (v : _) (_ : v ⊆ s), hausdorffEdist u v ≤ δ := by intro u let v := {x : α | x ∈ s ∧ ∃ y ∈ u, edist x y < δ} exists v, (fun x hx => hx.1 : v ⊆ s) refine' hausdorffEdist_le_of_mem_edist _ _ · intro x hx have : x ∈ ⋃ y ∈ s, ball y δ := hs (by simp) rcases mem_iUnion₂.1 this with ⟨y, ys, dy⟩ have : edist y x < δ := by simp at dy ; rwa [edist_comm] at dy exact ⟨y, ⟨ys, ⟨x, hx, this⟩⟩, le_of_lt dy⟩ · rintro x ⟨_, ⟨y, yu, hy⟩⟩ exact ⟨y, yu, le_of_lt hy⟩ -- introduce the set F of all subsets of `s` (seen as members of `Closeds α`). [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ ⊢ ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ [PROOFSTEP] intro u [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α ⊢ ∃ v x, hausdorffEdist u v ≤ δ [PROOFSTEP] let v := {x : α | x ∈ s ∧ ∃ y ∈ u, edist x y < δ} [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} ⊢ ∃ v x, hausdorffEdist u v ≤ δ [PROOFSTEP] exists v, (fun x hx => hx.1 : v ⊆ s) [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} ⊢ hausdorffEdist u v ≤ δ [PROOFSTEP] refine' hausdorffEdist_le_of_mem_edist _ _ [GOAL] case refine'_1 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} ⊢ ∀ (x : α), x ∈ u → ∃ y, y ∈ v ∧ edist x y ≤ δ [PROOFSTEP] intro x hx [GOAL] case refine'_1 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} x : α hx : x ∈ u ⊢ ∃ y, y ∈ v ∧ edist x y ≤ δ [PROOFSTEP] have : x ∈ ⋃ y ∈ s, ball y δ := hs (by simp) [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} x : α hx : x ∈ u ⊢ x ∈ univ [PROOFSTEP] simp [GOAL] case refine'_1 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} x : α hx : x ∈ u this : x ∈ ⋃ (y : α) (_ : y ∈ s), ball y δ ⊢ ∃ y, y ∈ v ∧ edist x y ≤ δ [PROOFSTEP] rcases mem_iUnion₂.1 this with ⟨y, ys, dy⟩ [GOAL] case refine'_1.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} x : α hx : x ∈ u this : x ∈ ⋃ (y : α) (_ : y ∈ s), ball y δ y : α ys : y ∈ s dy : x ∈ ball y δ ⊢ ∃ y, y ∈ v ∧ edist x y ≤ δ [PROOFSTEP] have : edist y x < δ := by simp at dy ; rwa [edist_comm] at dy [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} x : α hx : x ∈ u this : x ∈ ⋃ (y : α) (_ : y ∈ s), ball y δ y : α ys : y ∈ s dy : x ∈ ball y δ ⊢ edist y x < δ [PROOFSTEP] simp at dy [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} x : α hx : x ∈ u this : x ∈ ⋃ (y : α) (_ : y ∈ s), ball y δ y : α ys : y ∈ s dy : edist x y < δ ⊢ edist y x < δ [PROOFSTEP] rwa [edist_comm] at dy [GOAL] case refine'_1.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} x : α hx : x ∈ u this✝ : x ∈ ⋃ (y : α) (_ : y ∈ s), ball y δ y : α ys : y ∈ s dy : x ∈ ball y δ this : edist y x < δ ⊢ ∃ y, y ∈ v ∧ edist x y ≤ δ [PROOFSTEP] exact ⟨y, ⟨ys, ⟨x, hx, this⟩⟩, le_of_lt dy⟩ [GOAL] case refine'_2 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} ⊢ ∀ (x : α), x ∈ v → ∃ y, y ∈ u ∧ edist x y ≤ δ [PROOFSTEP] rintro x ⟨_, ⟨y, yu, hy⟩⟩ [GOAL] case refine'_2.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ u : Set α v : Set α := {x | x ∈ s ∧ ∃ y, y ∈ u ∧ edist x y < δ} x : α left✝ : x ∈ s y : α yu : y ∈ u hy : edist x y < δ ⊢ ∃ y, y ∈ u ∧ edist x y ≤ δ [PROOFSTEP] exact ⟨y, yu, le_of_lt hy⟩ -- introduce the set F of all subsets of `s` (seen as members of `Closeds α`). [GOAL] case intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ ⊢ ∃ t, Set.Finite t ∧ univ ⊆ ⋃ (y : Closeds α) (_ : y ∈ t), ball y ε [PROOFSTEP] let F := {f : Closeds α | (f : Set α) ⊆ s} [GOAL] case intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} ⊢ ∃ t, Set.Finite t ∧ univ ⊆ ⋃ (y : Closeds α) (_ : y ∈ t), ball y ε [PROOFSTEP] refine' ⟨F, _, fun u _ => _⟩ -- `F` is finite [GOAL] case intro.intro.intro.intro.refine'_1 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} ⊢ Set.Finite F [PROOFSTEP] apply @Finite.of_finite_image _ _ F _ [GOAL] case intro.intro.intro.intro.refine'_1.h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} ⊢ Set.Finite (?m.23554 '' F) [PROOFSTEP] apply fs.finite_subsets.subset fun b => _ [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} ⊢ Closeds α → Set α α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} ⊢ ∀ (b : Set α), b ∈ ?m.23554 '' F → b ∈ {b | b ⊆ s} [PROOFSTEP] exact fun s => (s : Set α) [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} ⊢ ∀ (b : Set α), b ∈ (fun s => ↑s) '' F → b ∈ {b | b ⊆ s} [PROOFSTEP] simp only [and_imp, Set.mem_image, Set.mem_setOf_eq, exists_imp] [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} ⊢ ∀ (b : Set α) (x : Closeds α), ↑x ⊆ s → ↑x = b → b ⊆ s [PROOFSTEP] intro _ x hx hx' [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} b✝ : Set α x : Closeds α hx : ↑x ⊆ s hx' : ↑x = b✝ ⊢ b✝ ⊆ s [PROOFSTEP] rwa [hx'] at hx [GOAL] case intro.intro.intro.intro.refine'_1.hi α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} ⊢ InjOn (fun s => ↑s) F [PROOFSTEP] exact SetLike.coe_injective.injOn F [GOAL] case intro.intro.intro.intro.refine'_2 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} u : Closeds α x✝ : u ∈ univ ⊢ u ∈ ⋃ (y : Closeds α) (_ : y ∈ F), ball y ε [PROOFSTEP] obtain ⟨t0, t0s, Dut0⟩ := main u [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} u : Closeds α x✝ : u ∈ univ t0 : Set α t0s : t0 ⊆ s Dut0 : hausdorffEdist (↑u) t0 ≤ δ ⊢ u ∈ ⋃ (y : Closeds α) (_ : y ∈ F), ball y ε [PROOFSTEP] have : IsClosed t0 := (fs.subset t0s).isCompact.isClosed [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} u : Closeds α x✝ : u ∈ univ t0 : Set α t0s : t0 ⊆ s Dut0 : hausdorffEdist (↑u) t0 ≤ δ this : IsClosed t0 ⊢ u ∈ ⋃ (y : Closeds α) (_ : y ∈ F), ball y ε [PROOFSTEP] let t : Closeds α := ⟨t0, this⟩ [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} u : Closeds α x✝ : u ∈ univ t0 : Set α t0s : t0 ⊆ s Dut0 : hausdorffEdist (↑u) t0 ≤ δ this : IsClosed t0 t : Closeds α := { carrier := t0, closed' := this } ⊢ u ∈ ⋃ (y : Closeds α) (_ : y ∈ F), ball y ε [PROOFSTEP] have : t ∈ F := t0s [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} u : Closeds α x✝ : u ∈ univ t0 : Set α t0s : t0 ⊆ s Dut0 : hausdorffEdist (↑u) t0 ≤ δ this✝ : IsClosed t0 t : Closeds α := { carrier := t0, closed' := this✝ } this : t ∈ F ⊢ u ∈ ⋃ (y : Closeds α) (_ : y ∈ F), ball y ε [PROOFSTEP] have : edist u t < ε := lt_of_le_of_lt Dut0 δlt [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} u : Closeds α x✝ : u ∈ univ t0 : Set α t0s : t0 ⊆ s Dut0 : hausdorffEdist (↑u) t0 ≤ δ this✝¹ : IsClosed t0 t : Closeds α := { carrier := t0, closed' := this✝¹ } this✝ : t ∈ F this : edist u t < ε ⊢ u ∈ ⋃ (y : Closeds α) (_ : y ∈ F), ball y ε [PROOFSTEP] apply mem_iUnion₂.2 [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompactSpace α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε s : Set α fs : Set.Finite s hs : univ ⊆ ⋃ (y : α) (_ : y ∈ s), ball y δ main : ∀ (u : Set α), ∃ v x, hausdorffEdist u v ≤ δ F : Set (Closeds α) := {f | ↑f ⊆ s} u : Closeds α x✝ : u ∈ univ t0 : Set α t0s : t0 ⊆ s Dut0 : hausdorffEdist (↑u) t0 ≤ δ this✝¹ : IsClosed t0 t : Closeds α := { carrier := t0, closed' := this✝¹ } this✝ : t ∈ F this : edist u t < ε ⊢ ∃ i j, u ∈ ball i ε [PROOFSTEP] exact ⟨t, ‹t ∈ F›, this⟩ [GOAL] α : Type u inst✝ : EMetricSpace α s✝ : Set α s t : NonemptyCompacts α h : edist s t = 0 ⊢ ↑s = ↑t [PROOFSTEP] have : closure (s : Set α) = closure t := hausdorffEdist_zero_iff_closure_eq_closure.1 h [GOAL] α : Type u inst✝ : EMetricSpace α s✝ : Set α s t : NonemptyCompacts α h : edist s t = 0 this : closure ↑s = closure ↑t ⊢ ↑s = ↑t [PROOFSTEP] rwa [s.isCompact.isClosed.closure_eq, t.isCompact.isClosed.closure_eq] at this [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α ⊢ IsClosed (range NonemptyCompacts.toCloseds) [PROOFSTEP] have : range NonemptyCompacts.toCloseds = {s : Closeds α | (s : Set α).Nonempty ∧ IsCompact (s : Set α)} := by ext s refine' ⟨_, fun h => ⟨⟨⟨s, h.2⟩, h.1⟩, Closeds.ext rfl⟩⟩ rintro ⟨s, hs, rfl⟩ exact ⟨s.nonempty, s.isCompact⟩ [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α ⊢ range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} [PROOFSTEP] ext s [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α s : Closeds α ⊢ s ∈ range NonemptyCompacts.toCloseds ↔ s ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} [PROOFSTEP] refine' ⟨_, fun h => ⟨⟨⟨s, h.2⟩, h.1⟩, Closeds.ext rfl⟩⟩ [GOAL] case h α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α s : Closeds α ⊢ s ∈ range NonemptyCompacts.toCloseds → s ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} [PROOFSTEP] rintro ⟨s, hs, rfl⟩ [GOAL] case h.intro.refl α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α s : NonemptyCompacts α ⊢ NonemptyCompacts.toCloseds s ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} [PROOFSTEP] exact ⟨s.nonempty, s.isCompact⟩ [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ⊢ IsClosed (range NonemptyCompacts.toCloseds) [PROOFSTEP] rw [this] [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ⊢ IsClosed {s | Set.Nonempty ↑s ∧ IsCompact ↑s} [PROOFSTEP] refine' isClosed_of_closure_subset fun s hs => ⟨_, _⟩ [GOAL] case refine'_1 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ⊢ Set.Nonempty ↑s [PROOFSTEP] rcases mem_closure_iff.1 hs ⊤ ENNReal.coe_lt_top with ⟨t, ht, Dst⟩ [GOAL] case refine'_1.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} t : Closeds α ht : t ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} Dst : edist s t < ⊤ ⊢ Set.Nonempty ↑s [PROOFSTEP] rw [edist_comm] at Dst [GOAL] case refine'_1.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} t : Closeds α ht : t ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} Dst : edist t s < ⊤ ⊢ Set.Nonempty ↑s [PROOFSTEP] exact nonempty_of_hausdorffEdist_ne_top ht.1 (ne_of_lt Dst) [GOAL] case refine'_2 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ⊢ IsCompact ↑s [PROOFSTEP] refine' isCompact_iff_totallyBounded_isComplete.2 ⟨_, s.closed.isComplete⟩ [GOAL] case refine'_2 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ⊢ TotallyBounded ↑s [PROOFSTEP] refine' totallyBounded_iff.2 fun ε (εpos : 0 < ε) => _ -- we have to show that s is covered by finitely many eballs of radius ε -- pick a nonempty compact set t at distance at most ε/2 of s [GOAL] case refine'_2 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ε : ℝ≥0∞ εpos : 0 < ε ⊢ ∃ t, Set.Finite t ∧ ↑s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] rcases mem_closure_iff.1 hs (ε / 2) (ENNReal.half_pos εpos.ne') with ⟨t, ht, Dst⟩ -- cover this space with finitely many balls of radius ε/2 [GOAL] case refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ε : ℝ≥0∞ εpos : 0 < ε t : Closeds α ht : t ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} Dst : edist s t < ε / 2 ⊢ ∃ t, Set.Finite t ∧ ↑s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] rcases totallyBounded_iff.1 (isCompact_iff_totallyBounded_isComplete.1 ht.2).1 (ε / 2) (ENNReal.half_pos εpos.ne') with ⟨u, fu, ut⟩ [GOAL] case refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ε : ℝ≥0∞ εpos : 0 < ε t : Closeds α ht : t ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} Dst : edist s t < ε / 2 u : Set α fu : Set.Finite u ut : ↑t ⊆ ⋃ (y : α) (_ : y ∈ u), ball y (ε / 2) ⊢ ∃ t, Set.Finite t ∧ ↑s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] refine' ⟨u, ⟨fu, fun x hx => _⟩⟩ -- u : set α, fu : u.finite, ut : t ⊆ ⋃ (y : α) (H : y ∈ u), eball y (ε / 2) -- then s is covered by the union of the balls centered at u of radius ε [GOAL] case refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ε : ℝ≥0∞ εpos : 0 < ε t : Closeds α ht : t ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} Dst : edist s t < ε / 2 u : Set α fu : Set.Finite u ut : ↑t ⊆ ⋃ (y : α) (_ : y ∈ u), ball y (ε / 2) x : α hx : x ∈ ↑s ⊢ x ∈ ⋃ (y : α) (_ : y ∈ u), ball y ε [PROOFSTEP] rcases exists_edist_lt_of_hausdorffEdist_lt hx Dst with ⟨z, hz, Dxz⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ε : ℝ≥0∞ εpos : 0 < ε t : Closeds α ht : t ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} Dst : edist s t < ε / 2 u : Set α fu : Set.Finite u ut : ↑t ⊆ ⋃ (y : α) (_ : y ∈ u), ball y (ε / 2) x : α hx : x ∈ ↑s z : α hz : z ∈ ↑t Dxz : edist x z < ε / 2 ⊢ x ∈ ⋃ (y : α) (_ : y ∈ u), ball y ε [PROOFSTEP] rcases mem_iUnion₂.1 (ut hz) with ⟨y, hy, Dzy⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ε : ℝ≥0∞ εpos : 0 < ε t : Closeds α ht : t ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} Dst : edist s t < ε / 2 u : Set α fu : Set.Finite u ut : ↑t ⊆ ⋃ (y : α) (_ : y ∈ u), ball y (ε / 2) x : α hx : x ∈ ↑s z : α hz : z ∈ ↑t Dxz : edist x z < ε / 2 y : α hy : y ∈ u Dzy : z ∈ ball y (ε / 2) ⊢ x ∈ ⋃ (y : α) (_ : y ∈ u), ball y ε [PROOFSTEP] have : edist x y < ε := calc edist x y ≤ edist x z + edist z y := edist_triangle _ _ _ _ < ε / 2 + ε / 2 := (ENNReal.add_lt_add Dxz Dzy) _ = ε := ENNReal.add_halves _ [GOAL] case refine'_2.intro.intro.intro.intro.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : CompleteSpace α this✝ : range NonemptyCompacts.toCloseds = {s | Set.Nonempty ↑s ∧ IsCompact ↑s} s : Closeds α hs : s ∈ closure {s | Set.Nonempty ↑s ∧ IsCompact ↑s} ε : ℝ≥0∞ εpos : 0 < ε t : Closeds α ht : t ∈ {s | Set.Nonempty ↑s ∧ IsCompact ↑s} Dst : edist s t < ε / 2 u : Set α fu : Set.Finite u ut : ↑t ⊆ ⋃ (y : α) (_ : y ∈ u), ball y (ε / 2) x : α hx : x ∈ ↑s z : α hz : z ∈ ↑t Dxz : edist x z < ε / 2 y : α hy : y ∈ u Dzy : z ∈ ball y (ε / 2) this : edist x y < ε ⊢ x ∈ ⋃ (y : α) (_ : y ∈ u), ball y ε [PROOFSTEP] exact mem_biUnion hy this [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompactSpace α ⊢ IsCompact univ [PROOFSTEP] rw [NonemptyCompacts.ToCloseds.uniformEmbedding.embedding.isCompact_iff_isCompact_image] [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompactSpace α ⊢ IsCompact (NonemptyCompacts.toCloseds '' univ) [PROOFSTEP] rw [image_univ] [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : CompactSpace α ⊢ IsCompact (range NonemptyCompacts.toCloseds) [PROOFSTEP] exact NonemptyCompacts.isClosed_in_closeds.isCompact [GOAL] α : Type u inst✝¹ : EMetricSpace α s : Set α inst✝ : SecondCountableTopology α ⊢ SeparableSpace (NonemptyCompacts α) [PROOFSTEP] rcases exists_countable_dense α with ⟨s, cs, s_dense⟩ [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s ⊢ SeparableSpace (NonemptyCompacts α) [PROOFSTEP] let v0 := {t : Set α | t.Finite ∧ t ⊆ s} [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} ⊢ SeparableSpace (NonemptyCompacts α) [PROOFSTEP] let v : Set (NonemptyCompacts α) := {t : NonemptyCompacts α | (t : Set α) ∈ v0} [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} ⊢ SeparableSpace (NonemptyCompacts α) [PROOFSTEP] refine' ⟨⟨v, _, _⟩⟩ [GOAL] case intro.intro.refine'_1 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} ⊢ Set.Countable v [PROOFSTEP] have : v0.Countable := countable_setOf_finite_subset cs [GOAL] case intro.intro.refine'_1 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} this : Set.Countable v0 ⊢ Set.Countable v [PROOFSTEP] exact this.preimage SetLike.coe_injective [GOAL] case intro.intro.refine'_2 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} ⊢ Dense v [PROOFSTEP] refine' fun t => mem_closure_iff.2 fun ε εpos => _ -- t is a compact nonempty set, that we have to approximate uniformly by a a set in `v`. [GOAL] case intro.intro.refine'_2 α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] rcases exists_between εpos with ⟨δ, δpos, δlt⟩ [GOAL] case intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have δpos' : 0 < δ / 2 := ENNReal.half_pos δpos.ne' [GOAL] case intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have Exy : ∀ x, ∃ y, y ∈ s ∧ edist x y < δ / 2 := by intro x rcases mem_closure_iff.1 (s_dense x) (δ / 2) δpos' with ⟨y, ys, hy⟩ exact ⟨y, ⟨ys, hy⟩⟩ [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 ⊢ ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 [PROOFSTEP] intro x [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 x : α ⊢ ∃ y, y ∈ s ∧ edist x y < δ / 2 [PROOFSTEP] rcases mem_closure_iff.1 (s_dense x) (δ / 2) δpos' with ⟨y, ys, hy⟩ [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 x y : α ys : y ∈ s hy : edist x y < δ / 2 ⊢ ∃ y, y ∈ s ∧ edist x y < δ / 2 [PROOFSTEP] exact ⟨y, ⟨ys, hy⟩⟩ [GOAL] case intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] let F x := choose (Exy x) [GOAL] case intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have Fspec : ∀ x, F x ∈ s ∧ edist x (F x) < δ / 2 := fun x => choose_spec (Exy x) -- cover `t` with finitely many balls. Their centers form a set `a` [GOAL] case intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have : TotallyBounded (t : Set α) := t.isCompact.totallyBounded [GOAL] case intro.intro.refine'_2.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this : TotallyBounded ↑t ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] rcases totallyBounded_iff.1 this (δ / 2) δpos' with ⟨a, af, ta⟩ -- a : set α, af : a.finite, ta : t ⊆ ⋃ (y : α) (H : y ∈ a), eball y (δ / 2) -- replace each center by a nearby approximation in `s`, giving a new set `b` [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] let b := F '' a [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have : b.Finite := af.image _ [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this : Set.Finite b ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have tb : ∀ x ∈ t, ∃ y ∈ b, edist x y < δ := by intro x hx rcases mem_iUnion₂.1 (ta hx) with ⟨z, za, Dxz⟩ exists F z, mem_image_of_mem _ za calc edist x (F z) ≤ edist x z + edist z (F z) := edist_triangle _ _ _ _ < δ / 2 + δ / 2 := (ENNReal.add_lt_add Dxz (Fspec z).2) _ = δ := ENNReal.add_halves _ -- keep only the points in `b` that are close to point in `t`, yielding a new set `c` [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this : Set.Finite b ⊢ ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ [PROOFSTEP] intro x hx [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this : Set.Finite b x : α hx : x ∈ t ⊢ ∃ y, y ∈ b ∧ edist x y < δ [PROOFSTEP] rcases mem_iUnion₂.1 (ta hx) with ⟨z, za, Dxz⟩ [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this : Set.Finite b x : α hx : x ∈ t z : α za : z ∈ a Dxz : x ∈ ball z (δ / 2) ⊢ ∃ y, y ∈ b ∧ edist x y < δ [PROOFSTEP] exists F z, mem_image_of_mem _ za [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this : Set.Finite b x : α hx : x ∈ t z : α za : z ∈ a Dxz : x ∈ ball z (δ / 2) ⊢ edist x (F z) < δ [PROOFSTEP] calc edist x (F z) ≤ edist x z + edist z (F z) := edist_triangle _ _ _ _ < δ / 2 + δ / 2 := (ENNReal.add_lt_add Dxz (Fspec z).2) _ = δ := ENNReal.add_halves _ -- keep only the points in `b` that are close to point in `t`, yielding a new set `c` [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] let c := {y ∈ b | ∃ x ∈ t, edist x y < δ} [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have : c.Finite := ‹b.Finite›.subset fun x hx => hx.1 -- points in `t` are well approximated by points in `c` [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have tc : ∀ x ∈ t, ∃ y ∈ c, edist x y ≤ δ := by intro x hx rcases tb x hx with ⟨y, yv, Dxy⟩ have : y ∈ c := by simp [-mem_image]; exact ⟨yv, ⟨x, hx, Dxy⟩⟩ exact ⟨y, this, le_of_lt Dxy⟩ -- points in `c` are well approximated by points in `t` [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c ⊢ ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ [PROOFSTEP] intro x hx [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c x : α hx : x ∈ t ⊢ ∃ y, y ∈ c ∧ edist x y ≤ δ [PROOFSTEP] rcases tb x hx with ⟨y, yv, Dxy⟩ [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c x : α hx : x ∈ t y : α yv : y ∈ b Dxy : edist x y < δ ⊢ ∃ y, y ∈ c ∧ edist x y ≤ δ [PROOFSTEP] have : y ∈ c := by simp [-mem_image]; exact ⟨yv, ⟨x, hx, Dxy⟩⟩ [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c x : α hx : x ∈ t y : α yv : y ∈ b Dxy : edist x y < δ ⊢ y ∈ c [PROOFSTEP] simp [-mem_image] [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c x : α hx : x ∈ t y : α yv : y ∈ b Dxy : edist x y < δ ⊢ y ∈ (fun a => choose (_ : ∃ y, y ∈ s ∧ edist a y < δ / 2)) '' a ∧ ∃ x, x ∈ t ∧ edist x y < δ [PROOFSTEP] exact ⟨yv, ⟨x, hx, Dxy⟩⟩ [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c x : α hx : x ∈ t y : α yv : y ∈ b Dxy : edist x y < δ this : y ∈ c ⊢ ∃ y, y ∈ c ∧ edist x y ≤ δ [PROOFSTEP] exact ⟨y, this, le_of_lt Dxy⟩ -- points in `c` are well approximated by points in `t` [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have ct : ∀ y ∈ c, ∃ x ∈ t, edist y x ≤ δ := by rintro y ⟨_, x, xt, Dyx⟩ have : edist y x ≤ δ := calc edist y x = edist x y := edist_comm _ _ _ ≤ δ := le_of_lt Dyx exact ⟨x, xt, this⟩ -- it follows that their Hausdorff distance is small [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ⊢ ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ [PROOFSTEP] rintro y ⟨_, x, xt, Dyx⟩ [GOAL] case intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ y : α left✝ : y ∈ b x : α xt : x ∈ t Dyx : edist x y < δ ⊢ ∃ x, x ∈ t ∧ edist y x ≤ δ [PROOFSTEP] have : edist y x ≤ δ := calc edist y x = edist x y := edist_comm _ _ _ ≤ δ := le_of_lt Dyx [GOAL] case intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ y : α left✝ : y ∈ b x : α xt : x ∈ t Dyx : edist x y < δ this : edist y x ≤ δ ⊢ ∃ x, x ∈ t ∧ edist y x ≤ δ [PROOFSTEP] exact ⟨x, xt, this⟩ -- it follows that their Hausdorff distance is small [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝¹ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have : hausdorffEdist (t : Set α) c ≤ δ := hausdorffEdist_le_of_mem_edist tc ct [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this : hausdorffEdist (↑t) c ≤ δ ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have Dtc : hausdorffEdist (t : Set α) c < ε := this.trans_lt δlt [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have hc : c.Nonempty := nonempty_of_hausdorffEdist_ne_top t.nonempty (ne_top_of_lt Dtc) -- let `d` be the version of `c` in the type `NonemptyCompacts α` [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε hc : Set.Nonempty c ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] let d : NonemptyCompacts α := ⟨⟨c, ‹c.Finite›.isCompact⟩, hc⟩ [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε hc : Set.Nonempty c d : NonemptyCompacts α := { toCompacts := { carrier := c, isCompact' := (_ : IsCompact c) }, nonempty' := hc } ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have : c ⊆ s := by intro x hx rcases(mem_image _ _ _).1 hx.1 with ⟨y, ⟨_, yx⟩⟩ rw [← yx] exact (Fspec y).1 [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε hc : Set.Nonempty c d : NonemptyCompacts α := { toCompacts := { carrier := c, isCompact' := (_ : IsCompact c) }, nonempty' := hc } ⊢ c ⊆ s [PROOFSTEP] intro x hx [GOAL] α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε hc : Set.Nonempty c d : NonemptyCompacts α := { toCompacts := { carrier := c, isCompact' := (_ : IsCompact c) }, nonempty' := hc } x : α hx : x ∈ c ⊢ x ∈ s [PROOFSTEP] rcases(mem_image _ _ _).1 hx.1 with ⟨y, ⟨_, yx⟩⟩ [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε hc : Set.Nonempty c d : NonemptyCompacts α := { toCompacts := { carrier := c, isCompact' := (_ : IsCompact c) }, nonempty' := hc } x : α hx : x ∈ c y : α left✝ : y ∈ a yx : F y = x ⊢ x ∈ s [PROOFSTEP] rw [← yx] [GOAL] case intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝² : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝¹ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε hc : Set.Nonempty c d : NonemptyCompacts α := { toCompacts := { carrier := c, isCompact' := (_ : IsCompact c) }, nonempty' := hc } x : α hx : x ∈ c y : α left✝ : y ∈ a yx : F y = x ⊢ F y ∈ s [PROOFSTEP] exact (Fspec y).1 [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝³ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝² : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝¹ : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this✝ : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε hc : Set.Nonempty c d : NonemptyCompacts α := { toCompacts := { carrier := c, isCompact' := (_ : IsCompact c) }, nonempty' := hc } this : c ⊆ s ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] have : d ∈ v := ⟨‹c.Finite›, this⟩ -- we have proved that `d` is a good approximation of `t` as requested [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro α : Type u inst✝¹ : EMetricSpace α s✝ : Set α inst✝ : SecondCountableTopology α s : Set α cs : Set.Countable s s_dense : Dense s v0 : Set (Set α) := {t | Set.Finite t ∧ t ⊆ s} v : Set (NonemptyCompacts α) := {t | ↑t ∈ v0} t : NonemptyCompacts α ε : ℝ≥0∞ εpos : ε > 0 δ : ℝ≥0∞ δpos : 0 < δ δlt : δ < ε δpos' : 0 < δ / 2 Exy : ∀ (x : α), ∃ y, y ∈ s ∧ edist x y < δ / 2 F : α → α := fun x => choose (_ : ∃ y, y ∈ s ∧ edist x y < δ / 2) Fspec : ∀ (x : α), F x ∈ s ∧ edist x (F x) < δ / 2 this✝⁴ : TotallyBounded ↑t a : Set α af : Set.Finite a ta : ↑t ⊆ ⋃ (y : α) (_ : y ∈ a), ball y (δ / 2) b : Set α := F '' a this✝³ : Set.Finite b tb : ∀ (x : α), x ∈ t → ∃ y, y ∈ b ∧ edist x y < δ c : Set α := {y | y ∈ b ∧ ∃ x, x ∈ t ∧ edist x y < δ} this✝² : Set.Finite c tc : ∀ (x : α), x ∈ t → ∃ y, y ∈ c ∧ edist x y ≤ δ ct : ∀ (y : α), y ∈ c → ∃ x, x ∈ t ∧ edist y x ≤ δ this✝¹ : hausdorffEdist (↑t) c ≤ δ Dtc : hausdorffEdist (↑t) c < ε hc : Set.Nonempty c d : NonemptyCompacts α := { toCompacts := { carrier := c, isCompact' := (_ : IsCompact c) }, nonempty' := hc } this✝ : c ⊆ s this : d ∈ v ⊢ ∃ y, y ∈ v ∧ edist t y < ε [PROOFSTEP] exact ⟨d, ‹d ∈ v›, Dtc⟩ [GOAL] α : Type u inst✝ : MetricSpace α x : α s t : NonemptyCompacts α ⊢ infDist x ↑s ≤ infDist x ↑t + dist s t [PROOFSTEP] rw [dist_comm] [GOAL] α : Type u inst✝ : MetricSpace α x : α s t : NonemptyCompacts α ⊢ infDist x ↑s ≤ infDist x ↑t + dist t s [PROOFSTEP] exact infDist_le_infDist_add_hausdorffDist (edist_ne_top t s) [GOAL] α : Type u inst✝ : MetricSpace α ⊢ LipschitzWith 2 fun p => infDist p.fst ↑p.snd [PROOFSTEP] convert @LipschitzWith.uncurry α (NonemptyCompacts α) ℝ _ _ _ (fun (x : α) (s : NonemptyCompacts α) => infDist x s) 1 1 (fun s => lipschitz_infDist_pt ↑s) lipschitz_infDist_set [GOAL] case h.e'_5 α : Type u inst✝ : MetricSpace α ⊢ 2 = 1 + 1 [PROOFSTEP] norm_num
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Closeds", "llama_tokens": 58342}
[GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a : α ⊢ HasBasis (𝓝 a) (?m.55 a) (?m.56 a) [PROOFSTEP] rw [nhds_eq_comap_uniformity] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a : α ⊢ HasBasis (Filter.comap (Prod.mk a) (𝓤 α)) (?m.55 a) (?m.56 a) α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ α → Sort ?u.51 α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ (a : α) → ?m.54 a → Prop α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ (a : α) → ?m.54 a → Set α [PROOFSTEP] exact uniformity_hasBasis_closed.comap _ [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a : α V : Set (α × α) hV : V ∈ 𝓤 α ∧ IsClosed V ⊢ IsClosed (Prod.mk a ⁻¹' id V) [PROOFSTEP] exact hV.2.preimage <| continuous_const.prod_mk continuous_id [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a b : α ⊢ (a, b) ∈ 𝓢 α ↔ a ⤳ b [PROOFSTEP] simp only [(𝓤 α).basis_sets.mem_separationRel, id, mem_setOf_eq, (nhds_basis_uniformity (𝓤 α).basis_sets).specializes_iff] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α ⊢ SeparatedSpace α ↔ ∀ (x y : α), (∀ (r : Set (α × α)), r ∈ 𝓤 α → (x, y) ∈ r) → x = y [PROOFSTEP] simp only [separatedSpace_iff, Set.ext_iff, Prod.forall, mem_idRel, separationRel, mem_sInter] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α ⊢ (∀ (a b : α), (∀ (t : Set (α × α)), t ∈ (𝓤 α).sets → (a, b) ∈ t) ↔ a = b) ↔ ∀ (x y : α), (∀ (r : Set (α × α)), r ∈ 𝓤 α → (x, y) ∈ r) → x = y [PROOFSTEP] exact forall₂_congr fun _ _ => ⟨Iff.mp, fun h => ⟨h, fun H U hU => H ▸ refl_mem_uniformity hU⟩⟩ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α x y : α ⊢ (∀ (r : Set (α × α)), r ∈ 𝓤 α → (x, y) ∈ r) → x = y ↔ x ≠ y → ∃ r, r ∈ 𝓤 α ∧ ¬(x, y) ∈ r [PROOFSTEP] rw [← not_imp_not] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α x y : α ⊢ (¬x = y → ¬∀ (r : Set (α × α)), r ∈ 𝓤 α → (x, y) ∈ r) ↔ x ≠ y → ∃ r, r ∈ 𝓤 α ∧ ¬(x, y) ∈ r [PROOFSTEP] simp [not_forall] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁴ : UniformSpace α✝ inst✝³ : UniformSpace β inst✝² : UniformSpace γ α : Type u_1 inst✝¹ : UniformSpace α inst✝ : SeparatedSpace α x y : α h : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → SymmetricRel V → (x, y) ∈ V ⊢ ∀ {i : Set (α × α)}, i ∈ 𝓤 α ∧ SymmetricRel i → (x, y) ∈ id i [PROOFSTEP] simpa [and_imp] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u_1 inst✝ : UniformSpace α ⊢ idRel ⊆ 𝓢 α [PROOFSTEP] unfold separationRel [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u_1 inst✝ : UniformSpace α ⊢ idRel ⊆ ⋂₀ (𝓤 α).sets [PROOFSTEP] rw [idRel_subset] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u_1 inst✝ : UniformSpace α ⊢ ∀ (a : α), (a, a) ∈ ⋂₀ (𝓤 α).sets [PROOFSTEP] intro x [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u_1 inst✝ : UniformSpace α x : α ⊢ (x, x) ∈ ⋂₀ (𝓤 α).sets [PROOFSTEP] suffices ∀ t ∈ 𝓤 α, (x, x) ∈ t by simpa only [refl_mem_uniformity] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u_1 inst✝ : UniformSpace α x : α this : ∀ (t : Set (α × α)), t ∈ 𝓤 α → (x, x) ∈ t ⊢ (x, x) ∈ ⋂₀ (𝓤 α).sets [PROOFSTEP] simpa only [refl_mem_uniformity] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u_1 inst✝ : UniformSpace α x : α ⊢ ∀ (t : Set (α × α)), t ∈ 𝓤 α → (x, x) ∈ t [PROOFSTEP] exact fun t => refl_mem_uniformity [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β h : inst✝² = UniformSpace.comap f inst✝¹ ⊢ 𝓢 α = Prod.map f f ⁻¹' 𝓢 β [PROOFSTEP] subst h [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β ⊢ 𝓢 α = Prod.map f f ⁻¹' 𝓢 β [PROOFSTEP] dsimp [separationRel] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β ⊢ ⋂₀ (𝓤 α).sets = Prod.map f f ⁻¹' ⋂₀ (𝓤 β).sets [PROOFSTEP] simp_rw [uniformity_comap, (Filter.comap_hasBasis (Prod.map f f) (𝓤 β)).sInter_sets, ← preimage_iInter, sInter_eq_biInter] [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β ⊢ Prod.map f f ⁻¹' ⋂ (i : Set (β × β)) (_ : i ∈ 𝓤 β), i = Prod.map f f ⁻¹' ⋂ (i : Set (β × β)) (_ : i ∈ (𝓤 β).sets), i [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ι : Sort u_1 p : ι → Prop s : ι → Set (α × α) h : HasBasis (𝓤 α) p s ⊢ 𝓢 α = ⋂ (i : ι) (_ : p i), s i [PROOFSTEP] unfold separationRel [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ι : Sort u_1 p : ι → Prop s : ι → Set (α × α) h : HasBasis (𝓤 α) p s ⊢ ⋂₀ (𝓤 α).sets = ⋂ (i : ι) (_ : p i), s i [PROOFSTEP] rw [h.sInter_sets] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ 𝓢 α = ⋂₀ (closure '' (𝓤 α).sets) [PROOFSTEP] simp [uniformity_hasBasis_closure.separationRel] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ IsClosed (𝓢 α) [PROOFSTEP] rw [separationRel_eq_inter_closure] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ IsClosed (⋂₀ (closure '' (𝓤 α).sets)) [PROOFSTEP] apply isClosed_sInter [GOAL] case a α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ ∀ (t : Set (α × α)), t ∈ closure '' (𝓤 α).sets → IsClosed t [PROOFSTEP] rintro _ ⟨t, -, rfl⟩ [GOAL] case a.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ t : Set (α × α) ⊢ IsClosed (closure t) [PROOFSTEP] exact isClosed_closure [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ SeparatedSpace α ↔ T2Space α [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ SeparatedSpace α → T2Space α [PROOFSTEP] intro h [GOAL] case mpr α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ T2Space α → SeparatedSpace α [PROOFSTEP] intro h [GOAL] case mp α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ h : SeparatedSpace α ⊢ T2Space α [PROOFSTEP] rw [t2_iff_isClosed_diagonal, ← show 𝓢 α = diagonal α from h.1] [GOAL] case mp α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ h : SeparatedSpace α ⊢ IsClosed (𝓢 α) [PROOFSTEP] exact isClosed_separationRel [GOAL] case mpr α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ h : T2Space α ⊢ SeparatedSpace α [PROOFSTEP] rw [separated_def'] [GOAL] case mpr α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ h : T2Space α ⊢ ∀ (x y : α), x ≠ y → ∃ r, r ∈ 𝓤 α ∧ ¬(x, y) ∈ r [PROOFSTEP] intro x y hxy [GOAL] case mpr α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ h : T2Space α x y : α hxy : x ≠ y ⊢ ∃ r, r ∈ 𝓤 α ∧ ¬(x, y) ∈ r [PROOFSTEP] rcases t2_separation hxy with ⟨u, v, uo, -, hx, hy, h⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ h✝ : T2Space α x y : α hxy : x ≠ y u v : Set α uo : IsOpen u hx : x ∈ u hy : y ∈ v h : Disjoint u v ⊢ ∃ r, r ∈ 𝓤 α ∧ ¬(x, y) ∈ r [PROOFSTEP] rcases isOpen_iff_ball_subset.1 uo x hx with ⟨r, hrU, hr⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ h✝ : T2Space α x y : α hxy : x ≠ y u v : Set α uo : IsOpen u hx : x ∈ u hy : y ∈ v h : Disjoint u v r : Set (α × α) hrU : r ∈ 𝓤 α hr : ball x r ⊆ u ⊢ ∃ r, r ∈ 𝓤 α ∧ ¬(x, y) ∈ r [PROOFSTEP] exact ⟨r, hrU, fun H => h.le_bot ⟨hr H, hy⟩⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ ⊢ IsClosed s [PROOFSTEP] rcases comp_symm_mem_uniformity_sets V₀_in with ⟨V₁, V₁_in, V₁_symm, h_comp⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ ⊢ IsClosed s [PROOFSTEP] apply isClosed_of_closure_subset [GOAL] case intro.intro.intro.h α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ ⊢ closure s ⊆ s [PROOFSTEP] intro x hx [GOAL] case intro.intro.intro.h α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : x ∈ closure s ⊢ x ∈ s [PROOFSTEP] rw [mem_closure_iff_ball] at hx [GOAL] case intro.intro.intro.h α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) ⊢ x ∈ s [PROOFSTEP] rcases hx V₁_in with ⟨y, hy, hy'⟩ [GOAL] case intro.intro.intro.h.intro.intro α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) y : α hy : y ∈ ball x V₁ hy' : y ∈ s ⊢ x ∈ s [PROOFSTEP] suffices x = y by rwa [this] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) y : α hy : y ∈ ball x V₁ hy' : y ∈ s this : x = y ⊢ x ∈ s [PROOFSTEP] rwa [this] [GOAL] case intro.intro.intro.h.intro.intro α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) y : α hy : y ∈ ball x V₁ hy' : y ∈ s ⊢ x = y [PROOFSTEP] apply eq_of_forall_symmetric [GOAL] case intro.intro.intro.h.intro.intro.h α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) y : α hy : y ∈ ball x V₁ hy' : y ∈ s ⊢ ∀ {V : Set (α × α)}, V ∈ 𝓤 α → SymmetricRel V → (x, y) ∈ V [PROOFSTEP] intro V V_in _ [GOAL] case intro.intro.intro.h.intro.intro.h α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) y : α hy : y ∈ ball x V₁ hy' : y ∈ s V : Set (α × α) V_in : V ∈ 𝓤 α a✝ : SymmetricRel V ⊢ (x, y) ∈ V [PROOFSTEP] rcases hx (inter_mem V₁_in V_in) with ⟨z, hz, hz'⟩ [GOAL] case intro.intro.intro.h.intro.intro.h.intro.intro α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) y : α hy : y ∈ ball x V₁ hy' : y ∈ s V : Set (α × α) V_in : V ∈ 𝓤 α a✝ : SymmetricRel V z : α hz : z ∈ ball x (V₁ ∩ V) hz' : z ∈ s ⊢ (x, y) ∈ V [PROOFSTEP] obtain rfl : z = y := by by_contra hzy exact hs hz' hy' hzy (h_comp <| mem_comp_of_mem_ball V₁_symm (ball_inter_left x _ _ hz) hy) [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) y : α hy : y ∈ ball x V₁ hy' : y ∈ s V : Set (α × α) V_in : V ∈ 𝓤 α a✝ : SymmetricRel V z : α hz : z ∈ ball x (V₁ ∩ V) hz' : z ∈ s ⊢ z = y [PROOFSTEP] by_contra hzy [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) y : α hy : y ∈ ball x V₁ hy' : y ∈ s V : Set (α × α) V_in : V ∈ 𝓤 α a✝ : SymmetricRel V z : α hz : z ∈ ball x (V₁ ∩ V) hz' : z ∈ s hzy : ¬z = y ⊢ False [PROOFSTEP] exact hs hz' hy' hzy (h_comp <| mem_comp_of_mem_ball V₁_symm (ball_inter_left x _ _ hz) hy) [GOAL] case intro.intro.intro.h.intro.intro.h.intro.intro α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α s : Set α hs : Set.Pairwise s fun x y => ¬(x, y) ∈ V₀ V₁ : Set (α × α) V₁_in : V₁ ∈ 𝓤 α V₁_symm : SymmetricRel V₁ h_comp : V₁ ○ V₁ ⊆ V₀ x : α hx : ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) V : Set (α × α) V_in : V ∈ 𝓤 α a✝ : SymmetricRel V z : α hz : z ∈ ball x (V₁ ∩ V) hz' : z ∈ s hy : z ∈ ball x V₁ hy' : z ∈ s ⊢ (x, z) ∈ V [PROOFSTEP] exact ball_inter_right x _ _ hz [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ ι : Type u_1 inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α f : ι → α hf : Pairwise fun x y => ¬(f x, f y) ∈ V₀ ⊢ Set.Pairwise (range f) fun x y => ¬(x, y) ∈ V₀ [PROOFSTEP] rintro _ ⟨x, rfl⟩ _ ⟨y, rfl⟩ h [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ ι : Type u_1 inst✝ : SeparatedSpace α V₀ : Set (α × α) V₀_in : V₀ ∈ 𝓤 α f : ι → α hf : Pairwise fun x y => ¬(f x, f y) ∈ V₀ x y : ι h : f x ≠ f y ⊢ ¬(f x, f y) ∈ V₀ [PROOFSTEP] exact hf (ne_of_apply_ne f h) [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α ⊢ 𝓟 idRel ≤ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓟 idRel) [PROOFSTEP] simp [Quotient.exists_rep] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α)) hs : s ∈ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α) ⊢ s ∈ Filter.lift' (map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α)) fun s => s ○ s [PROOFSTEP] rcases comp_open_symm_mem_uniformity_sets hs with ⟨U, hU, hUo, -, hUs⟩ [GOAL] case intro.intro.intro.intro α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α)) hs : s ∈ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α) U : Set (α × α) hU : U ∈ 𝓤 α hUo : IsOpen U hUs : U ○ U ⊆ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' s ⊢ s ∈ Filter.lift' (map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α)) fun s => s ○ s [PROOFSTEP] refine' mem_of_superset (mem_lift' <| image_mem_map hU) ?_ [GOAL] case intro.intro.intro.intro α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α)) hs : s ∈ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α) U : Set (α × α) hU : U ∈ 𝓤 α hUo : IsOpen U hUs : U ○ U ⊆ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' s ⊢ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) '' U ○ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) '' U ⊆ s [PROOFSTEP] simp only [subset_def, Prod.forall, mem_compRel, mem_image, Prod.ext_iff] [GOAL] case intro.intro.intro.intro α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α)) hs : s ∈ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α) U : Set (α × α) hU : U ∈ 𝓤 α hUo : IsOpen U hUs : U ○ U ⊆ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' s ⊢ ∀ (a b : Quotient (separationSetoid α)), (∃ z, (∃ x, x ∈ U ∧ Quotient.mk (separationSetoid α) x.fst = a ∧ Quotient.mk (separationSetoid α) x.snd = z) ∧ ∃ x, x ∈ U ∧ Quotient.mk (separationSetoid α) x.fst = z ∧ Quotient.mk (separationSetoid α) x.snd = b) → (a, b) ∈ s [PROOFSTEP] rintro _ _ ⟨_, ⟨⟨x, y⟩, hxyU, rfl, rfl⟩, ⟨⟨y', z⟩, hyzU, hy, rfl⟩⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.mk.intro.intro.intro.mk.intro.intro α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α)) hs : s ∈ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α) U : Set (α × α) hU : U ∈ 𝓤 α hUo : IsOpen U hUs : U ○ U ⊆ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' s x y : α hxyU : (x, y) ∈ U y' z : α hyzU : (y', z) ∈ U hy : Quotient.mk (separationSetoid α) (y', z).fst = Quotient.mk (separationSetoid α) (x, y).snd ⊢ (Quotient.mk (separationSetoid α) (x, y).fst, Quotient.mk (separationSetoid α) (y', z).snd) ∈ s [PROOFSTEP] have : y' ⤳ y := separationRel_iff_specializes.1 (Quotient.exact hy) [GOAL] case intro.intro.intro.intro.intro.intro.intro.mk.intro.intro.intro.mk.intro.intro α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α)) hs : s ∈ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α) U : Set (α × α) hU : U ∈ 𝓤 α hUo : IsOpen U hUs : U ○ U ⊆ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' s x y : α hxyU : (x, y) ∈ U y' z : α hyzU : (y', z) ∈ U hy : Quotient.mk (separationSetoid α) (y', z).fst = Quotient.mk (separationSetoid α) (x, y).snd this : y' ⤳ y ⊢ (Quotient.mk (separationSetoid α) (x, y).fst, Quotient.mk (separationSetoid α) (y', z).snd) ∈ s [PROOFSTEP] exact @hUs (x, z) ⟨y', this.mem_open (UniformSpace.isOpen_ball _ hUo) hxyU, hyzU⟩ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α)) ⊢ IsOpen (Quotient.mk' ⁻¹' s) ↔ ∀ (x : Quotient (separationSetoid α)), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α), refl := (_ : 𝓟 idRel ≤ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α)), symm := (_ : Tendsto Prod.swap (map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α)) (map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α))), comp := (_ : ∀ (s : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α))), s ∈ map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α) → s ∈ Filter.lift' (map (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 α)) fun s => s ○ s) }.uniformity [PROOFSTEP] simp only [_root_.isOpen_uniformity, forall_quotient_iff, mem_map', mem_setOf_eq] [GOAL] α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α)) ⊢ (∀ (x : α), x ∈ Quotient.mk' ⁻¹' s → {p | p.fst = x → p.snd ∈ Quotient.mk' ⁻¹' s} ∈ 𝓤 α) ↔ ∀ (a : α), Quotient.mk (separationSetoid α) a ∈ s → {x | Quotient.mk (separationSetoid α) x.fst = Quotient.mk (separationSetoid α) a → Quotient.mk (separationSetoid α) x.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] refine forall₂_congr fun x _ => ⟨fun h => ?_, fun h => mem_of_superset h ?_⟩ [GOAL] case refine_1 α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α)) x : α x✝ : x ∈ Quotient.mk' ⁻¹' s h : {p | p.fst = x → p.snd ∈ Quotient.mk' ⁻¹' s} ∈ 𝓤 α ⊢ {x_1 | Quotient.mk (separationSetoid α) x_1.fst = Quotient.mk (separationSetoid α) x → Quotient.mk (separationSetoid α) x_1.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] rcases comp_mem_uniformity_sets h with ⟨t, ht, hts⟩ [GOAL] case refine_1.intro.intro α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α)) x : α x✝ : x ∈ Quotient.mk' ⁻¹' s h : {p | p.fst = x → p.snd ∈ Quotient.mk' ⁻¹' s} ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α hts : t ○ t ⊆ {p | p.fst = x → p.snd ∈ Quotient.mk' ⁻¹' s} ⊢ {x_1 | Quotient.mk (separationSetoid α) x_1.fst = Quotient.mk (separationSetoid α) x → Quotient.mk (separationSetoid α) x_1.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] refine mem_of_superset ht fun (y, z) hyz hyx => @hts (x, z) ⟨y, ?_, hyz⟩ rfl [GOAL] case refine_1.intro.intro α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α)) x : α x✝¹ : x ∈ Quotient.mk' ⁻¹' s h : {p | p.fst = x → p.snd ∈ Quotient.mk' ⁻¹' s} ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α hts : t ○ t ⊆ {p | p.fst = x → p.snd ∈ Quotient.mk' ⁻¹' s} x✝ : α × α y z : α hyz : (y, z) ∈ t hyx : Quotient.mk (separationSetoid α) (y, z).fst = Quotient.mk (separationSetoid α) x ⊢ ((x, z).fst, y) ∈ t [PROOFSTEP] exact Quotient.exact hyx.symm _ ht [GOAL] case refine_2 α✝ : Type u β : Type v γ : Type w inst✝³ : UniformSpace α✝ inst✝² : UniformSpace β inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α s : Set (Quotient (separationSetoid α)) x : α x✝ : x ∈ Quotient.mk' ⁻¹' s h : {x_1 | Quotient.mk (separationSetoid α) x_1.fst = Quotient.mk (separationSetoid α) x → Quotient.mk (separationSetoid α) x_1.snd ∈ s} ∈ 𝓤 α ⊢ {x_1 | Quotient.mk (separationSetoid α) x_1.fst = Quotient.mk (separationSetoid α) x → Quotient.mk (separationSetoid α) x_1.snd ∈ s} ⊆ {p | p.fst = x → p.snd ∈ Quotient.mk' ⁻¹' s} [PROOFSTEP] exact fun y hy hyx => hy <| congr_arg _ hyx [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β → γ h : ∀ (a : α) (c : β) (b : α) (d : β), (a, b) ∈ 𝓢 α → (c, d) ∈ 𝓢 β → f a c = f b d hf : UniformContinuous fun p => f p.fst p.snd ⊢ UniformContinuous fun p => Quotient.lift₂ f h p.fst p.snd [PROOFSTEP] rw [UniformContinuous, uniformity_prod_eq_prod, uniformity_quotient, uniformity_quotient, Filter.prod_map_map_eq, Filter.tendsto_map'_iff, Filter.tendsto_map'_iff] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β → γ h : ∀ (a : α) (c : β) (b : α) (d : β), (a, b) ∈ 𝓢 α → (c, d) ∈ 𝓢 β → f a c = f b d hf : UniformContinuous fun p => f p.fst p.snd ⊢ Tendsto (((fun x => (Quotient.lift₂ f h x.fst.fst x.fst.snd, Quotient.lift₂ f h x.snd.fst x.snd.snd)) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ∘ fun p => ((Quotient.mk (separationSetoid α) p.fst.fst, Quotient.mk (separationSetoid α) p.fst.snd), Quotient.mk (separationSetoid β) p.snd.fst, Quotient.mk (separationSetoid β) p.snd.snd)) (𝓤 α ×ˢ 𝓤 β) (𝓤 γ) [PROOFSTEP] rwa [UniformContinuous, uniformity_prod_eq_prod, Filter.tendsto_map'_iff] at hf [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ U : Set (α × α) hU : U ∈ 𝓤 α ∧ IsOpen U x✝¹ : α × α x y : α x✝ : (x, y) ∈ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' ((fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) '' id U) x' y' : α hx' : (x', y') ∈ id U h : (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (x', y') = (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (x, y) ⊢ (x, y) ∈ id U [PROOFSTEP] simp only [Prod.ext_iff, Quotient.eq] at h [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ U : Set (α × α) hU : U ∈ 𝓤 α ∧ IsOpen U x✝¹ : α × α x y : α x✝ : (x, y) ∈ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' ((fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) '' id U) x' y' : α hx' : (x', y') ∈ id U h : x' ≈ x ∧ y' ≈ y ⊢ (x, y) ∈ id U [PROOFSTEP] exact (((separationRel_iff_inseparable.1 h.1).prod (separationRel_iff_inseparable.1 h.2)).mem_open_iff hU.2).1 hx' [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ x✝ : Quotient (separationSetoid α) × Quotient (separationSetoid α) a✝ b✝ : Quotient (separationSetoid α) a b : α h : (Quotient.mk (separationSetoid α) a, Quotient.mk (separationSetoid α) b) ∈ 𝓢 (Quotient (separationSetoid α)) s : Set (α × α) hs : s ∈ (𝓤 α).sets this : s ∈ Filter.comap (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 (Quotient (separationSetoid α))) t : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α)) ht : t ∈ 𝓤 (Quotient (separationSetoid α)) hts : (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' t ⊆ s ⊢ (a, b) ∈ (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' t [PROOFSTEP] dsimp [preimage] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ x✝ : Quotient (separationSetoid α) × Quotient (separationSetoid α) a✝ b✝ : Quotient (separationSetoid α) a b : α h : (Quotient.mk (separationSetoid α) a, Quotient.mk (separationSetoid α) b) ∈ 𝓢 (Quotient (separationSetoid α)) s : Set (α × α) hs : s ∈ (𝓤 α).sets this : s ∈ Filter.comap (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) (𝓤 (Quotient (separationSetoid α))) t : Set (Quotient (separationSetoid α) × Quotient (separationSetoid α)) ht : t ∈ 𝓤 (Quotient (separationSetoid α)) hts : (fun p => (Quotient.mk (separationSetoid α) p.fst, Quotient.mk (separationSetoid α) p.snd)) ⁻¹' t ⊆ s ⊢ (Quotient.mk (separationSetoid α) a, Quotient.mk (separationSetoid α) b) ∈ t [PROOFSTEP] exact h t ht [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β x y : α H : UniformContinuous f h : x ≈ y ⊢ SeparatedSpace β [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β h : UniformContinuous f a : α ⊢ lift f (Quotient.mk (separationSetoid α) a) = f a [PROOFSTEP] rw [lift, dif_pos h] [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β h : UniformContinuous f a : α ⊢ Quotient.lift f (_ : ∀ (x x_1 : α), x ≈ x_1 → f x = f x_1) (Quotient.mk (separationSetoid α) a) = f a [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β ⊢ UniformContinuous (lift f) [PROOFSTEP] by_cases hf : UniformContinuous f [GOAL] case pos α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β hf : UniformContinuous f ⊢ UniformContinuous (lift f) [PROOFSTEP] rw [lift, dif_pos hf] [GOAL] case pos α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β hf : UniformContinuous f ⊢ UniformContinuous (Quotient.lift f (_ : ∀ (x x_1 : α), x ≈ x_1 → f x = f x_1)) [PROOFSTEP] exact uniformContinuous_quotient_lift hf [GOAL] case neg α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β hf : ¬UniformContinuous f ⊢ UniformContinuous (lift f) [PROOFSTEP] rw [lift, dif_neg hf] [GOAL] case neg α : Type u β : Type v γ : Type w inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β hf : ¬UniformContinuous f ⊢ UniformContinuous fun x => f (Nonempty.some (_ : Nonempty α)) [PROOFSTEP] exact uniformContinuous_of_const fun a _ => rfl [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β h : UniformContinuous f a : α ⊢ map f (Quotient.mk (separationSetoid α) a) = Quotient.mk (separationSetoid β) (f a) [PROOFSTEP] rw [map, lift_mk (uniformContinuous_quotient_mk'.comp h)] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β h : UniformContinuous f a : α ⊢ (Quotient.mk' ∘ f) a = Quotient.mk (separationSetoid β) (f a) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β hf : UniformContinuous f g : SeparationQuotient α → SeparationQuotient β comm : Quotient.mk (separationSetoid β) ∘ f = g ∘ Quotient.mk (separationSetoid α) ⊢ map f = g [PROOFSTEP] ext ⟨a⟩ [GOAL] case h.mk α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β hf : UniformContinuous f g : SeparationQuotient α → SeparationQuotient β comm : Quotient.mk (separationSetoid β) ∘ f = g ∘ Quotient.mk (separationSetoid α) x✝ : SeparationQuotient α a : α ⊢ map f (Quot.mk Setoid.r a) = g (Quot.mk Setoid.r a) [PROOFSTEP] calc map f ⟦a⟧ = ⟦f a⟧ := map_mk hf a _ = g ⟦a⟧ := congr_fun comm a [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hf : UniformContinuous f hg : UniformContinuous g ⊢ Quotient.mk (separationSetoid γ) ∘ g ∘ f = (map g ∘ map f) ∘ Quotient.mk (separationSetoid α) [PROOFSTEP] simp only [Function.comp, map_mk, hf, hg] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β ⊢ (a₁, b₁) ≈ (a₂, b₂) ↔ a₁ ≈ a₂ ∧ b₁ ≈ b₂ [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β ⊢ (a₁, b₁) ≈ (a₂, b₂) → a₁ ≈ a₂ ∧ b₁ ≈ b₂ [PROOFSTEP] intro h [GOAL] case mp α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β h : (a₁, b₁) ≈ (a₂, b₂) ⊢ a₁ ≈ a₂ ∧ b₁ ≈ b₂ [PROOFSTEP] exact ⟨separated_of_uniformContinuous uniformContinuous_fst h, separated_of_uniformContinuous uniformContinuous_snd h⟩ [GOAL] case mpr α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β ⊢ a₁ ≈ a₂ ∧ b₁ ≈ b₂ → (a₁, b₁) ≈ (a₂, b₂) [PROOFSTEP] rintro ⟨eqv_α, eqv_β⟩ r r_in [GOAL] case mpr.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ r : Set ((α × β) × α × β) r_in : r ∈ (𝓤 (α × β)).sets ⊢ ((a₁, b₁), a₂, b₂) ∈ r [PROOFSTEP] rw [uniformity_prod] at r_in [GOAL] case mpr.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ r : Set ((α × β) × α × β) r_in : r ∈ (Filter.comap (fun p => (p.fst.fst, p.snd.fst)) (𝓤 α) ⊓ Filter.comap (fun p => (p.fst.snd, p.snd.snd)) (𝓤 β)).sets ⊢ ((a₁, b₁), a₂, b₂) ∈ r [PROOFSTEP] rcases r_in with ⟨t_α, ⟨r_α, r_α_in, h_α⟩, t_β, ⟨r_β, r_β_in, h_β⟩, rfl⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ t_α : Set ((α × β) × α × β) r_α : Set (α × α) r_α_in : r_α ∈ 𝓤 α h_α : (fun p => (p.fst.fst, p.snd.fst)) ⁻¹' r_α ⊆ t_α t_β : Set ((α × β) × α × β) r_β : Set (β × β) r_β_in : r_β ∈ 𝓤 β h_β : (fun p => (p.fst.snd, p.snd.snd)) ⁻¹' r_β ⊆ t_β ⊢ ((a₁, b₁), a₂, b₂) ∈ t_α ∩ t_β [PROOFSTEP] let p_α := fun p : (α × β) × α × β => (p.1.1, p.2.1) [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ t_α : Set ((α × β) × α × β) r_α : Set (α × α) r_α_in : r_α ∈ 𝓤 α h_α : (fun p => (p.fst.fst, p.snd.fst)) ⁻¹' r_α ⊆ t_α t_β : Set ((α × β) × α × β) r_β : Set (β × β) r_β_in : r_β ∈ 𝓤 β h_β : (fun p => (p.fst.snd, p.snd.snd)) ⁻¹' r_β ⊆ t_β p_α : (α × β) × α × β → α × α := fun p => (p.fst.fst, p.snd.fst) ⊢ ((a₁, b₁), a₂, b₂) ∈ t_α ∩ t_β [PROOFSTEP] let p_β := fun p : (α × β) × α × β => (p.1.2, p.2.2) [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ t_α : Set ((α × β) × α × β) r_α : Set (α × α) r_α_in : r_α ∈ 𝓤 α h_α : (fun p => (p.fst.fst, p.snd.fst)) ⁻¹' r_α ⊆ t_α t_β : Set ((α × β) × α × β) r_β : Set (β × β) r_β_in : r_β ∈ 𝓤 β h_β : (fun p => (p.fst.snd, p.snd.snd)) ⁻¹' r_β ⊆ t_β p_α : (α × β) × α × β → α × α := fun p => (p.fst.fst, p.snd.fst) p_β : (α × β) × α × β → β × β := fun p => (p.fst.snd, p.snd.snd) ⊢ ((a₁, b₁), a₂, b₂) ∈ t_α ∩ t_β [PROOFSTEP] have key_α : p_α ((a₁, b₁), (a₂, b₂)) ∈ r_α := by simp [eqv_α r_α r_α_in] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ t_α : Set ((α × β) × α × β) r_α : Set (α × α) r_α_in : r_α ∈ 𝓤 α h_α : (fun p => (p.fst.fst, p.snd.fst)) ⁻¹' r_α ⊆ t_α t_β : Set ((α × β) × α × β) r_β : Set (β × β) r_β_in : r_β ∈ 𝓤 β h_β : (fun p => (p.fst.snd, p.snd.snd)) ⁻¹' r_β ⊆ t_β p_α : (α × β) × α × β → α × α := fun p => (p.fst.fst, p.snd.fst) p_β : (α × β) × α × β → β × β := fun p => (p.fst.snd, p.snd.snd) ⊢ p_α ((a₁, b₁), a₂, b₂) ∈ r_α [PROOFSTEP] simp [eqv_α r_α r_α_in] [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ t_α : Set ((α × β) × α × β) r_α : Set (α × α) r_α_in : r_α ∈ 𝓤 α h_α : (fun p => (p.fst.fst, p.snd.fst)) ⁻¹' r_α ⊆ t_α t_β : Set ((α × β) × α × β) r_β : Set (β × β) r_β_in : r_β ∈ 𝓤 β h_β : (fun p => (p.fst.snd, p.snd.snd)) ⁻¹' r_β ⊆ t_β p_α : (α × β) × α × β → α × α := fun p => (p.fst.fst, p.snd.fst) p_β : (α × β) × α × β → β × β := fun p => (p.fst.snd, p.snd.snd) key_α : p_α ((a₁, b₁), a₂, b₂) ∈ r_α ⊢ ((a₁, b₁), a₂, b₂) ∈ t_α ∩ t_β [PROOFSTEP] have key_β : p_β ((a₁, b₁), (a₂, b₂)) ∈ r_β := by simp [eqv_β r_β r_β_in] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ t_α : Set ((α × β) × α × β) r_α : Set (α × α) r_α_in : r_α ∈ 𝓤 α h_α : (fun p => (p.fst.fst, p.snd.fst)) ⁻¹' r_α ⊆ t_α t_β : Set ((α × β) × α × β) r_β : Set (β × β) r_β_in : r_β ∈ 𝓤 β h_β : (fun p => (p.fst.snd, p.snd.snd)) ⁻¹' r_β ⊆ t_β p_α : (α × β) × α × β → α × α := fun p => (p.fst.fst, p.snd.fst) p_β : (α × β) × α × β → β × β := fun p => (p.fst.snd, p.snd.snd) key_α : p_α ((a₁, b₁), a₂, b₂) ∈ r_α ⊢ p_β ((a₁, b₁), a₂, b₂) ∈ r_β [PROOFSTEP] simp [eqv_β r_β r_β_in] [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ a₁ a₂ : α b₁ b₂ : β eqv_α : a₁ ≈ a₂ eqv_β : b₁ ≈ b₂ t_α : Set ((α × β) × α × β) r_α : Set (α × α) r_α_in : r_α ∈ 𝓤 α h_α : (fun p => (p.fst.fst, p.snd.fst)) ⁻¹' r_α ⊆ t_α t_β : Set ((α × β) × α × β) r_β : Set (β × β) r_β_in : r_β ∈ 𝓤 β h_β : (fun p => (p.fst.snd, p.snd.snd)) ⁻¹' r_β ⊆ t_β p_α : (α × β) × α × β → α × α := fun p => (p.fst.fst, p.snd.fst) p_β : (α × β) × α × β → β × β := fun p => (p.fst.snd, p.snd.snd) key_α : p_α ((a₁, b₁), a₂, b₂) ∈ r_α key_β : p_β ((a₁, b₁), a₂, b₂) ∈ r_β ⊢ ((a₁, b₁), a₂, b₂) ∈ t_α ∩ t_β [PROOFSTEP] exact ⟨h_α key_α, h_β key_β⟩
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Separation", "llama_tokens": 21627}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α ⊢ GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 [PROOFSTEP] intro 𝓐 𝓕 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α 𝓐 : Filter ((α →ᵤ β) × (α →ᵤ β)) 𝓕 : Filter (β × β) ⊢ (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) 𝓐 ≤ 𝓕 ↔ 𝓐 ≤ (fun 𝓕 => UniformFun.filter α β 𝓕) 𝓕 [PROOFSTEP] symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α 𝓐 : Filter ((α →ᵤ β) × (α →ᵤ β)) 𝓕 : Filter (β × β) ⊢ 𝓐 ≤ (fun 𝓕 => UniformFun.filter α β 𝓕) 𝓕 ↔ (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) 𝓐 ≤ 𝓕 [PROOFSTEP] calc 𝓐 ≤ UniformFun.filter α β 𝓕 ↔ (UniformFun.basis α β 𝓕).sets ⊆ 𝓐.sets := by rw [UniformFun.filter, ← FilterBasis.generate, le_generate_iff] _ ↔ ∀ U ∈ 𝓕, UniformFun.gen α β U ∈ 𝓐 := image_subset_iff _ ↔ ∀ U ∈ 𝓕, {uv | ∀ x, (uv, x) ∈ {t : ((α →ᵤ β) × (α →ᵤ β)) × α | (t.1.1 t.2, t.1.2 t.2) ∈ U}} ∈ 𝓐 := Iff.rfl _ ↔ ∀ U ∈ 𝓕, {uvx : ((α →ᵤ β) × (α →ᵤ β)) × α | (uvx.1.1 uvx.2, uvx.1.2 uvx.2) ∈ U} ∈ 𝓐 ×ˢ (⊤ : Filter α) := (forall₂_congr fun U _hU => mem_prod_top.symm) _ ↔ lower_adjoint 𝓐 ≤ 𝓕 := Iff.rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α 𝓐 : Filter ((α →ᵤ β) × (α →ᵤ β)) 𝓕 : Filter (β × β) ⊢ 𝓐 ≤ UniformFun.filter α β 𝓕 ↔ (UniformFun.basis α β 𝓕).sets ⊆ 𝓐.sets [PROOFSTEP] rw [UniformFun.filter, ← FilterBasis.generate, le_generate_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x✝ : α p : Filter ι g : ι → α inst✝ : UniformSpace β x : α ⊢ UniformContinuous (Function.eval x ∘ ↑toFun) [PROOFSTEP] change _ ≤ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x✝ : α p : Filter ι g : ι → α inst✝ : UniformSpace β x : α ⊢ map (fun x_1 => ((Function.eval x ∘ ↑toFun) x_1.fst, (Function.eval x ∘ ↑toFun) x_1.snd)) (𝓤 (α →ᵤ β)) ≤ 𝓤 β [PROOFSTEP] rw [map_le_iff_le_comap, (UniformFun.hasBasis_uniformity α β).le_basis_iff ((𝓤 _).basis_sets.comap _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x✝ : α p : Filter ι g : ι → α inst✝ : UniformSpace β x : α ⊢ ∀ (i' : Set (β × β)), i' ∈ 𝓤 β → ∃ i, i ∈ 𝓤 β ∧ UniformFun.gen α β i ⊆ (fun x_1 => ((Function.eval x ∘ ↑toFun) x_1.fst, (Function.eval x ∘ ↑toFun) x_1.snd)) ⁻¹' id i' [PROOFSTEP] exact fun U hU => ⟨U, hU, fun uv huv => huv x⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u : ι → UniformSpace γ ⊢ uniformSpace α γ = ⨅ (i : ι), uniformSpace α γ [PROOFSTEP] ext : 1 [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u : ι → UniformSpace γ ⊢ 𝓤 (α →ᵤ γ) = 𝓤 (α →ᵤ γ) [PROOFSTEP] change UniformFun.filter α γ 𝓤[⨅ i, u i] = 𝓤[⨅ i, 𝒰(α, γ, u i)] [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u : ι → UniformSpace γ ⊢ UniformFun.filter α γ (𝓤 γ) = 𝓤 (α →ᵤ γ) [PROOFSTEP] rw [iInf_uniformity, iInf_uniformity] [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u : ι → UniformSpace γ ⊢ UniformFun.filter α γ (⨅ (i : ι), 𝓤 γ) = ⨅ (i : ι), 𝓤 (α →ᵤ γ) [PROOFSTEP] exact (UniformFun.gc α γ).u_iInf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u₁ u₂ : UniformSpace γ ⊢ uniformSpace α γ = uniformSpace α γ ⊓ uniformSpace α γ [PROOFSTEP] rw [inf_eq_iInf, inf_eq_iInf, UniformFun.iInf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u₁ u₂ : UniformSpace γ ⊢ ⨅ (i : Bool), uniformSpace α γ = ⨅ (b : Bool), bif b then uniformSpace α γ else uniformSpace α γ [PROOFSTEP] refine' iInf_congr fun i => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u₁ u₂ : UniformSpace γ i : Bool ⊢ uniformSpace α γ = bif i then uniformSpace α γ else uniformSpace α γ [PROOFSTEP] cases i [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u₁ u₂ : UniformSpace γ ⊢ uniformSpace α γ = bif false then uniformSpace α γ else uniformSpace α γ [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β u₁ u₂ : UniformSpace γ ⊢ uniformSpace α γ = bif true then uniformSpace α γ else uniformSpace α γ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β ⊢ uniformSpace α γ = UniformSpace.comap (fun x => f ∘ x) (uniformSpace α β) [PROOFSTEP] letI : UniformSpace γ := ‹UniformSpace β›.comap f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ ⊢ uniformSpace α γ = UniformSpace.comap (fun x => f ∘ x) (uniformSpace α β) [PROOFSTEP] ext : 1 [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ ⊢ 𝓤 (α →ᵤ γ) = 𝓤 (α →ᵤ γ) [PROOFSTEP] change UniformFun.filter α γ ((𝓤 β).comap _) = (UniformFun.filter α β (𝓤 β)).comap _ -- We have the following four Galois connection which form a square diagram, and we want -- to show that the square of upper adjoints is commutative. The trick then is to use -- `GaloisConnection.u_comm_of_l_comm` to reduce it to commutativity of the lower adjoints, -- which is way easier to prove. [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ ⊢ UniformFun.filter α γ (comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) = comap (fun p => ((fun x => f ∘ x) p.fst, (fun x => f ∘ x) p.snd)) (UniformFun.filter α β (𝓤 β)) [PROOFSTEP] let fcomp := ((f ∘ ·) : ((α → γ) → (α → β))) [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x ⊢ UniformFun.filter α γ (comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) = comap (fun p => ((fun x => f ∘ x) p.fst, (fun x => f ∘ x) p.snd)) (UniformFun.filter α β (𝓤 β)) [PROOFSTEP] have h₁ := Filter.gc_map_comap (Prod.map fcomp fcomp) [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) ⊢ UniformFun.filter α γ (comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) = comap (fun p => ((fun x => f ∘ x) p.fst, (fun x => f ∘ x) p.snd)) (UniformFun.filter α β (𝓤 β)) [PROOFSTEP] have h₂ := Filter.gc_map_comap (Prod.map f f) [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) ⊢ UniformFun.filter α γ (comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) = comap (fun p => ((fun x => f ∘ x) p.fst, (fun x => f ∘ x) p.snd)) (UniformFun.filter α β (𝓤 β)) [PROOFSTEP] have h₃ := UniformFun.gc α β [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) h₃ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 ⊢ UniformFun.filter α γ (comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) = comap (fun p => ((fun x => f ∘ x) p.fst, (fun x => f ∘ x) p.snd)) (UniformFun.filter α β (𝓤 β)) [PROOFSTEP] have h₄ := UniformFun.gc α γ [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) h₃ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 h₄ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α γ 𝓕 ⊢ UniformFun.filter α γ (comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) = comap (fun p => ((fun x => f ∘ x) p.fst, (fun x => f ∘ x) p.snd)) (UniformFun.filter α β (𝓤 β)) [PROOFSTEP] refine' GaloisConnection.u_comm_of_l_comm h₁ h₂ h₃ h₄ fun 𝓐 => _ [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) h₃ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 h₄ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α γ 𝓕 𝓐 : Filter ((α → γ) × (α → γ)) ⊢ map (Prod.map f f) (map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) = map (UniformFun.phi α β) (map (Prod.map fcomp fcomp) 𝓐 ×ˢ ⊤) [PROOFSTEP] have : Prod.map f f ∘ (UniformFun.phi α γ) = (UniformFun.phi α β) ∘ Prod.map (Prod.map fcomp fcomp) (id : α → α) := by ext <;> rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) h₃ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 h₄ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α γ 𝓕 𝓐 : Filter ((α → γ) × (α → γ)) ⊢ Prod.map f f ∘ UniformFun.phi α γ = UniformFun.phi α β ∘ Prod.map (Prod.map fcomp fcomp) id [PROOFSTEP] ext [GOAL] case h.h₁ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) h₃ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 h₄ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α γ 𝓕 𝓐 : Filter ((α → γ) × (α → γ)) x✝ : ((α →ᵤ γ) × (α →ᵤ γ)) × α ⊢ ((Prod.map f f ∘ UniformFun.phi α γ) x✝).fst = ((UniformFun.phi α β ∘ Prod.map (Prod.map fcomp fcomp) id) x✝).fst [PROOFSTEP] rfl [GOAL] case h.h₂ α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) h₃ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 h₄ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α γ 𝓕 𝓐 : Filter ((α → γ) × (α → γ)) x✝ : ((α →ᵤ γ) × (α →ᵤ γ)) × α ⊢ ((Prod.map f f ∘ UniformFun.phi α γ) x✝).snd = ((UniformFun.phi α β ∘ Prod.map (Prod.map fcomp fcomp) id) x✝).snd [PROOFSTEP] rfl [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this✝ : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) h₃ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 h₄ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α γ 𝓕 𝓐 : Filter ((α → γ) × (α → γ)) this : Prod.map f f ∘ UniformFun.phi α γ = UniformFun.phi α β ∘ Prod.map (Prod.map fcomp fcomp) id ⊢ map (Prod.map f f) (map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) = map (UniformFun.phi α β) (map (Prod.map fcomp fcomp) 𝓐 ×ˢ ⊤) [PROOFSTEP] rw [map_comm this, ← prod_map_map_eq'] [GOAL] case a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → β this✝ : UniformSpace γ := UniformSpace.comap f inst✝ fcomp : (α → γ) → α → β := fun x => f ∘ x h₁ : GaloisConnection (map (Prod.map fcomp fcomp)) (comap (Prod.map fcomp fcomp)) h₂ : GaloisConnection (map (Prod.map f f)) (comap (Prod.map f f)) h₃ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α β) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α β 𝓕 h₄ : GaloisConnection (fun 𝓐 => map (UniformFun.phi α γ) (𝓐 ×ˢ ⊤)) fun 𝓕 => UniformFun.filter α γ 𝓕 𝓐 : Filter ((α → γ) × (α → γ)) this : Prod.map f f ∘ UniformFun.phi α γ = UniformFun.phi α β ∘ Prod.map (Prod.map fcomp fcomp) id ⊢ map (UniformFun.phi α β) (map (Prod.map fcomp fcomp) 𝓐 ×ˢ map id ⊤) = map (UniformFun.phi α β) (map (Prod.map fcomp fcomp) 𝓐 ×ˢ ⊤) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : UniformContinuous f ⊢ UniformContinuous (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) [PROOFSTEP] refine uniformContinuous_iff.mpr ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : UniformContinuous f ⊢ uniformSpace α γ ≤ UniformSpace.comap (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (uniformSpace α β) [PROOFSTEP] exact (UniformFun.mono (uniformContinuous_iff.mp hf)).trans_eq UniformFun.comap_eq [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : UniformInducing f ⊢ UniformInducing (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) [PROOFSTEP] constructor [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : UniformInducing f ⊢ comap (fun x => ((↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.fst, (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.snd)) (𝓤 (α →ᵤ β)) = 𝓤 (α →ᵤ γ) [PROOFSTEP] replace hf : (𝓤 β).comap (Prod.map f f) = _ := hf.comap_uniformity [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : comap (Prod.map f f) (𝓤 β) = 𝓤 γ ⊢ comap (fun x => ((↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.fst, (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) x.snd)) (𝓤 (α →ᵤ β)) = 𝓤 (α →ᵤ γ) [PROOFSTEP] change comap (Prod.map (ofFun ∘ (f ∘ ·) ∘ toFun) (ofFun ∘ (f ∘ ·) ∘ toFun)) _ = _ [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : comap (Prod.map f f) (𝓤 β) = 𝓤 γ ⊢ comap (Prod.map (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun)) (𝓤 (α →ᵤ β)) = 𝓤 (α →ᵤ γ) [PROOFSTEP] rw [← uniformity_comap] at hf ⊢ [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : 𝓤 γ = 𝓤 γ ⊢ 𝓤 (α →ᵤ γ) = 𝓤 (α →ᵤ γ) [PROOFSTEP] congr [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : 𝓤 γ = 𝓤 γ ⊢ UniformSpace.comap (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (uniformSpace α β) = uniformSpace α γ [PROOFSTEP] rw [← uniformSpace_eq hf, UniformFun.comap_eq] [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : γ → β hf : 𝓤 γ = 𝓤 γ ⊢ UniformSpace.comap (↑ofFun ∘ (fun x => f ∘ x) ∘ ↑toFun) (uniformSpace α β) = UniformSpace.comap (fun x => f ∘ x) (uniformSpace α β) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → α ⊢ UniformContinuous fun g => ↑ofFun (g ∘ f) [PROOFSTEP] rw [uniformContinuous_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → α ⊢ uniformSpace α β ≤ UniformSpace.comap (fun g => ↑ofFun (g ∘ f)) (uniformSpace γ β) [PROOFSTEP] change 𝓤 (α →ᵤ β) ≤ (𝓤 (γ →ᵤ β)).comap (Prod.map (fun g : α →ᵤ β => g ∘ f) fun g : α →ᵤ β => g ∘ f) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → α ⊢ 𝓤 (α →ᵤ β) ≤ comap (Prod.map (fun g => g ∘ f) fun g => g ∘ f) (𝓤 (γ →ᵤ β)) [PROOFSTEP] rw [(UniformFun.hasBasis_uniformity α β).le_basis_iff ((UniformFun.hasBasis_uniformity γ β).comap _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β f : γ → α ⊢ ∀ (i' : Set (β × β)), i' ∈ 𝓤 β → ∃ i, i ∈ 𝓤 β ∧ UniformFun.gen α β i ⊆ (Prod.map (fun g => g ∘ f) fun g => g ∘ f) ⁻¹' UniformFun.gen γ β i' [PROOFSTEP] exact fun U hU => ⟨U, hU, fun uv huv x => huv (f x)⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : T2Space β ⊢ ∀ (x y : α →ᵤ β), x ≠ y → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ y ∈ v ∧ Disjoint u v [PROOFSTEP] intro f g h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g✝ : ι → α inst✝¹ : UniformSpace β inst✝ : T2Space β f g : α →ᵤ β h : f ≠ g ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] obtain ⟨x, hx⟩ := not_forall.mp (mt funext h) [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x✝ : α p : Filter ι g✝ : ι → α inst✝¹ : UniformSpace β inst✝ : T2Space β f g : α →ᵤ β h : f ≠ g x : α hx : ¬f x = g x ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] exact separated_by_continuous (uniformContinuous_eval β x).continuous hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β ⊢ UniformContinuous ↑toFun [PROOFSTEP] rw [uniformContinuous_pi] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β ⊢ ∀ (i : α), UniformContinuous fun x => ↑toFun x i [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x✝ : α p : Filter ι g : ι → α inst✝ : UniformSpace β x : α ⊢ UniformContinuous fun x_1 => ↑toFun x_1 x [PROOFSTEP] exact uniformContinuous_eval β x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β F : ι → α →ᵤ β f : α →ᵤ β ⊢ Tendsto F p (𝓝 f) ↔ TendstoUniformly F f p [PROOFSTEP] rw [(UniformFun.hasBasis_nhds α β f).tendsto_right_iff, TendstoUniformly] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β F : ι → α →ᵤ β f : α →ᵤ β ⊢ (∀ (i : Set (β × β)), i ∈ 𝓤 β → ∀ᶠ (x : ι) in p, F x ∈ {g | (f, g) ∈ UniformFun.gen α β i}) ↔ ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∀ᶠ (n : ι) in p, ∀ (x : α), (f x, F n x) ∈ u [PROOFSTEP] exact Iff.rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ UniformInducing ↑(Equiv.arrowProdEquivProdArrow β γ α) [PROOFSTEP] constructor [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ comap (fun x => (↑(Equiv.arrowProdEquivProdArrow β γ α) x.fst, ↑(Equiv.arrowProdEquivProdArrow β γ α) x.snd)) (𝓤 ((α →ᵤ β) × (α →ᵤ γ))) = 𝓤 (α →ᵤ β × γ) [PROOFSTEP] change comap (Prod.map (Equiv.arrowProdEquivProdArrow _ _ _) (Equiv.arrowProdEquivProdArrow _ _ _)) _ = _ [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ comap (Prod.map ↑(Equiv.arrowProdEquivProdArrow β γ α) ↑(Equiv.arrowProdEquivProdArrow β γ α)) (𝓤 ((α →ᵤ β) × (α →ᵤ γ))) = 𝓤 (α →ᵤ β × γ) [PROOFSTEP] simp_rw [UniformFun] [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ comap (Prod.map ↑(Equiv.arrowProdEquivProdArrow β γ α) ↑(Equiv.arrowProdEquivProdArrow β γ α)) (𝓤 ((α → β) × (α → γ))) = 𝓤 (α → β × γ) [PROOFSTEP] rw [← uniformity_comap] [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ 𝓤 (α → β × γ) = 𝓤 (α → β × γ) [PROOFSTEP] congr [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ UniformSpace.comap (↑(Equiv.arrowProdEquivProdArrow β γ α)) instUniformSpaceProd = uniformSpace α (β × γ) [PROOFSTEP] unfold instUniformSpaceProd [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ UniformSpace.comap (↑(Equiv.arrowProdEquivProdArrow β γ α)) (UniformSpace.comap Prod.fst (uniformSpace α β) ⊓ UniformSpace.comap Prod.snd (uniformSpace α γ)) = uniformSpace α (β × γ) [PROOFSTEP] rw [UniformSpace.comap_inf, ← UniformSpace.comap_comap, ← UniformSpace.comap_comap] [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ UniformSpace.comap (Prod.fst ∘ ↑(Equiv.arrowProdEquivProdArrow β γ α)) (uniformSpace α β) ⊓ UniformSpace.comap (Prod.snd ∘ ↑(Equiv.arrowProdEquivProdArrow β γ α)) (uniformSpace α γ) = uniformSpace α (β × γ) [PROOFSTEP] have := (@UniformFun.inf_eq α (β × γ) (UniformSpace.comap Prod.fst ‹_›) (UniformSpace.comap Prod.snd ‹_›)).symm [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ this : uniformSpace α (β × γ) ⊓ uniformSpace α (β × γ) = uniformSpace α (β × γ) ⊢ UniformSpace.comap (Prod.fst ∘ ↑(Equiv.arrowProdEquivProdArrow β γ α)) (uniformSpace α β) ⊓ UniformSpace.comap (Prod.snd ∘ ↑(Equiv.arrowProdEquivProdArrow β γ α)) (uniformSpace α γ) = uniformSpace α (β × γ) [PROOFSTEP] rwa [UniformFun.comap_eq, UniformFun.comap_eq] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ UniformInducing ↑(Equiv.piComm fun a i => δ i) [PROOFSTEP] refine @UniformInducing.mk ?_ ?_ ?_ ?_ ?_ ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ comap (fun x => (↑(Equiv.piComm fun a i => δ i) x.fst, ↑(Equiv.piComm fun a i => δ i) x.snd)) (𝓤 ((i : ι) → (fun i => α → δ i) i)) = 𝓤 (α →ᵤ (i : ι) → δ i) [PROOFSTEP] change comap (Prod.map Function.swap Function.swap) _ = _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ comap (Prod.map Function.swap Function.swap) (𝓤 ((i : ι) → (fun i => α → δ i) i)) = 𝓤 (α →ᵤ (i : ι) → δ i) [PROOFSTEP] rw [← uniformity_comap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ 𝓤 (α → (y : ι) → δ y) = 𝓤 (α →ᵤ (i : ι) → δ i) [PROOFSTEP] congr [GOAL] case h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ UniformSpace.comap Function.swap (Pi.uniformSpace fun i => α → δ i) = uniformSpace α ((i : ι) → δ i) [PROOFSTEP] unfold Pi.uniformSpace [GOAL] case h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ UniformSpace.comap Function.swap (UniformSpace.ofCoreEq UniformSpace.toCore Pi.topologicalSpace (_ : Pi.topologicalSpace = UniformSpace.Core.toTopologicalSpace UniformSpace.toCore)) = uniformSpace α ((i : ι) → δ i) [PROOFSTEP] rw [UniformSpace.ofCoreEq_toCore, UniformSpace.ofCoreEq_toCore, UniformSpace.comap_iInf, UniformFun.iInf_eq] [GOAL] case h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ ⨅ (i : ι), UniformSpace.comap Function.swap (UniformSpace.comap (fun a => a i) ((fun i => uniformSpace α (δ i)) i)) = ⨅ (i : ι), uniformSpace α ((i : ι) → δ i) [PROOFSTEP] refine' iInf_congr fun i => _ [GOAL] case h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) i : ι ⊢ UniformSpace.comap Function.swap (UniformSpace.comap (fun a => a i) ((fun i => uniformSpace α (δ i)) i)) = uniformSpace α ((i : ι) → δ i) [PROOFSTEP] rw [← UniformSpace.comap_comap, UniformFun.comap_eq] [GOAL] case h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) i : ι ⊢ UniformSpace.comap ((fun a => a i) ∘ Function.swap) ((fun i => uniformSpace α (δ i)) i) = UniformSpace.comap (fun x => (fun a => a i) ∘ x) (uniformSpace α (δ i)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α 𝔖 : Set (Set α) S : Set α V : Set (β × β) ⊢ UniformOnFun.gen 𝔖 S V = Prod.map (restrict S ∘ ↑UniformFun.toFun) (restrict S ∘ ↑UniformFun.toFun) ⁻¹' UniformFun.gen (↑S) β V [PROOFSTEP] ext uv [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α 𝔖 : Set (Set α) S : Set α V : Set (β × β) uv : (α →ᵤ[𝔖] β) × (α →ᵤ[𝔖] β) ⊢ uv ∈ UniformOnFun.gen 𝔖 S V ↔ uv ∈ Prod.map (restrict S ∘ ↑UniformFun.toFun) (restrict S ∘ ↑UniformFun.toFun) ⁻¹' UniformFun.gen (↑S) β V [PROOFSTEP] exact ⟨fun h ⟨x, hx⟩ => h x hx, fun h x hx => h ⟨x, hx⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) ⊢ topologicalSpace α β 𝔖 = ⨅ (s : Set α) (_ : s ∈ 𝔖), TopologicalSpace.induced (restrict s ∘ ↑UniformFun.toFun) (UniformFun.topologicalSpace (↑s) β) [PROOFSTEP] simp only [UniformOnFun.topologicalSpace, toTopologicalSpace_iInf, toTopologicalSpace_iInf, toTopologicalSpace_comap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) ⊢ ⨅ (i : Set α) (_ : i ∈ 𝔖), TopologicalSpace.induced (restrict i) UniformSpace.toTopologicalSpace = ⨅ (s : Set α) (_ : s ∈ 𝔖), TopologicalSpace.induced (restrict s ∘ ↑UniformFun.toFun) (UniformFun.topologicalSpace (↑s) β) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p✝ : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) p : ι → Prop s : ι → Set (β × β) hb : HasBasis (𝓤 β) p s S : Set α ⊢ HasBasis (𝓤 (α →ᵤ[𝔖] β)) p fun i => UniformOnFun.gen 𝔖 S (s i) [PROOFSTEP] simp_rw [UniformOnFun.gen_eq_preimage_restrict, uniformity_comap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p✝ : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) p : ι → Prop s : ι → Set (β × β) hb : HasBasis (𝓤 β) p s S : Set α ⊢ HasBasis (comap (Prod.map (restrict S) (restrict S)) (𝓤 (↑S → β))) p fun i => Prod.map (restrict S ∘ ↑UniformFun.toFun) (restrict S ∘ ↑UniformFun.toFun) ⁻¹' UniformFun.gen (↑S) β (s i) [PROOFSTEP] exact (UniformFun.hasBasis_uniformity_of_basis S β hb).comap _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p✝ : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : Set.Nonempty 𝔖 h' : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop s : ι → Set (β × β) hb : HasBasis (𝓤 β) p s ⊢ HasBasis (𝓤 (α →ᵤ[𝔖] β)) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => UniformOnFun.gen 𝔖 Si.fst (s Si.snd) [PROOFSTEP] simp only [iInf_uniformity] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p✝ : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : Set.Nonempty 𝔖 h' : DirectedOn (fun x x_1 => x ⊆ x_1) 𝔖 p : ι → Prop s : ι → Set (β × β) hb : HasBasis (𝓤 β) p s ⊢ HasBasis (⨅ (i : Set α) (_ : i ∈ 𝔖), 𝓤 (α →ᵤ[𝔖] β)) (fun Si => Si.fst ∈ 𝔖 ∧ p Si.snd) fun Si => UniformOnFun.gen 𝔖 Si.fst (s Si.snd) [PROOFSTEP] exact hasBasis_biInf_of_directed h (fun S => UniformOnFun.gen 𝔖 S ∘ s) _ (fun S _hS => UniformOnFun.hasBasis_uniformity_of_basis_aux₁ α β 𝔖 hb S) (UniformOnFun.hasBasis_uniformity_of_basis_aux₂ α β 𝔖 h' hb) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : s ∈ 𝔖 ⊢ UniformContinuous (↑UniformFun.ofFun ∘ restrict s ∘ ↑(toFun 𝔖)) [PROOFSTEP] change _ ≤ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : s ∈ 𝔖 ⊢ map (fun x => ((↑UniformFun.ofFun ∘ restrict s ∘ ↑(toFun 𝔖)) x.fst, (↑UniformFun.ofFun ∘ restrict s ∘ ↑(toFun 𝔖)) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) ≤ 𝓤 (↑s →ᵤ β) [PROOFSTEP] simp only [UniformOnFun.uniformSpace, map_le_iff_le_comap, iInf_uniformity] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : s ∈ 𝔖 ⊢ ⨅ (i : Set α) (_ : i ∈ 𝔖), 𝓤 (α →ᵤ[𝔖] β) ≤ comap (fun x => ((↑UniformFun.ofFun ∘ restrict s ∘ ↑(toFun 𝔖)) x.fst, (↑UniformFun.ofFun ∘ restrict s ∘ ↑(toFun 𝔖)) x.snd)) (𝓤 (↑s →ᵤ β)) [PROOFSTEP] exact iInf₂_le s h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) u : ι → UniformSpace γ ⊢ uniformSpace α γ 𝔖 = ⨅ (i : ι), uniformSpace α γ 𝔖 [PROOFSTEP] simp_rw [UniformOnFun.uniformSpace, UniformFun.iInf_eq, UniformSpace.comap_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) u : ι → UniformSpace γ ⊢ ⨅ (s : Set α) (_ : s ∈ 𝔖) (i : ι), UniformSpace.comap (restrict s) (UniformFun.uniformSpace (↑s) γ) = ⨅ (i : ι) (s : Set α) (_ : s ∈ 𝔖), UniformSpace.comap (restrict s) (UniformFun.uniformSpace (↑s) γ) [PROOFSTEP] rw [iInf_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) u : ι → UniformSpace γ ⊢ ⨅ (s : Set α) (_ : s ∈ 𝔖) (i : ι), UniformSpace.comap (restrict s) (UniformFun.uniformSpace (↑s) γ) = ⨅ (j : Set α) (i : ι) (_ : j ∈ 𝔖), UniformSpace.comap (restrict j) (UniformFun.uniformSpace (↑j) γ) [PROOFSTEP] exact iInf_congr fun s => iInf_comm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) u₁ u₂ : UniformSpace γ ⊢ uniformSpace α γ 𝔖 = uniformSpace α γ 𝔖 ⊓ uniformSpace α γ 𝔖 [PROOFSTEP] rw [inf_eq_iInf, inf_eq_iInf, UniformOnFun.iInf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) u₁ u₂ : UniformSpace γ ⊢ ⨅ (i : Bool), uniformSpace α γ 𝔖 = ⨅ (b : Bool), bif b then uniformSpace α γ 𝔖 else uniformSpace α γ 𝔖 [PROOFSTEP] refine' iInf_congr fun i => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) u₁ u₂ : UniformSpace γ i : Bool ⊢ uniformSpace α γ 𝔖 = bif i then uniformSpace α γ 𝔖 else uniformSpace α γ 𝔖 [PROOFSTEP] cases i [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) u₁ u₂ : UniformSpace γ ⊢ uniformSpace α γ 𝔖 = bif false then uniformSpace α γ 𝔖 else uniformSpace α γ 𝔖 [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) u₁ u₂ : UniformSpace γ ⊢ uniformSpace α γ 𝔖 = bif true then uniformSpace α γ 𝔖 else uniformSpace α γ 𝔖 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) f : γ → β ⊢ uniformSpace α γ 𝔖 = UniformSpace.comap ((fun x x_1 => x ∘ x_1) f) (uniformSpace α β 𝔖) [PROOFSTEP] simp_rw [UniformOnFun.uniformSpace, UniformSpace.comap_iInf, UniformFun.comap_eq, ← UniformSpace.comap_comap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) f : γ → β ⊢ ⨅ (s : Set α) (_ : s ∈ 𝔖), UniformSpace.comap ((fun x => f ∘ x) ∘ restrict s) (UniformFun.uniformSpace (↑s) β) = ⨅ (i : Set α) (_ : i ∈ 𝔖), UniformSpace.comap (restrict i ∘ fun x => f ∘ x) (UniformFun.uniformSpace (↑i) β) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : UniformContinuous f ⊢ UniformContinuous (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) [PROOFSTEP] rw [uniformContinuous_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : UniformContinuous f ⊢ uniformSpace α γ 𝔖 ≤ UniformSpace.comap (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) (uniformSpace α β 𝔖) [PROOFSTEP] exact (UniformOnFun.mono (uniformContinuous_iff.mp hf) subset_rfl).trans_eq UniformOnFun.comap_eq [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : UniformInducing f ⊢ UniformInducing (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) [PROOFSTEP] constructor [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : UniformInducing f ⊢ comap (fun x => ((↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) x.fst, (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) = 𝓤 (α →ᵤ[𝔖] γ) [PROOFSTEP] replace hf : (𝓤 β).comap (Prod.map f f) = _ := hf.comap_uniformity [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : comap (Prod.map f f) (𝓤 β) = 𝓤 γ ⊢ comap (fun x => ((↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) x.fst, (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) = 𝓤 (α →ᵤ[𝔖] γ) [PROOFSTEP] change comap (Prod.map (ofFun 𝔖 ∘ (· ∘ ·) f ∘ toFun 𝔖) (ofFun 𝔖 ∘ (· ∘ ·) f ∘ toFun 𝔖)) _ = _ [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : comap (Prod.map f f) (𝓤 β) = 𝓤 γ ⊢ comap (Prod.map (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖))) (𝓤 (α →ᵤ[𝔖] β)) = 𝓤 (α →ᵤ[𝔖] γ) [PROOFSTEP] rw [← uniformity_comap] at hf ⊢ [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : 𝓤 γ = 𝓤 γ ⊢ 𝓤 (α →ᵤ[𝔖] γ) = 𝓤 (α →ᵤ[𝔖] γ) [PROOFSTEP] congr [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : 𝓤 γ = 𝓤 γ ⊢ UniformSpace.comap (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) (uniformSpace α β 𝔖) = uniformSpace α γ 𝔖 [PROOFSTEP] rw [← uniformSpace_eq hf, UniformOnFun.comap_eq] [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ f : γ → β hf : 𝓤 γ = 𝓤 γ ⊢ UniformSpace.comap (↑(ofFun 𝔖) ∘ (fun x x_1 => x ∘ x_1) f ∘ ↑(toFun 𝔖)) (uniformSpace α β 𝔖) = UniformSpace.comap ((fun x x_1 => x ∘ x_1) f) (uniformSpace α β 𝔖) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) f : γ → α hf : 𝔗 ⊆ image f ⁻¹' 𝔖 ⊢ UniformContinuous fun g => ↑(ofFun 𝔗) (g ∘ f) [PROOFSTEP] simp_rw [uniformContinuous_iff, UniformOnFun.uniformSpace, UniformSpace.comap_iInf, ← UniformSpace.comap_comap] -- For any `t ∈ 𝔗`, note `s := f '' t ∈ 𝔖`. -- We will show that `comap s.restrict 𝒰(↥s, β, uβ) ≤ comap (t.restrict ∘ (— ∘ f)) 𝒰(↥t, β, uβ)`. [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) f : γ → α hf : 𝔗 ⊆ image f ⁻¹' 𝔖 ⊢ ⨅ (s : Set α) (_ : s ∈ 𝔖), UniformSpace.comap (restrict s) (UniformFun.uniformSpace (↑s) β) ≤ ⨅ (i : Set γ) (_ : i ∈ 𝔗), UniformSpace.comap (restrict i ∘ fun g => ↑(ofFun 𝔗) (g ∘ f)) (UniformFun.uniformSpace (↑i) β) [PROOFSTEP] refine' le_iInf₂ fun t ht => iInf_le_of_le (f '' t) <| iInf_le_of_le (hf ht) _ -- Let `f'` be the map from `t` to `f '' t` induced by `f`. [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) f : γ → α hf : 𝔗 ⊆ image f ⁻¹' 𝔖 t : Set γ ht : t ∈ 𝔗 ⊢ UniformSpace.comap (restrict (f '' t)) (UniformFun.uniformSpace (↑(f '' t)) β) ≤ UniformSpace.comap (restrict t ∘ fun g => ↑(ofFun 𝔗) (g ∘ f)) (UniformFun.uniformSpace (↑t) β) [PROOFSTEP] let f' : t → f '' t := (mapsTo_image f t).restrict f t (f '' t) -- By definition `t.restrict ∘ (— ∘ f) = (— ∘ f') ∘ (f '' t).restrict`. [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) f : γ → α hf : 𝔗 ⊆ image f ⁻¹' 𝔖 t : Set γ ht : t ∈ 𝔗 f' : ↑t → ↑(f '' t) := MapsTo.restrict f t (f '' t) (_ : MapsTo f t (f '' t)) ⊢ UniformSpace.comap (restrict (f '' t)) (UniformFun.uniformSpace (↑(f '' t)) β) ≤ UniformSpace.comap (restrict t ∘ fun g => ↑(ofFun 𝔗) (g ∘ f)) (UniformFun.uniformSpace (↑t) β) [PROOFSTEP] have : (t.restrict ∘ fun g : α →ᵤ[𝔖] β => ofFun 𝔗 (g ∘ f)) = (fun g : f '' t → β => g ∘ f') ∘ (f '' t).restrict := rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) f : γ → α hf : 𝔗 ⊆ image f ⁻¹' 𝔖 t : Set γ ht : t ∈ 𝔗 f' : ↑t → ↑(f '' t) := MapsTo.restrict f t (f '' t) (_ : MapsTo f t (f '' t)) this : (restrict t ∘ fun g => ↑(ofFun 𝔗) (g ∘ f)) = (fun g => g ∘ f') ∘ restrict (f '' t) ⊢ UniformSpace.comap (restrict (f '' t)) (UniformFun.uniformSpace (↑(f '' t)) β) ≤ UniformSpace.comap (restrict t ∘ fun g => ↑(ofFun 𝔗) (g ∘ f)) (UniformFun.uniformSpace (↑t) β) [PROOFSTEP] rw [this, @UniformSpace.comap_comap (α →ᵤ[𝔖] β) (f '' t →ᵤ β)] -- But this is exactly monotonicity of `comap` applied to -- `UniformFun.precomp_continuous`. [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) f : γ → α hf : 𝔗 ⊆ image f ⁻¹' 𝔖 t : Set γ ht : t ∈ 𝔗 f' : ↑t → ↑(f '' t) := MapsTo.restrict f t (f '' t) (_ : MapsTo f t (f '' t)) this : (restrict t ∘ fun g => ↑(ofFun 𝔗) (g ∘ f)) = (fun g => g ∘ f') ∘ restrict (f '' t) ⊢ UniformSpace.comap (restrict (f '' t)) (UniformFun.uniformSpace (↑(f '' t)) β) ≤ UniformSpace.comap (restrict (f '' t)) (UniformSpace.comap (fun g => g ∘ f') (UniformFun.uniformSpace (↑t) β)) [PROOFSTEP] refine' UniformSpace.comap_mono _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) f : γ → α hf : 𝔗 ⊆ image f ⁻¹' 𝔖 t : Set γ ht : t ∈ 𝔗 f' : ↑t → ↑(f '' t) := MapsTo.restrict f t (f '' t) (_ : MapsTo f t (f '' t)) this : (restrict t ∘ fun g => ↑(ofFun 𝔗) (g ∘ f)) = (fun g => g ∘ f') ∘ restrict (f '' t) ⊢ UniformFun.uniformSpace (↑(f '' t)) β ≤ UniformSpace.comap (fun g => g ∘ f') (UniformFun.uniformSpace (↑t) β) [PROOFSTEP] rw [← uniformContinuous_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) f : γ → α hf : 𝔗 ⊆ image f ⁻¹' 𝔖 t : Set γ ht : t ∈ 𝔗 f' : ↑t → ↑(f '' t) := MapsTo.restrict f t (f '' t) (_ : MapsTo f t (f '' t)) this : (restrict t ∘ fun g => ↑(ofFun 𝔗) (g ∘ f)) = (fun g => g ∘ f') ∘ restrict (f '' t) ⊢ UniformContinuous fun g => g ∘ f' [PROOFSTEP] exact UniformFun.precomp_uniformContinuous [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) e : γ ≃ α he : 𝔗 ⊆ image ↑e ⁻¹' 𝔖 he' : 𝔖 ⊆ preimage ↑e ⁻¹' 𝔗 src✝ : (γ → β) ≃ (α → β) := Equiv.arrowCongr e (Equiv.refl β) ⊢ 𝔖 ⊆ (image fun x => ↑e.symm x) ⁻¹' 𝔗 [PROOFSTEP] intro s hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) e : γ ≃ α he : 𝔗 ⊆ image ↑e ⁻¹' 𝔖 he' : 𝔖 ⊆ preimage ↑e ⁻¹' 𝔗 src✝ : (γ → β) ≃ (α → β) := Equiv.arrowCongr e (Equiv.refl β) s : Set α hs : s ∈ 𝔖 ⊢ s ∈ (image fun x => ↑e.symm x) ⁻¹' 𝔗 [PROOFSTEP] change e.symm '' s ∈ 𝔗 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) e : γ ≃ α he : 𝔗 ⊆ image ↑e ⁻¹' 𝔖 he' : 𝔖 ⊆ preimage ↑e ⁻¹' 𝔗 src✝ : (γ → β) ≃ (α → β) := Equiv.arrowCongr e (Equiv.refl β) s : Set α hs : s ∈ 𝔖 ⊢ ↑e.symm '' s ∈ 𝔗 [PROOFSTEP] rw [← preimage_equiv_eq_image_symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) 𝔗 : Set (Set γ) e : γ ≃ α he : 𝔗 ⊆ image ↑e ⁻¹' 𝔖 he' : 𝔖 ⊆ preimage ↑e ⁻¹' 𝔗 src✝ : (γ → β) ≃ (α → β) := Equiv.arrowCongr e (Equiv.refl β) s : Set α hs : s ∈ 𝔖 ⊢ ↑e ⁻¹' s ∈ 𝔗 [PROOFSTEP] exact he' hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : T2Space β h : ⋃₀ 𝔖 = univ ⊢ ∀ (x y : α →ᵤ[𝔖] β), x ≠ y → ∃ u v, IsOpen u ∧ IsOpen v ∧ x ∈ u ∧ y ∈ v ∧ Disjoint u v [PROOFSTEP] intro f g hfg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g✝ : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : T2Space β h : ⋃₀ 𝔖 = univ f g : α →ᵤ[𝔖] β hfg : f ≠ g ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] obtain ⟨x, hx⟩ := not_forall.mp (mt funext hfg) [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x✝ : α p : Filter ι g✝ : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : T2Space β h : ⋃₀ 𝔖 = univ f g : α →ᵤ[𝔖] β hfg : f ≠ g x : α hx : ¬f x = g x ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] obtain ⟨s, hs, hxs⟩ : ∃ s ∈ 𝔖, x ∈ s := mem_sUnion.mp (h.symm ▸ True.intro) [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x✝ : α p : Filter ι g✝ : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : T2Space β h : ⋃₀ 𝔖 = univ f g : α →ᵤ[𝔖] β hfg : f ≠ g x : α hx : ¬f x = g x s : Set α hs : s ∈ 𝔖 hxs : x ∈ s ⊢ ∃ u v, IsOpen u ∧ IsOpen v ∧ f ∈ u ∧ g ∈ v ∧ Disjoint u v [PROOFSTEP] exact separated_by_continuous (uniformContinuous_eval_of_mem β 𝔖 hxs hs).continuous hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : ⋃₀ 𝔖 = univ ⊢ UniformContinuous ↑(toFun 𝔖) [PROOFSTEP] rw [uniformContinuous_pi] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : ⋃₀ 𝔖 = univ ⊢ ∀ (i : α), UniformContinuous fun x => ↑(toFun 𝔖) x i [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x✝ : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : ⋃₀ 𝔖 = univ x : α ⊢ UniformContinuous fun x_1 => ↑(toFun 𝔖) x_1 x [PROOFSTEP] obtain ⟨s : Set α, hs : s ∈ 𝔖, hxs : x ∈ s⟩ := sUnion_eq_univ_iff.mp h x [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x✝ : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) h : ⋃₀ 𝔖 = univ x : α s : Set α hs : s ∈ 𝔖 hxs : x ∈ s ⊢ UniformContinuous fun x_1 => ↑(toFun 𝔖) x_1 x [PROOFSTEP] exact uniformContinuous_eval_of_mem β 𝔖 hxs hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) F : ι → α →ᵤ[𝔖] β f : α →ᵤ[𝔖] β ⊢ Tendsto F p (𝓝 f) ↔ ∀ (s : Set α), s ∈ 𝔖 → TendstoUniformlyOn F f p s [PROOFSTEP] rw [UniformOnFun.topologicalSpace_eq, nhds_iInf, tendsto_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) F : ι → α →ᵤ[𝔖] β f : α →ᵤ[𝔖] β ⊢ (∀ (i : Set α), Tendsto F p (𝓝 f)) ↔ ∀ (s : Set α), s ∈ 𝔖 → TendstoUniformlyOn F f p s [PROOFSTEP] refine' forall_congr' fun s => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) F : ι → α →ᵤ[𝔖] β f : α →ᵤ[𝔖] β s : Set α ⊢ Tendsto F p (𝓝 f) ↔ s ∈ 𝔖 → TendstoUniformlyOn F f p s [PROOFSTEP] rw [nhds_iInf, tendsto_iInf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) F : ι → α →ᵤ[𝔖] β f : α →ᵤ[𝔖] β s : Set α ⊢ s ∈ 𝔖 → Tendsto F p (𝓝 f) ↔ s ∈ 𝔖 → TendstoUniformlyOn F f p s [PROOFSTEP] refine' forall_congr' fun hs => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) F : ι → α →ᵤ[𝔖] β f : α →ᵤ[𝔖] β s : Set α hs : s ∈ 𝔖 ⊢ Tendsto F p (𝓝 f) ↔ TendstoUniformlyOn F f p s [PROOFSTEP] rw [nhds_induced (T := _), tendsto_comap_iff, tendstoUniformlyOn_iff_tendstoUniformly_comp_coe, UniformFun.tendsto_iff_tendstoUniformly] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s✝ s' : Set α x : α p : Filter ι g : ι → α inst✝ : UniformSpace β 𝔖 : Set (Set α) F : ι → α →ᵤ[𝔖] β f : α →ᵤ[𝔖] β s : Set α hs : s ∈ 𝔖 ⊢ TendstoUniformly ((restrict s ∘ ↑UniformFun.toFun) ∘ F) ((restrict s ∘ ↑UniformFun.toFun) f) p ↔ TendstoUniformly (fun i x => F i ↑x) (f ∘ Subtype.val) p [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ ⊢ UniformInducing ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) [PROOFSTEP] constructor [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ ⊢ comap (fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 ((α →ᵤ[𝔖] β) × (α →ᵤ[𝔖] γ))) = 𝓤 (α →ᵤ[𝔖] β × γ) [PROOFSTEP] rw [uniformity_prod, comap_inf, comap_comap, comap_comap] [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ ⊢ comap ((fun p => (p.fst.fst, p.snd.fst)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) ⊓ comap ((fun p => (p.fst.snd, p.snd.snd)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] γ)) = 𝓤 (α →ᵤ[𝔖] β × γ) [PROOFSTEP] have H := @UniformOnFun.inf_eq α (β × γ) 𝔖 (UniformSpace.comap Prod.fst ‹_›) (UniformSpace.comap Prod.snd ‹_›) [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ H : uniformSpace α (β × γ) 𝔖 = uniformSpace α (β × γ) 𝔖 ⊓ uniformSpace α (β × γ) 𝔖 ⊢ comap ((fun p => (p.fst.fst, p.snd.fst)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) ⊓ comap ((fun p => (p.fst.snd, p.snd.snd)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] γ)) = 𝓤 (α →ᵤ[𝔖] β × γ) [PROOFSTEP] apply_fun (fun u ↦ @uniformity (α →ᵤ[𝔖] β × γ) u) at H [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ H : 𝓤 (α →ᵤ[𝔖] β × γ) = 𝓤 (α →ᵤ[𝔖] β × γ) ⊢ comap ((fun p => (p.fst.fst, p.snd.fst)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) ⊓ comap ((fun p => (p.fst.snd, p.snd.snd)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] γ)) = 𝓤 (α →ᵤ[𝔖] β × γ) [PROOFSTEP] convert H.symm using 1 [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ H : 𝓤 (α →ᵤ[𝔖] β × γ) = 𝓤 (α →ᵤ[𝔖] β × γ) ⊢ comap ((fun p => (p.fst.fst, p.snd.fst)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) ⊓ comap ((fun p => (p.fst.snd, p.snd.snd)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] γ)) = 𝓤 (α →ᵤ[𝔖] β × γ) [PROOFSTEP] rw [UniformOnFun.comap_eq, UniformOnFun.comap_eq] [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ H : 𝓤 (α →ᵤ[𝔖] β × γ) = 𝓤 (α →ᵤ[𝔖] β × γ) ⊢ comap ((fun p => (p.fst.fst, p.snd.fst)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) ⊓ comap ((fun p => (p.fst.snd, p.snd.snd)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] γ)) = 𝓤 (α →ᵤ[𝔖] β × γ) [PROOFSTEP] erw [inf_uniformity] [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ H : 𝓤 (α →ᵤ[𝔖] β × γ) = 𝓤 (α →ᵤ[𝔖] β × γ) ⊢ comap ((fun p => (p.fst.fst, p.snd.fst)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) ⊓ comap ((fun p => (p.fst.snd, p.snd.snd)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] γ)) = 𝓤 (α →ᵤ[𝔖] β × γ) ⊓ 𝓤 (α →ᵤ[𝔖] β × γ) [PROOFSTEP] rw [uniformity_comap, uniformity_comap] [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) inst✝ : UniformSpace γ H : 𝓤 (α →ᵤ[𝔖] β × γ) = 𝓤 (α →ᵤ[𝔖] β × γ) ⊢ comap ((fun p => (p.fst.fst, p.snd.fst)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] β)) ⊓ comap ((fun p => (p.fst.snd, p.snd.snd)) ∘ fun x => (↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.fst, ↑((ofFun 𝔖).symm.trans ((Equiv.arrowProdEquivProdArrow β γ α).trans (Equiv.prodCongr (ofFun 𝔖) (ofFun 𝔖)))) x.snd)) (𝓤 (α →ᵤ[𝔖] γ)) = comap (Prod.map ((fun x x_1 => x ∘ x_1) Prod.fst) ((fun x x_1 => x ∘ x_1) Prod.fst)) (𝓤 (α → β)) ⊓ comap (Prod.map ((fun x x_1 => x ∘ x_1) Prod.snd) ((fun x x_1 => x ∘ x_1) Prod.snd)) (𝓤 (α → γ)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ UniformInducing ↑(Equiv.piComm fun a i => δ i) [PROOFSTEP] constructor [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ comap (fun x => (↑(Equiv.piComm fun a i => δ i) x.fst, ↑(Equiv.piComm fun a i => δ i) x.snd)) (𝓤 ((i : ι) → α →ᵤ[𝔖] δ i)) = 𝓤 (α →ᵤ[𝔖] (i : ι) → δ i) [PROOFSTEP] change comap (Prod.map Function.swap Function.swap) _ = _ [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ comap (Prod.map Function.swap Function.swap) (𝓤 ((i : ι) → α →ᵤ[𝔖] δ i)) = 𝓤 (α →ᵤ[𝔖] (i : ι) → δ i) [PROOFSTEP] erw [← uniformity_comap] [GOAL] case comap_uniformity α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ 𝓤 (α → (y : ι) → δ y) = 𝓤 (α →ᵤ[𝔖] (i : ι) → δ i) [PROOFSTEP] congr [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ UniformSpace.comap Function.swap (Pi.uniformSpace fun i => α →ᵤ[𝔖] δ i) = uniformSpace α ((i : ι) → δ i) 𝔖 [PROOFSTEP] rw [Pi.uniformSpace, UniformSpace.ofCoreEq_toCore, Pi.uniformSpace, UniformSpace.ofCoreEq_toCore, UniformSpace.comap_iInf, UniformOnFun.iInf_eq] [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) ⊢ ⨅ (i : ι), UniformSpace.comap Function.swap (UniformSpace.comap (fun a => a i) (uniformSpace α (δ i) 𝔖)) = ⨅ (i : ι), uniformSpace α ((i : ι) → δ i) 𝔖 [PROOFSTEP] refine' iInf_congr fun i => _ [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) i : ι ⊢ UniformSpace.comap Function.swap (UniformSpace.comap (fun a => a i) (uniformSpace α (δ i) 𝔖)) = uniformSpace α ((i : ι) → δ i) 𝔖 [PROOFSTEP] rw [← UniformSpace.comap_comap, UniformOnFun.comap_eq] [GOAL] case comap_uniformity.h.e_2.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 s s' : Set α x : α p : Filter ι g : ι → α inst✝¹ : UniformSpace β 𝔖 : Set (Set α) δ : ι → Type u_5 inst✝ : (i : ι) → UniformSpace (δ i) i : ι ⊢ UniformSpace.comap ((fun a => a i) ∘ Function.swap) (uniformSpace α (δ i) 𝔖) = UniformSpace.comap ((fun x x_1 => x ∘ x_1) fun a => a i) (uniformSpace α (δ i) 𝔖) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.UniformSpace.UniformConvergenceTopology", "llama_tokens": 33770}
[GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hV : V ∈ 𝓤 β ⊢ ∃ V', V' ∈ 𝓤 β ∧ V' ⊆ V ∧ ∀ (g : C(α, β)), g ∈ compactConvNhd K V' f → compactConvNhd K V' g ⊆ compactConvNhd K V f [PROOFSTEP] obtain ⟨V', h₁, h₂⟩ := comp_mem_uniformity_sets hV [GOAL] case intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hV : V ∈ 𝓤 β V' : Set (β × β) h₁ : V' ∈ 𝓤 β h₂ : V' ○ V' ⊆ V ⊢ ∃ V', V' ∈ 𝓤 β ∧ V' ⊆ V ∧ ∀ (g : C(α, β)), g ∈ compactConvNhd K V' f → compactConvNhd K V' g ⊆ compactConvNhd K V f [PROOFSTEP] exact ⟨V', h₁, Subset.trans (subset_comp_self_of_mem_uniformity h₁) h₂, fun g hg g' hg' => compactConvNhd_mono f h₂ (compactConvNhd_mem_comp f hg hg')⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ ∀ {i j : Set α × Set (β × β)}, IsCompact i.fst ∧ i.snd ∈ 𝓤 β → IsCompact j.fst ∧ j.snd ∈ 𝓤 β → ∃ k, (IsCompact k.fst ∧ k.snd ∈ 𝓤 β) ∧ compactConvNhd k.fst k.snd f ⊆ compactConvNhd i.fst i.snd f ∩ compactConvNhd j.fst j.snd f [PROOFSTEP] rintro ⟨K₁, V₁⟩ ⟨K₂, V₂⟩ ⟨hK₁, hV₁⟩ ⟨hK₂, hV₂⟩ [GOAL] case mk.mk.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) K₁ : Set α V₁ : Set (β × β) K₂ : Set α V₂ : Set (β × β) hK₁ : IsCompact (K₁, V₁).fst hV₁ : (K₁, V₁).snd ∈ 𝓤 β hK₂ : IsCompact (K₂, V₂).fst hV₂ : (K₂, V₂).snd ∈ 𝓤 β ⊢ ∃ k, (IsCompact k.fst ∧ k.snd ∈ 𝓤 β) ∧ compactConvNhd k.fst k.snd f ⊆ compactConvNhd (K₁, V₁).fst (K₁, V₁).snd f ∩ compactConvNhd (K₂, V₂).fst (K₂, V₂).snd f [PROOFSTEP] exact ⟨⟨K₁ ∪ K₂, V₁ ∩ V₂⟩, ⟨hK₁.union hK₂, Filter.inter_mem hV₁ hV₂⟩, compactConvNhd_subset_inter f K₁ K₂ V₁ V₂⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) Y : Set C(α, β) ⊢ Y ∈ FilterBasis.filter (compactConvergenceFilterBasis f) ↔ ∃ K V _hK _hV, compactConvNhd K V f ⊆ Y [PROOFSTEP] constructor [GOAL] case mp α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) Y : Set C(α, β) ⊢ Y ∈ FilterBasis.filter (compactConvergenceFilterBasis f) → ∃ K V _hK _hV, compactConvNhd K V f ⊆ Y [PROOFSTEP] rintro ⟨X, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hY⟩ [GOAL] case mp.intro.intro.intro.mk.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) Y : Set C(α, β) K : Set α V : Set (β × β) hK : IsCompact (K, V).fst hV : (K, V).snd ∈ 𝓤 β hY : (fun KV => compactConvNhd KV.fst KV.snd f) (K, V) ⊆ Y ⊢ ∃ K V _hK _hV, compactConvNhd K V f ⊆ Y [PROOFSTEP] exact ⟨K, V, hK, hV, hY⟩ [GOAL] case mpr α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) Y : Set C(α, β) ⊢ (∃ K V _hK _hV, compactConvNhd K V f ⊆ Y) → Y ∈ FilterBasis.filter (compactConvergenceFilterBasis f) [PROOFSTEP] rintro ⟨K, V, hK, hV, hY⟩ [GOAL] case mpr.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) Y : Set C(α, β) K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hY : compactConvNhd K V f ⊆ Y ⊢ Y ∈ FilterBasis.filter (compactConvergenceFilterBasis f) [PROOFSTEP] exact ⟨compactConvNhd K V f, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hY⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ 𝓝 f = FilterBasis.filter (compactConvergenceFilterBasis f) [PROOFSTEP] rw [TopologicalSpace.nhds_mkOfNhds_filterBasis] [GOAL] case h₀ α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ ∀ (x : C(α, β)) (n : Set C(α, β)), n ∈ compactConvergenceFilterBasis x → x ∈ n [PROOFSTEP] rintro g - ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩ [GOAL] case h₁ α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ ∀ (x : C(α, β)) (n : Set C(α, β)), n ∈ compactConvergenceFilterBasis x → ∃ n₁, n₁ ∈ compactConvergenceFilterBasis x ∧ n₁ ⊆ n ∧ ∀ (x' : C(α, β)), x' ∈ n₁ → ∃ n₂, n₂ ∈ compactConvergenceFilterBasis x' ∧ n₂ ⊆ n [PROOFSTEP] rintro g - ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩ [GOAL] case h₀.intro.mk.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f g : C(α, β) K : Set α V : Set (β × β) hK : IsCompact (K, V).fst hV : (K, V).snd ∈ 𝓤 β ⊢ g ∈ (fun KV => compactConvNhd KV.fst KV.snd g) (K, V) [PROOFSTEP] exact self_mem_compactConvNhd g hV [GOAL] case h₁.intro.mk.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f g : C(α, β) K : Set α V : Set (β × β) hK : IsCompact (K, V).fst hV : (K, V).snd ∈ 𝓤 β ⊢ ∃ n₁, n₁ ∈ compactConvergenceFilterBasis g ∧ n₁ ⊆ (fun KV => compactConvNhd KV.fst KV.snd g) (K, V) ∧ ∀ (x' : C(α, β)), x' ∈ n₁ → ∃ n₂, n₂ ∈ compactConvergenceFilterBasis x' ∧ n₂ ⊆ (fun KV => compactConvNhd KV.fst KV.snd g) (K, V) [PROOFSTEP] obtain ⟨V', hV', h₁, h₂⟩ := compactConvNhd_nhd_basis g hV [GOAL] case h₁.intro.mk.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f g : C(α, β) K : Set α V : Set (β × β) hK : IsCompact (K, V).fst hV : (K, V).snd ∈ 𝓤 β V' : Set (β × β) hV' : V' ∈ 𝓤 β h₁ : V' ⊆ (K, V).snd h₂ : ∀ (g_1 : C(α, β)), g_1 ∈ compactConvNhd ?m.4688 V' g → compactConvNhd ?m.4688 V' g_1 ⊆ compactConvNhd ?m.4688 (K, V).snd g ⊢ ∃ n₁, n₁ ∈ compactConvergenceFilterBasis g ∧ n₁ ⊆ (fun KV => compactConvNhd KV.fst KV.snd g) (K, V) ∧ ∀ (x' : C(α, β)), x' ∈ n₁ → ∃ n₂, n₂ ∈ compactConvergenceFilterBasis x' ∧ n₂ ⊆ (fun KV => compactConvNhd KV.fst KV.snd g) (K, V) [PROOFSTEP] exact ⟨compactConvNhd K V' g, ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, compactConvNhd_mono g h₁, fun g' hg' => ⟨compactConvNhd K V' g', ⟨⟨K, V'⟩, ⟨hK, hV'⟩, rfl⟩, h₂ g' hg'⟩⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) ⊢ Tendsto F p (𝓝 f) ↔ ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p K [PROOFSTEP] simp only [(hasBasis_nhds_compactConvergence f).tendsto_right_iff, TendstoUniformlyOn, and_imp, Prod.forall] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) ⊢ (∀ (a : Set α) (b : Set (β × β)), IsCompact a → b ∈ 𝓤 β → ∀ᶠ (x : ι) in p, F x ∈ compactConvNhd a b f) ↔ ∀ (K : Set α), IsCompact K → ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∀ᶠ (n : ι) in p, ∀ (x : α), x ∈ K → (↑f x, ↑(F n) x) ∈ u [PROOFSTEP] refine' forall_congr' fun K => _ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) K : Set α ⊢ (∀ (b : Set (β × β)), IsCompact K → b ∈ 𝓤 β → ∀ᶠ (x : ι) in p, F x ∈ compactConvNhd K b f) ↔ IsCompact K → ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∀ᶠ (n : ι) in p, ∀ (x : α), x ∈ K → (↑f x, ↑(F n) x) ∈ u [PROOFSTEP] rw [forall_swap] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) K : Set α ⊢ (IsCompact K → ∀ (x : Set (β × β)), x ∈ 𝓤 β → ∀ᶠ (x_1 : ι) in p, F x_1 ∈ compactConvNhd K x f) ↔ IsCompact K → ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∀ᶠ (n : ι) in p, ∀ (x : α), x ∈ K → (↑f x, ↑(F n) x) ∈ u [PROOFSTEP] exact forall₃_congr fun _hK V _hV => Iff.rfl [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K U : Set β hU : IsOpen U hf : f ∈ CompactOpen.gen K U ⊢ ∃ V, V ∈ 𝓤 β ∧ IsOpen V ∧ compactConvNhd K V f ⊆ CompactOpen.gen K U [PROOFSTEP] obtain ⟨V, hV₁, hV₂, hV₃⟩ := lebesgue_number_of_compact_open (hK.image f.continuous) hU hf [GOAL] case intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V✝ : Set (β × β) f : C(α, β) hK : IsCompact K U : Set β hU : IsOpen U hf : f ∈ CompactOpen.gen K U V : Set (β × β) hV₁ : V ∈ 𝓤 β hV₂ : IsOpen V hV₃ : ∀ (x : β), x ∈ ↑f '' K → ball x V ⊆ U ⊢ ∃ V, V ∈ 𝓤 β ∧ IsOpen V ∧ compactConvNhd K V f ⊆ CompactOpen.gen K U [PROOFSTEP] refine' ⟨V, hV₁, hV₂, _⟩ [GOAL] case intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V✝ : Set (β × β) f : C(α, β) hK : IsCompact K U : Set β hU : IsOpen U hf : f ∈ CompactOpen.gen K U V : Set (β × β) hV₁ : V ∈ 𝓤 β hV₂ : IsOpen V hV₃ : ∀ (x : β), x ∈ ↑f '' K → ball x V ⊆ U ⊢ compactConvNhd K V f ⊆ CompactOpen.gen K U [PROOFSTEP] rintro g hg _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V✝ : Set (β × β) f : C(α, β) hK : IsCompact K U : Set β hU : IsOpen U hf : f ∈ CompactOpen.gen K U V : Set (β × β) hV₁ : V ∈ 𝓤 β hV₂ : IsOpen V hV₃ : ∀ (x : β), x ∈ ↑f '' K → ball x V ⊆ U g : C(α, β) hg : g ∈ compactConvNhd K V f x : α hx : x ∈ K ⊢ ↑g x ∈ U [PROOFSTEP] exact hV₃ (f x) ⟨x, hx, rfl⟩ (hg x hx) [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] obtain ⟨W, hW₁, hW₄, hW₂, hW₃⟩ := comp_open_symm_mem_uniformity_sets hV [GOAL] case intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] obtain ⟨Z, hZ₁, hZ₄, hZ₂, hZ₃⟩ := comp_open_symm_mem_uniformity_sets hW₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] let U : α → Set α := fun x => f ⁻¹' ball (f x) Z [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] have hU : ∀ x, IsOpen (U x) := fun x => f.continuous.isOpen_preimage _ (isOpen_ball _ hZ₄) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] have hUK : K ⊆ ⋃ x : K, U (x : K) := by intro x hx simp only [exists_prop, mem_iUnion, iUnion_coe_set, mem_preimage] exact ⟨(⟨x, hx⟩ : K), by simp [hx, mem_ball_self (f x) hZ₁]⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) ⊢ K ⊆ ⋃ (x : ↑K), U ↑x [PROOFSTEP] intro x hx [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) x : α hx : x ∈ K ⊢ x ∈ ⋃ (x : ↑K), U ↑x [PROOFSTEP] simp only [exists_prop, mem_iUnion, iUnion_coe_set, mem_preimage] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) x : α hx : x ∈ K ⊢ ∃ i, i ∈ K ∧ ↑f x ∈ ball (↑f i) Z [PROOFSTEP] exact ⟨(⟨x, hx⟩ : K), by simp [hx, mem_ball_self (f x) hZ₁]⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) x : α hx : x ∈ K ⊢ ↑{ val := x, property := hx } ∈ K ∧ ↑f x ∈ ball (↑f ↑{ val := x, property := hx }) Z [PROOFSTEP] simp [hx, mem_ball_self (f x) hZ₁] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] obtain ⟨t, ht⟩ := hK.elim_finite_subcover _ (fun x : K => hU x.val) hUK [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] let C : t → Set α := fun i => K ∩ closure (U ((i : K) : α)) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] have hC : K ⊆ ⋃ i, C i := by rw [← K.inter_iUnion, subset_inter_iff] refine' ⟨Subset.rfl, ht.trans _⟩ simp only [SetCoe.forall, Subtype.coe_mk, iUnion_subset_iff] exact fun x hx₁ hx₂ => subset_iUnion_of_subset (⟨_, hx₂⟩ : t) (by simp [subset_closure]) [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) ⊢ K ⊆ ⋃ (i : { x // x ∈ t }), C i [PROOFSTEP] rw [← K.inter_iUnion, subset_inter_iff] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) ⊢ K ⊆ K ∧ K ⊆ ⋃ (i : { x // x ∈ t }), closure (U ↑↑i) [PROOFSTEP] refine' ⟨Subset.rfl, ht.trans _⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) ⊢ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i ⊆ ⋃ (i : { x // x ∈ t }), closure (U ↑↑i) [PROOFSTEP] simp only [SetCoe.forall, Subtype.coe_mk, iUnion_subset_iff] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) ⊢ ∀ (x : α) (h : x ∈ K), { val := x, property := h } ∈ t → ↑f ⁻¹' ball (↑f x) Z ⊆ ⋃ (i : { x // x ∈ t }), closure (↑f ⁻¹' ball (↑f ↑↑i) Z) [PROOFSTEP] exact fun x hx₁ hx₂ => subset_iUnion_of_subset (⟨_, hx₂⟩ : t) (by simp [subset_closure]) [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t ⊢ ↑f ⁻¹' ball (↑f x) Z ⊆ closure (↑f ⁻¹' ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) Z) [PROOFSTEP] simp [subset_closure] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] have hfC : ∀ i : t, C i ⊆ f ⁻¹' ball (f ((i : K) : α)) W := by simp only [← image_subset_iff, ← mem_preimage] rintro ⟨⟨x, hx₁⟩, hx₂⟩ have hZW : closure (ball (f x) Z) ⊆ ball (f x) W := by intro y hy obtain ⟨z, hz₁, hz₂⟩ := UniformSpace.mem_closure_iff_ball.mp hy hZ₁ exact ball_mono hZ₃ _ (mem_ball_comp hz₂ ((mem_ball_symmetry hZ₂).mp hz₁)) calc f '' (K ∩ closure (U x)) ⊆ f '' closure (U x) := image_subset _ (inter_subset_right _ _) _ ⊆ closure (f '' U x) := f.continuous.continuousOn.image_closure _ ⊆ closure (ball (f x) Z) := by apply closure_mono simp only [image_subset_iff] rfl _ ⊆ ball (f x) W := hZW [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i ⊢ ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W [PROOFSTEP] simp only [← image_subset_iff, ← mem_preimage] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i ⊢ ∀ (i : { x // x ∈ t }), ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z)) ⊆ ball (↑f ↑↑i) W [PROOFSTEP] rintro ⟨⟨x, hx₁⟩, hx₂⟩ [GOAL] case mk.mk α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t ⊢ ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) Z)) ⊆ ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) W [PROOFSTEP] have hZW : closure (ball (f x) Z) ⊆ ball (f x) W := by intro y hy obtain ⟨z, hz₁, hz₂⟩ := UniformSpace.mem_closure_iff_ball.mp hy hZ₁ exact ball_mono hZ₃ _ (mem_ball_comp hz₂ ((mem_ball_symmetry hZ₂).mp hz₁)) [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t ⊢ closure (ball (↑f x) Z) ⊆ ball (↑f x) W [PROOFSTEP] intro y hy [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t y : β hy : y ∈ closure (ball (↑f x) Z) ⊢ y ∈ ball (↑f x) W [PROOFSTEP] obtain ⟨z, hz₁, hz₂⟩ := UniformSpace.mem_closure_iff_ball.mp hy hZ₁ [GOAL] case intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t y : β hy : y ∈ closure (ball (↑f x) Z) z : β hz₁ : z ∈ ball y Z hz₂ : z ∈ ball (↑f x) Z ⊢ y ∈ ball (↑f x) W [PROOFSTEP] exact ball_mono hZ₃ _ (mem_ball_comp hz₂ ((mem_ball_symmetry hZ₂).mp hz₁)) [GOAL] case mk.mk α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t hZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W ⊢ ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) Z)) ⊆ ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) W [PROOFSTEP] calc f '' (K ∩ closure (U x)) ⊆ f '' closure (U x) := image_subset _ (inter_subset_right _ _) _ ⊆ closure (f '' U x) := f.continuous.continuousOn.image_closure _ ⊆ closure (ball (f x) Z) := by apply closure_mono simp only [image_subset_iff] rfl _ ⊆ ball (f x) W := hZW [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t hZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W ⊢ closure (↑f '' U x) ⊆ closure (ball (↑f x) Z) [PROOFSTEP] apply closure_mono [GOAL] case h α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t hZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W ⊢ ↑f '' U x ⊆ ball (↑f x) Z [PROOFSTEP] simp only [image_subset_iff] [GOAL] case h α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i x : α hx₁ : x ∈ K hx₂ : { val := x, property := hx₁ } ∈ t hZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W ⊢ ↑f ⁻¹' ball (↑f x) Z ⊆ (fun a => ↑f a) ⁻¹' ball (↑f x) Z [PROOFSTEP] rfl [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i hfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W ⊢ ∃ ι x C _hC U _hU, f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ∧ ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd K V f [PROOFSTEP] refine' ⟨t, t.fintypeCoeSort, C, fun i => hK.inter_right isClosed_closure, fun i => ball (f ((i : K) : α)) W, fun i => isOpen_ball _ hW₄, by simp [CompactOpen.gen, hfC], fun g hg x hx => hW₃ (mem_compRel.mpr _)⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i hfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W ⊢ f ∈ ⋂ (i : { x // x ∈ t }), CompactOpen.gen (C i) ((fun i => ball (↑f ↑↑i) W) i) [PROOFSTEP] simp [CompactOpen.gen, hfC] [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i hfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W g : C(α, β) hg : g ∈ ⋂ (i : { x // x ∈ t }), CompactOpen.gen (C i) ((fun i => ball (↑f ↑↑i) W) i) x : α hx : x ∈ K ⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W [PROOFSTEP] simp only [mem_iInter, CompactOpen.gen, mem_setOf_eq, image_subset_iff] at hg [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i hfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W g : C(α, β) x : α hx : x ∈ K hg : ∀ (i : { x // x ∈ t }), K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z) ⊆ (fun a => ↑g a) ⁻¹' ball (↑f ↑↑i) W ⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W [PROOFSTEP] obtain ⟨y, hy⟩ := mem_iUnion.mp (hC hx) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) hK : IsCompact K hV : V ∈ 𝓤 β W : Set (β × β) hW₁ : W ∈ 𝓤 β hW₄ : IsOpen W hW₂ : SymmetricRel W hW₃ : W ○ W ⊆ V Z : Set (β × β) hZ₁ : Z ∈ 𝓤 β hZ₄ : IsOpen Z hZ₂ : SymmetricRel Z hZ₃ : Z ○ Z ⊆ W U : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z hU : ∀ (x : α), IsOpen (U x) hUK : K ⊆ ⋃ (x : ↑K), U ↑x t : Finset ↑K ht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i C : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i) hC : K ⊆ ⋃ (i : { x // x ∈ t }), C i hfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W g : C(α, β) x : α hx : x ∈ K hg : ∀ (i : { x // x ∈ t }), K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z) ⊆ (fun a => ↑g a) ⁻¹' ball (↑f ↑↑i) W y : { x // x ∈ t } hy : x ∈ C y ⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W [PROOFSTEP] exact ⟨f y, (mem_ball_symmetry hW₂).mp (hfC y hy), mem_preimage.mp (hg y hy)⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ compactOpen = compactConvergenceTopology [PROOFSTEP] rw [compactConvergenceTopology, ContinuousMap.compactOpen] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ TopologicalSpace.generateFrom {m | ∃ s x u x, m = CompactOpen.gen s u} = TopologicalSpace.mkOfNhds fun f => FilterBasis.filter (compactConvergenceFilterBasis f) [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ TopologicalSpace.generateFrom {m | ∃ s x u x, m = CompactOpen.gen s u} ≤ TopologicalSpace.mkOfNhds fun f => FilterBasis.filter (compactConvergenceFilterBasis f) [PROOFSTEP] refine' fun X hX => isOpen_iff_forall_mem_open.mpr fun f hf => _ [GOAL] case refine'_1 α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f✝ : C(α, β) X : Set C(α, β) hX : IsOpen X f : C(α, β) hf : f ∈ X ⊢ ∃ t, t ⊆ X ∧ IsOpen t ∧ f ∈ t [PROOFSTEP] have hXf : X ∈ (compactConvergenceFilterBasis f).filter := by rw [← nhds_compactConvergence] exact @IsOpen.mem_nhds C(α, β) compactConvergenceTopology _ _ hX hf [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f✝ : C(α, β) X : Set C(α, β) hX : IsOpen X f : C(α, β) hf : f ∈ X ⊢ X ∈ FilterBasis.filter (compactConvergenceFilterBasis f) [PROOFSTEP] rw [← nhds_compactConvergence] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f✝ : C(α, β) X : Set C(α, β) hX : IsOpen X f : C(α, β) hf : f ∈ X ⊢ X ∈ 𝓝 f [PROOFSTEP] exact @IsOpen.mem_nhds C(α, β) compactConvergenceTopology _ _ hX hf [GOAL] case refine'_1 α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f✝ : C(α, β) X : Set C(α, β) hX : IsOpen X f : C(α, β) hf : f ∈ X hXf : X ∈ FilterBasis.filter (compactConvergenceFilterBasis f) ⊢ ∃ t, t ⊆ X ∧ IsOpen t ∧ f ∈ t [PROOFSTEP] obtain ⟨-, ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩, hXf⟩ := hXf [GOAL] case refine'_1.intro.intro.intro.mk.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f✝ : C(α, β) X : Set C(α, β) hX : IsOpen X f : C(α, β) hf : f ∈ X K : Set α V : Set (β × β) hK : IsCompact (K, V).fst hV : (K, V).snd ∈ 𝓤 β hXf : (fun KV => compactConvNhd KV.fst KV.snd f) (K, V) ⊆ X ⊢ ∃ t, t ⊆ X ∧ IsOpen t ∧ f ∈ t [PROOFSTEP] obtain ⟨ι, hι, C, hC, U, hU, h₁, h₂⟩ := iInter_compactOpen_gen_subset_compactConvNhd f hK hV [GOAL] case refine'_1.intro.intro.intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f✝ : C(α, β) X : Set C(α, β) hX : IsOpen X f : C(α, β) hf : f ∈ X K : Set α V : Set (β × β) hK : IsCompact (K, V).fst hV : (K, V).snd ∈ 𝓤 β hXf : (fun KV => compactConvNhd KV.fst KV.snd f) (K, V) ⊆ X ι : Type u₁ hι : Fintype ι C : ι → Set α hC : ∀ (i : ι), IsCompact (C i) U : ι → Set β hU : ∀ (i : ι), IsOpen (U i) h₁ : f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) h₂ : ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd (K, V).fst (K, V).snd f ⊢ ∃ t, t ⊆ X ∧ IsOpen t ∧ f ∈ t [PROOFSTEP] haveI := hι [GOAL] case refine'_1.intro.intro.intro.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f✝ : C(α, β) X : Set C(α, β) hX : IsOpen X f : C(α, β) hf : f ∈ X K : Set α V : Set (β × β) hK : IsCompact (K, V).fst hV : (K, V).snd ∈ 𝓤 β hXf : (fun KV => compactConvNhd KV.fst KV.snd f) (K, V) ⊆ X ι : Type u₁ hι : Fintype ι C : ι → Set α hC : ∀ (i : ι), IsCompact (C i) U : ι → Set β hU : ∀ (i : ι), IsOpen (U i) h₁ : f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i) h₂ : ⋂ (i : ι), CompactOpen.gen (C i) (U i) ⊆ compactConvNhd (K, V).fst (K, V).snd f this : Fintype ι ⊢ ∃ t, t ⊆ X ∧ IsOpen t ∧ f ∈ t [PROOFSTEP] exact ⟨⋂ i, CompactOpen.gen (C i) (U i), h₂.trans hXf, isOpen_iInter fun i => ContinuousMap.isOpen_gen (hC i) (hU i), h₁⟩ [GOAL] case refine'_2 α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ (TopologicalSpace.mkOfNhds fun f => FilterBasis.filter (compactConvergenceFilterBasis f)) ≤ TopologicalSpace.generateFrom {m | ∃ s x u x, m = CompactOpen.gen s u} [PROOFSTEP] simp only [TopologicalSpace.le_generateFrom_iff_subset_isOpen, and_imp, exists_prop, forall_exists_index, setOf_subset_setOf] [GOAL] case refine'_2 α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ ∀ (a : Set C(α, β)) (x : Set α), IsCompact x → ∀ (x_1 : Set β), IsOpen x_1 → a = CompactOpen.gen x x_1 → IsOpen a [PROOFSTEP] rintro - K hK U hU rfl f hf [GOAL] case refine'_2 α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V : Set (β × β) f✝ : C(α, β) K : Set α hK : IsCompact K U : Set β hU : IsOpen U f : C(α, β) hf : f ∈ CompactOpen.gen K U ⊢ CompactOpen.gen K U ∈ (fun f => FilterBasis.filter (compactConvergenceFilterBasis f)) f [PROOFSTEP] obtain ⟨V, hV, _hV', hVf⟩ := compactConvNhd_subset_compactOpen f hK hU hf [GOAL] case refine'_2.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f✝ : C(α, β) K : Set α hK : IsCompact K U : Set β hU : IsOpen U f : C(α, β) hf : f ∈ CompactOpen.gen K U V : Set (β × β) hV : V ∈ 𝓤 β _hV' : IsOpen V hVf : compactConvNhd K V f ⊆ CompactOpen.gen K U ⊢ CompactOpen.gen K U ∈ (fun f => FilterBasis.filter (compactConvergenceFilterBasis f)) f [PROOFSTEP] exact Filter.mem_of_superset (FilterBasis.mem_filter_of_mem _ ⟨⟨K, V⟩, ⟨hK, hV⟩, rfl⟩) hVf [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ HasBasis compactConvergenceUniformity (fun p => IsCompact p.fst ∧ p.snd ∈ 𝓤 β) fun p => {fg | ∀ (x : α), x ∈ p.fst → (↑fg.fst x, ↑fg.snd x) ∈ p.snd} [PROOFSTEP] refine' Filter.hasBasis_biInf_principal _ compactConvNhd_compact_entourage_nonempty [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ DirectedOn ((fun KV => {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}) ⁻¹'o fun x x_1 => x ≥ x_1) {KV | IsCompact KV.fst ∧ KV.snd ∈ 𝓤 β} [PROOFSTEP] rintro ⟨K₁, V₁⟩ ⟨hK₁, hV₁⟩ ⟨K₂, V₂⟩ ⟨hK₂, hV₂⟩ [GOAL] case mk.intro.mk.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) K₁ : Set α V₁ : Set (β × β) hK₁ : IsCompact (K₁, V₁).fst hV₁ : (K₁, V₁).snd ∈ 𝓤 β K₂ : Set α V₂ : Set (β × β) hK₂ : IsCompact (K₂, V₂).fst hV₂ : (K₂, V₂).snd ∈ 𝓤 β ⊢ ∃ z, z ∈ {KV | IsCompact KV.fst ∧ KV.snd ∈ 𝓤 β} ∧ ((fun KV => {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}) ⁻¹'o fun x x_1 => x ≥ x_1) (K₁, V₁) z ∧ ((fun KV => {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}) ⁻¹'o fun x x_1 => x ≥ x_1) (K₂, V₂) z [PROOFSTEP] refine' ⟨⟨K₁ ∪ K₂, V₁ ∩ V₂⟩, ⟨hK₁.union hK₂, Filter.inter_mem hV₁ hV₂⟩, _⟩ [GOAL] case mk.intro.mk.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) K₁ : Set α V₁ : Set (β × β) hK₁ : IsCompact (K₁, V₁).fst hV₁ : (K₁, V₁).snd ∈ 𝓤 β K₂ : Set α V₂ : Set (β × β) hK₂ : IsCompact (K₂, V₂).fst hV₂ : (K₂, V₂).snd ∈ 𝓤 β ⊢ ((fun KV => {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}) ⁻¹'o fun x x_1 => x ≥ x_1) (K₁, V₁) (K₁ ∪ K₂, V₁ ∩ V₂) ∧ ((fun KV => {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}) ⁻¹'o fun x x_1 => x ≥ x_1) (K₂, V₂) (K₁ ∪ K₂, V₁ ∩ V₂) [PROOFSTEP] simp only [le_eq_subset, Prod.forall, setOf_subset_setOf, ge_iff_le, Order.Preimage, ← forall_and, mem_inter_iff, mem_union] [GOAL] case mk.intro.mk.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) K₁ : Set α V₁ : Set (β × β) hK₁ : IsCompact (K₁, V₁).fst hV₁ : (K₁, V₁).snd ∈ 𝓤 β K₂ : Set α V₂ : Set (β × β) hK₂ : IsCompact (K₂, V₂).fst hV₂ : (K₂, V₂).snd ∈ 𝓤 β ⊢ ∀ (x x_1 : C(α, β)), (∀ (x_2 : α), x_2 ∈ K₁ ∨ x_2 ∈ K₂ → (↑x x_2, ↑x_1 x_2) ∈ V₁ ∧ (↑x x_2, ↑x_1 x_2) ∈ V₂) → ∀ (x_3 : α), (x_3 ∈ K₁ → (↑x x_3, ↑x_1 x_3) ∈ V₁) ∧ (x_3 ∈ K₂ → (↑x x_3, ↑x_1 x_3) ∈ V₂) [PROOFSTEP] exact fun f g => forall_imp fun x => by tauto [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f✝ : C(α, β) K₁ : Set α V₁ : Set (β × β) hK₁ : IsCompact (K₁, V₁).fst hV₁ : (K₁, V₁).snd ∈ 𝓤 β K₂ : Set α V₂ : Set (β × β) hK₂ : IsCompact (K₂, V₂).fst hV₂ : (K₂, V₂).snd ∈ 𝓤 β f g : C(α, β) x : α ⊢ (x ∈ K₁ ∨ x ∈ K₂ → (↑f x, ↑g x) ∈ V₁ ∧ (↑f x, ↑g x) ∈ V₂) → (x ∈ K₁ → (↑f x, ↑g x) ∈ V₁) ∧ (x ∈ K₂ → (↑f x, ↑g x) ∈ V₂) [PROOFSTEP] tauto [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) ⊢ X ∈ compactConvergenceUniformity ↔ ∃ K V _hK _hV, {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X [PROOFSTEP] simp only [hasBasis_compactConvergenceUniformity_aux.mem_iff, exists_prop, Prod.exists, and_assoc] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ 𝓟 idRel ≤ compactConvergenceUniformity [PROOFSTEP] simp only [compactConvergenceUniformity, and_imp, Filter.le_principal_iff, Prod.forall, Filter.mem_principal, mem_setOf_eq, le_iInf_iff, idRel_subset] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ ∀ (a : Set α) (b : Set (β × β)), IsCompact a → b ∈ 𝓤 β → ∀ (a_3 : C(α, β)) (x : α), x ∈ a → (↑a_3 x, ↑a_3 x) ∈ b [PROOFSTEP] exact fun K V _hK hV f x _hx => refl_mem_uniformity hV [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ Tendsto Prod.swap compactConvergenceUniformity compactConvergenceUniformity [PROOFSTEP] simp only [compactConvergenceUniformity, and_imp, Prod.forall, mem_setOf_eq, Prod.fst_swap, Filter.tendsto_principal, Prod.snd_swap, Filter.tendsto_iInf] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ ∀ (a : Set α) (b : Set (β × β)), IsCompact a → b ∈ 𝓤 β → ∀ᶠ (a_3 : C(α, β) × C(α, β)) in ⨅ (KV : Set α × Set (β × β)) (_ : IsCompact KV.fst ∧ KV.snd ∈ 𝓤 β), 𝓟 {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}, ∀ (x : α), x ∈ a → (↑a_3.snd x, ↑a_3.fst x) ∈ b [PROOFSTEP] intro K V hK hV [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β ⊢ ∀ᶠ (a : C(α, β) × C(α, β)) in ⨅ (KV : Set α × Set (β × β)) (_ : IsCompact KV.fst ∧ KV.snd ∈ 𝓤 β), 𝓟 {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}, ∀ (x : α), x ∈ K → (↑a.snd x, ↑a.fst x) ∈ V [PROOFSTEP] obtain ⟨V', hV', hsymm, hsub⟩ := symm_of_uniformity hV [GOAL] case intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β V' : Set (β × β) hV' : V' ∈ 𝓤 β hsymm : ∀ (a b : β), (a, b) ∈ V' → (b, a) ∈ V' hsub : V' ⊆ V ⊢ ∀ᶠ (a : C(α, β) × C(α, β)) in ⨅ (KV : Set α × Set (β × β)) (_ : IsCompact KV.fst ∧ KV.snd ∈ 𝓤 β), 𝓟 {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}, ∀ (x : α), x ∈ K → (↑a.snd x, ↑a.fst x) ∈ V [PROOFSTEP] let X := {fg : C(α, β) × C(α, β) | ∀ x : α, x ∈ K → (fg.1 x, fg.2 x) ∈ V'} [GOAL] case intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β V' : Set (β × β) hV' : V' ∈ 𝓤 β hsymm : ∀ (a b : β), (a, b) ∈ V' → (b, a) ∈ V' hsub : V' ⊆ V X : Set (C(α, β) × C(α, β)) := {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ⊢ ∀ᶠ (a : C(α, β) × C(α, β)) in ⨅ (KV : Set α × Set (β × β)) (_ : IsCompact KV.fst ∧ KV.snd ∈ 𝓤 β), 𝓟 {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}, ∀ (x : α), x ∈ K → (↑a.snd x, ↑a.fst x) ∈ V [PROOFSTEP] have hX : X ∈ compactConvergenceUniformity := (mem_compactConvergenceUniformity X).mpr ⟨K, V', hK, hV', by simp⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β V' : Set (β × β) hV' : V' ∈ 𝓤 β hsymm : ∀ (a b : β), (a, b) ∈ V' → (b, a) ∈ V' hsub : V' ⊆ V X : Set (C(α, β) × C(α, β)) := {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ⊢ {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ⊆ X [PROOFSTEP] simp [GOAL] case intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β V' : Set (β × β) hV' : V' ∈ 𝓤 β hsymm : ∀ (a b : β), (a, b) ∈ V' → (b, a) ∈ V' hsub : V' ⊆ V X : Set (C(α, β) × C(α, β)) := {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} hX : X ∈ compactConvergenceUniformity ⊢ ∀ᶠ (a : C(α, β) × C(α, β)) in ⨅ (KV : Set α × Set (β × β)) (_ : IsCompact KV.fst ∧ KV.snd ∈ 𝓤 β), 𝓟 {fg | ∀ (x : α), x ∈ KV.fst → (↑fg.fst x, ↑fg.snd x) ∈ KV.snd}, ∀ (x : α), x ∈ K → (↑a.snd x, ↑a.fst x) ∈ V [PROOFSTEP] exact Filter.eventually_of_mem hX fun fg hfg x hx => hsub (hsymm _ _ (hfg x hx)) [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) hX : X ∈ compactConvergenceUniformity ⊢ X ∈ Filter.lift' compactConvergenceUniformity fun s => s ○ s [PROOFSTEP] obtain ⟨K, V, hK, hV, hX⟩ := (mem_compactConvergenceUniformity X).mp hX [GOAL] case intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X ⊢ X ∈ Filter.lift' compactConvergenceUniformity fun s => s ○ s [PROOFSTEP] obtain ⟨V', hV', hcomp⟩ := comp_mem_uniformity_sets hV [GOAL] case intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X V' : Set (β × β) hV' : V' ∈ 𝓤 β hcomp : V' ○ V' ⊆ V ⊢ X ∈ Filter.lift' compactConvergenceUniformity fun s => s ○ s [PROOFSTEP] let h := fun s : Set (C(α, β) × C(α, β)) => s ○ s [GOAL] case intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X V' : Set (β × β) hV' : V' ∈ 𝓤 β hcomp : V' ○ V' ⊆ V h : Set (C(α, β) × C(α, β)) → Set (C(α, β) × C(α, β)) := fun s => s ○ s ⊢ X ∈ Filter.lift' compactConvergenceUniformity fun s => s ○ s [PROOFSTEP] suffices h {fg : C(α, β) × C(α, β) | ∀ x ∈ K, (fg.1 x, fg.2 x) ∈ V'} ∈ compactConvergenceUniformity.lift' h by apply Filter.mem_of_superset this rintro ⟨f, g⟩ ⟨z, hz₁, hz₂⟩ refine' hX fun x hx => hcomp _ exact ⟨z x, hz₁ x hx, hz₂ x hx⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X V' : Set (β × β) hV' : V' ∈ 𝓤 β hcomp : V' ○ V' ⊆ V h : Set (C(α, β) × C(α, β)) → Set (C(α, β) × C(α, β)) := fun s => s ○ s this : h {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ∈ Filter.lift' compactConvergenceUniformity h ⊢ X ∈ Filter.lift' compactConvergenceUniformity fun s => s ○ s [PROOFSTEP] apply Filter.mem_of_superset this [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X V' : Set (β × β) hV' : V' ∈ 𝓤 β hcomp : V' ○ V' ⊆ V h : Set (C(α, β) × C(α, β)) → Set (C(α, β) × C(α, β)) := fun s => s ○ s this : h {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ∈ Filter.lift' compactConvergenceUniformity h ⊢ h {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ⊆ X [PROOFSTEP] rintro ⟨f, g⟩ ⟨z, hz₁, hz₂⟩ [GOAL] case mk.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f✝ : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X V' : Set (β × β) hV' : V' ∈ 𝓤 β hcomp : V' ○ V' ⊆ V h : Set (C(α, β) × C(α, β)) → Set (C(α, β) × C(α, β)) := fun s => s ○ s this : h {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ∈ Filter.lift' compactConvergenceUniformity h f g z : C(α, β) hz₁ : ((f, g).fst, z) ∈ {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} hz₂ : (z, (f, g).snd) ∈ {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ⊢ (f, g) ∈ X [PROOFSTEP] refine' hX fun x hx => hcomp _ [GOAL] case mk.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f✝ : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X V' : Set (β × β) hV' : V' ∈ 𝓤 β hcomp : V' ○ V' ⊆ V h : Set (C(α, β) × C(α, β)) → Set (C(α, β) × C(α, β)) := fun s => s ○ s this : h {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ∈ Filter.lift' compactConvergenceUniformity h f g z : C(α, β) hz₁ : ((f, g).fst, z) ∈ {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} hz₂ : (z, (f, g).snd) ∈ {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} x : α hx : x ∈ K ⊢ (↑(f, g).fst x, ↑(f, g).snd x) ∈ V' ○ V' [PROOFSTEP] exact ⟨z x, hz₁ x hx, hz₂ x hx⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X V' : Set (β × β) hV' : V' ∈ 𝓤 β hcomp : V' ○ V' ⊆ V h : Set (C(α, β) × C(α, β)) → Set (C(α, β) × C(α, β)) := fun s => s ○ s ⊢ h {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ∈ Filter.lift' compactConvergenceUniformity h [PROOFSTEP] apply Filter.mem_lift' [GOAL] case intro.intro.intro.intro.intro.intro.ht α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) X : Set (C(α, β) × C(α, β)) hX✝ : X ∈ compactConvergenceUniformity K : Set α V : Set (β × β) hK : IsCompact K hV : V ∈ 𝓤 β hX : {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V} ⊆ X V' : Set (β × β) hV' : V' ∈ 𝓤 β hcomp : V' ○ V' ⊆ V h : Set (C(α, β) × C(α, β)) → Set (C(α, β) × C(α, β)) := fun s => s ○ s ⊢ {fg | ∀ (x : α), x ∈ K → (↑fg.fst x, ↑fg.snd x) ∈ V'} ∈ compactConvergenceUniformity [PROOFSTEP] exact (mem_compactConvergenceUniformity _).mpr ⟨K, V', hK, hV', Subset.refl _⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ ∀ (s : Set C(α, β)), IsOpen s ↔ ∀ (x : C(α, β)), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := compactConvergenceUniformity, refl := (_ : 𝓟 idRel ≤ compactConvergenceUniformity), symm := (_ : Tendsto Prod.swap compactConvergenceUniformity compactConvergenceUniformity), comp := (_ : ∀ (X : Set (C(α, β) × C(α, β))), X ∈ compactConvergenceUniformity → X ∈ Filter.lift' compactConvergenceUniformity fun s => s ○ s) }.uniformity [PROOFSTEP] rw [compactOpen_eq_compactConvergence] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ⊢ ∀ (s : Set C(α, β)), IsOpen s ↔ ∀ (x : C(α, β)), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := compactConvergenceUniformity, refl := (_ : 𝓟 idRel ≤ compactConvergenceUniformity), symm := (_ : Tendsto Prod.swap compactConvergenceUniformity compactConvergenceUniformity), comp := (_ : ∀ (X : Set (C(α, β) × C(α, β))), X ∈ compactConvergenceUniformity → X ∈ Filter.lift' compactConvergenceUniformity fun s => s ○ s) }.uniformity [PROOFSTEP] refine' fun Y => forall₂_congr fun f hf => _ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f✝ : C(α, β) Y : Set C(α, β) f : C(α, β) hf : f ∈ Y ⊢ Y ∈ (fun f => FilterBasis.filter (compactConvergenceFilterBasis f)) f ↔ {p | p.fst = f → p.snd ∈ Y} ∈ { uniformity := compactConvergenceUniformity, refl := (_ : 𝓟 idRel ≤ compactConvergenceUniformity), symm := (_ : Tendsto Prod.swap compactConvergenceUniformity compactConvergenceUniformity), comp := (_ : ∀ (X : Set (C(α, β) × C(α, β))), X ∈ compactConvergenceUniformity → X ∈ Filter.lift' compactConvergenceUniformity fun s => s ○ s) }.uniformity [PROOFSTEP] simp only [mem_compactConvergence_nhd_filter, mem_compactConvergenceUniformity, Prod.forall, setOf_subset_setOf, compactConvNhd] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f✝ : C(α, β) Y : Set C(α, β) f : C(α, β) hf : f ∈ Y ⊢ (∃ K V h h, {g | ∀ (x : α), x ∈ K → (↑f x, ↑g x) ∈ V} ⊆ Y) ↔ ∃ K V h h, ∀ (a b : C(α, β)), (∀ (x : α), x ∈ K → (↑a x, ↑b x) ∈ V) → a = f → b ∈ Y [PROOFSTEP] refine' exists₄_congr fun K V _hK _hV => ⟨_, fun hY g hg => hY f g hg rfl⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f✝ : C(α, β) Y : Set C(α, β) f : C(α, β) hf : f ∈ Y K : Set α V : Set (β × β) _hK : IsCompact K _hV : V ∈ 𝓤 β ⊢ {g | ∀ (x : α), x ∈ K → (↑f x, ↑g x) ∈ V} ⊆ Y → ∀ (a b : C(α, β)), (∀ (x : α), x ∈ K → (↑a x, ↑b x) ∈ V) → a = f → b ∈ Y [PROOFSTEP] rintro hY g₁ g₂ hg₁ rfl [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V✝ : Set (β × β) f : C(α, β) Y : Set C(α, β) K : Set α V : Set (β × β) _hK : IsCompact K _hV : V ∈ 𝓤 β g₁ g₂ : C(α, β) hg₁ : ∀ (x : α), x ∈ K → (↑g₁ x, ↑g₂ x) ∈ V hf : g₁ ∈ Y hY : {g | ∀ (x : α), x ∈ K → (↑g₁ x, ↑g x) ∈ V} ⊆ Y ⊢ g₂ ∈ Y [PROOFSTEP] exact hY hg₁ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u_1 pi : ι → Prop s : ι → Set (β × β) h : HasBasis (𝓤 β) pi s ⊢ HasBasis (𝓤 C(α, β)) (fun p => IsCompact p.fst ∧ pi p.snd) fun p => {fg | ∀ (x : α), x ∈ p.fst → (↑fg.fst x, ↑fg.snd x) ∈ s p.snd} [PROOFSTEP] refine' hasBasis_compactConvergenceUniformity.to_hasBasis _ _ [GOAL] case refine'_1 α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u_1 pi : ι → Prop s : ι → Set (β × β) h : HasBasis (𝓤 β) pi s ⊢ ∀ (i : Set α × Set (β × β)), IsCompact i.fst ∧ i.snd ∈ 𝓤 β → ∃ i', (IsCompact i'.fst ∧ pi i'.snd) ∧ {fg | ∀ (x : α), x ∈ i'.fst → (↑fg.fst x, ↑fg.snd x) ∈ s i'.snd} ⊆ {fg | ∀ (x : α), x ∈ i.fst → (↑fg.fst x, ↑fg.snd x) ∈ i.snd} [PROOFSTEP] rintro ⟨t₁, t₂⟩ ⟨h₁, h₂⟩ [GOAL] case refine'_1.mk.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u_1 pi : ι → Prop s : ι → Set (β × β) h : HasBasis (𝓤 β) pi s t₁ : Set α t₂ : Set (β × β) h₁ : IsCompact (t₁, t₂).fst h₂ : (t₁, t₂).snd ∈ 𝓤 β ⊢ ∃ i', (IsCompact i'.fst ∧ pi i'.snd) ∧ {fg | ∀ (x : α), x ∈ i'.fst → (↑fg.fst x, ↑fg.snd x) ∈ s i'.snd} ⊆ {fg | ∀ (x : α), x ∈ (t₁, t₂).fst → (↑fg.fst x, ↑fg.snd x) ∈ (t₁, t₂).snd} [PROOFSTEP] rcases h.mem_iff.1 h₂ with ⟨i, hpi, hi⟩ [GOAL] case refine'_1.mk.intro.intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u_1 pi : ι → Prop s : ι → Set (β × β) h : HasBasis (𝓤 β) pi s t₁ : Set α t₂ : Set (β × β) h₁ : IsCompact (t₁, t₂).fst h₂ : (t₁, t₂).snd ∈ 𝓤 β i : ι hpi : pi i hi : s i ⊆ (t₁, t₂).snd ⊢ ∃ i', (IsCompact i'.fst ∧ pi i'.snd) ∧ {fg | ∀ (x : α), x ∈ i'.fst → (↑fg.fst x, ↑fg.snd x) ∈ s i'.snd} ⊆ {fg | ∀ (x : α), x ∈ (t₁, t₂).fst → (↑fg.fst x, ↑fg.snd x) ∈ (t₁, t₂).snd} [PROOFSTEP] exact ⟨(t₁, i), ⟨h₁, hpi⟩, fun fg hfg x hx => hi (hfg _ hx)⟩ [GOAL] case refine'_2 α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u_1 pi : ι → Prop s : ι → Set (β × β) h : HasBasis (𝓤 β) pi s ⊢ ∀ (i' : Set α × ι), IsCompact i'.fst ∧ pi i'.snd → ∃ i, (IsCompact i.fst ∧ i.snd ∈ 𝓤 β) ∧ {fg | ∀ (x : α), x ∈ i.fst → (↑fg.fst x, ↑fg.snd x) ∈ i.snd} ⊆ {fg | ∀ (x : α), x ∈ i'.fst → (↑fg.fst x, ↑fg.snd x) ∈ s i'.snd} [PROOFSTEP] rintro ⟨t, i⟩ ⟨ht, hi⟩ [GOAL] case refine'_2.mk.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u_1 pi : ι → Prop s : ι → Set (β × β) h : HasBasis (𝓤 β) pi s t : Set α i : ι ht : IsCompact (t, i).fst hi : pi (t, i).snd ⊢ ∃ i_1, (IsCompact i_1.fst ∧ i_1.snd ∈ 𝓤 β) ∧ {fg | ∀ (x : α), x ∈ i_1.fst → (↑fg.fst x, ↑fg.snd x) ∈ i_1.snd} ⊆ {fg | ∀ (x : α), x ∈ (t, i).fst → (↑fg.fst x, ↑fg.snd x) ∈ s (t, i).snd} [PROOFSTEP] exact ⟨(t, s i), ⟨ht, h.mem_of_mem hi⟩, Subset.rfl⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) ⊢ Tendsto F p (𝓝 f) ↔ ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p K [PROOFSTEP] rw [compactOpen_eq_compactConvergence, tendsto_iff_forall_compact_tendstoUniformlyOn'] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) h : TendstoLocallyUniformly (fun i a => ↑(F i) a) (↑f) p ⊢ Tendsto F p (𝓝 f) [PROOFSTEP] rw [tendsto_iff_forall_compact_tendstoUniformlyOn] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) h : TendstoLocallyUniformly (fun i a => ↑(F i) a) (↑f) p ⊢ ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p K [PROOFSTEP] intro K hK [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) h : TendstoLocallyUniformly (fun i a => ↑(F i) a) (↑f) p K : Set α hK : IsCompact K ⊢ TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p K [PROOFSTEP] rw [← tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact hK] [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K✝ : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) h : TendstoLocallyUniformly (fun i a => ↑(F i) a) (↑f) p K : Set α hK : IsCompact K ⊢ TendstoLocallyUniformlyOn (fun i a => ↑(F i) a) (↑f) p K [PROOFSTEP] exact h.tendstoLocallyUniformlyOn [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) hα : ∀ (x : α), ∃ n, IsCompact n ∧ n ∈ 𝓝 x h : Tendsto F p (𝓝 f) ⊢ TendstoLocallyUniformly (fun i a => ↑(F i) a) (↑f) p [PROOFSTEP] rw [tendsto_iff_forall_compact_tendstoUniformlyOn] at h [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) hα : ∀ (x : α), ∃ n, IsCompact n ∧ n ∈ 𝓝 x h : ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p K ⊢ TendstoLocallyUniformly (fun i a => ↑(F i) a) (↑f) p [PROOFSTEP] intro V hV x [GOAL] α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V✝ : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) hα : ∀ (x : α), ∃ n, IsCompact n ∧ n ∈ 𝓝 x h : ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p K V : Set (β × β) hV : V ∈ 𝓤 β x : α ⊢ ∃ t, t ∈ 𝓝 x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (↑f y, (fun i a => ↑(F i) a) n y) ∈ V [PROOFSTEP] obtain ⟨n, hn₁, hn₂⟩ := hα x [GOAL] case intro.intro α : Type u₁ β : Type u₂ inst✝¹ : TopologicalSpace α inst✝ : UniformSpace β K : Set α V✝ : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) hα : ∀ (x : α), ∃ n, IsCompact n ∧ n ∈ 𝓝 x h : ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p K V : Set (β × β) hV : V ∈ 𝓤 β x : α n : Set α hn₁ : IsCompact n hn₂ : n ∈ 𝓝 x ⊢ ∃ t, t ∈ 𝓝 x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (↑f y, (fun i a => ↑(F i) a) n y) ∈ V [PROOFSTEP] exact ⟨n, hn₂, h n hn₁ V hV⟩ [GOAL] α : Type u₁ β : Type u₂ inst✝² : TopologicalSpace α inst✝¹ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) inst✝ : CompactSpace α ⊢ Tendsto F p (𝓝 f) ↔ TendstoUniformly (fun i a => ↑(F i) a) (↑f) p [PROOFSTEP] rw [tendsto_iff_forall_compact_tendstoUniformlyOn, ← tendstoUniformlyOn_univ] [GOAL] α : Type u₁ β : Type u₂ inst✝² : TopologicalSpace α inst✝¹ : UniformSpace β K : Set α V : Set (β × β) f : C(α, β) ι : Type u₃ p : Filter ι F : ι → C(α, β) inst✝ : CompactSpace α ⊢ (∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p K) ↔ TendstoUniformlyOn (fun i a => ↑(F i) a) (↑f) p univ [PROOFSTEP] exact ⟨fun h => h univ isCompact_univ, fun h K _hK => h.mono (subset_univ K)⟩
{"mathlib_filename": "Mathlib.Topology.UniformSpace.CompactConvergence", "llama_tokens": 36908}
[GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) β : Type u_2 inst✝ : UniformSpace β f : β → (i : ι) → α i ⊢ UniformContinuous f ↔ ∀ (i : ι), UniformContinuous fun x => f x i [PROOFSTEP] simp only [UniformContinuous, Pi.uniformity, tendsto_iInf, tendsto_comap_iff, Function.comp] [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) ⊢ ∀ {f : Filter ((i : ι) → α i)}, Cauchy f → ∃ x, f ≤ 𝓝 x [PROOFSTEP] intro f hf [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) f : Filter ((i : ι) → α i) hf : Cauchy f ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] haveI := hf.1 [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) f : Filter ((i : ι) → α i) hf : Cauchy f this : NeBot f ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] have : ∀ i, ∃ x : α i, Filter.map (fun a : ∀ i, α i => a i) f ≤ 𝓝 x := by intro i have key : Cauchy (map (fun a : ∀ i : ι, α i => a i) f) := hf.map (Pi.uniformContinuous_proj α i) exact cauchy_iff_exists_le_nhds.1 key [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) f : Filter ((i : ι) → α i) hf : Cauchy f this : NeBot f ⊢ ∀ (i : ι), ∃ x, map (fun a => a i) f ≤ 𝓝 x [PROOFSTEP] intro i [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) f : Filter ((i : ι) → α i) hf : Cauchy f this : NeBot f i : ι ⊢ ∃ x, map (fun a => a i) f ≤ 𝓝 x [PROOFSTEP] have key : Cauchy (map (fun a : ∀ i : ι, α i => a i) f) := hf.map (Pi.uniformContinuous_proj α i) [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) f : Filter ((i : ι) → α i) hf : Cauchy f this : NeBot f i : ι key : Cauchy (map (fun a => a i) f) ⊢ ∃ x, map (fun a => a i) f ≤ 𝓝 x [PROOFSTEP] exact cauchy_iff_exists_le_nhds.1 key [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) f : Filter ((i : ι) → α i) hf : Cauchy f this✝ : NeBot f this : ∀ (i : ι), ∃ x, map (fun a => a i) f ≤ 𝓝 x ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] choose x hx using this [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) f : Filter ((i : ι) → α i) hf : Cauchy f this : NeBot f x : (i : ι) → α i hx : ∀ (i : ι), map (fun a => a i) f ≤ 𝓝 (x i) ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] use x [GOAL] case h ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), CompleteSpace (α i) f : Filter ((i : ι) → α i) hf : Cauchy f this : NeBot f x : (i : ι) → α i hx : ∀ (i : ι), map (fun a => a i) f ≤ 𝓝 (x i) ⊢ f ≤ 𝓝 x [PROOFSTEP] rwa [nhds_pi, le_pi] [GOAL] ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), SeparatedSpace (α i) x y : (i : ι) → α i H : ∀ (r : Set (((i : ι) → α i) × ((i : ι) → α i))), r ∈ 𝓤 ((i : ι) → α i) → (x, y) ∈ r ⊢ x = y [PROOFSTEP] ext i [GOAL] case h ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), SeparatedSpace (α i) x y : (i : ι) → α i H : ∀ (r : Set (((i : ι) → α i) × ((i : ι) → α i))), r ∈ 𝓤 ((i : ι) → α i) → (x, y) ∈ r i : ι ⊢ x i = y i [PROOFSTEP] apply eq_of_separated_of_uniformContinuous (Pi.uniformContinuous_proj α i) [GOAL] case h ι : Type u_1 α : ι → Type u U : (i : ι) → UniformSpace (α i) inst✝ : ∀ (i : ι), SeparatedSpace (α i) x y : (i : ι) → α i H : ∀ (r : Set (((i : ι) → α i) × ((i : ι) → α i))), r ∈ 𝓤 ((i : ι) → α i) → (x, y) ∈ r i : ι ⊢ (fun i => x i) ≈ fun i => y i [PROOFSTEP] apply H
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Pi", "llama_tokens": 1946}
[GOAL] α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 p : ι → Prop s : ι → Set (α × α) h : HasBasis (𝓤 α) p s f : Filter α ⊢ (∀ (i' : ι), p i' → ∃ i, i ∈ f ∧ id i ×ˢ id i ⊆ s i') ↔ ∀ (i : ι), p i → ∃ t, t ∈ f ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (x, y) ∈ s i [PROOFSTEP] simp only [subset_def, Prod.forall, mem_prod_eq, and_imp, id, ball_mem_comm] [GOAL] α : Type u β : Type v inst✝ : UniformSpace α f : Filter α ⊢ (NeBot f ∧ ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ f ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → (x, y) ∈ s) ↔ NeBot f ∧ ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s [PROOFSTEP] simp only [subset_def, Prod.forall, mem_prod_eq, and_imp, id, ball_mem_comm] [GOAL] α : Type u β : Type v inst✝ : UniformSpace α l : Filter α h : Cauchy l ⊢ Cauchy ↑(Ultrafilter.of l) [PROOFSTEP] haveI := h.1 [GOAL] α : Type u β : Type v inst✝ : UniformSpace α l : Filter α h : Cauchy l this : NeBot l ⊢ Cauchy ↑(Ultrafilter.of l) [PROOFSTEP] have := Ultrafilter.of_le l [GOAL] α : Type u β : Type v inst✝ : UniformSpace α l : Filter α h : Cauchy l this✝ : NeBot l this : ↑(Ultrafilter.of l) ≤ l ⊢ Cauchy ↑(Ultrafilter.of l) [PROOFSTEP] exact ⟨Ultrafilter.neBot _, (Filter.prod_mono this this).trans h.2⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α l : Filter β f : β → α ⊢ Cauchy (map f l) ↔ NeBot l ∧ Tendsto (fun p => (f p.fst, f p.snd)) (l ×ˢ l) (𝓤 α) [PROOFSTEP] rw [Cauchy, map_neBot_iff, prod_map_map_eq, Tendsto] [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : Filter α g : Filter β hf : Cauchy f hg : Cauchy g ⊢ Cauchy (f ×ˢ g) [PROOFSTEP] refine' ⟨hf.1.prod hg.1, _⟩ [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : Filter α g : Filter β hf : Cauchy f hg : Cauchy g ⊢ (f ×ˢ g) ×ˢ f ×ˢ g ≤ 𝓤 (α × β) [PROOFSTEP] simp only [uniformity_prod, le_inf_iff, ← map_le_iff_le_comap, ← prod_map_map_eq] [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : Filter α g : Filter β hf : Cauchy f hg : Cauchy g ⊢ map Prod.fst (f ×ˢ g) ×ˢ map Prod.fst (f ×ˢ g) ≤ 𝓤 α ∧ map Prod.snd (f ×ˢ g) ×ˢ map Prod.snd (f ×ˢ g) ≤ 𝓤 β [PROOFSTEP] exact ⟨le_trans (prod_mono tendsto_fst tendsto_fst) hf.2, le_trans (prod_mono tendsto_snd tendsto_snd) hg.2⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α f : Filter α x : α adhs : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (x, y) ∈ s ∧ y ∈ t ⊢ f ≤ 𝓝 x [PROOFSTEP] intro s hs [GOAL] α : Type u β : Type v inst✝ : UniformSpace α f : Filter α x : α adhs : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (x, y) ∈ s ∧ y ∈ t s : Set α hs : s ∈ 𝓝 x ⊢ s ∈ f [PROOFSTEP] rcases comp_mem_uniformity_sets (mem_nhds_uniformity_iff_right.1 hs) with ⟨U, U_mem, hU⟩ -- Take a set `t ∈ f`, `t × t ⊆ U`, and a point `y ∈ t` such that `(x, y) ∈ U` [GOAL] case intro.intro α : Type u β : Type v inst✝ : UniformSpace α f : Filter α x : α adhs : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (x, y) ∈ s ∧ y ∈ t s : Set α hs : s ∈ 𝓝 x U : Set (α × α) U_mem : U ∈ 𝓤 α hU : U ○ U ⊆ {p | p.fst = x → p.snd ∈ s} ⊢ s ∈ f [PROOFSTEP] rcases adhs U U_mem with ⟨t, t_mem, ht, y, hxy, hy⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α f : Filter α x : α adhs : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (x, y) ∈ s ∧ y ∈ t s : Set α hs : s ∈ 𝓝 x U : Set (α × α) U_mem : U ∈ 𝓤 α hU : U ○ U ⊆ {p | p.fst = x → p.snd ∈ s} t : Set α t_mem : t ∈ f ht : t ×ˢ t ⊆ U y : α hxy : (x, y) ∈ U hy : y ∈ t ⊢ s ∈ f [PROOFSTEP] apply mem_of_superset t_mem [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α f : Filter α x : α adhs : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (x, y) ∈ s ∧ y ∈ t s : Set α hs : s ∈ 𝓝 x U : Set (α × α) U_mem : U ∈ 𝓤 α hU : U ○ U ⊆ {p | p.fst = x → p.snd ∈ s} t : Set α t_mem : t ∈ f ht : t ×ˢ t ⊆ U y : α hxy : (x, y) ∈ U hy : y ∈ t ⊢ t ⊆ s [PROOFSTEP] exact fun z hz => hU (prod_mk_mem_compRel hxy (ht <| mk_mem_prod hy hz)) rfl [GOAL] α : Type u β : Type v inst✝ : UniformSpace α f : Filter α x : α hf : Cauchy f adhs : ClusterPt x f s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (x, y) ∈ s ∧ y ∈ t [PROOFSTEP] obtain ⟨t, t_mem, ht⟩ : ∃ t ∈ f, t ×ˢ t ⊆ s := (cauchy_iff.1 hf).2 s hs [GOAL] case intro.intro α : Type u β : Type v inst✝ : UniformSpace α f : Filter α x : α hf : Cauchy f adhs : ClusterPt x f s : Set (α × α) hs : s ∈ 𝓤 α t : Set α t_mem : t ∈ f ht : t ×ˢ t ⊆ s ⊢ ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (x, y) ∈ s ∧ y ∈ t [PROOFSTEP] use t, t_mem, ht [GOAL] case right α : Type u β : Type v inst✝ : UniformSpace α f : Filter α x : α hf : Cauchy f adhs : ClusterPt x f s : Set (α × α) hs : s ∈ 𝓤 α t : Set α t_mem : t ∈ f ht : t ×ˢ t ⊆ s ⊢ ∃ y, (x, y) ∈ s ∧ y ∈ t [PROOFSTEP] exact forall_mem_nonempty_iff_neBot.2 adhs _ (inter_mem_inf (mem_nhds_left x hs) t_mem) [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : SemilatticeSup β u : β → α h : CauchySeq u ⊢ Tendsto (Prod.map u u) atTop (𝓤 α) [PROOFSTEP] simpa only [Tendsto, prod_map_map_eq', prod_atTop_atTop_eq] using h.right [GOAL] α : Type u β✝ : Type v inst✝¹ : UniformSpace α β : Type u_1 inst✝ : SemilatticeSup β u : β → α h : CauchySeq u V : Set (α × α) hV : V ∈ 𝓤 α ⊢ ∃ k₀, ∀ (i j : β), k₀ ≤ i → k₀ ≤ j → (u i, u j) ∈ V [PROOFSTEP] haveI := h.nonempty [GOAL] α : Type u β✝ : Type v inst✝¹ : UniformSpace α β : Type u_1 inst✝ : SemilatticeSup β u : β → α h : CauchySeq u V : Set (α × α) hV : V ∈ 𝓤 α this : Nonempty β ⊢ ∃ k₀, ∀ (i j : β), k₀ ≤ i → k₀ ≤ j → (u i, u j) ∈ V [PROOFSTEP] have := h.tendsto_uniformity [GOAL] α : Type u β✝ : Type v inst✝¹ : UniformSpace α β : Type u_1 inst✝ : SemilatticeSup β u : β → α h : CauchySeq u V : Set (α × α) hV : V ∈ 𝓤 α this✝ : Nonempty β this : Tendsto (Prod.map u u) atTop (𝓤 α) ⊢ ∃ k₀, ∀ (i j : β), k₀ ≤ i → k₀ ≤ j → (u i, u j) ∈ V [PROOFSTEP] rw [← prod_atTop_atTop_eq] at this [GOAL] α : Type u β✝ : Type v inst✝¹ : UniformSpace α β : Type u_1 inst✝ : SemilatticeSup β u : β → α h : CauchySeq u V : Set (α × α) hV : V ∈ 𝓤 α this✝ : Nonempty β this : Tendsto (Prod.map u u) (atTop ×ˢ atTop) (𝓤 α) ⊢ ∃ k₀, ∀ (i j : β), k₀ ≤ i → k₀ ≤ j → (u i, u j) ∈ V [PROOFSTEP] simpa [MapsTo] using atTop_basis.prod_self.tendsto_left_iff.1 this V hV [GOAL] α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α ⊢ Tendsto (fun p => (u p.fst, u p.snd)) (atTop ×ˢ atTop) (𝓤 α) ↔ Tendsto (Prod.map u u) atTop (𝓤 α) [PROOFSTEP] simp only [prod_atTop_atTop_eq, Prod.map_def] [GOAL] α : Type u β : Type v inst✝ : UniformSpace α f : ℕ → ℕ hf : Bijective f u : ℕ → α ⊢ CauchySeq (u ∘ f) ↔ CauchySeq u [PROOFSTEP] refine' ⟨fun H => _, fun H => H.comp_injective hf.injective⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α f : ℕ → ℕ hf : Bijective f u : ℕ → α H : CauchySeq (u ∘ f) ⊢ CauchySeq u [PROOFSTEP] lift f to ℕ ≃ ℕ using hf [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α u : ℕ → α f : ℕ ≃ ℕ H : CauchySeq (u ∘ ↑f) ⊢ CauchySeq u [PROOFSTEP] simpa only [(· ∘ ·), f.apply_symm_apply] using H.comp_injective f.symm.injective [GOAL] α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α hu : CauchySeq u f g : ℕ → ℕ hf : Tendsto f atTop atTop hg : Tendsto g atTop atTop ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), ((u ∘ f ∘ φ) n, (u ∘ g ∘ φ) n) ∈ V n [PROOFSTEP] rw [cauchySeq_iff_tendsto] at hu [GOAL] α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α hu : Tendsto (Prod.map u u) atTop (𝓤 α) f g : ℕ → ℕ hf : Tendsto f atTop atTop hg : Tendsto g atTop atTop ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), ((u ∘ f ∘ φ) n, (u ∘ g ∘ φ) n) ∈ V n [PROOFSTEP] exact ((hu.comp <| hf.prod_atTop hg).comp tendsto_atTop_diagonal).subseq_mem hV [GOAL] α : Type u β : Type v inst✝ : UniformSpace α u : ℕ → α ⊢ CauchySeq u ↔ ∀ (V : Set (α × α)), V ∈ 𝓤 α → ∃ N, ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ N → (u k, u l) ∈ V [PROOFSTEP] simp only [cauchySeq_iff', Filter.eventually_atTop_prod_self', mem_preimage, Prod_map] [GOAL] α : Type u β : Type v inst✝³ : UniformSpace α γ : Type u_1 δ : Type u_2 inst✝² : UniformSpace β inst✝¹ : SemilatticeSup γ inst✝ : SemilatticeSup δ u : γ → α v : δ → β hu : CauchySeq u hv : CauchySeq v ⊢ CauchySeq (Prod.map u v) [PROOFSTEP] simpa only [CauchySeq, prod_map_map_eq', prod_atTop_atTop_eq] using hu.prod hv [GOAL] α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α hu : CauchySeq u ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), (u (φ (n + 1)), u (φ n)) ∈ V n [PROOFSTEP] have : ∀ n, ∃ N, ∀ k ≥ N, ∀ l ≥ k, (u l, u k) ∈ V n := fun n => by rw [cauchySeq_iff] at hu rcases hu _ (hV n) with ⟨N, H⟩ exact ⟨N, fun k hk l hl => H _ (le_trans hk hl) _ hk⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α hu : CauchySeq u n : ℕ ⊢ ∃ N, ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ k → (u l, u k) ∈ V n [PROOFSTEP] rw [cauchySeq_iff] at hu [GOAL] α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α hu : ∀ (V : Set (α × α)), V ∈ 𝓤 α → ∃ N, ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ N → (u k, u l) ∈ V n : ℕ ⊢ ∃ N, ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ k → (u l, u k) ∈ V n [PROOFSTEP] rcases hu _ (hV n) with ⟨N, H⟩ [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α hu : ∀ (V : Set (α × α)), V ∈ 𝓤 α → ∃ N, ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ N → (u k, u l) ∈ V n N : ℕ H : ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ N → (u k, u l) ∈ V n ⊢ ∃ N, ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ k → (u l, u k) ∈ V n [PROOFSTEP] exact ⟨N, fun k hk l hl => H _ (le_trans hk hl) _ hk⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α hu : CauchySeq u this : ∀ (n : ℕ), ∃ N, ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ k → (u l, u k) ∈ V n ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), (u (φ (n + 1)), u (φ n)) ∈ V n [PROOFSTEP] obtain ⟨φ : ℕ → ℕ, φ_extr : StrictMono φ, hφ : ∀ n, ∀ l ≥ φ n, (u l, u <| φ n) ∈ V n⟩ := extraction_forall_of_eventually' this [GOAL] case intro.intro α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α hu : CauchySeq u this : ∀ (n : ℕ), ∃ N, ∀ (k : ℕ), k ≥ N → ∀ (l : ℕ), l ≥ k → (u l, u k) ∈ V n φ : ℕ → ℕ φ_extr : StrictMono φ hφ : ∀ (n l : ℕ), l ≥ φ n → (u l, u (φ n)) ∈ V n ⊢ ∃ φ, StrictMono φ ∧ ∀ (n : ℕ), (u (φ (n + 1)), u (φ n)) ∈ V n [PROOFSTEP] exact ⟨φ, φ_extr, fun n => hφ _ _ (φ_extr <| lt_add_one n).le⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α a : α hu : Tendsto u atTop (𝓝 a) ⊢ ∃ φ, StrictMono φ ∧ (u (φ 0), a) ∈ V 0 ∧ ∀ (n : ℕ), (u (φ (n + 1)), u (φ n)) ∈ V (n + 1) [PROOFSTEP] rcases mem_atTop_sets.1 (hu (ball_mem_nhds a (symm_le_uniformity <| hV 0))) with ⟨n, hn⟩ [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α a : α hu : Tendsto u atTop (𝓝 a) n : ℕ hn : ∀ (b : ℕ), b ≥ n → b ∈ u ⁻¹' ball a (Prod.swap ⁻¹' V 0) ⊢ ∃ φ, StrictMono φ ∧ (u (φ 0), a) ∈ V 0 ∧ ∀ (n : ℕ), (u (φ (n + 1)), u (φ n)) ∈ V (n + 1) [PROOFSTEP] rcases(hu.comp (tendsto_add_atTop_nat n)).cauchySeq.subseq_mem fun n => hV (n + 1) with ⟨φ, φ_mono, hφV⟩ [GOAL] case intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α V : ℕ → Set (α × α) hV : ∀ (n : ℕ), V n ∈ 𝓤 α u : ℕ → α a : α hu : Tendsto u atTop (𝓝 a) n : ℕ hn : ∀ (b : ℕ), b ≥ n → b ∈ u ⁻¹' ball a (Prod.swap ⁻¹' V 0) φ : ℕ → ℕ φ_mono : StrictMono φ hφV : ∀ (n_1 : ℕ), ((u ∘ fun a => a + n) (φ (n_1 + 1)), (u ∘ fun a => a + n) (φ n_1)) ∈ V (n_1 + 1) ⊢ ∃ φ, StrictMono φ ∧ (u (φ 0), a) ∈ V 0 ∧ ∀ (n : ℕ), (u (φ (n + 1)), u (φ n)) ∈ V (n + 1) [PROOFSTEP] exact ⟨fun k => φ k + n, φ_mono.add_const _, hn _ le_add_self, hφV⟩ [GOAL] α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) h : HasBasis (𝓤 α) p s ⊢ CauchySeq u ↔ ∀ (i : γ), p i → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → (u m, u n) ∈ s i [PROOFSTEP] rw [cauchySeq_iff_tendsto, ← prod_atTop_atTop_eq] [GOAL] α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) h : HasBasis (𝓤 α) p s ⊢ Tendsto (Prod.map u u) (atTop ×ˢ atTop) (𝓤 α) ↔ ∀ (i : γ), p i → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → (u m, u n) ∈ s i [PROOFSTEP] refine' (atTop_basis.prod_self.tendsto_iff h).trans _ [GOAL] α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) h : HasBasis (𝓤 α) p s ⊢ (∀ (ib : γ), p ib → ∃ ia, True ∧ ∀ (x : β × β), x ∈ Ici ia ×ˢ Ici ia → Prod.map u u x ∈ s ib) ↔ ∀ (i : γ), p i → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → (u m, u n) ∈ s i [PROOFSTEP] simp only [exists_prop, true_and_iff, MapsTo, preimage, subset_def, Prod.forall, mem_prod_eq, mem_setOf_eq, mem_Ici, and_imp, Prod.map, ge_iff_le, @forall_swap (_ ≤ _) β] [GOAL] α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) H : HasBasis (𝓤 α) p s ⊢ CauchySeq u ↔ ∀ (i : γ), p i → ∃ N, ∀ (n : β), n ≥ N → (u n, u N) ∈ s i [PROOFSTEP] refine' H.cauchySeq_iff.trans ⟨fun h i hi => _, fun h i hi => _⟩ [GOAL] case refine'_1 α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) H : HasBasis (𝓤 α) p s h : ∀ (i : γ), p i → ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → (u m, u n) ∈ s i i : γ hi : p i ⊢ ∃ N, ∀ (n : β), n ≥ N → (u n, u N) ∈ s i [PROOFSTEP] exact (h i hi).imp fun N hN n hn => hN n hn N le_rfl [GOAL] case refine'_2 α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) H : HasBasis (𝓤 α) p s h : ∀ (i : γ), p i → ∃ N, ∀ (n : β), n ≥ N → (u n, u N) ∈ s i i : γ hi : p i ⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → (u m, u n) ∈ s i [PROOFSTEP] rcases comp_symm_of_uniformity (H.mem_of_mem hi) with ⟨t, ht, ht', hts⟩ [GOAL] case refine'_2.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) H : HasBasis (𝓤 α) p s h : ∀ (i : γ), p i → ∃ N, ∀ (n : β), n ≥ N → (u n, u N) ∈ s i i : γ hi : p i t : Set (α × α) ht : t ∈ 𝓤 α ht' : ∀ {a b : α}, (a, b) ∈ t → (b, a) ∈ t hts : t ○ t ⊆ s i ⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → (u m, u n) ∈ s i [PROOFSTEP] rcases H.mem_iff.1 ht with ⟨j, hj, hjt⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) H : HasBasis (𝓤 α) p s h : ∀ (i : γ), p i → ∃ N, ∀ (n : β), n ≥ N → (u n, u N) ∈ s i i : γ hi : p i t : Set (α × α) ht : t ∈ 𝓤 α ht' : ∀ {a b : α}, (a, b) ∈ t → (b, a) ∈ t hts : t ○ t ⊆ s i j : γ hj : p j hjt : s j ⊆ t ⊢ ∃ N, ∀ (m : β), N ≤ m → ∀ (n : β), N ≤ n → (u m, u n) ∈ s i [PROOFSTEP] refine' (h j hj).imp fun N hN m hm n hn => hts ⟨u N, hjt _, ht' <| hjt _⟩ [GOAL] case refine'_2.intro.intro.intro.intro.intro.refine'_1 α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) H : HasBasis (𝓤 α) p s h : ∀ (i : γ), p i → ∃ N, ∀ (n : β), n ≥ N → (u n, u N) ∈ s i i : γ hi : p i t : Set (α × α) ht : t ∈ 𝓤 α ht' : ∀ {a b : α}, (a, b) ∈ t → (b, a) ∈ t hts : t ○ t ⊆ s i j : γ hj : p j hjt : s j ⊆ t N : β hN : ∀ (n : β), n ≥ N → (u n, u N) ∈ s j m : β hm : N ≤ m n : β hn : N ≤ n ⊢ ((u m, u n).fst, u N) ∈ s j case refine'_2.intro.intro.intro.intro.intro.refine'_2 α : Type u β : Type v inst✝² : UniformSpace α γ : Sort u_1 inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α p : γ → Prop s : γ → Set (α × α) H : HasBasis (𝓤 α) p s h : ∀ (i : γ), p i → ∃ N, ∀ (n : β), n ≥ N → (u n, u N) ∈ s i i : γ hi : p i t : Set (α × α) ht : t ∈ 𝓤 α ht' : ∀ {a b : α}, (a, b) ∈ t → (b, a) ∈ t hts : t ○ t ⊆ s i j : γ hj : p j hjt : s j ⊆ t N : β hN : ∀ (n : β), n ≥ N → (u n, u N) ∈ s j m : β hm : N ≤ m n : β hn : N ≤ n ⊢ ((u m, u n).snd, u N) ∈ s j [PROOFSTEP] exacts [hN m hm, hN n hn] [GOAL] α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : SemilatticeSup β inst✝ : Nonempty β U : β → Set (α × α) hU : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s f : β → α hf : ∀ ⦃N m n : β⦄, N ≤ m → N ≤ n → (f m, f n) ∈ U N ⊢ Tendsto (Prod.map f f) atTop (𝓤 α) [PROOFSTEP] intro s hs [GOAL] α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : SemilatticeSup β inst✝ : Nonempty β U : β → Set (α × α) hU : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s f : β → α hf : ∀ ⦃N m n : β⦄, N ≤ m → N ≤ n → (f m, f n) ∈ U N s : Set (α × α) hs : s ∈ 𝓤 α ⊢ s ∈ map (Prod.map f f) atTop [PROOFSTEP] rw [mem_map, mem_atTop_sets] [GOAL] α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : SemilatticeSup β inst✝ : Nonempty β U : β → Set (α × α) hU : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s f : β → α hf : ∀ ⦃N m n : β⦄, N ≤ m → N ≤ n → (f m, f n) ∈ U N s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∃ a, ∀ (b : β × β), b ≥ a → b ∈ Prod.map f f ⁻¹' s [PROOFSTEP] cases' hU s hs with N hN [GOAL] case intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : SemilatticeSup β inst✝ : Nonempty β U : β → Set (α × α) hU : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s f : β → α hf : ∀ ⦃N m n : β⦄, N ≤ m → N ≤ n → (f m, f n) ∈ U N s : Set (α × α) hs : s ∈ 𝓤 α N : β hN : U N ⊆ s ⊢ ∃ a, ∀ (b : β × β), b ≥ a → b ∈ Prod.map f f ⁻¹' s [PROOFSTEP] refine' ⟨(N, N), fun mn hmn => _⟩ [GOAL] case intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : SemilatticeSup β inst✝ : Nonempty β U : β → Set (α × α) hU : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s f : β → α hf : ∀ ⦃N m n : β⦄, N ≤ m → N ≤ n → (f m, f n) ∈ U N s : Set (α × α) hs : s ∈ 𝓤 α N : β hN : U N ⊆ s mn : β × β hmn : mn ≥ (N, N) ⊢ mn ∈ Prod.map f f ⁻¹' s [PROOFSTEP] cases' mn with m n [GOAL] case intro.mk α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : SemilatticeSup β inst✝ : Nonempty β U : β → Set (α × α) hU : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s f : β → α hf : ∀ ⦃N m n : β⦄, N ≤ m → N ≤ n → (f m, f n) ∈ U N s : Set (α × α) hs : s ∈ 𝓤 α N : β hN : U N ⊆ s m n : β hmn : (m, n) ≥ (N, N) ⊢ (m, n) ∈ Prod.map f f ⁻¹' s [PROOFSTEP] exact hN (hf hmn.1 hmn.2) [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α ⊢ IsComplete s ↔ ∀ (l : Ultrafilter α), Cauchy ↑l → ↑l ≤ 𝓟 s → ∃ x, x ∈ s ∧ ↑l ≤ 𝓝 x [PROOFSTEP] refine' ⟨fun h l => h l, fun H => isComplete_iff_clusterPt.2 fun l hl hls => _⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α H : ∀ (l : Ultrafilter α), Cauchy ↑l → ↑l ≤ 𝓟 s → ∃ x, x ∈ s ∧ ↑l ≤ 𝓝 x l : Filter α hl : Cauchy l hls : l ≤ 𝓟 s ⊢ ∃ x, x ∈ s ∧ ClusterPt x l [PROOFSTEP] haveI := hl.1 [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α H : ∀ (l : Ultrafilter α), Cauchy ↑l → ↑l ≤ 𝓟 s → ∃ x, x ∈ s ∧ ↑l ≤ 𝓝 x l : Filter α hl : Cauchy l hls : l ≤ 𝓟 s this : NeBot l ⊢ ∃ x, x ∈ s ∧ ClusterPt x l [PROOFSTEP] rcases H (Ultrafilter.of l) hl.ultrafilter_of ((Ultrafilter.of_le l).trans hls) with ⟨x, hxs, hxl⟩ [GOAL] case intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α H : ∀ (l : Ultrafilter α), Cauchy ↑l → ↑l ≤ 𝓟 s → ∃ x, x ∈ s ∧ ↑l ≤ 𝓝 x l : Filter α hl : Cauchy l hls : l ≤ 𝓟 s this : NeBot l x : α hxs : x ∈ s hxl : ↑(Ultrafilter.of l) ≤ 𝓝 x ⊢ ∃ x, x ∈ s ∧ ClusterPt x l [PROOFSTEP] exact ⟨x, hxs, (ClusterPt.of_le_nhds hxl).mono (Ultrafilter.of_le l)⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α ⊢ (∀ (l : Ultrafilter α), Cauchy ↑l → ↑l ≤ 𝓟 s → ∃ x, x ∈ s ∧ ↑l ≤ 𝓝 x) ↔ ∀ (l : Ultrafilter α), Cauchy ↑l → s ∈ l → ∃ x, x ∈ s ∧ ↑l ≤ 𝓝 x [PROOFSTEP] simp only [le_principal_iff, Ultrafilter.mem_coe] [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s t : Set α hs : IsComplete s ht : IsComplete t ⊢ IsComplete (s ∪ t) [PROOFSTEP] simp only [isComplete_iff_ultrafilter', Ultrafilter.union_mem_iff, or_imp] at * [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s t : Set α hs : ∀ (l : Ultrafilter α), Cauchy ↑l → s ∈ l → ∃ x, x ∈ s ∧ ↑l ≤ 𝓝 x ht : ∀ (l : Ultrafilter α), Cauchy ↑l → t ∈ l → ∃ x, x ∈ t ∧ ↑l ≤ 𝓝 x ⊢ ∀ (l : Ultrafilter α), Cauchy ↑l → (s ∈ l → ∃ x, x ∈ s ∪ t ∧ ↑l ≤ 𝓝 x) ∧ (t ∈ l → ∃ x, x ∈ s ∪ t ∧ ↑l ≤ 𝓝 x) [PROOFSTEP] exact fun l hl => ⟨fun hsl => (hs l hl hsl).imp fun x hx => ⟨Or.inl hx.1, hx.2⟩, fun htl => (ht l hl htl).imp fun x hx => ⟨Or.inr hx.1, hx.2⟩⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j ⊢ IsComplete (⋃ (i : ι), s i) [PROOFSTEP] set S := ⋃ i, s i [GOAL] α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i ⊢ IsComplete S [PROOFSTEP] intro l hl hls [GOAL] α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : l ≤ 𝓟 S ⊢ ∃ x, x ∈ S ∧ l ≤ 𝓝 x [PROOFSTEP] rw [le_principal_iff] at hls [GOAL] α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l ⊢ ∃ x, x ∈ S ∧ l ≤ 𝓝 x [PROOFSTEP] cases' cauchy_iff.1 hl with hl_ne hl' [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s ⊢ ∃ x, x ∈ S ∧ l ≤ 𝓝 x [PROOFSTEP] obtain ⟨t, htS, htl, htU⟩ : ∃ t, t ⊆ S ∧ t ∈ l ∧ t ×ˢ t ⊆ U := by rcases hl' U hU with ⟨t, htl, htU⟩ exact ⟨t ∩ S, inter_subset_right _ _, inter_mem htl hls, (Set.prod_mono (inter_subset_left _ _) (inter_subset_left _ _)).trans htU⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s ⊢ ∃ t, t ⊆ S ∧ t ∈ l ∧ t ×ˢ t ⊆ U [PROOFSTEP] rcases hl' U hU with ⟨t, htl, htU⟩ [GOAL] case intro.intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htl : t ∈ l htU : t ×ˢ t ⊆ U ⊢ ∃ t, t ⊆ S ∧ t ∈ l ∧ t ×ˢ t ⊆ U [PROOFSTEP] exact ⟨t ∩ S, inter_subset_right _ _, inter_mem htl hls, (Set.prod_mono (inter_subset_left _ _) (inter_subset_left _ _)).trans htU⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U ⊢ ∃ x, x ∈ S ∧ l ≤ 𝓝 x [PROOFSTEP] obtain ⟨i, hi⟩ : ∃ i, t ⊆ s i := by rcases Filter.nonempty_of_mem htl with ⟨x, hx⟩ rcases mem_iUnion.1 (htS hx) with ⟨i, hi⟩ refine' ⟨i, fun y hy => _⟩ rcases mem_iUnion.1 (htS hy) with ⟨j, hj⟩ rwa [hd i j x hi y hj (htU <| mk_mem_prod hx hy)] [GOAL] α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U ⊢ ∃ i, t ⊆ s i [PROOFSTEP] rcases Filter.nonempty_of_mem htl with ⟨x, hx⟩ [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U x : α hx : x ∈ t ⊢ ∃ i, t ⊆ s i [PROOFSTEP] rcases mem_iUnion.1 (htS hx) with ⟨i, hi⟩ [GOAL] case intro.intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U x : α hx : x ∈ t i : ι hi : x ∈ s i ⊢ ∃ i, t ⊆ s i [PROOFSTEP] refine' ⟨i, fun y hy => _⟩ [GOAL] case intro.intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U x : α hx : x ∈ t i : ι hi : x ∈ s i y : α hy : y ∈ t ⊢ y ∈ s i [PROOFSTEP] rcases mem_iUnion.1 (htS hy) with ⟨j, hj⟩ [GOAL] case intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U x : α hx : x ∈ t i : ι hi : x ∈ s i y : α hy : y ∈ t j : ι hj : y ∈ s j ⊢ y ∈ s i [PROOFSTEP] rwa [hd i j x hi y hj (htU <| mk_mem_prod hx hy)] [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U i : ι hi : t ⊆ s i ⊢ ∃ x, x ∈ S ∧ l ≤ 𝓝 x [PROOFSTEP] rcases hs i l hl (le_principal_iff.2 <| mem_of_superset htl hi) with ⟨x, hxs, hlx⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α ι : Sort u_1 s : ι → Set α hs : ∀ (i : ι), IsComplete (s i) U : Set (α × α) hU : U ∈ 𝓤 α hd : ∀ (i j : ι) (x : α), x ∈ s i → ∀ (y : α), y ∈ s j → (x, y) ∈ U → i = j S : Set α := ⋃ (i : ι), s i l : Filter α hl : Cauchy l hls : S ∈ l hl_ne : NeBot l hl' : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ t, t ∈ l ∧ t ×ˢ t ⊆ s t : Set α htS : t ⊆ S htl : t ∈ l htU : t ×ˢ t ⊆ U i : ι hi : t ⊆ s i x : α hxs : x ∈ s i hlx : l ≤ 𝓝 x ⊢ ∃ x, x ∈ S ∧ l ≤ 𝓝 x [PROOFSTEP] exact ⟨x, mem_iUnion.2 ⟨i, hxs⟩, hlx⟩ [GOAL] α✝ : Type u β : Type v inst✝² : UniformSpace α✝ α : Type u inst✝¹ : UniformSpace α inst✝ : CompleteSpace α f : Filter α hf : Cauchy f x✝ : f ≤ 𝓟 univ ⊢ ∃ x, x ∈ univ ∧ f ≤ 𝓝 x [PROOFSTEP] rcases CompleteSpace.complete hf with ⟨x, hx⟩ [GOAL] case intro α✝ : Type u β : Type v inst✝² : UniformSpace α✝ α : Type u inst✝¹ : UniformSpace α inst✝ : CompleteSpace α f : Filter α hf : Cauchy f x✝ : f ≤ 𝓟 univ x : α hx : f ≤ 𝓝 x ⊢ ∃ x, x ∈ univ ∧ f ≤ 𝓝 x [PROOFSTEP] exact ⟨x, mem_univ x, hx⟩ [GOAL] α : Type u β : Type v inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : CompleteSpace α inst✝ : CompleteSpace β f✝ : Filter (α × β) hf : Cauchy f✝ x1 : α hx1 : map (fun p => p.fst) f✝ ≤ 𝓝 x1 x2 : β hx2 : map (fun p => p.snd) f✝ ≤ 𝓝 x2 ⊢ f✝ ≤ 𝓝 (x1, x2) [PROOFSTEP] rw [nhds_prod_eq, Filter.prod_def] [GOAL] α : Type u β : Type v inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : CompleteSpace α inst✝ : CompleteSpace β f✝ : Filter (α × β) hf : Cauchy f✝ x1 : α hx1 : map (fun p => p.fst) f✝ ≤ 𝓝 x1 x2 : β hx2 : map (fun p => p.snd) f✝ ≤ 𝓝 x2 ⊢ f✝ ≤ Filter.lift (𝓝 x1) fun s => Filter.lift' (𝓝 x2) fun t => s ×ˢ t [PROOFSTEP] exact Filter.le_lift.2 fun s hs => Filter.le_lift'.2 fun t ht => inter_mem (hx1 hs) (hx2 ht) [GOAL] α : Type u β : Type v inst✝ : UniformSpace α ⊢ CompleteSpace α ↔ ∀ (l : Ultrafilter α), Cauchy ↑l → ∃ x, ↑l ≤ 𝓝 x [PROOFSTEP] simp [completeSpace_iff_isComplete_univ, isComplete_iff_ultrafilter] [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : SemilatticeSup β K : Set α h₁ : IsComplete K u : β → α h₂ : ∀ (n : β), u n ∈ K h₃ : CauchySeq u ⊢ u '' univ ⊆ K [PROOFSTEP] rwa [image_univ, range_subset_iff] [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α ⊢ ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ U} [PROOFSTEP] rcases comp_symm_of_uniformity hU with ⟨r, hr, rs, rU⟩ [GOAL] case intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U ⊢ ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ U} [PROOFSTEP] rcases hs r hr with ⟨k, fk, ks⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} ⊢ ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ U} [PROOFSTEP] let u := k ∩ {y | ∃ x ∈ s, (x, y) ∈ r} [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} ⊢ ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ U} [PROOFSTEP] choose f hfs hfr using fun x : u => x.coe_prop.2 [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r ⊢ ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ U} [PROOFSTEP] refine' ⟨range f, _, _, _⟩ [GOAL] case intro.intro.intro.intro.intro.refine'_1 α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r ⊢ range f ⊆ s [PROOFSTEP] exact range_subset_iff.2 hfs [GOAL] case intro.intro.intro.intro.intro.refine'_2 α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r ⊢ Set.Finite (range f) [PROOFSTEP] haveI : Fintype u := (fk.inter_of_left _).fintype [GOAL] case intro.intro.intro.intro.intro.refine'_2 α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r this : Fintype ↑u ⊢ Set.Finite (range f) [PROOFSTEP] exact finite_range f [GOAL] case intro.intro.intro.intro.intro.refine'_3 α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r ⊢ s ⊆ ⋃ (y : α) (_ : y ∈ range f), {x | (x, y) ∈ U} [PROOFSTEP] intro x xs [GOAL] case intro.intro.intro.intro.intro.refine'_3 α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r x : α xs : x ∈ s ⊢ x ∈ ⋃ (y : α) (_ : y ∈ range f), {x | (x, y) ∈ U} [PROOFSTEP] obtain ⟨y, hy, xy⟩ := mem_iUnion₂.1 (ks xs) [GOAL] case intro.intro.intro.intro.intro.refine'_3.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r x : α xs : x ∈ s y : α hy : y ∈ k xy : x ∈ {x | (x, y) ∈ r} ⊢ x ∈ ⋃ (y : α) (_ : y ∈ range f), {x | (x, y) ∈ U} [PROOFSTEP] rw [biUnion_range, mem_iUnion] [GOAL] case intro.intro.intro.intro.intro.refine'_3.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r x : α xs : x ∈ s y : α hy : y ∈ k xy : x ∈ {x | (x, y) ∈ r} ⊢ ∃ i, x ∈ {x | (x, f i) ∈ U} [PROOFSTEP] set z : ↥u := ⟨y, hy, ⟨x, xs, xy⟩⟩ [GOAL] case intro.intro.intro.intro.intro.refine'_3.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α hs : TotallyBounded s U : Set (α × α) hU : U ∈ 𝓤 α r : Set (α × α) hr : r ∈ 𝓤 α rs : ∀ {a b : α}, (a, b) ∈ r → (b, a) ∈ r rU : r ○ r ⊆ U k : Set α fk : Set.Finite k ks : s ⊆ ⋃ (y : α) (_ : y ∈ k), {x | (x, y) ∈ r} u : Set α := k ∩ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r} f : ↑u → α hfs : ∀ (x : ↑u), f x ∈ s hfr : ∀ (x : ↑u), (f x, ↑x) ∈ r x : α xs : x ∈ s y : α hy : y ∈ k xy : x ∈ {x | (x, y) ∈ r} z : ↑u := { val := y, property := (_ : y ∈ k ∧ y ∈ {y | ∃ x, x ∈ s ∧ (x, y) ∈ r}) } ⊢ ∃ i, x ∈ {x | (x, f i) ∈ U} [PROOFSTEP] exact ⟨z, rU <| mem_compRel.2 ⟨y, xy, rs (hfr z)⟩⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α h : ∀ (V : Set (α × α)), V ∈ 𝓤 α → SymmetricRel V → ∃ t, Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y V V : Set (α × α) hV : V ∈ 𝓤 α ∧ SymmetricRel V ⊢ ∃ t, Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ id V} [PROOFSTEP] simpa only [ball_eq_of_symmetry hV.2] using h V hV.1 hV.2 [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α hs : TotallyBounded s hf : UniformContinuous f t : Set (β × β) ht : t ∈ 𝓤 β this : {p | (f p.fst, f p.snd) ∈ t} ∈ 𝓤 α c : Set α hfc : Set.Finite c hct : s ⊆ ⋃ (y : α) (_ : y ∈ c), {x | (x, y) ∈ {p | (f p.fst, f p.snd) ∈ t}} ⊢ f '' s ⊆ ⋃ (y : β) (_ : y ∈ f '' c), {x | (x, y) ∈ t} [PROOFSTEP] simp [image_subset_iff] [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α hs : TotallyBounded s hf : UniformContinuous f t : Set (β × β) ht : t ∈ 𝓤 β this : {p | (f p.fst, f p.snd) ∈ t} ∈ 𝓤 α c : Set α hfc : Set.Finite c hct : s ⊆ ⋃ (y : α) (_ : y ∈ c), {x | (x, y) ∈ {p | (f p.fst, f p.snd) ∈ t}} ⊢ s ⊆ ⋃ (i : α) (_ : i ∈ c), {a | (f a, f i) ∈ t} [PROOFSTEP] simp [subset_def] at hct [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α hs : TotallyBounded s hf : UniformContinuous f t : Set (β × β) ht : t ∈ 𝓤 β this : {p | (f p.fst, f p.snd) ∈ t} ∈ 𝓤 α c : Set α hfc : Set.Finite c hct : ∀ (x : α), x ∈ s → ∃ i, i ∈ c ∧ (f x, f i) ∈ t ⊢ s ⊆ ⋃ (i : α) (_ : i ∈ c), {a | (f a, f i) ∈ t} [PROOFSTEP] intro x hx [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α hs : TotallyBounded s hf : UniformContinuous f t : Set (β × β) ht : t ∈ 𝓤 β this : {p | (f p.fst, f p.snd) ∈ t} ∈ 𝓤 α c : Set α hfc : Set.Finite c hct : ∀ (x : α), x ∈ s → ∃ i, i ∈ c ∧ (f x, f i) ∈ t x : α hx : x ∈ s ⊢ x ∈ ⋃ (i : α) (_ : i ∈ c), {a | (f a, f i) ∈ t} [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α hs : TotallyBounded s hf : UniformContinuous f t : Set (β × β) ht : t ∈ 𝓤 β this : {p | (f p.fst, f p.snd) ∈ t} ∈ 𝓤 α c : Set α hfc : Set.Finite c hct : ∀ (x : α), x ∈ s → ∃ i, i ∈ c ∧ (f x, f i) ∈ t x : α hx : x ∈ s ⊢ ∃ i, i ∈ c ∧ (f x, f i) ∈ t [PROOFSTEP] exact hct x hx [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α ⊢ TotallyBounded s ↔ ∀ (f : Filter α), NeBot f → f ≤ 𝓟 s → ∃ c, c ≤ f ∧ Cauchy c [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v inst✝ : UniformSpace α s : Set α ⊢ TotallyBounded s → ∀ (f : Filter α), NeBot f → f ≤ 𝓟 s → ∃ c, c ≤ f ∧ Cauchy c [PROOFSTEP] exact fun H f hf hfs => ⟨Ultrafilter.of f, Ultrafilter.of_le f, (Ultrafilter.of f).cauchy_of_totallyBounded H ((Ultrafilter.of_le f).trans hfs)⟩ [GOAL] case mpr α : Type u β : Type v inst✝ : UniformSpace α s : Set α ⊢ (∀ (f : Filter α), NeBot f → f ≤ 𝓟 s → ∃ c, c ≤ f ∧ Cauchy c) → TotallyBounded s [PROOFSTEP] intro H d hd [GOAL] case mpr α : Type u β : Type v inst✝ : UniformSpace α s : Set α H : ∀ (f : Filter α), NeBot f → f ≤ 𝓟 s → ∃ c, c ≤ f ∧ Cauchy c d : Set (α × α) hd : d ∈ 𝓤 α ⊢ ∃ t, Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} [PROOFSTEP] contrapose! H with hd_cover [GOAL] case mpr α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} ⊢ ∃ f, NeBot f ∧ f ≤ 𝓟 s ∧ ∀ (c : Filter α), c ≤ f → ¬Cauchy c [PROOFSTEP] set f := ⨅ t : Finset α, 𝓟 (s \ ⋃ y ∈ t, {x | (x, y) ∈ d}) [GOAL] case mpr α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) ⊢ ∃ f, NeBot f ∧ f ≤ 𝓟 s ∧ ∀ (c : Filter α), c ≤ f → ¬Cauchy c [PROOFSTEP] have : Filter.NeBot f := by refine' iInf_neBot_of_directed' (directed_of_sup _) _ · intro t₁ t₂ h exact principal_mono.2 (diff_subset_diff_right <| biUnion_subset_biUnion_left h) · intro t simpa [nonempty_diff] using hd_cover t t.finite_toSet [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) ⊢ NeBot f [PROOFSTEP] refine' iInf_neBot_of_directed' (directed_of_sup _) _ [GOAL] case refine'_1 α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) ⊢ ∀ ⦃i j : Finset α⦄, i ≤ j → 𝓟 (s \ ⋃ (y : α) (_ : y ∈ i), {x | (x, y) ∈ d}) ≥ 𝓟 (s \ ⋃ (y : α) (_ : y ∈ j), {x | (x, y) ∈ d}) [PROOFSTEP] intro t₁ t₂ h [GOAL] case refine'_1 α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) t₁ t₂ : Finset α h : t₁ ≤ t₂ ⊢ 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t₁), {x | (x, y) ∈ d}) ≥ 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t₂), {x | (x, y) ∈ d}) [PROOFSTEP] exact principal_mono.2 (diff_subset_diff_right <| biUnion_subset_biUnion_left h) [GOAL] case refine'_2 α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) ⊢ ∀ (i : Finset α), NeBot (𝓟 (s \ ⋃ (y : α) (_ : y ∈ i), {x | (x, y) ∈ d})) [PROOFSTEP] intro t [GOAL] case refine'_2 α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) t : Finset α ⊢ NeBot (𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d})) [PROOFSTEP] simpa [nonempty_diff] using hd_cover t t.finite_toSet [GOAL] case mpr α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this : NeBot f ⊢ ∃ f, NeBot f ∧ f ≤ 𝓟 s ∧ ∀ (c : Filter α), c ≤ f → ¬Cauchy c [PROOFSTEP] have : f ≤ 𝓟 s := iInf_le_of_le ∅ (by simp) [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this : NeBot f ⊢ 𝓟 (s \ ⋃ (y : α) (_ : y ∈ ∅), {x | (x, y) ∈ d}) ≤ 𝓟 s [PROOFSTEP] simp [GOAL] case mpr α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝ : NeBot f this : f ≤ 𝓟 s ⊢ ∃ f, NeBot f ∧ f ≤ 𝓟 s ∧ ∀ (c : Filter α), c ≤ f → ¬Cauchy c [PROOFSTEP] refine' ⟨f, ‹_›, ‹_›, fun c hcf hc => _⟩ [GOAL] case mpr α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝ : NeBot f this : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c ⊢ False [PROOFSTEP] rcases mem_prod_same_iff.1 (hc.2 hd) with ⟨m, hm, hmd⟩ [GOAL] case mpr.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝ : NeBot f this : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c m : Set α hm : m ∈ c hmd : m ×ˢ m ⊆ d ⊢ False [PROOFSTEP] rcases hc.1.nonempty_of_mem hm with ⟨y, hym⟩ [GOAL] case mpr.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝ : NeBot f this : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c m : Set α hm : m ∈ c hmd : m ×ˢ m ⊆ d y : α hym : y ∈ m ⊢ False [PROOFSTEP] set ys := ⋃ y' ∈ ({ y } : Finset α), {x | (x, y') ∈ d} [GOAL] case mpr.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝ : NeBot f this : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c m : Set α hm : m ∈ c hmd : m ×ˢ m ⊆ d y : α hym : y ∈ m ys : Set α := ⋃ (y' : α) (_ : y' ∈ {y}), {x | (x, y') ∈ d} ⊢ False [PROOFSTEP] have : c ≤ 𝓟 (s \ ys) := hcf.trans (iInf_le_of_le { y } le_rfl) [GOAL] case mpr.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝¹ : NeBot f this✝ : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c m : Set α hm : m ∈ c hmd : m ×ˢ m ⊆ d y : α hym : y ∈ m ys : Set α := ⋃ (y' : α) (_ : y' ∈ {y}), {x | (x, y') ∈ d} this : c ≤ 𝓟 (s \ ys) ⊢ False [PROOFSTEP] refine' hc.1.ne (empty_mem_iff_bot.mp _) [GOAL] case mpr.intro.intro.intro α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝¹ : NeBot f this✝ : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c m : Set α hm : m ∈ c hmd : m ×ˢ m ⊆ d y : α hym : y ∈ m ys : Set α := ⋃ (y' : α) (_ : y' ∈ {y}), {x | (x, y') ∈ d} this : c ≤ 𝓟 (s \ ys) ⊢ ∅ ∈ c [PROOFSTEP] filter_upwards [le_principal_iff.1 this, hm] [GOAL] case h α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝¹ : NeBot f this✝ : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c m : Set α hm : m ∈ c hmd : m ×ˢ m ⊆ d y : α hym : y ∈ m ys : Set α := ⋃ (y' : α) (_ : y' ∈ {y}), {x | (x, y') ∈ d} this : c ≤ 𝓟 (s \ ys) ⊢ ∀ (a : α), a ∈ s \ ⋃ (y' : α) (_ : y' ∈ {y}), {x | (x, y') ∈ d} → a ∈ m → a ∈ ∅ [PROOFSTEP] refine' fun x hx hxm => hx.2 _ [GOAL] case h α : Type u β : Type v inst✝ : UniformSpace α s : Set α d : Set (α × α) hd : d ∈ 𝓤 α hd_cover : ∀ (t : Set α), Set.Finite t → ¬s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} f : Filter α := ⨅ (t : Finset α), 𝓟 (s \ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d}) this✝¹ : NeBot f this✝ : f ≤ 𝓟 s c : Filter α hcf : c ≤ f hc : Cauchy c m : Set α hm : m ∈ c hmd : m ×ˢ m ⊆ d y : α hym : y ∈ m ys : Set α := ⋃ (y' : α) (_ : y' ∈ {y}), {x | (x, y') ∈ d} this : c ≤ 𝓟 (s \ ys) x : α hx : x ∈ s \ ⋃ (y' : α) (_ : y' ∈ {y}), {x | (x, y') ∈ d} hxm : x ∈ m ⊢ x ∈ ⋃ (y' : α) (_ : y' ∈ {y}), {x | (x, y') ∈ d} [PROOFSTEP] simpa using hmd (mk_mem_prod hxm hym) [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α ⊢ TotallyBounded s ↔ ∀ (f : Ultrafilter α), ↑f ≤ 𝓟 s → Cauchy ↑f [PROOFSTEP] refine' ⟨fun hs f => f.cauchy_of_totallyBounded hs, fun H => totallyBounded_iff_filter.2 _⟩ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α H : ∀ (f : Ultrafilter α), ↑f ≤ 𝓟 s → Cauchy ↑f ⊢ ∀ (f : Filter α), NeBot f → f ≤ 𝓟 s → ∃ c, c ≤ f ∧ Cauchy c [PROOFSTEP] intro f hf hfs [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : Set α H : ∀ (f : Ultrafilter α), ↑f ≤ 𝓟 s → Cauchy ↑f f : Filter α hf : NeBot f hfs : f ≤ 𝓟 s ⊢ ∃ c, c ≤ f ∧ Cauchy c [PROOFSTEP] exact ⟨Ultrafilter.of f, Ultrafilter.of_le f, H _ ((Ultrafilter.of_le f).trans hfs)⟩ [GOAL] α✝ : Type u β : Type v inst✝² : UniformSpace α✝ α : Type u inst✝¹ : UniformSpace α inst✝ : CompactSpace α f✝ : Filter α hf : Cauchy f✝ ⊢ ∃ x, f✝ ≤ 𝓝 x [PROOFSTEP] simpa using (isCompact_iff_totallyBounded_isComplete.1 isCompact_univ).2 _ hf [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s ⊢ TotallyBounded (range s) [PROOFSTEP] refine' totallyBounded_iff_subset.2 fun a ha => _ [GOAL] α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α ⊢ ∃ t, t ⊆ range s ∧ Set.Finite t ∧ range s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ a} [PROOFSTEP] cases' cauchySeq_iff.1 hs a ha with n hn [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ (k : ℕ), k ≥ n → ∀ (l : ℕ), l ≥ n → (s k, s l) ∈ a ⊢ ∃ t, t ⊆ range s ∧ Set.Finite t ∧ range s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ a} [PROOFSTEP] refine' ⟨s '' {k | k ≤ n}, image_subset_range _ _, (finite_le_nat _).image _, _⟩ [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ (k : ℕ), k ≥ n → ∀ (l : ℕ), l ≥ n → (s k, s l) ∈ a ⊢ range s ⊆ ⋃ (y : α) (_ : y ∈ s '' {k | k ≤ n}), {x | (x, y) ∈ a} [PROOFSTEP] rw [range_subset_iff, biUnion_image] [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ (k : ℕ), k ≥ n → ∀ (l : ℕ), l ≥ n → (s k, s l) ∈ a ⊢ ∀ (y : ℕ), s y ∈ ⋃ (y : ℕ) (_ : y ∈ {k | k ≤ n}), {x | (x, s y) ∈ a} [PROOFSTEP] intro m [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ (k : ℕ), k ≥ n → ∀ (l : ℕ), l ≥ n → (s k, s l) ∈ a m : ℕ ⊢ s m ∈ ⋃ (y : ℕ) (_ : y ∈ {k | k ≤ n}), {x | (x, s y) ∈ a} [PROOFSTEP] rw [mem_iUnion₂] [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ (k : ℕ), k ≥ n → ∀ (l : ℕ), l ≥ n → (s k, s l) ∈ a m : ℕ ⊢ ∃ i j, s m ∈ {x | (x, s i) ∈ a} [PROOFSTEP] cases' le_total m n with hm hm [GOAL] case intro.inl α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ (k : ℕ), k ≥ n → ∀ (l : ℕ), l ≥ n → (s k, s l) ∈ a m : ℕ hm : m ≤ n ⊢ ∃ i j, s m ∈ {x | (x, s i) ∈ a} case intro.inr α : Type u β : Type v inst✝ : UniformSpace α s : ℕ → α hs : CauchySeq s a : Set (α × α) ha : a ∈ 𝓤 α n : ℕ hn : ∀ (k : ℕ), k ≥ n → ∀ (l : ℕ), l ≥ n → (s k, s l) ∈ a m : ℕ hm : n ≤ m ⊢ ∃ i j, s m ∈ {x | (x, s i) ∈ a} [PROOFSTEP] exacts [⟨m, hm, refl_mem_uniformity ha⟩, ⟨n, le_refl n, hn m hm n le_rfl⟩] [GOAL] α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s N m n : ℕ hm : N ≤ m hn : N ≤ n p : α × α hp : p ∈ setSeq hf U_mem m ×ˢ setSeq hf U_mem n ⊢ p ∈ U N [PROOFSTEP] refine' (setSeqAux hf U_mem N).2.2 ⟨_, _⟩ [GOAL] case refine'_1 α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s N m n : ℕ hm : N ≤ m hn : N ≤ n p : α × α hp : p ∈ setSeq hf U_mem m ×ˢ setSeq hf U_mem n ⊢ p.fst ∈ ↑(setSeqAux hf U_mem N) [PROOFSTEP] apply setSeq_sub_aux [GOAL] case refine'_2 α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s N m n : ℕ hm : N ≤ m hn : N ≤ n p : α × α hp : p ∈ setSeq hf U_mem m ×ˢ setSeq hf U_mem n ⊢ p.snd ∈ ↑(setSeqAux hf U_mem N) [PROOFSTEP] apply setSeq_sub_aux [GOAL] case refine'_1.a α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s N m n : ℕ hm : N ≤ m hn : N ≤ n p : α × α hp : p ∈ setSeq hf U_mem m ×ˢ setSeq hf U_mem n ⊢ p.fst ∈ setSeq hf U_mem N case refine'_2.a α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s N m n : ℕ hm : N ≤ m hn : N ≤ n p : α × α hp : p ∈ setSeq hf U_mem m ×ˢ setSeq hf U_mem n ⊢ p.snd ∈ setSeq hf U_mem N [PROOFSTEP] exact setSeq_mono hf U_mem hm hp.1 [GOAL] case refine'_2.a α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s N m n : ℕ hm : N ≤ m hn : N ≤ n p : α × α hp : p ∈ setSeq hf U_mem m ×ˢ setSeq hf U_mem n ⊢ p.snd ∈ setSeq hf U_mem N [PROOFSTEP] exact setSeq_mono hf U_mem hn hp.2 [GOAL] α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s a : α ha : Tendsto (seq hf U_mem) atTop (𝓝 a) s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (a, y) ∈ s ∧ y ∈ t [PROOFSTEP] rcases U_le s hs with ⟨m, hm⟩ [GOAL] case intro α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s a : α ha : Tendsto (seq hf U_mem) atTop (𝓝 a) s : Set (α × α) hs : s ∈ 𝓤 α m : ℕ hm : U m ⊆ s ⊢ ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (a, y) ∈ s ∧ y ∈ t [PROOFSTEP] rcases tendsto_atTop'.1 ha _ (mem_nhds_left a (U_mem m)) with ⟨n, hn⟩ [GOAL] case intro.intro α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s a : α ha : Tendsto (seq hf U_mem) atTop (𝓝 a) s : Set (α × α) hs : s ∈ 𝓤 α m : ℕ hm : U m ⊆ s n : ℕ hn : ∀ (b : ℕ), b ≥ n → seq hf U_mem b ∈ {y | (a, y) ∈ U m} ⊢ ∃ t, t ∈ f ∧ t ×ˢ t ⊆ s ∧ ∃ y, (a, y) ∈ s ∧ y ∈ t [PROOFSTEP] refine' ⟨setSeq hf U_mem (max m n), setSeq_mem hf U_mem _, _, seq hf U_mem (max m n), _, seq_mem hf U_mem _⟩ [GOAL] case intro.intro.refine'_1 α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s a : α ha : Tendsto (seq hf U_mem) atTop (𝓝 a) s : Set (α × α) hs : s ∈ 𝓤 α m : ℕ hm : U m ⊆ s n : ℕ hn : ∀ (b : ℕ), b ≥ n → seq hf U_mem b ∈ {y | (a, y) ∈ U m} ⊢ setSeq hf U_mem (max m n) ×ˢ setSeq hf U_mem (max m n) ⊆ s [PROOFSTEP] have := le_max_left m n [GOAL] case intro.intro.refine'_1 α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s a : α ha : Tendsto (seq hf U_mem) atTop (𝓝 a) s : Set (α × α) hs : s ∈ 𝓤 α m : ℕ hm : U m ⊆ s n : ℕ hn : ∀ (b : ℕ), b ≥ n → seq hf U_mem b ∈ {y | (a, y) ∈ U m} this : m ≤ max m n ⊢ setSeq hf U_mem (max m n) ×ˢ setSeq hf U_mem (max m n) ⊆ s [PROOFSTEP] exact Set.Subset.trans (setSeq_prod_subset hf U_mem this this) hm [GOAL] case intro.intro.refine'_2 α : Type u β : Type v inst✝ : UniformSpace α f : Filter α hf : Cauchy f U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α U_le : ∀ (s : Set (α × α)), s ∈ 𝓤 α → ∃ n, U n ⊆ s a : α ha : Tendsto (seq hf U_mem) atTop (𝓝 a) s : Set (α × α) hs : s ∈ 𝓤 α m : ℕ hm : U m ⊆ s n : ℕ hn : ∀ (b : ℕ), b ≥ n → seq hf U_mem b ∈ {y | (a, y) ∈ U m} ⊢ (a, seq hf U_mem (max m n)) ∈ s [PROOFSTEP] exact hm (hn _ <| le_max_right m n) [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : IsCountablyGenerated (𝓤 α) U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α HU : ∀ (u : ℕ → α), (∀ (N m n : ℕ), N ≤ m → N ≤ n → (u m, u n) ∈ U N) → ∃ a, Tendsto u atTop (𝓝 a) ⊢ CompleteSpace α [PROOFSTEP] obtain ⟨U', -, hU'⟩ := (𝓤 α).exists_antitone_seq [GOAL] case intro.intro α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : IsCountablyGenerated (𝓤 α) U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α HU : ∀ (u : ℕ → α), (∀ (N m n : ℕ), N ≤ m → N ≤ n → (u m, u n) ∈ U N) → ∃ a, Tendsto u atTop (𝓝 a) U' : ℕ → Set (α × α) hU' : ∀ {s : Set (α × α)}, s ∈ 𝓤 α ↔ ∃ i, U' i ⊆ s ⊢ CompleteSpace α [PROOFSTEP] have Hmem : ∀ n, U n ∩ U' n ∈ 𝓤 α := fun n => inter_mem (U_mem n) (hU'.2 ⟨n, Subset.refl _⟩) [GOAL] case intro.intro α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : IsCountablyGenerated (𝓤 α) U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α HU : ∀ (u : ℕ → α), (∀ (N m n : ℕ), N ≤ m → N ≤ n → (u m, u n) ∈ U N) → ∃ a, Tendsto u atTop (𝓝 a) U' : ℕ → Set (α × α) hU' : ∀ {s : Set (α × α)}, s ∈ 𝓤 α ↔ ∃ i, U' i ⊆ s Hmem : ∀ (n : ℕ), U n ∩ U' n ∈ 𝓤 α ⊢ CompleteSpace α [PROOFSTEP] refine ⟨fun hf => (HU (seq hf Hmem) fun N m n hm hn => ?_).imp <| le_nhds_of_seq_tendsto_nhds _ _ fun s hs => ?_⟩ [GOAL] case intro.intro.refine_1 α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : IsCountablyGenerated (𝓤 α) U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α HU : ∀ (u : ℕ → α), (∀ (N m n : ℕ), N ≤ m → N ≤ n → (u m, u n) ∈ U N) → ∃ a, Tendsto u atTop (𝓝 a) U' : ℕ → Set (α × α) hU' : ∀ {s : Set (α × α)}, s ∈ 𝓤 α ↔ ∃ i, U' i ⊆ s Hmem : ∀ (n : ℕ), U n ∩ U' n ∈ 𝓤 α f✝ : Filter α hf : Cauchy f✝ N m n : ℕ hm : N ≤ m hn : N ≤ n ⊢ (SequentiallyComplete.seq hf Hmem m, SequentiallyComplete.seq hf Hmem n) ∈ U N [PROOFSTEP] exact inter_subset_left _ _ (seq_pair_mem hf Hmem hm hn) [GOAL] case intro.intro.refine_2 α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : IsCountablyGenerated (𝓤 α) U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α HU : ∀ (u : ℕ → α), (∀ (N m n : ℕ), N ≤ m → N ≤ n → (u m, u n) ∈ U N) → ∃ a, Tendsto u atTop (𝓝 a) U' : ℕ → Set (α × α) hU' : ∀ {s : Set (α × α)}, s ∈ 𝓤 α ↔ ∃ i, U' i ⊆ s Hmem : ∀ (n : ℕ), U n ∩ U' n ∈ 𝓤 α f✝ : Filter α hf : Cauchy f✝ s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∃ n, U n ∩ U' n ⊆ s [PROOFSTEP] rcases hU'.1 hs with ⟨N, hN⟩ [GOAL] case intro.intro.refine_2.intro α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : IsCountablyGenerated (𝓤 α) U : ℕ → Set (α × α) U_mem : ∀ (n : ℕ), U n ∈ 𝓤 α HU : ∀ (u : ℕ → α), (∀ (N m n : ℕ), N ≤ m → N ≤ n → (u m, u n) ∈ U N) → ∃ a, Tendsto u atTop (𝓝 a) U' : ℕ → Set (α × α) hU' : ∀ {s : Set (α × α)}, s ∈ 𝓤 α ↔ ∃ i, U' i ⊆ s Hmem : ∀ (n : ℕ), U n ∩ U' n ∈ 𝓤 α f✝ : Filter α hf : Cauchy f✝ s : Set (α × α) hs : s ∈ 𝓤 α N : ℕ hN : U' N ⊆ s ⊢ ∃ n, U n ∩ U' n ⊆ s [PROOFSTEP] exact ⟨N, Subset.trans (inter_subset_right _ _) hN⟩ [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : IsCountablyGenerated (𝓤 α) a : α ⊢ IsCountablyGenerated (𝓝 a) [PROOFSTEP] rw [nhds_eq_comap_uniformity] [GOAL] α : Type u β : Type v inst✝¹ : UniformSpace α inst✝ : IsCountablyGenerated (𝓤 α) a : α ⊢ IsCountablyGenerated (Filter.comap (Prod.mk a) (𝓤 α)) [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α ⊢ SecondCountableTopology α [PROOFSTEP] rcases exists_countable_dense α with ⟨s, hsc, hsd⟩ [GOAL] case intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s ⊢ SecondCountableTopology α [PROOFSTEP] obtain ⟨t : ℕ → Set (α × α), hto : ∀ i : ℕ, t i ∈ (𝓤 α).sets ∧ IsOpen (t i) ∧ SymmetricRel (t i), h_basis : (𝓤 α).HasAntitoneBasis t⟩ := (@uniformity_hasBasis_open_symmetric α _).exists_antitone_subbasis [GOAL] case intro.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) hto : ∀ (i : ℕ), t i ∈ (𝓤 α).sets ∧ IsOpen (t i) ∧ SymmetricRel (t i) h_basis : HasAntitoneBasis (𝓤 α) t ⊢ SecondCountableTopology α [PROOFSTEP] choose ht_mem hto hts using hto [GOAL] case intro.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) ⊢ SecondCountableTopology α [PROOFSTEP] refine' ⟨⟨⋃ x ∈ s, range fun k => ball x (t k), hsc.biUnion fun x _ => countable_range _, _⟩⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) ⊢ toTopologicalSpace = generateFrom (⋃ (x : α) (_ : x ∈ s), range fun k => ball x (t k)) [PROOFSTEP] refine' (isTopologicalBasis_of_open_of_nhds _ _).eq_generateFrom [GOAL] case intro.intro.intro.intro.refine'_1 α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) ⊢ ∀ (u : Set α), (u ∈ ⋃ (x : α) (_ : x ∈ s), range fun k => ball x (t k)) → IsOpen u [PROOFSTEP] simp only [mem_iUnion₂, mem_range] [GOAL] case intro.intro.intro.intro.refine'_1 α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) ⊢ ∀ (u : Set α), (∃ i h y, ball i (t y) = u) → IsOpen u [PROOFSTEP] rintro _ ⟨x, _, k, rfl⟩ [GOAL] case intro.intro.intro.intro.refine'_1.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α w✝ : x ∈ s k : ℕ ⊢ IsOpen (ball x (t k)) [PROOFSTEP] exact isOpen_ball x (hto k) [GOAL] case intro.intro.intro.intro.refine'_2 α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) ⊢ ∀ (a : α) (u : Set α), a ∈ u → IsOpen u → ∃ v, (v ∈ ⋃ (x : α) (_ : x ∈ s), range fun k => ball x (t k)) ∧ a ∈ v ∧ v ⊆ u [PROOFSTEP] intro x V hxV hVo [GOAL] case intro.intro.intro.intro.refine'_2 α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V ⊢ ∃ v, (v ∈ ⋃ (x : α) (_ : x ∈ s), range fun k => ball x (t k)) ∧ x ∈ v ∧ v ⊆ V [PROOFSTEP] simp only [mem_iUnion₂, mem_range, exists_prop] [GOAL] case intro.intro.intro.intro.refine'_2 α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V ⊢ ∃ v, (∃ i, i ∈ s ∧ ∃ y, ball i (t y) = v) ∧ x ∈ v ∧ v ⊆ V [PROOFSTEP] rcases UniformSpace.mem_nhds_iff.1 (IsOpen.mem_nhds hVo hxV) with ⟨U, hU, hUV⟩ [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V ⊢ ∃ v, (∃ i, i ∈ s ∧ ∃ y, ball i (t y) = v) ∧ x ∈ v ∧ v ⊆ V [PROOFSTEP] rcases comp_symm_of_uniformity hU with ⟨U', hU', _, hUU'⟩ [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V U' : Set (α × α) hU' : U' ∈ 𝓤 α left✝ : ∀ {a b : α}, (a, b) ∈ U' → (b, a) ∈ U' hUU' : U' ○ U' ⊆ U ⊢ ∃ v, (∃ i, i ∈ s ∧ ∃ y, ball i (t y) = v) ∧ x ∈ v ∧ v ⊆ V [PROOFSTEP] rcases h_basis.toHasBasis.mem_iff.1 hU' with ⟨k, -, hk⟩ [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V U' : Set (α × α) hU' : U' ∈ 𝓤 α left✝ : ∀ {a b : α}, (a, b) ∈ U' → (b, a) ∈ U' hUU' : U' ○ U' ⊆ U k : ℕ hk : t k ⊆ U' ⊢ ∃ v, (∃ i, i ∈ s ∧ ∃ y, ball i (t y) = v) ∧ x ∈ v ∧ v ⊆ V [PROOFSTEP] rcases hsd.inter_open_nonempty (ball x <| t k) (isOpen_ball x (hto k)) ⟨x, UniformSpace.mem_ball_self _ (ht_mem k)⟩ with ⟨y, hxy, hys⟩ [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V U' : Set (α × α) hU' : U' ∈ 𝓤 α left✝ : ∀ {a b : α}, (a, b) ∈ U' → (b, a) ∈ U' hUU' : U' ○ U' ⊆ U k : ℕ hk : t k ⊆ U' y : α hxy : y ∈ ball x (t k) hys : y ∈ s ⊢ ∃ v, (∃ i, i ∈ s ∧ ∃ y, ball i (t y) = v) ∧ x ∈ v ∧ v ⊆ V [PROOFSTEP] refine' ⟨_, ⟨y, hys, k, rfl⟩, (hts k).subset hxy, fun z hz => _⟩ [GOAL] case intro.intro.intro.intro.refine'_2.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v inst✝² : UniformSpace α inst✝¹ : IsCountablyGenerated (𝓤 α) inst✝ : SeparableSpace α s : Set α hsc : Set.Countable s hsd : Dense s t : ℕ → Set (α × α) h_basis : HasAntitoneBasis (𝓤 α) t ht_mem : ∀ (i : ℕ), t i ∈ (𝓤 α).sets hto : ∀ (i : ℕ), IsOpen (t i) hts : ∀ (i : ℕ), SymmetricRel (t i) x : α V : Set α hxV : x ∈ V hVo : IsOpen V U : Set (α × α) hU : U ∈ 𝓤 α hUV : ball x U ⊆ V U' : Set (α × α) hU' : U' ∈ 𝓤 α left✝ : ∀ {a b : α}, (a, b) ∈ U' → (b, a) ∈ U' hUU' : U' ○ U' ⊆ U k : ℕ hk : t k ⊆ U' y : α hxy : y ∈ ball x (t k) hys : y ∈ s z : α hz : z ∈ ball y (t k) ⊢ z ∈ V [PROOFSTEP] exact hUV (ball_subset_of_comp_subset (hk hxy) hUU' (hk hz))
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Cauchy", "llama_tokens": 39329}
[GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ TendstoUniformlyOn F f p s ↔ TendstoUniformlyOnFilter F f p (𝓟 s) [PROOFSTEP] simp only [TendstoUniformlyOn, TendstoUniformlyOnFilter] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ (∀ (u : Set (β × β)), u ∈ 𝓤 β → ∀ᶠ (n : ι) in p, ∀ (x : α), x ∈ s → (f x, F n x) ∈ u) ↔ ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∀ᶠ (n : ι × α) in p ×ˢ 𝓟 s, (f n.snd, F n.fst n.snd) ∈ u [PROOFSTEP] apply forall₂_congr [GOAL] case h α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ ∀ (a : Set (β × β)), a ∈ 𝓤 β → ((∀ᶠ (n : ι) in p, ∀ (x : α), x ∈ s → (f x, F n x) ∈ a) ↔ ∀ᶠ (n : ι × α) in p ×ˢ 𝓟 s, (f n.snd, F n.fst n.snd) ∈ a) [PROOFSTEP] simp_rw [eventually_prod_principal_iff] [GOAL] case h α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ ∀ (a : Set (β × β)), a ∈ 𝓤 β → True [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F✝ : ι → α → β f✝ : α → β s✝ s' : Set α x : α p✝ : Filter ι p' : Filter α g : ι → α F : ι → α → β f : α → β p : Filter ι s : Set α ⊢ TendstoUniformlyOn F f p s ↔ Tendsto (fun q => (f q.snd, F q.fst q.snd)) (p ×ˢ 𝓟 s) (𝓤 β) [PROOFSTEP] simp [tendstoUniformlyOn_iff_tendstoUniformlyOnFilter, tendstoUniformlyOnFilter_iff_tendsto] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ TendstoUniformlyOn F f p univ ↔ TendstoUniformly F f p [PROOFSTEP] simp [TendstoUniformlyOn, TendstoUniformly] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ TendstoUniformly F f p ↔ TendstoUniformlyOnFilter F f p ⊤ [PROOFSTEP] rw [← tendstoUniformlyOn_univ, tendstoUniformlyOn_iff_tendstoUniformlyOnFilter, principal_univ] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α h : TendstoUniformly F f p ⊢ TendstoUniformlyOnFilter F f p ⊤ [PROOFSTEP] rwa [← tendstoUniformly_iff_tendstoUniformlyOnFilter] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α u : Set (β × β) x✝ : u ∈ 𝓤 β ⊢ (∀ᶠ (n : ι) in p, ∀ (x : α), x ∈ s → (f x, F n x) ∈ u) ↔ ∀ᶠ (n : ι) in p, ∀ (x : ↑s), ((f ∘ Subtype.val) x, (fun i x => F i ↑x) n x) ∈ u [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F✝ : ι → α → β f✝ : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g : ι → α F : ι → α → β f : α → β p : Filter ι ⊢ TendstoUniformly F f p ↔ Tendsto (fun q => (f q.snd, F q.fst q.snd)) (p ×ˢ ⊤) (𝓤 β) [PROOFSTEP] simp [tendstoUniformly_iff_tendstoUniformlyOnFilter, tendstoUniformlyOnFilter_iff_tendsto] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α h : TendstoUniformlyOnFilter F f p p' hx : 𝓟 {x} ≤ p' ⊢ Tendsto (fun n => F n x) p (𝓝 (f x)) [PROOFSTEP] refine' Uniform.tendsto_nhds_right.mpr fun u hu => mem_map.mpr _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α h : TendstoUniformlyOnFilter F f p p' hx : 𝓟 {x} ≤ p' u : Set (β × β) hu : u ∈ 𝓤 β ⊢ (fun x_1 => (f x, F x_1 x)) ⁻¹' u ∈ p [PROOFSTEP] filter_upwards [(h u hu).curry] [GOAL] case h α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α h : TendstoUniformlyOnFilter F f p p' hx : 𝓟 {x} ≤ p' u : Set (β × β) hu : u ∈ 𝓤 β ⊢ ∀ (a : ι), (∀ᶠ (y : α) in p', (f y, F a y) ∈ u) → a ∈ (fun x_1 => (f x, F x_1 x)) ⁻¹' u [PROOFSTEP] intro i h [GOAL] case h α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α h✝ : TendstoUniformlyOnFilter F f p p' hx : 𝓟 {x} ≤ p' u : Set (β × β) hu : u ∈ 𝓤 β i : ι h : ∀ᶠ (y : α) in p', (f y, F i y) ∈ u ⊢ i ∈ (fun x_1 => (f x, F x_1 x)) ⁻¹' u [PROOFSTEP] simpa using h.filter_mono hx [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α F' : ι → α → β hf : TendstoUniformlyOnFilter F f p p' hff' : ∀ᶠ (n : ι × α) in p ×ˢ p', F n.fst n.snd = F' n.fst n.snd ⊢ TendstoUniformlyOnFilter F' f p p' [PROOFSTEP] refine' fun u hu => ((hf u hu).and hff').mono fun n h => _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α F' : ι → α → β hf : TendstoUniformlyOnFilter F f p p' hff' : ∀ᶠ (n : ι × α) in p ×ˢ p', F n.fst n.snd = F' n.fst n.snd u : Set (β × β) hu : u ∈ 𝓤 β n : ι × α h : (f n.snd, F n.fst n.snd) ∈ u ∧ F n.fst n.snd = F' n.fst n.snd ⊢ (f n.snd, F' n.fst n.snd) ∈ u [PROOFSTEP] rw [← h.right] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α F' : ι → α → β hf : TendstoUniformlyOnFilter F f p p' hff' : ∀ᶠ (n : ι × α) in p ×ˢ p', F n.fst n.snd = F' n.fst n.snd u : Set (β × β) hu : u ∈ 𝓤 β n : ι × α h : (f n.snd, F n.fst n.snd) ∈ u ∧ F n.fst n.snd = F' n.fst n.snd ⊢ (f n.snd, F n.fst n.snd) ∈ u [PROOFSTEP] exact h.left [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α F' : ι → α → β hf : TendstoUniformlyOn F f p s hff' : ∀ᶠ (n : ι) in p, EqOn (F n) (F' n) s ⊢ TendstoUniformlyOn F' f p s [PROOFSTEP] rw [tendstoUniformlyOn_iff_tendstoUniformlyOnFilter] at hf ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α F' : ι → α → β hf : TendstoUniformlyOnFilter F f p (𝓟 s) hff' : ∀ᶠ (n : ι) in p, EqOn (F n) (F' n) s ⊢ TendstoUniformlyOnFilter F' f p (𝓟 s) [PROOFSTEP] refine' hf.congr _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α F' : ι → α → β hf : TendstoUniformlyOnFilter F f p (𝓟 s) hff' : ∀ᶠ (n : ι) in p, EqOn (F n) (F' n) s ⊢ ∀ᶠ (n : ι × α) in p ×ˢ 𝓟 s, F n.fst n.snd = F' n.fst n.snd [PROOFSTEP] rw [eventually_iff] at hff' ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α F' : ι → α → β hf : TendstoUniformlyOnFilter F f p (𝓟 s) hff' : {x | EqOn (F x) (F' x) s} ∈ p ⊢ {x | F x.fst x.snd = F' x.fst x.snd} ∈ p ×ˢ 𝓟 s [PROOFSTEP] simp only [Set.EqOn] at hff' [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α F' : ι → α → β hf : TendstoUniformlyOnFilter F f p (𝓟 s) hff' : {x | ∀ ⦃x_1 : α⦄, x_1 ∈ s → F x x_1 = F' x x_1} ∈ p ⊢ {x | F x.fst x.snd = F' x.fst x.snd} ∈ p ×ˢ 𝓟 s [PROOFSTEP] simp only [mem_prod_principal, hff', mem_setOf_eq] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α g : α → β hf : TendstoUniformlyOn F f p s hfg : EqOn f g s u : Set (β × β) hu : u ∈ 𝓤 β ⊢ ∀ᶠ (n : ι) in p, ∀ (x : α), x ∈ s → (g x, F n x) ∈ u [PROOFSTEP] filter_upwards [hf u hu] with i hi a ha using hfg ha ▸ hi a ha [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α h : TendstoUniformlyOnFilter F f p p' g : γ → α ⊢ TendstoUniformlyOnFilter (fun n => F n ∘ g) (f ∘ g) p (comap g p') [PROOFSTEP] rw [tendstoUniformlyOnFilter_iff_tendsto] at h ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α h : Tendsto (fun q => (f q.snd, F q.fst q.snd)) (p ×ˢ p') (𝓤 β) g : γ → α ⊢ Tendsto (fun q => ((f ∘ g) q.snd, (F q.fst ∘ g) q.snd)) (p ×ˢ comap g p') (𝓤 β) [PROOFSTEP] exact h.comp (tendsto_id.prod_map tendsto_comap) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α h : TendstoUniformlyOn F f p s g : γ → α ⊢ TendstoUniformlyOn (fun n => F n ∘ g) (f ∘ g) p (g ⁻¹' s) [PROOFSTEP] rw [tendstoUniformlyOn_iff_tendstoUniformlyOnFilter] at h ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α h : TendstoUniformlyOnFilter F f p (𝓟 s) g : γ → α ⊢ TendstoUniformlyOnFilter (fun n => F n ∘ g) (f ∘ g) p (𝓟 (g ⁻¹' s)) [PROOFSTEP] simpa [TendstoUniformlyOn, comap_principal] using TendstoUniformlyOnFilter.comp h g [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α h : TendstoUniformly F f p g : γ → α ⊢ TendstoUniformly (fun n => F n ∘ g) (f ∘ g) p [PROOFSTEP] rw [tendstoUniformly_iff_tendstoUniformlyOnFilter] at h ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α h : TendstoUniformlyOnFilter F f p ⊤ g : γ → α ⊢ TendstoUniformlyOnFilter (fun n => F n ∘ g) (f ∘ g) p ⊤ [PROOFSTEP] simpa [principal_univ, comap_principal] using h.comp g [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' f' : α' → β' q : Filter ι' q' : Filter α' h : TendstoUniformlyOnFilter F f p p' h' : TendstoUniformlyOnFilter F' f' q q' ⊢ TendstoUniformlyOnFilter (fun i => Prod.map (F i.fst) (F' i.snd)) (Prod.map f f') (p ×ˢ q) (p' ×ˢ q') [PROOFSTEP] rw [tendstoUniformlyOnFilter_iff_tendsto] at h h' ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' f' : α' → β' q : Filter ι' q' : Filter α' h : Tendsto (fun q => (f q.snd, F q.fst q.snd)) (p ×ˢ p') (𝓤 β) h' : Tendsto (fun q => (f' q.snd, F' q.fst q.snd)) (q ×ˢ q') (𝓤 β') ⊢ Tendsto (fun q => (Prod.map f f' q.snd, Prod.map (F q.fst.fst) (F' q.fst.snd) q.snd)) ((p ×ˢ q) ×ˢ p' ×ˢ q') (𝓤 (β × β')) [PROOFSTEP] rw [uniformity_prod_eq_comap_prod, tendsto_comap_iff, ← map_swap4_prod, tendsto_map'_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' f' : α' → β' q : Filter ι' q' : Filter α' h : Tendsto (fun q => (f q.snd, F q.fst q.snd)) (p ×ˢ p') (𝓤 β) h' : Tendsto (fun q => (f' q.snd, F' q.fst q.snd)) (q ×ˢ q') (𝓤 β') ⊢ Tendsto (((fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ∘ fun q => (Prod.map f f' q.snd, Prod.map (F q.fst.fst) (F' q.fst.snd) q.snd)) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ((p ×ˢ p') ×ˢ q ×ˢ q') (𝓤 β ×ˢ 𝓤 β') [PROOFSTEP] convert h.prod_map h' [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' f' : α' → β' p' : Filter ι' s' : Set α' h : TendstoUniformlyOn F f p s h' : TendstoUniformlyOn F' f' p' s' ⊢ TendstoUniformlyOn (fun i => Prod.map (F i.fst) (F' i.snd)) (Prod.map f f') (p ×ˢ p') (s ×ˢ s') [PROOFSTEP] rw [tendstoUniformlyOn_iff_tendstoUniformlyOnFilter] at h h' ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' f' : α' → β' p' : Filter ι' s' : Set α' h : TendstoUniformlyOnFilter F f p (𝓟 s) h' : TendstoUniformlyOnFilter F' f' p' (𝓟 s') ⊢ TendstoUniformlyOnFilter (fun i => Prod.map (F i.fst) (F' i.snd)) (Prod.map f f') (p ×ˢ p') (𝓟 (s ×ˢ s')) [PROOFSTEP] simpa only [prod_principal_principal] using h.prod_map h' [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' f' : α' → β' p' : Filter ι' h : TendstoUniformly F f p h' : TendstoUniformly F' f' p' ⊢ TendstoUniformly (fun i => Prod.map (F i.fst) (F' i.snd)) (Prod.map f f') (p ×ˢ p') [PROOFSTEP] rw [← tendstoUniformlyOn_univ, ← univ_prod_univ] at * [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' f' : α' → β' p' : Filter ι' h : TendstoUniformlyOn F f p univ h' : TendstoUniformlyOn F' f' p' univ ⊢ TendstoUniformlyOn (fun i => Prod.map (F i.fst) (F' i.snd)) (Prod.map f f') (p ×ˢ p') (univ ×ˢ univ) [PROOFSTEP] exact h.prod_map h' [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α c : β ⊢ Tendsto (↿F) (p ×ˢ p') (𝓝 c) ↔ TendstoUniformlyOnFilter F (fun x => c) p p' [PROOFSTEP] simp_rw [nhds_eq_comap_uniformity, tendsto_comap_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α c : β ⊢ Tendsto (Prod.mk c ∘ ↿F) (p ×ˢ p') (𝓤 β) ↔ TendstoUniformlyOnFilter F (fun x => c) p p' [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α c : β ⊢ Tendsto (↿F) (p ×ˢ 𝓟 s) (𝓝 c) ↔ TendstoUniformlyOn F (fun x => c) p s [PROOFSTEP] rw [tendstoUniformlyOn_iff_tendstoUniformlyOnFilter] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α c : β ⊢ Tendsto (↿F) (p ×ˢ 𝓟 s) (𝓝 c) ↔ TendstoUniformlyOnFilter F (fun x => c) p (𝓟 s) [PROOFSTEP] exact tendsto_prod_filter_iff [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α c : β ⊢ Tendsto (↿F) (p ×ˢ ⊤) (𝓝 c) ↔ TendstoUniformly F (fun x => c) p [PROOFSTEP] rw [tendstoUniformly_iff_tendstoUniformlyOnFilter] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α c : β ⊢ Tendsto (↿F) (p ×ˢ ⊤) (𝓝 c) ↔ TendstoUniformlyOnFilter F (fun x => c) p ⊤ [PROOFSTEP] exact tendsto_prod_filter_iff [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α u : Set (β × β) x✝ : u ∈ 𝓤 β ⊢ ∀ᶠ (n : ι) in p, ∀ (x : α), x ∈ ∅ → (f x, F n x) ∈ u [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ TendstoUniformlyOn F f p {x} ↔ Tendsto (fun n => F n x) p (𝓝 (f x)) [PROOFSTEP] simp_rw [tendstoUniformlyOn_iff_tendsto, Uniform.tendsto_nhds_right, tendsto_def] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ (∀ (s : Set (β × β)), s ∈ 𝓤 β → (fun q => (f q.snd, F q.fst q.snd)) ⁻¹' s ∈ p ×ˢ 𝓟 {x}) ↔ ∀ (s : Set (β × β)), s ∈ 𝓤 β → (fun x_1 => (f x, F x_1 x)) ⁻¹' s ∈ p [PROOFSTEP] exact forall₂_congr fun u _ => by simp [mem_prod_principal, preimage] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α u : Set (β × β) x✝ : u ∈ 𝓤 β ⊢ (fun q => (f q.snd, F q.fst q.snd)) ⁻¹' u ∈ p ×ˢ 𝓟 {x} ↔ (fun x_1 => (f x, F x_1 x)) ⁻¹' u ∈ p [PROOFSTEP] simp [mem_prod_principal, preimage] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p'✝ : Filter α g✝ : ι → α g : ι → β b : β hg : Tendsto g p (𝓝 b) p' : Filter α ⊢ TendstoUniformlyOnFilter (fun n x => g n) (fun x => b) p p' [PROOFSTEP] simpa only [nhds_eq_comap_uniformity, tendsto_comap_iff] using hg.comp (tendsto_fst (g := p')) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ x : α U : Set α V : Set β F : α → β → γ hF : UniformContinuousOn (↿F) (U ×ˢ V) hU : x ∈ U ⊢ TendstoUniformlyOn F (F x) (𝓝[U] x) V [PROOFSTEP] set φ := fun q : α × β => ((x, q.2), q) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ x : α U : Set α V : Set β F : α → β → γ hF : UniformContinuousOn (↿F) (U ×ˢ V) hU : x ∈ U φ : α × β → (α × β) × α × β := fun q => ((x, q.snd), q) ⊢ TendstoUniformlyOn F (F x) (𝓝[U] x) V [PROOFSTEP] rw [tendstoUniformlyOn_iff_tendsto] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ x : α U : Set α V : Set β F : α → β → γ hF : UniformContinuousOn (↿F) (U ×ˢ V) hU : x ∈ U φ : α × β → (α × β) × α × β := fun q => ((x, q.snd), q) ⊢ Tendsto (fun q => (F x q.snd, F q.fst q.snd)) (𝓝[U] x ×ˢ 𝓟 V) (𝓤 γ) [PROOFSTEP] change Tendsto (Prod.map (↿F) ↿F ∘ φ) (𝓝[U] x ×ˢ 𝓟 V) (𝓤 γ) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ x : α U : Set α V : Set β F : α → β → γ hF : UniformContinuousOn (↿F) (U ×ˢ V) hU : x ∈ U φ : α × β → (α × β) × α × β := fun q => ((x, q.snd), q) ⊢ Tendsto (Prod.map (↿F) ↿F ∘ φ) (𝓝[U] x ×ˢ 𝓟 V) (𝓤 γ) [PROOFSTEP] simp only [nhdsWithin, SProd.sprod, Filter.prod, comap_inf, inf_assoc, comap_principal, inf_principal] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ x : α U : Set α V : Set β F : α → β → γ hF : UniformContinuousOn (↿F) (U ×ˢ V) hU : x ∈ U φ : α × β → (α × β) × α × β := fun q => ((x, q.snd), q) ⊢ Tendsto (Prod.map (↿F) ↿F ∘ fun q => ((x, q.snd), q)) (comap Prod.fst (𝓝 x) ⊓ 𝓟 (Prod.fst ⁻¹' U ∩ Prod.snd ⁻¹' V)) (𝓤 γ) [PROOFSTEP] refine hF.comp (Tendsto.inf ?_ <| tendsto_principal_principal.2 <| fun x hx => ⟨⟨hU, hx.2⟩, hx⟩) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ x : α U : Set α V : Set β F : α → β → γ hF : UniformContinuousOn (↿F) (U ×ˢ V) hU : x ∈ U φ : α × β → (α × β) × α × β := fun q => ((x, q.snd), q) ⊢ Tendsto (fun q => ((x, q.snd), q)) (comap Prod.fst (𝓝 x)) (𝓤 (α × β)) [PROOFSTEP] simp only [uniformity_prod_eq_comap_prod, tendsto_comap_iff, (· ∘ ·), nhds_eq_comap_uniformity, comap_comap] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ x : α U : Set α V : Set β F : α → β → γ hF : UniformContinuousOn (↿F) (U ×ˢ V) hU : x ∈ U φ : α × β → (α × β) × α × β := fun q => ((x, q.snd), q) ⊢ Tendsto (fun x_1 => ((x, x_1.fst), x_1.snd, x_1.snd)) (comap (fun x_1 => (x, x_1.fst)) (𝓤 α)) (𝓤 α ×ˢ 𝓤 β) [PROOFSTEP] exact tendsto_comap.prod_mk (tendsto_diag_uniformity _ _) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ x : α U : Set α hU : U ∈ 𝓝 x F : α → β → γ hF : UniformContinuousOn (↿F) (U ×ˢ univ) ⊢ TendstoUniformly F (F x) (𝓝 x) [PROOFSTEP] simpa only [tendstoUniformlyOn_univ, nhdsWithin_eq_nhds.2 hU] using hF.tendstoUniformlyOn (mem_of_mem_nhds hU) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f✝ : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : UniformSpace α inst✝ : UniformSpace γ f : α → β → γ h : UniformContinuous₂ f x : α ⊢ UniformContinuousOn (↿f) (univ ×ˢ univ) [PROOFSTEP] rwa [univ_prod_univ, uniformContinuousOn_univ] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ UniformCauchySeqOn F p s ↔ UniformCauchySeqOnFilter F p (𝓟 s) [PROOFSTEP] simp only [UniformCauchySeqOn, UniformCauchySeqOnFilter] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α ⊢ (∀ (u : Set (β × β)), u ∈ 𝓤 β → ∀ᶠ (m : ι × ι) in p ×ˢ p, ∀ (x : α), x ∈ s → (F m.fst x, F m.snd x) ∈ u) ↔ ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∀ᶠ (m : (ι × ι) × α) in (p ×ˢ p) ×ˢ 𝓟 s, (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u [PROOFSTEP] refine' forall₂_congr fun u hu => _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α u : Set (β × β) hu : u ∈ 𝓤 β ⊢ (∀ᶠ (m : ι × ι) in p ×ˢ p, ∀ (x : α), x ∈ s → (F m.fst x, F m.snd x) ∈ u) ↔ ∀ᶠ (m : (ι × ι) × α) in (p ×ˢ p) ×ˢ 𝓟 s, (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u [PROOFSTEP] rw [eventually_prod_principal_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hF : UniformCauchySeqOn F p s ⊢ UniformCauchySeqOnFilter F p (𝓟 s) [PROOFSTEP] rwa [← uniformCauchySeqOn_iff_uniformCauchySeqOnFilter] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hF : TendstoUniformlyOnFilter F f p p' ⊢ UniformCauchySeqOnFilter F p p' [PROOFSTEP] intro u hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hF : TendstoUniformlyOnFilter F f p p' u : Set (β × β) hu : u ∈ 𝓤 β ⊢ ∀ᶠ (m : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u [PROOFSTEP] rcases comp_symm_of_uniformity hu with ⟨t, ht, htsymm, htmem⟩ [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hF : TendstoUniformlyOnFilter F f p p' u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u ⊢ ∀ᶠ (m : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u [PROOFSTEP] have := tendsto_swap4_prod.eventually ((hF t ht).prod_mk (hF t ht)) [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hF : TendstoUniformlyOnFilter F f p p' u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u this : ∀ᶠ (x : (ι × ι) × α × α) in (p ×ˢ p) ×ˢ p' ×ˢ p', (f ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.fst ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd) ∈ t ∧ (f ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.fst ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd) ∈ t ⊢ ∀ᶠ (m : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u [PROOFSTEP] apply this.diag_of_prod_right.mono [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hF : TendstoUniformlyOnFilter F f p p' u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u this : ∀ᶠ (x : (ι × ι) × α × α) in (p ×ˢ p) ×ˢ p' ×ˢ p', (f ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.fst ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd) ∈ t ∧ (f ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.fst ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd) ∈ t ⊢ ∀ (x : (ι × ι) × α), (f (((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd, (x.fst, x.snd, x.snd).snd.snd).fst.snd, F (((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd, (x.fst, x.snd, x.snd).snd.snd).fst.fst (((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd, (x.fst, x.snd, x.snd).snd.snd).fst.snd) ∈ t ∧ (f (((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd, (x.fst, x.snd, x.snd).snd.snd).snd.snd, F (((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd, (x.fst, x.snd, x.snd).snd.snd).snd.fst (((x.fst, x.snd, x.snd).fst.fst, (x.fst, x.snd, x.snd).snd.fst), (x.fst, x.snd, x.snd).fst.snd, (x.fst, x.snd, x.snd).snd.snd).snd.snd) ∈ t → (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u [PROOFSTEP] simp only [and_imp, Prod.forall] [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hF : TendstoUniformlyOnFilter F f p p' u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u this : ∀ᶠ (x : (ι × ι) × α × α) in (p ×ˢ p) ×ˢ p' ×ˢ p', (f ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.fst ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd) ∈ t ∧ (f ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.fst ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd) ∈ t ⊢ ∀ (a b : ι) (b_1 : α), (f b_1, F a b_1) ∈ t → (f b_1, F b b_1) ∈ t → (F a b_1, F b b_1) ∈ u [PROOFSTEP] intro n1 n2 x hl hr [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α hF : TendstoUniformlyOnFilter F f p p' u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u this : ∀ᶠ (x : (ι × ι) × α × α) in (p ×ˢ p) ×ˢ p' ×ˢ p', (f ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.fst ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd) ∈ t ∧ (f ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.fst ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd) ∈ t n1 n2 : ι x : α hl : (f x, F n1 x) ∈ t hr : (f x, F n2 x) ∈ t ⊢ (F n1 x, F n2 x) ∈ u [PROOFSTEP] exact Set.mem_of_mem_of_subset (prod_mk_mem_compRel (htsymm hl) hr) htmem [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) ⊢ TendstoUniformlyOnFilter F f p p' [PROOFSTEP] intro u hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β ⊢ ∀ᶠ (n : ι × α) in p ×ˢ p', (f n.snd, F n.fst n.snd) ∈ u [PROOFSTEP] rcases comp_symm_of_uniformity hu with ⟨t, ht, htsymm, htmem⟩ -- We will choose n, x, and m simultaneously. n and x come from hF. m comes from hF' -- But we need to promote hF' to the full product filter to use it [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u ⊢ ∀ᶠ (n : ι × α) in p ×ˢ p', (f n.snd, F n.fst n.snd) ∈ u [PROOFSTEP] have hmc : ∀ᶠ x in (p ×ˢ p) ×ˢ p', Tendsto (fun n : ι => F n x.snd) p (𝓝 (f x.snd)) := by rw [eventually_prod_iff] refine' ⟨fun _ => True, by simp, _, hF', by simp⟩ -- To apply filter operations we'll need to do some order manipulation [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u ⊢ ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) [PROOFSTEP] rw [eventually_prod_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u ⊢ ∃ pa, (∀ᶠ (x : ι × ι) in p ×ˢ p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in p', pb y) ∧ ∀ {x : ι × ι}, pa x → ∀ {y : α}, pb y → Tendsto (fun n => F n (x, y).snd) p (𝓝 (f (x, y).snd)) [PROOFSTEP] refine' ⟨fun _ => True, by simp, _, hF', by simp⟩ -- To apply filter operations we'll need to do some order manipulation [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u ⊢ ∀ᶠ (x : ι × ι) in p ×ˢ p, (fun x => True) x [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u ⊢ ∀ {x : ι × ι}, (fun x => True) x → ∀ {y : α}, Tendsto (fun n => F n y) p (𝓝 (f y)) → Tendsto (fun n => F n (x, y).snd) p (𝓝 (f (x, y).snd)) [PROOFSTEP] simp [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) ⊢ ∀ᶠ (n : ι × α) in p ×ˢ p', (f n.snd, F n.fst n.snd) ∈ u [PROOFSTEP] rw [Filter.eventually_swap_iff] [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) ⊢ ∀ᶠ (y : α × ι) in p' ×ˢ p, (f (Prod.swap y).snd, F (Prod.swap y).fst (Prod.swap y).snd) ∈ u [PROOFSTEP] have := tendsto_prodAssoc.eventually (tendsto_prod_swap.eventually ((hF t ht).and hmc)) [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) this : ∀ᶠ (x : (α × ι) × ι) in (p' ×ˢ p) ×ˢ p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd)) ⊢ ∀ᶠ (y : α × ι) in p' ×ˢ p, (f (Prod.swap y).snd, F (Prod.swap y).fst (Prod.swap y).snd) ∈ u [PROOFSTEP] apply this.curry.mono [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) this : ∀ᶠ (x : (α × ι) × ι) in (p' ×ˢ p) ×ˢ p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd)) ⊢ ∀ (x : α × ι), (∀ᶠ (y : ι) in p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) (x, y))).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) (x, y))).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) (x, y))).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) (x, y))).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) (x, y))).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) (x, y))).snd))) → (f (Prod.swap x).snd, F (Prod.swap x).fst (Prod.swap x).snd) ∈ u [PROOFSTEP] simp only [Equiv.prodAssoc_apply, eventually_and, eventually_const, Prod.snd_swap, Prod.fst_swap, and_imp, Prod.forall] -- Complete the proof [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) this : ∀ᶠ (x : (α × ι) × ι) in (p' ×ˢ p) ×ˢ p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd)) ⊢ ∀ (a : α) (b : ι), (∀ᶠ (x : ι) in p, (F b a, F x a) ∈ t) → Tendsto (fun n => F n a) p (𝓝 (f a)) → (f a, F b a) ∈ u [PROOFSTEP] intro x n hx hm' [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) this : ∀ᶠ (x : (α × ι) × ι) in (p' ×ˢ p) ×ˢ p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd)) x : α n : ι hx : ∀ᶠ (x_1 : ι) in p, (F n x, F x_1 x) ∈ t hm' : Tendsto (fun n => F n x) p (𝓝 (f x)) ⊢ (f x, F n x) ∈ u [PROOFSTEP] refine' Set.mem_of_mem_of_subset (mem_compRel.mpr _) htmem [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) this : ∀ᶠ (x : (α × ι) × ι) in (p' ×ˢ p) ×ˢ p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd)) x : α n : ι hx : ∀ᶠ (x_1 : ι) in p, (F n x, F x_1 x) ∈ t hm' : Tendsto (fun n => F n x) p (𝓝 (f x)) ⊢ ∃ z, (f x, z) ∈ t ∧ (z, F n x) ∈ t [PROOFSTEP] rw [Uniform.tendsto_nhds_right] at hm' [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) this : ∀ᶠ (x : (α × ι) × ι) in (p' ×ˢ p) ×ˢ p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd)) x : α n : ι hx : ∀ᶠ (x_1 : ι) in p, (F n x, F x_1 x) ∈ t hm' : Tendsto (fun x_1 => (f x, F x_1 x)) p (𝓤 β) ⊢ ∃ z, (f x, z) ∈ t ∧ (z, F n x) ∈ t [PROOFSTEP] have := hx.and (hm' ht) [GOAL] case intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) this✝ : ∀ᶠ (x : (α × ι) × ι) in (p' ×ˢ p) ×ˢ p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd)) x : α n : ι hx : ∀ᶠ (x_1 : ι) in p, (F n x, F x_1 x) ∈ t hm' : Tendsto (fun x_1 => (f x, F x_1 x)) p (𝓤 β) this : ∀ᶠ (x_1 : ι) in p, (F n x, F x_1 x) ∈ t ∧ (fun x_2 => (f x, F x_2 x)) x_1 ∈ t ⊢ ∃ z, (f x, z) ∈ t ∧ (z, F n x) ∈ t [PROOFSTEP] obtain ⟨m, hm⟩ := this.exists [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : NeBot p hF : UniformCauchySeqOnFilter F p p' hF' : ∀ᶠ (x : α) in p', Tendsto (fun n => F n x) p (𝓝 (f x)) u : Set (β × β) hu : u ∈ 𝓤 β t : Set (β × β) ht : t ∈ 𝓤 β htsymm : ∀ {a b : β}, (a, b) ∈ t → (b, a) ∈ t htmem : t ○ t ⊆ u hmc : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p', Tendsto (fun n => F n x.snd) p (𝓝 (f x.snd)) this✝ : ∀ᶠ (x : (α × ι) × ι) in (p' ×ˢ p) ×ˢ p, (F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.fst (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd, F (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).fst.snd (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) ∈ t ∧ Tendsto (fun n => F n (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd) p (𝓝 (f (Prod.swap (↑(Equiv.prodAssoc α ι ι) x)).snd)) x : α n : ι hx : ∀ᶠ (x_1 : ι) in p, (F n x, F x_1 x) ∈ t hm' : Tendsto (fun x_1 => (f x, F x_1 x)) p (𝓤 β) this : ∀ᶠ (x_1 : ι) in p, (F n x, F x_1 x) ∈ t ∧ (fun x_2 => (f x, F x_2 x)) x_1 ∈ t m : ι hm : (F n x, F m x) ∈ t ∧ (fun x_1 => (f x, F x_1 x)) m ∈ t ⊢ ∃ z, (f x, z) ∈ t ∧ (z, F n x) ∈ t [PROOFSTEP] exact ⟨F m x, ⟨hm.2, htsymm hm.1⟩⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α p'' : Filter ι hf : UniformCauchySeqOnFilter F p p' hp : p'' ≤ p ⊢ UniformCauchySeqOnFilter F p'' p' [PROOFSTEP] intro u hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α p'' : Filter ι hf : UniformCauchySeqOnFilter F p p' hp : p'' ≤ p u : Set (β × β) hu : u ∈ 𝓤 β ⊢ ∀ᶠ (m : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u [PROOFSTEP] have := (hf u hu).filter_mono (p'.prod_mono_left (Filter.prod_mono hp hp)) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α p'' : Filter ι hf : UniformCauchySeqOnFilter F p p' hp : p'' ≤ p u : Set (β × β) hu : u ∈ 𝓤 β this : ∀ᶠ (x : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u ⊢ ∀ᶠ (m : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F m.fst.fst m.snd, F m.fst.snd m.snd) ∈ u [PROOFSTEP] exact this.mono (by simp) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α p'' : Filter ι hf : UniformCauchySeqOnFilter F p p' hp : p'' ≤ p u : Set (β × β) hu : u ∈ 𝓤 β this : ∀ᶠ (x : (ι × ι) × α) in (p'' ×ˢ p'') ×ˢ p', (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u ⊢ ∀ (x : (ι × ι) × α), (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u → (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α p'' : Filter α hf : UniformCauchySeqOnFilter F p p' hp : p'' ≤ p' u : Set (β × β) hu : u ∈ 𝓤 β this : ∀ᶠ (x : (ι × ι) × α) in (p ×ˢ p) ×ˢ p'', (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u ⊢ ∀ (x : (ι × ι) × α), (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u → (F x.fst.fst x.snd, F x.fst.snd x.snd) ∈ u [PROOFSTEP] simp [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p' : Filter α g : ι → α s' : Set α hf : UniformCauchySeqOn F p s hss' : s' ⊆ s ⊢ UniformCauchySeqOn F p s' [PROOFSTEP] rw [uniformCauchySeqOn_iff_uniformCauchySeqOnFilter] at hf ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p' : Filter α g : ι → α s' : Set α hf : UniformCauchySeqOnFilter F p (𝓟 s) hss' : s' ⊆ s ⊢ UniformCauchySeqOnFilter F p (𝓟 s') [PROOFSTEP] exact hf.mono_right (le_principal_iff.mpr <| mem_principal.mpr hss') [GOAL] α : Type u β : Type v γ✝ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α γ : Type u_1 hf : UniformCauchySeqOnFilter F p p' g : γ → α u : Set (β × β) hu : u ∈ 𝓤 β ⊢ ∀ᶠ (m : (ι × ι) × γ) in (p ×ˢ p) ×ˢ comap g p', ((fun n => F n ∘ g) m.fst.fst m.snd, (fun n => F n ∘ g) m.fst.snd m.snd) ∈ u [PROOFSTEP] obtain ⟨pa, hpa, pb, hpb, hpapb⟩ := eventually_prod_iff.mp (hf u hu) [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ✝ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α γ : Type u_1 hf : UniformCauchySeqOnFilter F p p' g : γ → α u : Set (β × β) hu : u ∈ 𝓤 β pa : ι × ι → Prop hpa : ∀ᶠ (x : ι × ι) in p ×ˢ p, pa x pb : α → Prop hpb : ∀ᶠ (y : α) in p', pb y hpapb : ∀ {x : ι × ι}, pa x → ∀ {y : α}, pb y → (F (x, y).fst.fst (x, y).snd, F (x, y).fst.snd (x, y).snd) ∈ u ⊢ ∀ᶠ (m : (ι × ι) × γ) in (p ×ˢ p) ×ˢ comap g p', ((fun n => F n ∘ g) m.fst.fst m.snd, (fun n => F n ∘ g) m.fst.snd m.snd) ∈ u [PROOFSTEP] rw [eventually_prod_iff] [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ✝ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α γ : Type u_1 hf : UniformCauchySeqOnFilter F p p' g : γ → α u : Set (β × β) hu : u ∈ 𝓤 β pa : ι × ι → Prop hpa : ∀ᶠ (x : ι × ι) in p ×ˢ p, pa x pb : α → Prop hpb : ∀ᶠ (y : α) in p', pb y hpapb : ∀ {x : ι × ι}, pa x → ∀ {y : α}, pb y → (F (x, y).fst.fst (x, y).snd, F (x, y).fst.snd (x, y).snd) ∈ u ⊢ ∃ pa, (∀ᶠ (x : ι × ι) in p ×ˢ p, pa x) ∧ ∃ pb, (∀ᶠ (y : γ) in comap g p', pb y) ∧ ∀ {x : ι × ι}, pa x → ∀ {y : γ}, pb y → ((fun n => F n ∘ g) (x, y).fst.fst (x, y).snd, (fun n => F n ∘ g) (x, y).fst.snd (x, y).snd) ∈ u [PROOFSTEP] refine ⟨pa, hpa, pb ∘ g, ?_, fun hx _ hy => hpapb hx hy⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ✝ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α γ : Type u_1 hf : UniformCauchySeqOnFilter F p p' g : γ → α u : Set (β × β) hu : u ∈ 𝓤 β pa : ι × ι → Prop hpa : ∀ᶠ (x : ι × ι) in p ×ˢ p, pa x pb : α → Prop hpb : ∀ᶠ (y : α) in p', pb y hpapb : ∀ {x : ι × ι}, pa x → ∀ {y : α}, pb y → (F (x, y).fst.fst (x, y).snd, F (x, y).fst.snd (x, y).snd) ∈ u ⊢ ∀ᶠ (y : γ) in comap g p', (pb ∘ g) y [PROOFSTEP] exact eventually_comap.mpr (hpb.mono fun x hx y hy => by simp only [hx, hy, Function.comp_apply]) [GOAL] α : Type u β : Type v γ✝ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g✝ : ι → α γ : Type u_1 hf : UniformCauchySeqOnFilter F p p' g : γ → α u : Set (β × β) hu : u ∈ 𝓤 β pa : ι × ι → Prop hpa : ∀ᶠ (x : ι × ι) in p ×ˢ p, pa x pb : α → Prop hpb : ∀ᶠ (y : α) in p', pb y hpapb : ∀ {x : ι × ι}, pa x → ∀ {y : α}, pb y → (F (x, y).fst.fst (x, y).snd, F (x, y).fst.snd (x, y).snd) ∈ u x : α hx : pb x y : γ hy : g y = x ⊢ (pb ∘ g) y [PROOFSTEP] simp only [hx, hy, Function.comp_apply] [GOAL] α : Type u β : Type v γ✝ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α γ : Type u_1 hf : UniformCauchySeqOn F p s g : γ → α ⊢ UniformCauchySeqOn (fun n => F n ∘ g) p (g ⁻¹' s) [PROOFSTEP] rw [uniformCauchySeqOn_iff_uniformCauchySeqOnFilter] at hf ⊢ [GOAL] α : Type u β : Type v γ✝ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α γ : Type u_1 hf : UniformCauchySeqOnFilter F p (𝓟 s) g : γ → α ⊢ UniformCauchySeqOnFilter (fun n => F n ∘ g) p (𝓟 (g ⁻¹' s)) [PROOFSTEP] simpa only [UniformCauchySeqOn, comap_principal] using hf.comp g [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' p' : Filter ι' s' : Set α' h : UniformCauchySeqOn F p s h' : UniformCauchySeqOn F' p' s' ⊢ UniformCauchySeqOn (fun i => Prod.map (F i.fst) (F' i.snd)) (p ×ˢ p') (s ×ˢ s') [PROOFSTEP] intro u hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' p' : Filter ι' s' : Set α' h : UniformCauchySeqOn F p s h' : UniformCauchySeqOn F' p' s' u : Set ((β × β') × β × β') hu : u ∈ 𝓤 (β × β') ⊢ ∀ᶠ (m : (ι × ι') × ι × ι') in (p ×ˢ p') ×ˢ p ×ˢ p', ∀ (x : α × α'), x ∈ s ×ˢ s' → ((fun i => Prod.map (F i.fst) (F' i.snd)) m.fst x, (fun i => Prod.map (F i.fst) (F' i.snd)) m.snd x) ∈ u [PROOFSTEP] rw [uniformity_prod_eq_prod, mem_map, mem_prod_iff] at hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' p' : Filter ι' s' : Set α' h : UniformCauchySeqOn F p s h' : UniformCauchySeqOn F' p' s' u : Set ((β × β') × β × β') hu : ∃ t₁, t₁ ∈ 𝓤 β ∧ ∃ t₂, t₂ ∈ 𝓤 β' ∧ t₁ ×ˢ t₂ ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' u ⊢ ∀ᶠ (m : (ι × ι') × ι × ι') in (p ×ˢ p') ×ˢ p ×ˢ p', ∀ (x : α × α'), x ∈ s ×ˢ s' → ((fun i => Prod.map (F i.fst) (F' i.snd)) m.fst x, (fun i => Prod.map (F i.fst) (F' i.snd)) m.snd x) ∈ u [PROOFSTEP] obtain ⟨v, hv, w, hw, hvw⟩ := hu [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' p' : Filter ι' s' : Set α' h : UniformCauchySeqOn F p s h' : UniformCauchySeqOn F' p' s' u : Set ((β × β') × β × β') v : Set (β × β) hv : v ∈ 𝓤 β w : Set (β' × β') hw : w ∈ 𝓤 β' hvw : v ×ˢ w ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' u ⊢ ∀ᶠ (m : (ι × ι') × ι × ι') in (p ×ˢ p') ×ˢ p ×ˢ p', ∀ (x : α × α'), x ∈ s ×ˢ s' → ((fun i => Prod.map (F i.fst) (F' i.snd)) m.fst x, (fun i => Prod.map (F i.fst) (F' i.snd)) m.snd x) ∈ u [PROOFSTEP] simp_rw [mem_prod, Prod_map, and_imp, Prod.forall] [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' p' : Filter ι' s' : Set α' h : UniformCauchySeqOn F p s h' : UniformCauchySeqOn F' p' s' u : Set ((β × β') × β × β') v : Set (β × β) hv : v ∈ 𝓤 β w : Set (β' × β') hw : w ∈ 𝓤 β' hvw : v ×ˢ w ⊆ (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' u ⊢ ∀ᶠ (m : (ι × ι') × ι × ι') in (p ×ˢ p') ×ˢ p ×ˢ p', ∀ (a : α) (b : α'), a ∈ s → b ∈ s' → ((F m.fst.fst a, F' m.fst.snd b), F m.snd.fst a, F' m.snd.snd b) ∈ u [PROOFSTEP] rw [← Set.image_subset_iff] at hvw [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' p' : Filter ι' s' : Set α' h : UniformCauchySeqOn F p s h' : UniformCauchySeqOn F' p' s' u : Set ((β × β') × β × β') v : Set (β × β) hv : v ∈ 𝓤 β w : Set (β' × β') hw : w ∈ 𝓤 β' hvw : (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) '' v ×ˢ w ⊆ u ⊢ ∀ᶠ (m : (ι × ι') × ι × ι') in (p ×ˢ p') ×ˢ p ×ˢ p', ∀ (a : α) (b : α'), a ∈ s → b ∈ s' → ((F m.fst.fst a, F' m.fst.snd b), F m.snd.fst a, F' m.snd.snd b) ∈ u [PROOFSTEP] apply (tendsto_swap4_prod.eventually ((h v hv).prod_mk (h' w hw))).mono [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' p' : Filter ι' s' : Set α' h : UniformCauchySeqOn F p s h' : UniformCauchySeqOn F' p' s' u : Set ((β × β') × β × β') v : Set (β × β) hv : v ∈ 𝓤 β w : Set (β' × β') hw : w ∈ 𝓤 β' hvw : (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) '' v ×ˢ w ⊆ u ⊢ ∀ (x : (ι × ι') × ι × ι'), ((∀ (x_1 : α), x_1 ∈ s → (F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.fst x_1, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd x_1) ∈ v) ∧ ∀ (x_1 : α'), x_1 ∈ s' → (F' ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.fst x_1, F' ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd x_1) ∈ w) → ∀ (a : α) (b : α'), a ∈ s → b ∈ s' → ((F x.fst.fst a, F' x.fst.snd b), F x.snd.fst a, F' x.snd.snd b) ∈ u [PROOFSTEP] intro x hx a b ha hb [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s'✝ : Set α x✝ : α p : Filter ι p'✝ : Filter α g : ι → α ι' : Type u_1 α' : Type u_2 β' : Type u_3 inst✝ : UniformSpace β' F' : ι' → α' → β' p' : Filter ι' s' : Set α' h : UniformCauchySeqOn F p s h' : UniformCauchySeqOn F' p' s' u : Set ((β × β') × β × β') v : Set (β × β) hv : v ∈ 𝓤 β w : Set (β' × β') hw : w ∈ 𝓤 β' hvw : (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) '' v ×ˢ w ⊆ u x : (ι × ι') × ι × ι' hx : (∀ (x_1 : α), x_1 ∈ s → (F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.fst x_1, F ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).fst.snd x_1) ∈ v) ∧ ∀ (x_1 : α'), x_1 ∈ s' → (F' ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.fst x_1, F' ((x.fst.fst, x.snd.fst), x.fst.snd, x.snd.snd).snd.snd x_1) ∈ w a : α b : α' ha : a ∈ s hb : b ∈ s' ⊢ ((F x.fst.fst a, F' x.fst.snd b), F x.snd.fst a, F' x.snd.snd b) ∈ u [PROOFSTEP] refine' hvw ⟨_, mk_mem_prod (hx.1 a ha) (hx.2 b hb), rfl⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hp : NeBot p hf : UniformCauchySeqOn F p s hx : x ∈ s ⊢ Cauchy (map (fun i => F i x) p) [PROOFSTEP] simp only [cauchy_map_iff, hp, true_and_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hp : NeBot p hf : UniformCauchySeqOn F p s hx : x ∈ s ⊢ Tendsto (fun p => (F p.fst x, F p.snd x)) (p ×ˢ p) (𝓤 β) [PROOFSTEP] intro u hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hp : NeBot p hf : UniformCauchySeqOn F p s hx : x ∈ s u : Set (β × β) hu : u ∈ 𝓤 β ⊢ u ∈ map (fun p => (F p.fst x, F p.snd x)) (p ×ˢ p) [PROOFSTEP] rw [mem_map] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α hp : NeBot p hf : UniformCauchySeqOn F p s hx : x ∈ s u : Set (β × β) hu : u ∈ 𝓤 β ⊢ (fun p => (F p.fst x, F p.snd x)) ⁻¹' u ∈ p ×ˢ p [PROOFSTEP] filter_upwards [hf u hu] with p hp using hp x hx [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι inst✝ : IsCountablyGenerated l h : ∀ (u : ℕ → ι), Tendsto u atTop l → TendstoUniformlyOn (fun n => F (u n)) f atTop s ⊢ TendstoUniformlyOn F f l s [PROOFSTEP] rw [tendstoUniformlyOn_iff_tendsto, tendsto_iff_seq_tendsto] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι inst✝ : IsCountablyGenerated l h : ∀ (u : ℕ → ι), Tendsto u atTop l → TendstoUniformlyOn (fun n => F (u n)) f atTop s ⊢ ∀ (x : ℕ → ι × α), Tendsto x atTop (l ×ˢ 𝓟 s) → Tendsto ((fun q => (f q.snd, F q.fst q.snd)) ∘ x) atTop (𝓤 β) [PROOFSTEP] intro u hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι inst✝ : IsCountablyGenerated l h : ∀ (u : ℕ → ι), Tendsto u atTop l → TendstoUniformlyOn (fun n => F (u n)) f atTop s u : ℕ → ι × α hu : Tendsto u atTop (l ×ˢ 𝓟 s) ⊢ Tendsto ((fun q => (f q.snd, F q.fst q.snd)) ∘ u) atTop (𝓤 β) [PROOFSTEP] rw [tendsto_prod_iff'] at hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι inst✝ : IsCountablyGenerated l h : ∀ (u : ℕ → ι), Tendsto u atTop l → TendstoUniformlyOn (fun n => F (u n)) f atTop s u : ℕ → ι × α hu : Tendsto (fun n => (u n).fst) atTop l ∧ Tendsto (fun n => (u n).snd) atTop (𝓟 s) ⊢ Tendsto ((fun q => (f q.snd, F q.fst q.snd)) ∘ u) atTop (𝓤 β) [PROOFSTEP] specialize h (fun n => (u n).fst) hu.1 [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι inst✝ : IsCountablyGenerated l u : ℕ → ι × α hu : Tendsto (fun n => (u n).fst) atTop l ∧ Tendsto (fun n => (u n).snd) atTop (𝓟 s) h : TendstoUniformlyOn (fun n => F (u n).fst) f atTop s ⊢ Tendsto ((fun q => (f q.snd, F q.fst q.snd)) ∘ u) atTop (𝓤 β) [PROOFSTEP] rw [tendstoUniformlyOn_iff_tendsto] at h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι inst✝ : IsCountablyGenerated l u : ℕ → ι × α hu : Tendsto (fun n => (u n).fst) atTop l ∧ Tendsto (fun n => (u n).snd) atTop (𝓟 s) h : Tendsto (fun q => (f q.snd, F (u q.fst).fst q.snd)) (atTop ×ˢ 𝓟 s) (𝓤 β) ⊢ Tendsto ((fun q => (f q.snd, F q.fst q.snd)) ∘ u) atTop (𝓤 β) [PROOFSTEP] exact h.comp (tendsto_id.prod_mk hu.2) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι h : TendstoUniformlyOn F f l s u : ℕ → ι hu : Tendsto u atTop l ⊢ TendstoUniformlyOn (fun n => F (u n)) f atTop s [PROOFSTEP] rw [tendstoUniformlyOn_iff_tendsto] at h ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι h : Tendsto (fun q => (f q.snd, F q.fst q.snd)) (l ×ˢ 𝓟 s) (𝓤 β) u : ℕ → ι hu : Tendsto u atTop l ⊢ Tendsto (fun q => (f q.snd, F (u q.fst) q.snd)) (atTop ×ˢ 𝓟 s) (𝓤 β) [PROOFSTEP] exact h.comp ((hu.comp tendsto_fst).prod_mk tendsto_snd) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι inst✝ : IsCountablyGenerated l ⊢ TendstoUniformly F f l ↔ ∀ (u : ℕ → ι), Tendsto u atTop l → TendstoUniformly (fun n => F (u n)) f atTop [PROOFSTEP] simp_rw [← tendstoUniformlyOn_univ] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α l : Filter ι inst✝ : IsCountablyGenerated l ⊢ TendstoUniformlyOn F f l univ ↔ ∀ (u : ℕ → ι), Tendsto u atTop l → TendstoUniformlyOn (fun n => F (u n)) f atTop univ [PROOFSTEP] exact tendstoUniformlyOn_iff_seq_tendstoUniformlyOn [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ TendstoLocallyUniformlyOn F f p univ ↔ TendstoLocallyUniformly F f p [PROOFSTEP] simp [TendstoLocallyUniformlyOn, TendstoLocallyUniformly, nhdsWithin_univ] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α x✝³ : α x✝² : x✝³ ∈ s x✝¹ : Set (β × β) x✝ : x✝¹ ∈ 𝓤 β ⊢ (∃ t, t ∈ 𝓝[s] x✝³ ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ x✝¹) ↔ x✝¹ ∈ map (fun y => (f y.snd, F y.fst y.snd)) (p ×ˢ 𝓝[s] x✝³) [PROOFSTEP] rw [mem_map, mem_prod_iff_right] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α x✝³ : α x✝² : x✝³ ∈ s x✝¹ : Set (β × β) x✝ : x✝¹ ∈ 𝓤 β ⊢ (∃ t, t ∈ 𝓝[s] x✝³ ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ x✝¹) ↔ ∃ t, t ∈ 𝓝[s] x✝³ ∧ ∀ᶠ (x : ι) in p, ∀ (y : α), y ∈ t → (x, y) ∈ (fun y => (f y.snd, F y.fst y.snd)) ⁻¹' x✝¹ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hs : IsOpen s x : α hx : x ∈ s ⊢ Tendsto (fun y => (f y.snd, F y.fst y.snd)) (p ×ˢ 𝓝[s] x) (𝓤 β) ↔ Tendsto (fun y => (f y.snd, F y.fst y.snd)) (p ×ˢ 𝓝 x) (𝓤 β) [PROOFSTEP] rw [hs.nhdsWithin_eq hx] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ TendstoLocallyUniformly F f p ↔ ∀ (x : α), Tendsto (fun y => (f y.snd, F y.fst y.snd)) (p ×ˢ 𝓝 x) (𝓤 β) [PROOFSTEP] simp [← tendstoLocallyUniformlyOn_univ, isOpen_univ.tendstoLocallyUniformlyOn_iff_forall_tendsto] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ TendstoLocallyUniformlyOn F f p s ↔ TendstoLocallyUniformly (fun i x => F i ↑x) (f ∘ Subtype.val) p [PROOFSTEP] simp only [tendstoLocallyUniformly_iff_forall_tendsto, Subtype.forall', tendsto_map'_iff, tendstoLocallyUniformlyOn_iff_forall_tendsto, ← map_nhds_subtype_val, prod_map_right] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ (∀ (x : { a // a ∈ s }), Tendsto ((fun y => (f y.snd, F y.fst y.snd)) ∘ Prod.map id Subtype.val) (p ×ˢ 𝓝 x) (𝓤 β)) ↔ ∀ (x : ↑s), Tendsto (fun y => ((f ∘ Subtype.val) y.snd, F y.fst ↑y.snd)) (p ×ˢ 𝓝 x) (𝓤 β) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝¹ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : TendstoUniformlyOn F f p s u : Set (β × β) hu : u ∈ 𝓤 β x : α x✝ : x ∈ s ⊢ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s → (f y, F n y) ∈ u [PROOFSTEP] simpa using h u hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : TendstoUniformly F f p u : Set (β × β) hu : u ∈ 𝓤 β x : α ⊢ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ univ → (f y, F n y) ∈ u [PROOFSTEP] simpa using h u hu [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s h' : s' ⊆ s ⊢ TendstoLocallyUniformlyOn F f p s' [PROOFSTEP] intro u hu x hx [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s h' : s' ⊆ s u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s' ⊢ ∃ t, t ∈ 𝓝[s'] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] rcases h u hu x (h' hx) with ⟨t, ht, H⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s h' : s' ⊆ s u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s' t : Set α ht : t ∈ 𝓝[s] x H : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ ∃ t, t ∈ 𝓝[s'] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] exact ⟨t, nhdsWithin_mono x h' ht, H.mono fun n => id⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α S : Set (Set α) hS : ∀ (s : Set α), s ∈ S → IsOpen s h : ∀ (s : Set α), s ∈ S → TendstoLocallyUniformlyOn F f p s ⊢ TendstoLocallyUniformlyOn F f p (⋃₀ S) [PROOFSTEP] rw [sUnion_eq_biUnion] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α S : Set (Set α) hS : ∀ (s : Set α), s ∈ S → IsOpen s h : ∀ (s : Set α), s ∈ S → TendstoLocallyUniformlyOn F f p s ⊢ TendstoLocallyUniformlyOn F f p (⋃ (i : Set α) (_ : i ∈ S), i) [PROOFSTEP] exact tendstoLocallyUniformlyOn_biUnion hS h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α s₁ s₂ : Set α hs₁ : IsOpen s₁ hs₂ : IsOpen s₂ h₁ : TendstoLocallyUniformlyOn F f p s₁ h₂ : TendstoLocallyUniformlyOn F f p s₂ ⊢ TendstoLocallyUniformlyOn F f p (s₁ ∪ s₂) [PROOFSTEP] rw [← sUnion_pair] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α s₁ s₂ : Set α hs₁ : IsOpen s₁ hs₂ : IsOpen s₂ h₁ : TendstoLocallyUniformlyOn F f p s₁ h₂ : TendstoLocallyUniformlyOn F f p s₂ ⊢ TendstoLocallyUniformlyOn F f p (⋃₀ {s₁, s₂}) [PROOFSTEP] refine' tendstoLocallyUniformlyOn_sUnion _ _ _ [GOAL] case refine'_1 α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α s₁ s₂ : Set α hs₁ : IsOpen s₁ hs₂ : IsOpen s₂ h₁ : TendstoLocallyUniformlyOn F f p s₁ h₂ : TendstoLocallyUniformlyOn F f p s₂ ⊢ ∀ (s : Set α), s ∈ {s₁, s₂} → IsOpen s [PROOFSTEP] simp [*] [GOAL] case refine'_2 α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α s₁ s₂ : Set α hs₁ : IsOpen s₁ hs₂ : IsOpen s₂ h₁ : TendstoLocallyUniformlyOn F f p s₁ h₂ : TendstoLocallyUniformlyOn F f p s₂ ⊢ ∀ (s : Set α), s ∈ {s₁, s₂} → TendstoLocallyUniformlyOn F f p s [PROOFSTEP] simp [*] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α ⊢ TendstoLocallyUniformly F f p ↔ TendstoUniformly F f p [PROOFSTEP] refine' ⟨fun h V hV => _, TendstoUniformly.tendstoLocallyUniformly⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β ⊢ ∀ᶠ (n : ι) in p, ∀ (x : α), (f x, F n x) ∈ V [PROOFSTEP] choose U hU using h V hV [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β U : α → Set α hU : ∀ (x : α), U x ∈ 𝓝 x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ U x → (f y, F n y) ∈ V ⊢ ∀ᶠ (n : ι) in p, ∀ (x : α), (f x, F n x) ∈ V [PROOFSTEP] obtain ⟨t, ht⟩ := isCompact_univ.elim_nhds_subcover' (fun k _ => U k) fun k _ => (hU k).1 [GOAL] case intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β U : α → Set α hU : ∀ (x : α), U x ∈ 𝓝 x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ U x → (f y, F n y) ∈ V t : Finset ↑univ ht : univ ⊆ ⋃ (x : ↑univ) (_ : x ∈ t), U ↑x ⊢ ∀ᶠ (n : ι) in p, ∀ (x : α), (f x, F n x) ∈ V [PROOFSTEP] replace hU := fun x : t => (hU x).2 [GOAL] case intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β U : α → Set α t : Finset ↑univ ht : univ ⊆ ⋃ (x : ↑univ) (_ : x ∈ t), U ↑x hU : ∀ (x : { x // x ∈ t }), ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ U ↑↑x → (f y, F n y) ∈ V ⊢ ∀ᶠ (n : ι) in p, ∀ (x : α), (f x, F n x) ∈ V [PROOFSTEP] rw [← eventually_all] at hU [GOAL] case intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β U : α → Set α t : Finset ↑univ ht : univ ⊆ ⋃ (x : ↑univ) (_ : x ∈ t), U ↑x hU : ∀ᶠ (x : ι) in p, ∀ (i : { x // x ∈ t }) (y : α), y ∈ U ↑↑i → (f y, F x y) ∈ V ⊢ ∀ᶠ (n : ι) in p, ∀ (x : α), (f x, F n x) ∈ V [PROOFSTEP] refine' hU.mono fun i hi x => _ [GOAL] case intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β U : α → Set α t : Finset ↑univ ht : univ ⊆ ⋃ (x : ↑univ) (_ : x ∈ t), U ↑x hU : ∀ᶠ (x : ι) in p, ∀ (i : { x // x ∈ t }) (y : α), y ∈ U ↑↑i → (f y, F x y) ∈ V i : ι hi : ∀ (i_1 : { x // x ∈ t }) (y : α), y ∈ U ↑↑i_1 → (f y, F i y) ∈ V x : α ⊢ (f x, F i x) ∈ V [PROOFSTEP] specialize ht (mem_univ x) [GOAL] case intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β U : α → Set α t : Finset ↑univ hU : ∀ᶠ (x : ι) in p, ∀ (i : { x // x ∈ t }) (y : α), y ∈ U ↑↑i → (f y, F x y) ∈ V i : ι hi : ∀ (i_1 : { x // x ∈ t }) (y : α), y ∈ U ↑↑i_1 → (f y, F i y) ∈ V x : α ht : x ∈ ⋃ (x : ↑univ) (_ : x ∈ t), U ↑x ⊢ (f x, F i x) ∈ V [PROOFSTEP] simp only [exists_prop, mem_iUnion, SetCoe.exists, exists_and_right, Subtype.coe_mk] at ht [GOAL] case intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β U : α → Set α t : Finset ↑univ hU : ∀ᶠ (x : ι) in p, ∀ (i : { x // x ∈ t }) (y : α), y ∈ U ↑↑i → (f y, F x y) ∈ V i : ι hi : ∀ (i_1 : { x // x ∈ t }) (y : α), y ∈ U ↑↑i_1 → (f y, F i y) ∈ V x : α ht : ∃ x_1, (∃ x, { val := x_1, property := (_ : x_1 ∈ univ) } ∈ t) ∧ x ∈ U x_1 ⊢ (f x, F i x) ∈ V [PROOFSTEP] obtain ⟨y, ⟨hy₁, hy₂⟩, hy₃⟩ := ht [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α inst✝ : CompactSpace α h : TendstoLocallyUniformly F f p V : Set (β × β) hV : V ∈ 𝓤 β U : α → Set α t : Finset ↑univ hU : ∀ᶠ (x : ι) in p, ∀ (i : { x // x ∈ t }) (y : α), y ∈ U ↑↑i → (f y, F x y) ∈ V i : ι hi : ∀ (i_1 : { x // x ∈ t }) (y : α), y ∈ U ↑↑i_1 → (f y, F i y) ∈ V x y : α hy₃ : x ∈ U y hy₁ : y ∈ univ hy₂ : { val := y, property := (_ : y ∈ univ) } ∈ t ⊢ (f x, F i x) ∈ V [PROOFSTEP] exact hi ⟨⟨y, hy₁⟩, hy₂⟩ x hy₃ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hs : IsCompact s ⊢ TendstoLocallyUniformlyOn F f p s ↔ TendstoUniformlyOn F f p s [PROOFSTEP] haveI : CompactSpace s := isCompact_iff_compactSpace.mp hs [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hs : IsCompact s this : CompactSpace ↑s ⊢ TendstoLocallyUniformlyOn F f p s ↔ TendstoUniformlyOn F f p s [PROOFSTEP] refine' ⟨fun h => _, TendstoUniformlyOn.tendstoLocallyUniformlyOn⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hs : IsCompact s this : CompactSpace ↑s h : TendstoLocallyUniformlyOn F f p s ⊢ TendstoUniformlyOn F f p s [PROOFSTEP] rwa [tendstoLocallyUniformlyOn_iff_tendstoLocallyUniformly_comp_coe, tendstoLocallyUniformly_iff_tendstoUniformly_of_compactSpace, ← tendstoUniformlyOn_iff_tendstoUniformly_comp_coe] at h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace γ t : Set γ h : TendstoLocallyUniformlyOn F f p s g : γ → α hg : MapsTo g t s cg : ContinuousOn g t ⊢ TendstoLocallyUniformlyOn (fun n => F n ∘ g) (f ∘ g) p t [PROOFSTEP] intro u hu x hx [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace γ t : Set γ h : TendstoLocallyUniformlyOn F f p s g : γ → α hg : MapsTo g t s cg : ContinuousOn g t u : Set (β × β) hu : u ∈ 𝓤 β x : γ hx : x ∈ t ⊢ ∃ t_1, t_1 ∈ 𝓝[t] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : γ), y ∈ t_1 → ((f ∘ g) y, (fun n => F n ∘ g) n y) ∈ u [PROOFSTEP] rcases h u hu (g x) (hg hx) with ⟨a, ha, H⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace γ t : Set γ h : TendstoLocallyUniformlyOn F f p s g : γ → α hg : MapsTo g t s cg : ContinuousOn g t u : Set (β × β) hu : u ∈ 𝓤 β x : γ hx : x ∈ t a : Set α ha : a ∈ 𝓝[s] g x H : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ a → (f y, F n y) ∈ u ⊢ ∃ t_1, t_1 ∈ 𝓝[t] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : γ), y ∈ t_1 → ((f ∘ g) y, (fun n => F n ∘ g) n y) ∈ u [PROOFSTEP] have : g ⁻¹' a ∈ 𝓝[t] x := (cg x hx).preimage_mem_nhdsWithin' (nhdsWithin_mono (g x) hg.image_subset ha) [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace γ t : Set γ h : TendstoLocallyUniformlyOn F f p s g : γ → α hg : MapsTo g t s cg : ContinuousOn g t u : Set (β × β) hu : u ∈ 𝓤 β x : γ hx : x ∈ t a : Set α ha : a ∈ 𝓝[s] g x H : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ a → (f y, F n y) ∈ u this : g ⁻¹' a ∈ 𝓝[t] x ⊢ ∃ t_1, t_1 ∈ 𝓝[t] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : γ), y ∈ t_1 → ((f ∘ g) y, (fun n => F n ∘ g) n y) ∈ u [PROOFSTEP] exact ⟨g ⁻¹' a, this, H.mono fun n hn y hy => hn _ hy⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace γ h : TendstoLocallyUniformly F f p g : γ → α cg : Continuous g ⊢ TendstoLocallyUniformly (fun n => F n ∘ g) (f ∘ g) p [PROOFSTEP] rw [← tendstoLocallyUniformlyOn_univ] at h ⊢ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace γ h : TendstoLocallyUniformlyOn F f p univ g : γ → α cg : Continuous g ⊢ TendstoLocallyUniformlyOn (fun n => F n ∘ g) (f ∘ g) p univ [PROOFSTEP] rw [continuous_iff_continuousOn_univ] at cg [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace γ h : TendstoLocallyUniformlyOn F f p univ g : γ → α cg : ContinuousOn g univ ⊢ TendstoLocallyUniformlyOn (fun n => F n ∘ g) (f ∘ g) p univ [PROOFSTEP] exact h.comp _ (mapsTo_univ _ _) cg [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s ⊢ List.TFAE [TendstoLocallyUniformlyOn G g p s, ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K, ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s ⊢ TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K [PROOFSTEP] rintro h K hK1 hK2 [GOAL] case tfae_1_to_2 α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s h : TendstoLocallyUniformlyOn G g p s K : Set α hK1 : K ⊆ s hK2 : IsCompact K ⊢ TendstoUniformlyOn G g p K [PROOFSTEP] exact (tendstoLocallyUniformlyOn_iff_tendstoUniformlyOn_of_compact hK2).mp (h.mono hK1) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K ⊢ List.TFAE [TendstoLocallyUniformlyOn G g p s, ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K, ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K ⊢ (∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K) → ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v [PROOFSTEP] rintro h x hx [GOAL] case tfae_2_to_3 α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K h : ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K x : α hx : x ∈ s ⊢ ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v [PROOFSTEP] obtain ⟨K, ⟨hK1, hK2⟩, hK3⟩ := (compact_basis_nhds x).mem_iff.mp (hs.mem_nhds hx) [GOAL] case tfae_2_to_3.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K h : ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K x : α hx : x ∈ s K : Set α hK3 : K ⊆ s hK1 : K ∈ 𝓝 x hK2 : IsCompact K ⊢ ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v [PROOFSTEP] refine' ⟨K, nhdsWithin_le_nhds hK1, h K hK3 hK2⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K tfae_2_to_3 : (∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K) → ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v ⊢ List.TFAE [TendstoLocallyUniformlyOn G g p s, ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K, ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v] [PROOFSTEP] tfae_have 3 → 1 [GOAL] case tfae_3_to_1 α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K tfae_2_to_3 : (∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K) → ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v ⊢ (∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v) → TendstoLocallyUniformlyOn G g p s [PROOFSTEP] rintro h u hu x hx [GOAL] case tfae_3_to_1 α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K tfae_2_to_3 : (∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K) → ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v h : ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (g y, G n y) ∈ u [PROOFSTEP] obtain ⟨v, hv1, hv2⟩ := h x hx [GOAL] case tfae_3_to_1.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K tfae_2_to_3 : (∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K) → ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v h : ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s v : Set α hv1 : v ∈ 𝓝[s] x hv2 : TendstoUniformlyOn G g p v ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (g y, G n y) ∈ u [PROOFSTEP] exact ⟨v, hv1, hv2 u hu⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p✝ : Filter ι p' : Filter α g✝ : ι → α inst✝¹ : TopologicalSpace α inst✝ : LocallyCompactSpace α G : ι → α → β g : α → β p : Filter ι hs : IsOpen s tfae_1_to_2 : TendstoLocallyUniformlyOn G g p s → ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K tfae_2_to_3 : (∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K) → ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v tfae_3_to_1 : (∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v) → TendstoLocallyUniformlyOn G g p s ⊢ List.TFAE [TendstoLocallyUniformlyOn G g p s, ∀ (K : Set α), K ⊆ s → IsCompact K → TendstoUniformlyOn G g p K, ∀ (x : α), x ∈ s → ∃ v, v ∈ 𝓝[s] x ∧ TendstoUniformlyOn G g p v] [PROOFSTEP] tfae_finish [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ TendstoLocallyUniformlyOn F f p s ↔ ∀ (x : α), x ∈ s → TendstoUniformlyOnFilter F f p (𝓝[s] x) [PROOFSTEP] simp only [TendstoUniformlyOnFilter, eventually_prod_iff] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ TendstoLocallyUniformlyOn F f p s ↔ ∀ (x : α), x ∈ s → ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ pa, (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ TendstoLocallyUniformlyOn F f p s → ∀ (x : α), x ∈ s → ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ pa, (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u [PROOFSTEP] rintro h x hx u hu [GOAL] case mp α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s x : α hx : x ∈ s u : Set (β × β) hu : u ∈ 𝓤 β ⊢ ∃ pa, (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u [PROOFSTEP] obtain ⟨s, hs1, hs2⟩ := h u hu x hx [GOAL] case mp.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s✝ s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s✝ x : α hx : x ∈ s✝ u : Set (β × β) hu : u ∈ 𝓤 β s : Set α hs1 : s ∈ 𝓝[s✝] x hs2 : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s → (f y, F n y) ∈ u ⊢ ∃ pa, (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s✝] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u [PROOFSTEP] exact ⟨_, hs2, _, eventually_of_mem hs1 fun x => id, fun hi y hy => hi y hy⟩ [GOAL] case mpr α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ (∀ (x : α), x ∈ s → ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ pa, (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u) → TendstoLocallyUniformlyOn F f p s [PROOFSTEP] rintro h u hu x hx [GOAL] case mpr α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ∀ (x : α), x ∈ s → ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ pa, (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] obtain ⟨pa, hpa, pb, hpb, h⟩ := h x hx u hu [GOAL] case mpr.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h✝ : ∀ (x : α), x ∈ s → ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ pa, (∀ᶠ (x : ι) in p, pa x) ∧ ∃ pb, (∀ᶠ (y : α) in 𝓝[s] x, pb y) ∧ ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s pa : ι → Prop hpa : ∀ᶠ (x : ι) in p, pa x pb : α → Prop hpb : ∀ᶠ (y : α) in 𝓝[s] x, pb y h : ∀ {x : ι}, pa x → ∀ {y : α}, pb y → (f y, F x y) ∈ u ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] refine' ⟨pb, hpb, eventually_of_mem hpa fun i hi y hy => h hi hy⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α ⊢ TendstoLocallyUniformly F f p ↔ ∀ (x : α), TendstoUniformlyOnFilter F f p (𝓝 x) [PROOFSTEP] simpa [← tendstoLocallyUniformlyOn_univ, ← nhdsWithin_univ] using @tendstoLocallyUniformlyOn_iff_filter _ _ _ _ F f univ p _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hf : TendstoLocallyUniformlyOn F f p s a : α ha : a ∈ s ⊢ Tendsto (fun i => F i a) p (𝓝 (f a)) [PROOFSTEP] refine' ((tendstoLocallyUniformlyOn_iff_filter.mp hf) a ha).tendsto_at _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hf : TendstoLocallyUniformlyOn F f p s a : α ha : a ∈ s ⊢ 𝓟 {a} ≤ 𝓝[s] a [PROOFSTEP] simpa only [Filter.principal_singleton] using pure_le_nhdsWithin ha [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α G : ι → α → β hf : TendstoLocallyUniformlyOn F f p s hg : ∀ (n : ι), EqOn (F n) (G n) s ⊢ TendstoLocallyUniformlyOn G f p s [PROOFSTEP] rintro u hu x hx [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α G : ι → α → β hf : TendstoLocallyUniformlyOn F f p s hg : ∀ (n : ι), EqOn (F n) (G n) s u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, G n y) ∈ u [PROOFSTEP] obtain ⟨t, ht, h⟩ := hf u hu x hx [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α G : ι → α → β hf : TendstoLocallyUniformlyOn F f p s hg : ∀ (n : ι), EqOn (F n) (G n) s u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s t : Set α ht : t ∈ 𝓝[s] x h : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, G n y) ∈ u [PROOFSTEP] refine' ⟨s ∩ t, inter_mem self_mem_nhdsWithin ht, _⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α G : ι → α → β hf : TendstoLocallyUniformlyOn F f p s hg : ∀ (n : ι), EqOn (F n) (G n) s u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s t : Set α ht : t ∈ 𝓝[s] x h : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s ∩ t → (f y, G n y) ∈ u [PROOFSTEP] filter_upwards [h] with i hi y hy using hg i hy.1 ▸ hi y hy.2 [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g✝ : ι → α inst✝ : TopologicalSpace α g : α → β hf : TendstoLocallyUniformlyOn F f p s hg : EqOn f g s ⊢ TendstoLocallyUniformlyOn F g p s [PROOFSTEP] rintro u hu x hx [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g✝ : ι → α inst✝ : TopologicalSpace α g : α → β hf : TendstoLocallyUniformlyOn F f p s hg : EqOn f g s u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (g y, F n y) ∈ u [PROOFSTEP] obtain ⟨t, ht, h⟩ := hf u hu x hx [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g✝ : ι → α inst✝ : TopologicalSpace α g : α → β hf : TendstoLocallyUniformlyOn F f p s hg : EqOn f g s u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s t : Set α ht : t ∈ 𝓝[s] x h : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (g y, F n y) ∈ u [PROOFSTEP] refine' ⟨s ∩ t, inter_mem self_mem_nhdsWithin ht, _⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g✝ : ι → α inst✝ : TopologicalSpace α g : α → β hf : TendstoLocallyUniformlyOn F f p s hg : EqOn f g s u : Set (β × β) hu : u ∈ 𝓤 β x : α hx : x ∈ s t : Set α ht : t ∈ 𝓝[s] x h : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s ∩ t → (g y, F n y) ∈ u [PROOFSTEP] filter_upwards [h] with i hi y hy using hg hy.1 ▸ hi y hy.2 [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u ⊢ ContinuousWithinAt f s x [PROOFSTEP] refine Uniform.continuousWithinAt_iff'_left.2 fun u₀ hu₀ => ?_ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β ⊢ u₀ ∈ map (fun x_1 => (f x_1, f x)) (𝓝[s] x) [PROOFSTEP] obtain ⟨u₁, h₁, u₁₀⟩ : ∃ u ∈ 𝓤 β, u ○ u ⊆ u₀ := comp_mem_uniformity_sets hu₀ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ ⊢ u₀ ∈ map (fun x_1 => (f x_1, f x)) (𝓝[s] x) [PROOFSTEP] obtain ⟨u₂, h₂, hsymm, u₂₁⟩ : ∃ u ∈ 𝓤 β, (∀ {a b}, (a, b) ∈ u → (b, a) ∈ u) ∧ u ○ u ⊆ u₁ := comp_symm_of_uniformity h₁ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ u₂ : Set (β × β) h₂ : u₂ ∈ 𝓤 β hsymm : ∀ {a b : β}, (a, b) ∈ u₂ → (b, a) ∈ u₂ u₂₁ : u₂ ○ u₂ ⊆ u₁ ⊢ u₀ ∈ map (fun x_1 => (f x_1, f x)) (𝓝[s] x) [PROOFSTEP] rcases L u₂ h₂ with ⟨t, tx, F, hFc, hF⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ u₂ : Set (β × β) h₂ : u₂ ∈ 𝓤 β hsymm : ∀ {a b : β}, (a, b) ∈ u₂ → (b, a) ∈ u₂ u₂₁ : u₂ ○ u₂ ⊆ u₁ t : Set α tx : t ∈ 𝓝[s] x F : α → β hFc : ContinuousWithinAt F s x hF : ∀ (y : α), y ∈ t → (f y, F y) ∈ u₂ ⊢ u₀ ∈ map (fun x_1 => (f x_1, f x)) (𝓝[s] x) [PROOFSTEP] have A : ∀ᶠ y in 𝓝[s] x, (f y, F y) ∈ u₂ := Eventually.mono tx hF [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ u₂ : Set (β × β) h₂ : u₂ ∈ 𝓤 β hsymm : ∀ {a b : β}, (a, b) ∈ u₂ → (b, a) ∈ u₂ u₂₁ : u₂ ○ u₂ ⊆ u₁ t : Set α tx : t ∈ 𝓝[s] x F : α → β hFc : ContinuousWithinAt F s x hF : ∀ (y : α), y ∈ t → (f y, F y) ∈ u₂ A : ∀ᶠ (y : α) in 𝓝[s] x, (f y, F y) ∈ u₂ ⊢ u₀ ∈ map (fun x_1 => (f x_1, f x)) (𝓝[s] x) [PROOFSTEP] have B : ∀ᶠ y in 𝓝[s] x, (F y, F x) ∈ u₂ := Uniform.continuousWithinAt_iff'_left.1 hFc h₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ u₂ : Set (β × β) h₂ : u₂ ∈ 𝓤 β hsymm : ∀ {a b : β}, (a, b) ∈ u₂ → (b, a) ∈ u₂ u₂₁ : u₂ ○ u₂ ⊆ u₁ t : Set α tx : t ∈ 𝓝[s] x F : α → β hFc : ContinuousWithinAt F s x hF : ∀ (y : α), y ∈ t → (f y, F y) ∈ u₂ A : ∀ᶠ (y : α) in 𝓝[s] x, (f y, F y) ∈ u₂ B : ∀ᶠ (y : α) in 𝓝[s] x, (F y, F x) ∈ u₂ ⊢ u₀ ∈ map (fun x_1 => (f x_1, f x)) (𝓝[s] x) [PROOFSTEP] have C : ∀ᶠ y in 𝓝[s] x, (f y, F x) ∈ u₁ := (A.and B).mono fun y hy => u₂₁ (prod_mk_mem_compRel hy.1 hy.2) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ u₂ : Set (β × β) h₂ : u₂ ∈ 𝓤 β hsymm : ∀ {a b : β}, (a, b) ∈ u₂ → (b, a) ∈ u₂ u₂₁ : u₂ ○ u₂ ⊆ u₁ t : Set α tx : t ∈ 𝓝[s] x F : α → β hFc : ContinuousWithinAt F s x hF : ∀ (y : α), y ∈ t → (f y, F y) ∈ u₂ A : ∀ᶠ (y : α) in 𝓝[s] x, (f y, F y) ∈ u₂ B : ∀ᶠ (y : α) in 𝓝[s] x, (F y, F x) ∈ u₂ C : ∀ᶠ (y : α) in 𝓝[s] x, (f y, F x) ∈ u₁ ⊢ u₀ ∈ map (fun x_1 => (f x_1, f x)) (𝓝[s] x) [PROOFSTEP] have : (F x, f x) ∈ u₁ := u₂₁ (prod_mk_mem_compRel (refl_mem_uniformity h₂) (hsymm (A.self_of_nhdsWithin hx))) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F✝ : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α hx : x ∈ s L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ u₂ : Set (β × β) h₂ : u₂ ∈ 𝓤 β hsymm : ∀ {a b : β}, (a, b) ∈ u₂ → (b, a) ∈ u₂ u₂₁ : u₂ ○ u₂ ⊆ u₁ t : Set α tx : t ∈ 𝓝[s] x F : α → β hFc : ContinuousWithinAt F s x hF : ∀ (y : α), y ∈ t → (f y, F y) ∈ u₂ A : ∀ᶠ (y : α) in 𝓝[s] x, (f y, F y) ∈ u₂ B : ∀ᶠ (y : α) in 𝓝[s] x, (F y, F x) ∈ u₂ C : ∀ᶠ (y : α) in 𝓝[s] x, (f y, F x) ∈ u₁ this : (F x, f x) ∈ u₁ ⊢ u₀ ∈ map (fun x_1 => (f x_1, f x)) (𝓝[s] x) [PROOFSTEP] exact C.mono fun y hy => u₁₀ (prod_mk_mem_compRel hy this) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝 x ∧ ∃ F, ContinuousAt F x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u ⊢ ContinuousAt f x [PROOFSTEP] rw [← continuousWithinAt_univ] [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝 x ∧ ∃ F, ContinuousAt F x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u ⊢ ContinuousWithinAt f univ x [PROOFSTEP] apply continuousWithinAt_of_locally_uniform_approx_of_continuousWithinAt (mem_univ _) _ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝 x ∧ ∃ F, ContinuousAt F x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u ⊢ ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[univ] x ∧ ∃ F, ContinuousWithinAt F univ x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u [PROOFSTEP] simpa only [exists_prop, nhdsWithin_univ, continuousWithinAt_univ] using L [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α L : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ F, Continuous F ∧ ∀ (y : α), (f y, F y) ∈ u ⊢ ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ F, ContinuousOn F univ ∧ ∀ (y : α), y ∈ univ → (f y, F y) ∈ u [PROOFSTEP] simpa [continuous_iff_continuousOn_univ] using L [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s hc : ∀ᶠ (n : ι) in p, ContinuousOn (F n) s inst✝ : NeBot p ⊢ ContinuousOn f s [PROOFSTEP] refine continuousOn_of_locally_uniform_approx_of_continuousWithinAt fun x hx u hu => ?_ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s hc : ∀ᶠ (n : ι) in p, ContinuousOn (F n) s inst✝ : NeBot p x : α hx : x ∈ s u : Set (β × β) hu : u ∈ 𝓤 β ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u [PROOFSTEP] rcases h u hu x hx with ⟨t, ht, H⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s hc : ∀ᶠ (n : ι) in p, ContinuousOn (F n) s inst✝ : NeBot p x : α hx : x ∈ s u : Set (β × β) hu : u ∈ 𝓤 β t : Set α ht : t ∈ 𝓝[s] x H : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u [PROOFSTEP] rcases(hc.and H).exists with ⟨n, hFc, hF⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝² : UniformSpace β F : ι → α → β f : α → β s s' : Set α x✝ : α p : Filter ι p' : Filter α g : ι → α inst✝¹ : TopologicalSpace α h : TendstoLocallyUniformlyOn F f p s hc : ∀ᶠ (n : ι) in p, ContinuousOn (F n) s inst✝ : NeBot p x : α hx : x ∈ s u : Set (β × β) hu : u ∈ 𝓤 β t : Set α ht : t ∈ 𝓝[s] x H : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u n : ι hFc : ContinuousOn (F n) s hF : ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∃ F, ContinuousWithinAt F s x ∧ ∀ (y : α), y ∈ t → (f y, F y) ∈ u [PROOFSTEP] exact ⟨t, ht, ⟨F n, hFc.continuousWithinAt hx, hF⟩⟩ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f s x hg : Tendsto g p (𝓝[s] x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x)) [PROOFSTEP] refine Uniform.tendsto_nhds_right.2 fun u₀ hu₀ => ?_ [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f s x hg : Tendsto g p (𝓝[s] x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β ⊢ u₀ ∈ map (fun x_1 => (f x, F x_1 (g x_1))) p [PROOFSTEP] obtain ⟨u₁, h₁, u₁₀⟩ : ∃ u ∈ 𝓤 β, u ○ u ⊆ u₀ := comp_mem_uniformity_sets hu₀ [GOAL] case intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f s x hg : Tendsto g p (𝓝[s] x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ ⊢ u₀ ∈ map (fun x_1 => (f x, F x_1 (g x_1))) p [PROOFSTEP] rcases hunif u₁ h₁ with ⟨s, sx, hs⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s✝ s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f s✝ x hg : Tendsto g p (𝓝[s✝] x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s✝] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ s : Set α sx : s ∈ 𝓝[s✝] x hs : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s → (f y, F n y) ∈ u₁ ⊢ u₀ ∈ map (fun x_1 => (f x, F x_1 (g x_1))) p [PROOFSTEP] have A : ∀ᶠ n in p, g n ∈ s := hg sx [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s✝ s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f s✝ x hg : Tendsto g p (𝓝[s✝] x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s✝] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ s : Set α sx : s ∈ 𝓝[s✝] x hs : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s → (f y, F n y) ∈ u₁ A : ∀ᶠ (n : ι) in p, g n ∈ s ⊢ u₀ ∈ map (fun x_1 => (f x, F x_1 (g x_1))) p [PROOFSTEP] have B : ∀ᶠ n in p, (f x, f (g n)) ∈ u₁ := hg (Uniform.continuousWithinAt_iff'_right.1 h h₁) [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s✝ s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f s✝ x hg : Tendsto g p (𝓝[s✝] x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[s✝] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u u₀ : Set (β × β) hu₀ : u₀ ∈ 𝓤 β u₁ : Set (β × β) h₁ : u₁ ∈ 𝓤 β u₁₀ : u₁ ○ u₁ ⊆ u₀ s : Set α sx : s ∈ 𝓝[s✝] x hs : ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ s → (f y, F n y) ∈ u₁ A : ∀ᶠ (n : ι) in p, g n ∈ s B : ∀ᶠ (n : ι) in p, (f x, f (g n)) ∈ u₁ ⊢ u₀ ∈ map (fun x_1 => (f x, F x_1 (g x_1))) p [PROOFSTEP] exact B.mp <| A.mp <| hs.mono fun y H1 H2 H3 => u₁₀ (prod_mk_mem_compRel H3 (H1 _ H2)) [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousAt f x hg : Tendsto g p (𝓝 x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝 x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x)) [PROOFSTEP] rw [← continuousWithinAt_univ] at h [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f univ x hg : Tendsto g p (𝓝 x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝 x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x)) [PROOFSTEP] rw [← nhdsWithin_univ] at hunif hg [GOAL] α : Type u β : Type v γ : Type w ι : Type x inst✝¹ : UniformSpace β F : ι → α → β f : α → β s s' : Set α x : α p : Filter ι p' : Filter α g : ι → α inst✝ : TopologicalSpace α h : ContinuousWithinAt f univ x hg : Tendsto g p (𝓝[univ] x) hunif : ∀ (u : Set (β × β)), u ∈ 𝓤 β → ∃ t, t ∈ 𝓝[univ] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : α), y ∈ t → (f y, F n y) ∈ u ⊢ Tendsto (fun n => F n (g n)) p (𝓝 (f x)) [PROOFSTEP] exact tendsto_comp_of_locally_uniform_limit_within h hg hunif
{"mathlib_filename": "Mathlib.Topology.UniformSpace.UniformConvergence", "llama_tokens": 63081}
[GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X ⊢ EquicontinuousAt F x₀ ↔ ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : X), x ∈ V → ∀ (y : X), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] constructor [GOAL] case mp ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X ⊢ EquicontinuousAt F x₀ → ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : X), x ∈ V → ∀ (y : X), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] intro H U hU [GOAL] case mpr ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X ⊢ (∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : X), x ∈ V → ∀ (y : X), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U) → EquicontinuousAt F x₀ [PROOFSTEP] intro H U hU [GOAL] case mp ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X H : EquicontinuousAt F x₀ U : Set (α × α) hU : U ∈ 𝓤 α ⊢ ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : X), x ∈ V → ∀ (y : X), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] rcases comp_symm_mem_uniformity_sets hU with ⟨V, hV, hVsymm, hVU⟩ [GOAL] case mp.intro.intro.intro ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X H : EquicontinuousAt F x₀ U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVsymm : SymmetricRel V hVU : V ○ V ⊆ U ⊢ ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : X), x ∈ V → ∀ (y : X), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] refine' ⟨_, H V hV, fun x hx y hy i => hVU (prod_mk_mem_compRel _ (hy i))⟩ [GOAL] case mp.intro.intro.intro ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X H : EquicontinuousAt F x₀ U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVsymm : SymmetricRel V hVU : V ○ V ⊆ U x : X hx : x ∈ {x | (fun x => ∀ (i : ι), (F i x₀, F i x) ∈ V) x} y : X hy : y ∈ {x | (fun x => ∀ (i : ι), (F i x₀, F i x) ∈ V) x} i : ι ⊢ (F i x, F i x₀) ∈ V [PROOFSTEP] exact hVsymm.mk_mem_comm.mp (hx i) [GOAL] case mpr ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X H : ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : X), x ∈ V → ∀ (y : X), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U U : Set (α × α) hU : U ∈ 𝓤 α ⊢ ∀ᶠ (x : X) in 𝓝 x₀, ∀ (i : ι), (F i x₀, F i x) ∈ U [PROOFSTEP] rcases H U hU with ⟨V, hV, hVU⟩ [GOAL] case mpr.intro.intro ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X H : ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ V, V ∈ 𝓝 x₀ ∧ ∀ (x : X), x ∈ V → ∀ (y : X), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U U : Set (α × α) hU : U ∈ 𝓤 α V : Set X hV : V ∈ 𝓝 x₀ hVU : ∀ (x : X), x ∈ V → ∀ (y : X), y ∈ V → ∀ (i : ι), (F i x, F i y) ∈ U ⊢ ∀ᶠ (x : X) in 𝓝 x₀, ∀ (i : ι), (F i x₀, F i x) ∈ U [PROOFSTEP] filter_upwards [hV] using fun x hx i => hVU x₀ (mem_of_mem_nhds hV) x hx i [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X h : EquicontinuousAt F x₀ i : ι ⊢ ContinuousAt (F i) x₀ [PROOFSTEP] intro U hU [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X h : EquicontinuousAt F x₀ i : ι U : Set α hU : U ∈ 𝓝 (F i x₀) ⊢ U ∈ map (F i) (𝓝 x₀) [PROOFSTEP] rw [UniformSpace.mem_nhds_iff] at hU [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X h : EquicontinuousAt F x₀ i : ι U : Set α hU : ∃ V, V ∈ 𝓤 α ∧ ball (F i x₀) V ⊆ U ⊢ U ∈ map (F i) (𝓝 x₀) [PROOFSTEP] rcases hU with ⟨V, hV₁, hV₂⟩ [GOAL] case intro.intro ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X h : EquicontinuousAt F x₀ i : ι U : Set α V : Set (α × α) hV₁ : V ∈ 𝓤 α hV₂ : ball (F i x₀) V ⊆ U ⊢ U ∈ map (F i) (𝓝 x₀) [PROOFSTEP] exact mem_map.mpr (mem_of_superset (h V hV₁) fun x hx => hV₂ (hx i)) [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X h : EquicontinuousAt F x₀ ⊢ EquicontinuousAt Subtype.val x₀ [PROOFSTEP] rw [← comp_rangeSplitting F] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X h : EquicontinuousAt F x₀ ⊢ EquicontinuousAt (F ∘ rangeSplitting F) x₀ [PROOFSTEP] exact h.comp _ [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → β → α h : UniformEquicontinuous F ⊢ UniformEquicontinuous Subtype.val [PROOFSTEP] rw [← comp_rangeSplitting F] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → β → α h : UniformEquicontinuous F ⊢ UniformEquicontinuous (F ∘ rangeSplitting F) [PROOFSTEP] exact h.comp _ [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X ⊢ EquicontinuousAt F x₀ ↔ ContinuousAt (↑UniformFun.ofFun ∘ Function.swap F) x₀ [PROOFSTEP] rw [ContinuousAt, (UniformFun.hasBasis_nhds ι α _).tendsto_right_iff] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X ⊢ EquicontinuousAt F x₀ ↔ ∀ (i : Set (α × α)), i ∈ 𝓤 α → ∀ᶠ (x : X) in 𝓝 x₀, (↑UniformFun.ofFun ∘ Function.swap F) x ∈ {g | ((↑UniformFun.ofFun ∘ Function.swap F) x₀, g) ∈ UniformFun.gen ι α i} [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α ⊢ Equicontinuous F ↔ Continuous (↑UniformFun.ofFun ∘ Function.swap F) [PROOFSTEP] simp_rw [Equicontinuous, continuous_iff_continuousAt, equicontinuousAt_iff_continuousAt] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → β → α ⊢ UniformEquicontinuous F ↔ UniformContinuous (↑UniformFun.ofFun ∘ Function.swap F) [PROOFSTEP] rw [UniformContinuous, (UniformFun.hasBasis_uniformity ι α).tendsto_right_iff] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → β → α ⊢ UniformEquicontinuous F ↔ ∀ (i : Set (α × α)), i ∈ 𝓤 α → ∀ᶠ (x : β × β) in 𝓤 β, ((↑UniformFun.ofFun ∘ Function.swap F) x.fst, (↑UniformFun.ofFun ∘ Function.swap F) x.snd) ∈ UniformFun.gen ι α i [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α' : Type u_10 u : κ → UniformSpace α' F : ι → X → α' x₀ : X ⊢ EquicontinuousAt F x₀ ↔ ∀ (k : κ), EquicontinuousAt F x₀ [PROOFSTEP] simp [@equicontinuousAt_iff_continuousAt _ _ _ _ _, UniformFun.topologicalSpace] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α' : Type u_10 u : κ → UniformSpace α' F : ι → X → α' x₀ : X ⊢ ContinuousAt (↑UniformFun.ofFun ∘ Function.swap F) x₀ ↔ ∀ (k : κ), ContinuousAt (↑UniformFun.ofFun ∘ Function.swap F) x₀ [PROOFSTEP] unfold ContinuousAt [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α' : Type u_10 u : κ → UniformSpace α' F : ι → X → α' x₀ : X ⊢ Tendsto (↑UniformFun.ofFun ∘ Function.swap F) (𝓝 x₀) (𝓝 ((↑UniformFun.ofFun ∘ Function.swap F) x₀)) ↔ ∀ (k : κ), Tendsto (↑UniformFun.ofFun ∘ Function.swap F) (𝓝 x₀) (𝓝 ((↑UniformFun.ofFun ∘ Function.swap F) x₀)) [PROOFSTEP] rw [UniformFun.iInf_eq, toTopologicalSpace_iInf, nhds_iInf, tendsto_iInf] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α' : Type u_10 u : κ → UniformSpace α' F : ι → X → α' ⊢ Equicontinuous F ↔ ∀ (k : κ), Equicontinuous F [PROOFSTEP] simp_rw [@equicontinuous_iff_continuous _ _ _ _ _, UniformFun.topologicalSpace] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α' : Type u_10 u : κ → UniformSpace α' F : ι → X → α' ⊢ Continuous (↑UniformFun.ofFun ∘ Function.swap F) ↔ ∀ (k : κ), Continuous (↑UniformFun.ofFun ∘ Function.swap F) [PROOFSTEP] rw [UniformFun.iInf_eq, toTopologicalSpace_iInf, continuous_iInf_rng] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α' : Type u_10 u : κ → UniformSpace α' F : ι → β → α' ⊢ UniformEquicontinuous F ↔ ∀ (k : κ), UniformEquicontinuous F [PROOFSTEP] simp_rw [@uniformEquicontinuous_iff_uniformContinuous _ _ _ _] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α' : Type u_10 u : κ → UniformSpace α' F : ι → β → α' ⊢ UniformContinuous (↑UniformFun.ofFun ∘ Function.swap F) ↔ ∀ (k : κ), UniformContinuous (↑UniformFun.ofFun ∘ Function.swap F) [PROOFSTEP] rw [UniformFun.iInf_eq, uniformContinuous_iInf_rng] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ X' : Type u_10 t : κ → TopologicalSpace X' F : ι → X' → α x₀ : X' k : κ hk : EquicontinuousAt F x₀ ⊢ EquicontinuousAt F x₀ [PROOFSTEP] simp [@equicontinuousAt_iff_continuousAt _ _ _ _] at hk ⊢ [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ X' : Type u_10 t : κ → TopologicalSpace X' F : ι → X' → α x₀ : X' k : κ hk : ContinuousAt (↑UniformFun.ofFun ∘ Function.swap F) x₀ ⊢ ContinuousAt (↑UniformFun.ofFun ∘ Function.swap F) x₀ [PROOFSTEP] unfold ContinuousAt at hk ⊢ [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ X' : Type u_10 t : κ → TopologicalSpace X' F : ι → X' → α x₀ : X' k : κ hk : Tendsto (↑UniformFun.ofFun ∘ Function.swap F) (𝓝 x₀) (𝓝 ((↑UniformFun.ofFun ∘ Function.swap F) x₀)) ⊢ Tendsto (↑UniformFun.ofFun ∘ Function.swap F) (𝓝 x₀) (𝓝 ((↑UniformFun.ofFun ∘ Function.swap F) x₀)) [PROOFSTEP] rw [nhds_iInf] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ X' : Type u_10 t : κ → TopologicalSpace X' F : ι → X' → α x₀ : X' k : κ hk : Tendsto (↑UniformFun.ofFun ∘ Function.swap F) (𝓝 x₀) (𝓝 ((↑UniformFun.ofFun ∘ Function.swap F) x₀)) ⊢ Tendsto (↑UniformFun.ofFun ∘ Function.swap F) (⨅ (i : κ), 𝓝 x₀) (𝓝 ((↑UniformFun.ofFun ∘ Function.swap F) x₀)) [PROOFSTEP] exact tendsto_iInf' k hk [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ X' : Type u_10 t : κ → TopologicalSpace X' F : ι → X' → α k : κ hk : Equicontinuous F ⊢ Equicontinuous F [PROOFSTEP] simp_rw [@equicontinuous_iff_continuous _ _ _ _] at hk ⊢ [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ X' : Type u_10 t : κ → TopologicalSpace X' F : ι → X' → α k : κ hk : Continuous (↑UniformFun.ofFun ∘ Function.swap F) ⊢ Continuous (↑UniformFun.ofFun ∘ Function.swap F) [PROOFSTEP] exact continuous_iInf_dom hk [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ β' : Type u_10 u : κ → UniformSpace β' F : ι → β' → α k : κ hk : UniformEquicontinuous F ⊢ UniformEquicontinuous F [PROOFSTEP] simp_rw [@uniformEquicontinuous_iff_uniformContinuous _ _ _ _ _] at hk ⊢ [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ β' : Type u_10 u : κ → UniformSpace β' F : ι → β' → α k : κ hk : UniformContinuous (↑UniformFun.ofFun ∘ Function.swap F) ⊢ UniformContinuous (↑UniformFun.ofFun ∘ Function.swap F) [PROOFSTEP] exact uniformContinuous_iInf_dom hk [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set X F : ι → X → α x₀ : X hX : HasBasis (𝓝 x₀) p s ⊢ EquicontinuousAt F x₀ ↔ ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ k, p k ∧ ∀ (x : X), x ∈ s k → ∀ (i : ι), (F i x₀, F i x) ∈ U [PROOFSTEP] rw [equicontinuousAt_iff_continuousAt, ContinuousAt, hX.tendsto_iff (UniformFun.hasBasis_nhds ι α _)] [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set X F : ι → X → α x₀ : X hX : HasBasis (𝓝 x₀) p s ⊢ (∀ (ib : Set (α × α)), ib ∈ 𝓤 α → ∃ ia, p ia ∧ ∀ (x : X), x ∈ s ia → (↑UniformFun.ofFun ∘ Function.swap F) x ∈ {g | ((↑UniformFun.ofFun ∘ Function.swap F) x₀, g) ∈ UniformFun.gen ι α ib}) ↔ ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ k, p k ∧ ∀ (x : X), x ∈ s k → ∀ (i : ι), (F i x₀, F i x) ∈ U [PROOFSTEP] simp only [Function.comp_apply, mem_setOf_eq, exists_prop] [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set X F : ι → X → α x₀ : X hX : HasBasis (𝓝 x₀) p s ⊢ (∀ (ib : Set (α × α)), ib ∈ 𝓤 α → ∃ ia, p ia ∧ ∀ (x : X), x ∈ s ia → (↑UniformFun.ofFun (Function.swap F x₀), ↑UniformFun.ofFun (Function.swap F x)) ∈ UniformFun.gen ι α ib) ↔ ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ k, p k ∧ ∀ (x : X), x ∈ s k → ∀ (i : ι), (F i x₀, F i x) ∈ U [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set (α × α) F : ι → X → α x₀ : X hα : HasBasis (𝓤 α) p s ⊢ EquicontinuousAt F x₀ ↔ ∀ (k : κ), p k → ∀ᶠ (x : X) in 𝓝 x₀, ∀ (i : ι), (F i x₀, F i x) ∈ s k [PROOFSTEP] rw [equicontinuousAt_iff_continuousAt, ContinuousAt, (UniformFun.hasBasis_nhds_of_basis ι α _ hα).tendsto_right_iff] [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set (α × α) F : ι → X → α x₀ : X hα : HasBasis (𝓤 α) p s ⊢ (∀ (i : κ), p i → ∀ᶠ (x : X) in 𝓝 x₀, (↑UniformFun.ofFun ∘ Function.swap F) x ∈ {g | ((↑UniformFun.ofFun ∘ Function.swap F) x₀, g) ∈ UniformFun.gen ι α (s i)}) ↔ ∀ (k : κ), p k → ∀ᶠ (x : X) in 𝓝 x₀, ∀ (i : ι), (F i x₀, F i x) ∈ s k [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ₁ : Type u_10 κ₂ : Type u_11 p₁ : κ₁ → Prop s₁ : κ₁ → Set X p₂ : κ₂ → Prop s₂ : κ₂ → Set (α × α) F : ι → X → α x₀ : X hX : HasBasis (𝓝 x₀) p₁ s₁ hα : HasBasis (𝓤 α) p₂ s₂ ⊢ EquicontinuousAt F x₀ ↔ ∀ (k₂ : κ₂), p₂ k₂ → ∃ k₁, p₁ k₁ ∧ ∀ (x : X), x ∈ s₁ k₁ → ∀ (i : ι), (F i x₀, F i x) ∈ s₂ k₂ [PROOFSTEP] rw [equicontinuousAt_iff_continuousAt, ContinuousAt, hX.tendsto_iff (UniformFun.hasBasis_nhds_of_basis ι α _ hα)] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ₁ : Type u_10 κ₂ : Type u_11 p₁ : κ₁ → Prop s₁ : κ₁ → Set X p₂ : κ₂ → Prop s₂ : κ₂ → Set (α × α) F : ι → X → α x₀ : X hX : HasBasis (𝓝 x₀) p₁ s₁ hα : HasBasis (𝓤 α) p₂ s₂ ⊢ (∀ (ib : κ₂), p₂ ib → ∃ ia, p₁ ia ∧ ∀ (x : X), x ∈ s₁ ia → (↑UniformFun.ofFun ∘ Function.swap F) x ∈ {g | ((↑UniformFun.ofFun ∘ Function.swap F) x₀, g) ∈ UniformFun.gen ι α (s₂ ib)}) ↔ ∀ (k₂ : κ₂), p₂ k₂ → ∃ k₁, p₁ k₁ ∧ ∀ (x : X), x ∈ s₁ k₁ → ∀ (i : ι), (F i x₀, F i x) ∈ s₂ k₂ [PROOFSTEP] simp only [Function.comp_apply, mem_setOf_eq, exists_prop] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ₁ : Type u_10 κ₂ : Type u_11 p₁ : κ₁ → Prop s₁ : κ₁ → Set X p₂ : κ₂ → Prop s₂ : κ₂ → Set (α × α) F : ι → X → α x₀ : X hX : HasBasis (𝓝 x₀) p₁ s₁ hα : HasBasis (𝓤 α) p₂ s₂ ⊢ (∀ (ib : κ₂), p₂ ib → ∃ ia, p₁ ia ∧ ∀ (x : X), x ∈ s₁ ia → (↑UniformFun.ofFun (Function.swap F x₀), ↑UniformFun.ofFun (Function.swap F x)) ∈ UniformFun.gen ι α (s₂ ib)) ↔ ∀ (k₂ : κ₂), p₂ k₂ → ∃ k₁, p₁ k₁ ∧ ∀ (x : X), x ∈ s₁ k₁ → ∀ (i : ι), (F i x₀, F i x) ∈ s₂ k₂ [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set (β × β) F : ι → β → α hβ : HasBasis (𝓤 β) p s ⊢ UniformEquicontinuous F ↔ ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ k, p k ∧ ∀ (x y : β), (x, y) ∈ s k → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] rw [uniformEquicontinuous_iff_uniformContinuous, UniformContinuous, hβ.tendsto_iff (UniformFun.hasBasis_uniformity ι α)] [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set (β × β) F : ι → β → α hβ : HasBasis (𝓤 β) p s ⊢ (∀ (ib : Set (α × α)), ib ∈ 𝓤 α → ∃ ia, p ia ∧ ∀ (x : β × β), x ∈ s ia → ((↑UniformFun.ofFun ∘ Function.swap F) x.fst, (↑UniformFun.ofFun ∘ Function.swap F) x.snd) ∈ UniformFun.gen ι α ib) ↔ ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ k, p k ∧ ∀ (x y : β), (x, y) ∈ s k → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] simp only [Prod.forall, Function.comp_apply, mem_setOf_eq, exists_prop] [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set (β × β) F : ι → β → α hβ : HasBasis (𝓤 β) p s ⊢ (∀ (ib : Set (α × α)), ib ∈ 𝓤 α → ∃ ia, p ia ∧ ∀ (a b : β), (a, b) ∈ s ia → (↑UniformFun.ofFun (Function.swap F a), ↑UniformFun.ofFun (Function.swap F b)) ∈ UniformFun.gen ι α ib) ↔ ∀ (U : Set (α × α)), U ∈ 𝓤 α → ∃ k, p k ∧ ∀ (x y : β), (x, y) ∈ s k → ∀ (i : ι), (F i x, F i y) ∈ U [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set (α × α) F : ι → β → α hα : HasBasis (𝓤 α) p s ⊢ UniformEquicontinuous F ↔ ∀ (k : κ), p k → ∀ᶠ (xy : β × β) in 𝓤 β, ∀ (i : ι), (F i xy.fst, F i xy.snd) ∈ s k [PROOFSTEP] rw [uniformEquicontinuous_iff_uniformContinuous, UniformContinuous, (UniformFun.hasBasis_uniformity_of_basis ι α hα).tendsto_right_iff] [GOAL] ι : Type u_1 κ✝ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ : Type u_10 p : κ → Prop s : κ → Set (α × α) F : ι → β → α hα : HasBasis (𝓤 α) p s ⊢ (∀ (i : κ), p i → ∀ᶠ (x : β × β) in 𝓤 β, ((↑UniformFun.ofFun ∘ Function.swap F) x.fst, (↑UniformFun.ofFun ∘ Function.swap F) x.snd) ∈ (UniformFun.gen ι α ∘ s) i) ↔ ∀ (k : κ), p k → ∀ᶠ (xy : β × β) in 𝓤 β, ∀ (i : ι), (F i xy.fst, F i xy.snd) ∈ s k [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ₁ : Type u_10 κ₂ : Type u_11 p₁ : κ₁ → Prop s₁ : κ₁ → Set (β × β) p₂ : κ₂ → Prop s₂ : κ₂ → Set (α × α) F : ι → β → α hβ : HasBasis (𝓤 β) p₁ s₁ hα : HasBasis (𝓤 α) p₂ s₂ ⊢ UniformEquicontinuous F ↔ ∀ (k₂ : κ₂), p₂ k₂ → ∃ k₁, p₁ k₁ ∧ ∀ (x y : β), (x, y) ∈ s₁ k₁ → ∀ (i : ι), (F i x, F i y) ∈ s₂ k₂ [PROOFSTEP] rw [uniformEquicontinuous_iff_uniformContinuous, UniformContinuous, hβ.tendsto_iff (UniformFun.hasBasis_uniformity_of_basis ι α hα)] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ₁ : Type u_10 κ₂ : Type u_11 p₁ : κ₁ → Prop s₁ : κ₁ → Set (β × β) p₂ : κ₂ → Prop s₂ : κ₂ → Set (α × α) F : ι → β → α hβ : HasBasis (𝓤 β) p₁ s₁ hα : HasBasis (𝓤 α) p₂ s₂ ⊢ (∀ (ib : κ₂), p₂ ib → ∃ ia, p₁ ia ∧ ∀ (x : β × β), x ∈ s₁ ia → ((↑UniformFun.ofFun ∘ Function.swap F) x.fst, (↑UniformFun.ofFun ∘ Function.swap F) x.snd) ∈ (UniformFun.gen ι α ∘ s₂) ib) ↔ ∀ (k₂ : κ₂), p₂ k₂ → ∃ k₁, p₁ k₁ ∧ ∀ (x y : β), (x, y) ∈ s₁ k₁ → ∀ (i : ι), (F i x, F i y) ∈ s₂ k₂ [PROOFSTEP] simp only [Prod.forall, Function.comp_apply, mem_setOf_eq, exists_prop] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ κ₁ : Type u_10 κ₂ : Type u_11 p₁ : κ₁ → Prop s₁ : κ₁ → Set (β × β) p₂ : κ₂ → Prop s₂ : κ₂ → Set (α × α) F : ι → β → α hβ : HasBasis (𝓤 β) p₁ s₁ hα : HasBasis (𝓤 α) p₂ s₂ ⊢ (∀ (ib : κ₂), p₂ ib → ∃ ia, p₁ ia ∧ ∀ (a b : β), (a, b) ∈ s₁ ia → (↑UniformFun.ofFun (Function.swap F a), ↑UniformFun.ofFun (Function.swap F b)) ∈ UniformFun.gen ι α (s₂ ib)) ↔ ∀ (k₂ : κ₂), p₂ k₂ → ∃ k₁, p₁ k₁ ∧ ∀ (x y : β), (x, y) ∈ s₁ k₁ → ∀ (i : ι), (F i x, F i y) ∈ s₂ k₂ [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X u : α → β hu : UniformInducing u ⊢ EquicontinuousAt F x₀ ↔ EquicontinuousAt ((fun x x_1 => x ∘ x_1) u ∘ F) x₀ [PROOFSTEP] have := (UniformFun.postcomp_uniformInducing (α := ι) hu).inducing [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X u : α → β hu : UniformInducing u this : Inducing (↑UniformFun.ofFun ∘ (fun x => u ∘ x) ∘ ↑toFun) ⊢ EquicontinuousAt F x₀ ↔ EquicontinuousAt ((fun x x_1 => x ∘ x_1) u ∘ F) x₀ [PROOFSTEP] rw [equicontinuousAt_iff_continuousAt, equicontinuousAt_iff_continuousAt, this.continuousAt_iff] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α x₀ : X u : α → β hu : UniformInducing u this : Inducing (↑UniformFun.ofFun ∘ (fun x => u ∘ x) ∘ ↑toFun) ⊢ ContinuousAt ((↑UniformFun.ofFun ∘ (fun x => u ∘ x) ∘ ↑toFun) ∘ ↑UniformFun.ofFun ∘ Function.swap F) x₀ ↔ ContinuousAt (↑UniformFun.ofFun ∘ Function.swap ((fun x x_1 => x ∘ x_1) u ∘ F)) x₀ [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α u : α → β hu : UniformInducing u ⊢ Equicontinuous F ↔ Equicontinuous ((fun x x_1 => x ∘ x_1) u ∘ F) [PROOFSTEP] have : ∀ x, EquicontinuousAt F x ↔ EquicontinuousAt ((fun x x_1 => x ∘ x_1) u ∘ F) x := by intro rw [hu.equicontinuousAt_iff] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α u : α → β hu : UniformInducing u ⊢ ∀ (x : X), EquicontinuousAt F x ↔ EquicontinuousAt ((fun x x_1 => x ∘ x_1) u ∘ F) x [PROOFSTEP] intro [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α u : α → β hu : UniformInducing u x✝ : X ⊢ EquicontinuousAt F x✝ ↔ EquicontinuousAt ((fun x x_1 => x ∘ x_1) u ∘ F) x✝ [PROOFSTEP] rw [hu.equicontinuousAt_iff] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → X → α u : α → β hu : UniformInducing u this : ∀ (x : X), EquicontinuousAt F x ↔ EquicontinuousAt ((fun x x_1 => x ∘ x_1) u ∘ F) x ⊢ Equicontinuous F ↔ Equicontinuous ((fun x x_1 => x ∘ x_1) u ∘ F) [PROOFSTEP] exact ⟨fun h x => (this x).mp (h x), fun h x => (this x).mpr (h x)⟩ -- Porting note: proof was: -- congrm (∀ x, _ : Prop) -- rw [hu.equicontinuousAt_iff] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → β → α u : α → γ hu : UniformInducing u ⊢ UniformEquicontinuous F ↔ UniformEquicontinuous ((fun x x_1 => x ∘ x_1) u ∘ F) [PROOFSTEP] have := UniformFun.postcomp_uniformInducing (α := ι) hu [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → β → α u : α → γ hu : UniformInducing u this : UniformInducing (↑UniformFun.ofFun ∘ (fun x => u ∘ x) ∘ ↑toFun) ⊢ UniformEquicontinuous F ↔ UniformEquicontinuous ((fun x x_1 => x ∘ x_1) u ∘ F) [PROOFSTEP] rw [uniformEquicontinuous_iff_uniformContinuous, uniformEquicontinuous_iff_uniformContinuous, this.uniformContinuous_iff] [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ F : ι → β → α u : α → γ hu : UniformInducing u this : UniformInducing (↑UniformFun.ofFun ∘ (fun x => u ∘ x) ∘ ↑toFun) ⊢ UniformContinuous ((↑UniformFun.ofFun ∘ (fun x => u ∘ x) ∘ ↑toFun) ∘ ↑UniformFun.ofFun ∘ Function.swap F) ↔ UniformContinuous (↑UniformFun.ofFun ∘ Function.swap ((fun x x_1 => x ∘ x_1) u ∘ F)) [PROOFSTEP] rfl [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → X → α x₀ : X hA : EquicontinuousAt (u ∘ Subtype.val) x₀ hu : Continuous u ⊢ EquicontinuousAt (u ∘ Subtype.val) x₀ [PROOFSTEP] intro U hU [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → X → α x₀ : X hA : EquicontinuousAt (u ∘ Subtype.val) x₀ hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α ⊢ ∀ᶠ (x : X) in 𝓝 x₀, ∀ (i : ↑(closure A)), ((u ∘ Subtype.val) i x₀, (u ∘ Subtype.val) i x) ∈ U [PROOFSTEP] rcases mem_uniformity_isClosed hU with ⟨V, hV, hVclosed, hVU⟩ [GOAL] case intro.intro.intro ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → X → α x₀ : X hA : EquicontinuousAt (u ∘ Subtype.val) x₀ hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U ⊢ ∀ᶠ (x : X) in 𝓝 x₀, ∀ (i : ↑(closure A)), ((u ∘ Subtype.val) i x₀, (u ∘ Subtype.val) i x) ∈ U [PROOFSTEP] filter_upwards [hA V hV] with x hx [GOAL] case h ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → X → α x₀ : X hA : EquicontinuousAt (u ∘ Subtype.val) x₀ hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x : X hx : ∀ (i : ↑A), ((u ∘ Subtype.val) i x₀, (u ∘ Subtype.val) i x) ∈ V ⊢ ∀ (i : ↑(closure A)), ((u ∘ Subtype.val) i x₀, (u ∘ Subtype.val) i x) ∈ U [PROOFSTEP] rw [SetCoe.forall] at * [GOAL] case h ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → X → α x₀ : X hA : EquicontinuousAt (u ∘ Subtype.val) x₀ hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x : X hx : ∀ (x_1 : Y) (h : x_1 ∈ A), ((u ∘ Subtype.val) { val := x_1, property := h } x₀, (u ∘ Subtype.val) { val := x_1, property := h } x) ∈ V ⊢ ∀ (x_1 : Y) (h : x_1 ∈ closure A), ((u ∘ Subtype.val) { val := x_1, property := h } x₀, (u ∘ Subtype.val) { val := x_1, property := h } x) ∈ U [PROOFSTEP] change A ⊆ (fun f => (u f x₀, u f x)) ⁻¹' V at hx [GOAL] case h ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → X → α x₀ : X hA : EquicontinuousAt (u ∘ Subtype.val) x₀ hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x : X hx : A ⊆ (fun f => (u f x₀, u f x)) ⁻¹' V ⊢ ∀ (x_1 : Y) (h : x_1 ∈ closure A), ((u ∘ Subtype.val) { val := x_1, property := h } x₀, (u ∘ Subtype.val) { val := x_1, property := h } x) ∈ U [PROOFSTEP] refine' (closure_minimal hx <| hVclosed.preimage <| _).trans (preimage_mono hVU) [GOAL] case h ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → X → α x₀ : X hA : EquicontinuousAt (u ∘ Subtype.val) x₀ hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x : X hx : A ⊆ (fun f => (u f x₀, u f x)) ⁻¹' V ⊢ Continuous fun f => (u f x₀, u f x) [PROOFSTEP] exact Continuous.prod_mk ((continuous_apply x₀).comp hu) ((continuous_apply x).comp hu) [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → β → α hA : UniformEquicontinuous (u ∘ Subtype.val) hu : Continuous u ⊢ UniformEquicontinuous (u ∘ Subtype.val) [PROOFSTEP] intro U hU [GOAL] ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → β → α hA : UniformEquicontinuous (u ∘ Subtype.val) hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α ⊢ ∀ᶠ (xy : β × β) in 𝓤 β, ∀ (i : ↑(closure A)), ((u ∘ Subtype.val) i xy.fst, (u ∘ Subtype.val) i xy.snd) ∈ U [PROOFSTEP] rcases mem_uniformity_isClosed hU with ⟨V, hV, hVclosed, hVU⟩ [GOAL] case intro.intro.intro ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → β → α hA : UniformEquicontinuous (u ∘ Subtype.val) hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U ⊢ ∀ᶠ (xy : β × β) in 𝓤 β, ∀ (i : ↑(closure A)), ((u ∘ Subtype.val) i xy.fst, (u ∘ Subtype.val) i xy.snd) ∈ U [PROOFSTEP] filter_upwards [hA V hV] [GOAL] case h ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → β → α hA : UniformEquicontinuous (u ∘ Subtype.val) hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U ⊢ ∀ (a : β × β), (∀ (i : ↑A), ((u ∘ Subtype.val) i a.fst, (u ∘ Subtype.val) i a.snd) ∈ V) → ∀ (i : ↑(closure A)), ((u ∘ Subtype.val) i a.fst, (u ∘ Subtype.val) i a.snd) ∈ U [PROOFSTEP] rintro ⟨x, y⟩ hxy [GOAL] case h.mk ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → β → α hA : UniformEquicontinuous (u ∘ Subtype.val) hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x y : β hxy : ∀ (i : ↑A), ((u ∘ Subtype.val) i (x, y).fst, (u ∘ Subtype.val) i (x, y).snd) ∈ V ⊢ ∀ (i : ↑(closure A)), ((u ∘ Subtype.val) i (x, y).fst, (u ∘ Subtype.val) i (x, y).snd) ∈ U [PROOFSTEP] rw [SetCoe.forall] at * [GOAL] case h.mk ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → β → α hA : UniformEquicontinuous (u ∘ Subtype.val) hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x y : β hxy : ∀ (x_1 : Y) (h : x_1 ∈ A), ((u ∘ Subtype.val) { val := x_1, property := h } (x, y).fst, (u ∘ Subtype.val) { val := x_1, property := h } (x, y).snd) ∈ V ⊢ ∀ (x_1 : Y) (h : x_1 ∈ closure A), ((u ∘ Subtype.val) { val := x_1, property := h } (x, y).fst, (u ∘ Subtype.val) { val := x_1, property := h } (x, y).snd) ∈ U [PROOFSTEP] change A ⊆ (fun f => (u f x, u f y)) ⁻¹' V at hxy [GOAL] case h.mk ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → β → α hA : UniformEquicontinuous (u ∘ Subtype.val) hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x y : β hxy : A ⊆ (fun f => (u f x, u f y)) ⁻¹' V ⊢ ∀ (x_1 : Y) (h : x_1 ∈ closure A), ((u ∘ Subtype.val) { val := x_1, property := h } (x, y).fst, (u ∘ Subtype.val) { val := x_1, property := h } (x, y).snd) ∈ U [PROOFSTEP] refine' (closure_minimal hxy <| hVclosed.preimage <| _).trans (preimage_mono hVU) [GOAL] case h.mk ι : Type u_1 κ : Type u_2 X : Type u_3 Y : Type u_4 Z : Type u_5 α : Type u_6 β : Type u_7 γ : Type u_8 𝓕 : Type u_9 inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : TopologicalSpace Z inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ A : Set Y u : Y → β → α hA : UniformEquicontinuous (u ∘ Subtype.val) hu : Continuous u U : Set (α × α) hU : U ∈ 𝓤 α V : Set (α × α) hV : V ∈ 𝓤 α hVclosed : IsClosed V hVU : V ⊆ U x y : β hxy : A ⊆ (fun f => (u f x, u f y)) ⁻¹' V ⊢ Continuous fun f => (u f x, u f y) [PROOFSTEP] exact Continuous.prod_mk ((continuous_apply x).comp hu) ((continuous_apply y).comp hu)
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Equicontinuity", "llama_tokens": 23209}
[GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f : X → Y x : X ⊢ HolderOnWith C r f {x} [PROOFSTEP] rintro a (rfl : a = x) b (rfl : b = a) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f : X → Y b : X ⊢ edist (f b) (f b) ≤ ↑C * edist b b ^ ↑r [PROOFSTEP] rw [edist_self] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f : X → Y b : X ⊢ 0 ≤ ↑C * edist b b ^ ↑r [PROOFSTEP] exact zero_le _ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f : X → Y ⊢ HolderOnWith C r f univ ↔ HolderWith C r f [PROOFSTEP] simp only [HolderOnWith, HolderWith, mem_univ, true_imp_iff] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C : ℝ≥0 f : X → Y s : Set X ⊢ HolderOnWith C 1 f s ↔ LipschitzOnWith C f s [PROOFSTEP] simp only [HolderOnWith, LipschitzOnWith, NNReal.coe_one, ENNReal.rpow_one] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f✝ : X → Y s t✝ : Set X Cg rg : ℝ≥0 g : Y → Z t : Set Y hg : HolderOnWith Cg rg g t Cf rf : ℝ≥0 f : X → Y hf : HolderOnWith Cf rf f s hst : MapsTo f s t ⊢ HolderOnWith (Cg * NNReal.rpow Cf ↑rg) (rg * rf) (g ∘ f) s [PROOFSTEP] intro x hx y hy [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f✝ : X → Y s t✝ : Set X Cg rg : ℝ≥0 g : Y → Z t : Set Y hg : HolderOnWith Cg rg g t Cf rf : ℝ≥0 f : X → Y hf : HolderOnWith Cf rf f s hst : MapsTo f s t x : X hx : x ∈ s y : X hy : y ∈ s ⊢ edist ((g ∘ f) x) ((g ∘ f) y) ≤ ↑(Cg * NNReal.rpow Cf ↑rg) * edist x y ^ ↑(rg * rf) [PROOFSTEP] rw [ENNReal.coe_mul, mul_comm rg, NNReal.coe_mul, ENNReal.rpow_mul, mul_assoc, NNReal.rpow_eq_pow, ← ENNReal.coe_rpow_of_nonneg _ rg.coe_nonneg, ← ENNReal.mul_rpow_of_nonneg _ _ rg.coe_nonneg] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f✝ : X → Y s t✝ : Set X Cg rg : ℝ≥0 g : Y → Z t : Set Y hg : HolderOnWith Cg rg g t Cf rf : ℝ≥0 f : X → Y hf : HolderOnWith Cf rf f s hst : MapsTo f s t x : X hx : x ∈ s y : X hy : y ∈ s ⊢ edist ((g ∘ f) x) ((g ∘ f) y) ≤ ↑Cg * (↑Cf * edist x y ^ ↑rf) ^ ↑rg [PROOFSTEP] exact hg.edist_le_of_le (hst hx) (hst hy) (hf.edist_le hx hy) [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f : X → Y s t : Set X hf : HolderOnWith C r f s h0 : 0 < r ⊢ UniformContinuousOn f s [PROOFSTEP] refine' EMetric.uniformContinuousOn_iff.2 fun ε εpos => _ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f : X → Y s t : Set X hf : HolderOnWith C r f s h0 : 0 < r ε : ℝ≥0∞ εpos : ε > 0 ⊢ ∃ δ, δ > 0 ∧ ∀ {a : X}, a ∈ s → ∀ {b : X}, b ∈ s → edist a b < δ → edist (f a) (f b) < ε [PROOFSTEP] have : Tendsto (fun d : ℝ≥0∞ => (C : ℝ≥0∞) * d ^ (r : ℝ)) (𝓝 0) (𝓝 0) := ENNReal.tendsto_const_mul_rpow_nhds_zero_of_pos ENNReal.coe_ne_top h0 [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f : X → Y s t : Set X hf : HolderOnWith C r f s h0 : 0 < r ε : ℝ≥0∞ εpos : ε > 0 this : Tendsto (fun d => ↑C * d ^ ↑r) (𝓝 0) (𝓝 0) ⊢ ∃ δ, δ > 0 ∧ ∀ {a : X}, a ∈ s → ∀ {b : X}, b ∈ s → edist a b < δ → edist (f a) (f b) < ε [PROOFSTEP] rcases ENNReal.nhds_zero_basis.mem_iff.1 (this (gt_mem_nhds εpos)) with ⟨δ, δ0, H⟩ [GOAL] case intro.intro X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝² : PseudoEMetricSpace X inst✝¹ : PseudoEMetricSpace Y inst✝ : PseudoEMetricSpace Z C r : ℝ≥0 f : X → Y s t : Set X hf : HolderOnWith C r f s h0 : 0 < r ε : ℝ≥0∞ εpos : ε > 0 this : Tendsto (fun d => ↑C * d ^ ↑r) (𝓝 0) (𝓝 0) δ : ℝ≥0∞ δ0 : 0 < δ H : Iio δ ⊆ (fun d => ↑C * d ^ ↑r) ⁻¹' {x | (fun x => x < ε) x} ⊢ ∃ δ, δ > 0 ∧ ∀ {a : X}, a ∈ s → ∀ {b : X}, b ∈ s → edist a b < δ → edist (f a) (f b) < ε [PROOFSTEP] exact ⟨δ, δ0, fun hx y hy h => (hf.edist_le hx hy).trans_lt (H h)⟩ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹ : PseudoMetricSpace X inst✝ : PseudoMetricSpace Y C r : ℝ≥0 f : X → Y hf : HolderWith C r f x y : X d : ℝ≥0 hd : nndist x y ≤ d ⊢ ↑(nndist (f x) (f y)) ≤ ↑C * ↑d ^ ↑r [PROOFSTEP] norm_cast [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹ : PseudoMetricSpace X inst✝ : PseudoMetricSpace Y C r : ℝ≥0 f : X → Y hf : HolderWith C r f x y : X d : ℝ≥0 hd : nndist x y ≤ d ⊢ nndist (f x) (f y) ≤ C * d ^ ↑r [PROOFSTEP] rw [← ENNReal.coe_le_coe, ← edist_nndist, ENNReal.coe_mul, ← ENNReal.coe_rpow_of_nonneg _ r.coe_nonneg] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹ : PseudoMetricSpace X inst✝ : PseudoMetricSpace Y C r : ℝ≥0 f : X → Y hf : HolderWith C r f x y : X d : ℝ≥0 hd : nndist x y ≤ d ⊢ edist (f x) (f y) ≤ ↑C * ↑d ^ ↑r [PROOFSTEP] apply hf.edist_le_of_le [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹ : PseudoMetricSpace X inst✝ : PseudoMetricSpace Y C r : ℝ≥0 f : X → Y hf : HolderWith C r f x y : X d : ℝ≥0 hd : nndist x y ≤ d ⊢ edist x y ≤ ↑d [PROOFSTEP] rwa [edist_nndist, ENNReal.coe_le_coe] [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹ : PseudoMetricSpace X inst✝ : PseudoMetricSpace Y C r : ℝ≥0 f : X → Y hf : HolderWith C r f x y : X d : ℝ hd : dist x y ≤ d ⊢ dist (f x) (f y) ≤ ↑C * d ^ ↑r [PROOFSTEP] lift d to ℝ≥0 using dist_nonneg.trans hd [GOAL] case intro X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹ : PseudoMetricSpace X inst✝ : PseudoMetricSpace Y C r : ℝ≥0 f : X → Y hf : HolderWith C r f x y : X d : ℝ≥0 hd : dist x y ≤ ↑d ⊢ dist (f x) (f y) ≤ ↑C * ↑d ^ ↑r [PROOFSTEP] rw [dist_nndist] at hd ⊢ [GOAL] case intro X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹ : PseudoMetricSpace X inst✝ : PseudoMetricSpace Y C r : ℝ≥0 f : X → Y hf : HolderWith C r f x y : X d : ℝ≥0 hd : ↑(nndist x y) ≤ ↑d ⊢ ↑(nndist (f x) (f y)) ≤ ↑C * ↑d ^ ↑r [PROOFSTEP] norm_cast at hd ⊢ [GOAL] case intro X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹ : PseudoMetricSpace X inst✝ : PseudoMetricSpace Y C r : ℝ≥0 f : X → Y hf : HolderWith C r f x y : X d : ℝ≥0 hd : nndist x y ≤ d ⊢ nndist (f x) (f y) ≤ C * d ^ ↑r [PROOFSTEP] exact hf.nndist_le_of_le hd
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Holder", "llama_tokens": 3695}
[GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁴ : CommSemiring R inst✝³ : CommSemiring R₁ inst✝² : CommSemiring R₂ inst✝¹ : Fintype n inst✝ : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R f : Matrix n m R x✝² x✝¹ : n → R₁ x✝ : m → R₂ ⊢ (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) (x✝² + x✝¹) x✝ = (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) x✝² x✝ + (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) x✝¹ x✝ [PROOFSTEP] simp only [Pi.add_apply, map_add, add_mul, sum_add_distrib] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁴ : CommSemiring R inst✝³ : CommSemiring R₁ inst✝² : CommSemiring R₂ inst✝¹ : Fintype n inst✝ : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R f : Matrix n m R x✝² : R₁ x✝¹ : n → R₁ x✝ : m → R₂ ⊢ (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) (x✝² • x✝¹) x✝ = ↑σ₁ x✝² • (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) x✝¹ x✝ [PROOFSTEP] simp only [Pi.smul_apply, smul_eq_mul, RingHom.map_mul, mul_assoc, mul_sum] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁴ : CommSemiring R inst✝³ : CommSemiring R₁ inst✝² : CommSemiring R₂ inst✝¹ : Fintype n inst✝ : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R f : Matrix n m R x✝² : n → R₁ x✝¹ x✝ : m → R₂ ⊢ (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) x✝² (x✝¹ + x✝) = (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) x✝² x✝¹ + (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) x✝² x✝ [PROOFSTEP] simp only [Pi.add_apply, map_add, mul_add, sum_add_distrib] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁴ : CommSemiring R inst✝³ : CommSemiring R₁ inst✝² : CommSemiring R₂ inst✝¹ : Fintype n inst✝ : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R f : Matrix n m R x✝² : R₂ x✝¹ : n → R₁ x✝ : m → R₂ ⊢ (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) x✝¹ (x✝² • x✝) = ↑σ₂ x✝² • (fun v w => ∑ i : n, ∑ j : m, ↑σ₁ (v i) * f i j * ↑σ₂ (w j)) x✝¹ x✝ [PROOFSTEP] simp only [Pi.smul_apply, smul_eq_mul, RingHom.map_mul, mul_assoc, mul_left_comm, mul_sum] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : CommSemiring R₂ inst✝³ : Fintype n inst✝² : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝¹ : DecidableEq n inst✝ : DecidableEq m f : Matrix n m R i : n j : m ⊢ ↑(↑(toLinearMap₂'Aux σ₁ σ₂ f) (↑(LinearMap.stdBasis R₁ (fun x => R₁) i) 1)) (↑(LinearMap.stdBasis R₂ (fun x => R₂) j) 1) = f i j [PROOFSTEP] rw [Matrix.toLinearMap₂'Aux, mk₂'ₛₗ_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : CommSemiring R₂ inst✝³ : Fintype n inst✝² : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝¹ : DecidableEq n inst✝ : DecidableEq m f : Matrix n m R i : n j : m ⊢ ∑ i_1 : n, ∑ j_1 : m, ↑σ₁ (↑(LinearMap.stdBasis R₁ (fun x => R₁) i) 1 i_1) * f i_1 j_1 * ↑σ₂ (↑(LinearMap.stdBasis R₂ (fun x => R₂) j) 1 j_1) = f i j [PROOFSTEP] have : (∑ i', ∑ j', (if i = i' then 1 else 0) * f i' j' * if j = j' then 1 else 0) = f i j := by simp_rw [mul_assoc, ← Finset.mul_sum] simp only [boole_mul, Finset.sum_ite_eq, Finset.mem_univ, if_true, mul_comm (f _ _)] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : CommSemiring R₂ inst✝³ : Fintype n inst✝² : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝¹ : DecidableEq n inst✝ : DecidableEq m f : Matrix n m R i : n j : m ⊢ (∑ i' : n, ∑ j' : m, (if i = i' then 1 else 0) * f i' j' * if j = j' then 1 else 0) = f i j [PROOFSTEP] simp_rw [mul_assoc, ← Finset.mul_sum] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : CommSemiring R₂ inst✝³ : Fintype n inst✝² : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝¹ : DecidableEq n inst✝ : DecidableEq m f : Matrix n m R i : n j : m ⊢ (∑ x : n, (if i = x then 1 else 0) * ∑ x_1 : m, f x x_1 * if j = x_1 then 1 else 0) = f i j [PROOFSTEP] simp only [boole_mul, Finset.sum_ite_eq, Finset.mem_univ, if_true, mul_comm (f _ _)] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : CommSemiring R₂ inst✝³ : Fintype n inst✝² : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝¹ : DecidableEq n inst✝ : DecidableEq m f : Matrix n m R i : n j : m this : (∑ i' : n, ∑ j' : m, (if i = i' then 1 else 0) * f i' j' * if j = j' then 1 else 0) = f i j ⊢ ∑ i_1 : n, ∑ j_1 : m, ↑σ₁ (↑(LinearMap.stdBasis R₁ (fun x => R₁) i) 1 i_1) * f i_1 j_1 * ↑σ₂ (↑(LinearMap.stdBasis R₂ (fun x => R₂) j) 1 j_1) = f i j [PROOFSTEP] rw [← this] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : CommSemiring R₂ inst✝³ : Fintype n inst✝² : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝¹ : DecidableEq n inst✝ : DecidableEq m f : Matrix n m R i : n j : m this : (∑ i' : n, ∑ j' : m, (if i = i' then 1 else 0) * f i' j' * if j = j' then 1 else 0) = f i j ⊢ ∑ i_1 : n, ∑ j_1 : m, ↑σ₁ (↑(LinearMap.stdBasis R₁ (fun x => R₁) i) 1 i_1) * f i_1 j_1 * ↑σ₂ (↑(LinearMap.stdBasis R₂ (fun x => R₂) j) 1 j_1) = ∑ i' : n, ∑ j' : m, (if i = i' then 1 else 0) * f i' j' * if j = j' then 1 else 0 [PROOFSTEP] exact Finset.sum_congr rfl fun _ _ => Finset.sum_congr rfl fun _ _ => by simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommSemiring R inst✝⁵ : CommSemiring R₁ inst✝⁴ : CommSemiring R₂ inst✝³ : Fintype n inst✝² : Fintype m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝¹ : DecidableEq n inst✝ : DecidableEq m f : Matrix n m R i : n j : m this : (∑ i' : n, ∑ j' : m, (if i = i' then 1 else 0) * f i' j' * if j = j' then 1 else 0) = f i j x✝³ : n x✝² : x✝³ ∈ univ x✝¹ : m x✝ : x✝¹ ∈ univ ⊢ ↑σ₁ (↑(LinearMap.stdBasis R₁ (fun x => R₁) i) 1 x✝³) * f x✝³ x✝¹ * ↑σ₂ (↑(LinearMap.stdBasis R₂ (fun x => R₂) j) 1 x✝¹) = (if i = x✝³ then 1 else 0) * f x✝³ x✝¹ * if j = x✝¹ then 1 else 0 [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R₁ M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R f : (n → R₁) →ₛₗ[σ₁] (m → R₂) →ₛₗ[σ₂] R ⊢ toLinearMap₂'Aux σ₁ σ₂ (↑(toMatrix₂Aux (fun i => ↑(stdBasis R₁ (fun x => R₁) i) 1) fun j => ↑(stdBasis R₂ (fun x => R₂) j) 1) f) = f [PROOFSTEP] refine' ext_basis (Pi.basisFun R₁ n) (Pi.basisFun R₂ m) fun i j => _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R₁ M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R f : (n → R₁) →ₛₗ[σ₁] (m → R₂) →ₛₗ[σ₂] R i : n j : m ⊢ ↑(↑(toLinearMap₂'Aux σ₁ σ₂ (↑(toMatrix₂Aux (fun i => ↑(stdBasis R₁ (fun x => R₁) i) 1) fun j => ↑(stdBasis R₂ (fun x => R₂) j) 1) f)) (↑(Pi.basisFun R₁ n) i)) (↑(Pi.basisFun R₂ m) j) = ↑(↑f (↑(Pi.basisFun R₁ n) i)) (↑(Pi.basisFun R₂ m) j) [PROOFSTEP] simp_rw [Pi.basisFun_apply, Matrix.toLinearMap₂'Aux_stdBasis, LinearMap.toMatrix₂Aux_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R₁ M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R f : Matrix n m R ⊢ ↑(toMatrix₂Aux (fun i => ↑(LinearMap.stdBasis R₁ (fun x => R₁) i) 1) fun j => ↑(LinearMap.stdBasis R₂ (fun x => R₂) j) 1) (toLinearMap₂'Aux σ₁ σ₂ f) = f [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R₁ M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R₂ M₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R f : Matrix n m R i : n j : m ⊢ ↑(toMatrix₂Aux (fun i => ↑(LinearMap.stdBasis R₁ (fun x => R₁) i) 1) fun j => ↑(LinearMap.stdBasis R₂ (fun x => R₂) j) 1) (toLinearMap₂'Aux σ₁ σ₂ f) i j = f i j [PROOFSTEP] simp_rw [LinearMap.toMatrix₂Aux_apply, Matrix.toLinearMap₂'Aux_stdBasis] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommRing R inst✝⁵ : CommRing R₁ inst✝⁴ : CommRing R₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R M : Matrix n m R v : n → R w : m → R ⊢ ↑(↑(↑toLinearMap₂' M) v) w = v ⬝ᵥ mulVec M w [PROOFSTEP] simp_rw [Matrix.toLinearMap₂'_apply, Matrix.dotProduct, Matrix.mulVec, Matrix.dotProduct] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommRing R inst✝⁵ : CommRing R₁ inst✝⁴ : CommRing R₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R M : Matrix n m R v : n → R w : m → R ⊢ ∑ i : n, ∑ j : m, v i * M i j * w j = ∑ x : n, v x * ∑ x_1 : m, M x x_1 * w x_1 [PROOFSTEP] refine' Finset.sum_congr rfl fun _ _ => _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommRing R inst✝⁵ : CommRing R₁ inst✝⁴ : CommRing R₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R M : Matrix n m R v : n → R w : m → R x✝¹ : n x✝ : x✝¹ ∈ univ ⊢ ∑ j : m, v x✝¹ * M x✝¹ j * w j = v x✝¹ * ∑ x : m, M x✝¹ x * w x [PROOFSTEP] rw [Finset.mul_sum] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommRing R inst✝⁵ : CommRing R₁ inst✝⁴ : CommRing R₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R M : Matrix n m R v : n → R w : m → R x✝¹ : n x✝ : x✝¹ ∈ univ ⊢ ∑ j : m, v x✝¹ * M x✝¹ j * w j = ∑ x : m, v x✝¹ * (M x✝¹ x * w x) [PROOFSTEP] refine' Finset.sum_congr rfl fun _ _ => _ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁶ : CommRing R inst✝⁵ : CommRing R₁ inst✝⁴ : CommRing R₂ inst✝³ : Fintype n inst✝² : Fintype m inst✝¹ : DecidableEq n inst✝ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R M : Matrix n m R v : n → R w : m → R x✝³ : n x✝² : x✝³ ∈ univ x✝¹ : m x✝ : x✝¹ ∈ univ ⊢ v x✝³ * M x✝³ x✝¹ * w x✝¹ = v x✝³ * (M x✝³ x✝¹ * w x✝¹) [PROOFSTEP] rw [← mul_assoc] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R ⊢ ↑toMatrix₂' (compl₁₂ B l r) = (↑toMatrix' l)ᵀ * ↑toMatrix₂' B * ↑toMatrix' r [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' ⊢ ↑toMatrix₂' (compl₁₂ B l r) i j = ((↑toMatrix' l)ᵀ * ↑toMatrix₂' B * ↑toMatrix' r) i j [PROOFSTEP] simp only [LinearMap.toMatrix₂'_apply, LinearMap.compl₁₂_apply, transpose_apply, Matrix.mul_apply, LinearMap.toMatrix', LinearEquiv.coe_mk, sum_mul] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' ⊢ ↑(↑B (↑l (↑(stdBasis R (fun x => R) i) 1))) (↑r (↑(stdBasis R (fun x => R) j) 1)) = ∑ x : m, ∑ x_1 : n, ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) x_1 i * ↑(↑B (↑(stdBasis R (fun x => R) x_1) 1)) (↑(stdBasis R (fun x => R) x) 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) x j [PROOFSTEP] rw [sum_comm] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' ⊢ ↑(↑B (↑l (↑(stdBasis R (fun x => R) i) 1))) (↑r (↑(stdBasis R (fun x => R) j) 1)) = ∑ y : n, ∑ x : m, ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) y i * ↑(↑B (↑(stdBasis R (fun x => R) y) 1)) (↑(stdBasis R (fun x => R) x) 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) x j [PROOFSTEP] conv_lhs => rw [← LinearMap.sum_repr_mul_repr_mul (Pi.basisFun R n) (Pi.basisFun R m) (l _) (r _)] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' | ↑(↑B (↑l (↑(stdBasis R (fun x => R) i) 1))) (↑r (↑(stdBasis R (fun x => R) j) 1)) [PROOFSTEP] rw [← LinearMap.sum_repr_mul_repr_mul (Pi.basisFun R n) (Pi.basisFun R m) (l _) (r _)] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' | ↑(↑B (↑l (↑(stdBasis R (fun x => R) i) 1))) (↑r (↑(stdBasis R (fun x => R) j) 1)) [PROOFSTEP] rw [← LinearMap.sum_repr_mul_repr_mul (Pi.basisFun R n) (Pi.basisFun R m) (l _) (r _)] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' | ↑(↑B (↑l (↑(stdBasis R (fun x => R) i) 1))) (↑r (↑(stdBasis R (fun x => R) j) 1)) [PROOFSTEP] rw [← LinearMap.sum_repr_mul_repr_mul (Pi.basisFun R n) (Pi.basisFun R m) (l _) (r _)] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' ⊢ (Finsupp.sum (↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) fun i xi => Finsupp.sum (↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) fun j yj => xi • yj • ↑(↑B (↑(Pi.basisFun R n) i)) (↑(Pi.basisFun R m) j)) = ∑ y : n, ∑ x : m, ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) y i * ↑(↑B (↑(stdBasis R (fun x => R) y) 1)) (↑(stdBasis R (fun x => R) x) 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) x j [PROOFSTEP] rw [Finsupp.sum_fintype] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' ⊢ (∑ i_1 : n, Finsupp.sum (↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) fun j yj => ↑(↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) i_1 • yj • ↑(↑B (↑(Pi.basisFun R n) i_1)) (↑(Pi.basisFun R m) j)) = ∑ y : n, ∑ x : m, ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) y i * ↑(↑B (↑(stdBasis R (fun x => R) y) 1)) (↑(stdBasis R (fun x => R) x) 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) x j [PROOFSTEP] apply sum_congr rfl [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' ⊢ ∀ (x : n), x ∈ univ → (Finsupp.sum (↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) fun j yj => ↑(↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) x • yj • ↑(↑B (↑(Pi.basisFun R n) x)) (↑(Pi.basisFun R m) j)) = ∑ x_1 : m, ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) x i * ↑(↑B (↑(stdBasis R (fun x => R) x) 1)) (↑(stdBasis R (fun x => R) x_1) 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) x_1 j [PROOFSTEP] rintro i' - [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' i' : n ⊢ (Finsupp.sum (↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) fun j yj => ↑(↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) i' • yj • ↑(↑B (↑(Pi.basisFun R n) i')) (↑(Pi.basisFun R m) j)) = ∑ x : m, ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) i' i * ↑(↑B (↑(stdBasis R (fun x => R) i') 1)) (↑(stdBasis R (fun x => R) x) 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) x j [PROOFSTEP] rw [Finsupp.sum_fintype] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' i' : n ⊢ ∑ i_1 : m, ↑(↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) i' • ↑(↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) i_1 • ↑(↑B (↑(Pi.basisFun R n) i')) (↑(Pi.basisFun R m) i_1) = ∑ x : m, ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) i' i * ↑(↑B (↑(stdBasis R (fun x => R) i') 1)) (↑(stdBasis R (fun x => R) x) 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) x j [PROOFSTEP] apply sum_congr rfl [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' i' : n ⊢ ∀ (x : m), x ∈ univ → ↑(↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) i' • ↑(↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) x • ↑(↑B (↑(Pi.basisFun R n) i')) (↑(Pi.basisFun R m) x) = ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) i' i * ↑(↑B (↑(stdBasis R (fun x => R) i') 1)) (↑(stdBasis R (fun x => R) x) 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) x j [PROOFSTEP] rintro j' - [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' i' : n j' : m ⊢ ↑(↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) i' • ↑(↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) j' • ↑(↑B (↑(Pi.basisFun R n) i')) (↑(Pi.basisFun R m) j') = ↑of (fun i j => ↑l (↑(stdBasis R (fun x => R) j) 1) i) i' i * ↑(↑B (↑(stdBasis R (fun x => R) i') 1)) (↑(stdBasis R (fun x => R) j') 1) * ↑of (fun i j => ↑r (↑(stdBasis R (fun x => R) j) 1) i) j' j [PROOFSTEP] simp only [smul_eq_mul, Pi.basisFun_repr, mul_assoc, mul_comm, mul_left_comm, Pi.basisFun_apply, of_apply] [GOAL] case a.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' i' : n ⊢ ∀ (i_1 : m), ↑(↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) i' • 0 • ↑(↑B (↑(Pi.basisFun R n) i')) (↑(Pi.basisFun R m) i_1) = 0 [PROOFSTEP] intros [GOAL] case a.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' i' : n i✝ : m ⊢ ↑(↑(Pi.basisFun R n).repr (↑l (↑(stdBasis R (fun x => R) i) 1))) i' • 0 • ↑(↑B (↑(Pi.basisFun R n) i')) (↑(Pi.basisFun R m) i✝) = 0 [PROOFSTEP] simp only [zero_smul, smul_zero] [GOAL] case a.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' ⊢ ∀ (i : n), (Finsupp.sum (↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) fun j yj => 0 • yj • ↑(↑B (↑(Pi.basisFun R n) i)) (↑(Pi.basisFun R m) j)) = 0 [PROOFSTEP] intros [GOAL] case a.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R l : (n' → R) →ₗ[R] n → R r : (m' → R) →ₗ[R] m → R i : n' j : m' i✝ : n ⊢ (Finsupp.sum (↑(Pi.basisFun R m).repr (↑r (↑(stdBasis R (fun x => R) j) 1))) fun j yj => 0 • yj • ↑(↑B (↑(Pi.basisFun R n) i✝)) (↑(Pi.basisFun R m) j)) = 0 [PROOFSTEP] simp only [zero_smul, Finsupp.sum_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R f : (n' → R) →ₗ[R] n → R ⊢ ↑toMatrix₂' (comp B f) = (↑toMatrix' f)ᵀ * ↑toMatrix₂' B [PROOFSTEP] rw [← LinearMap.compl₂_id (B.comp f), ← LinearMap.compl₁₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R f : (n' → R) →ₗ[R] n → R ⊢ ↑toMatrix₂' (compl₁₂ B f id) = (↑toMatrix' f)ᵀ * ↑toMatrix₂' B [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R f : (m' → R) →ₗ[R] m → R ⊢ ↑toMatrix₂' (compl₂ B f) = ↑toMatrix₂' B * ↑toMatrix' f [PROOFSTEP] rw [← LinearMap.comp_id B, ← LinearMap.compl₁₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R f : (m' → R) →ₗ[R] m → R ⊢ ↑toMatrix₂' (compl₁₂ B id f) = ↑toMatrix₂' (comp B id) * ↑toMatrix' f [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R M : Matrix n' n R N : Matrix m m' R ⊢ M * ↑toMatrix₂' B * N = ↑toMatrix₂' (compl₁₂ B (↑toLin' Mᵀ) (↑toLin' N)) [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R M : Matrix n' n R ⊢ M * ↑toMatrix₂' B = ↑toMatrix₂' (comp B (↑toLin' Mᵀ)) [PROOFSTEP] simp only [B.toMatrix₂'_comp, transpose_transpose, toMatrix'_toLin'] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : (n → R) →ₗ[R] (m → R) →ₗ[R] R M : Matrix m m' R ⊢ ↑toMatrix₂' B * M = ↑toMatrix₂' (compl₂ B (↑toLin' M)) [PROOFSTEP] simp only [B.toMatrix₂'_compl₂, toMatrix'_toLin'] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁰ : CommRing R inst✝⁹ : CommRing R₁ inst✝⁸ : CommRing R₂ inst✝⁷ : Fintype n inst✝⁶ : Fintype m inst✝⁵ : DecidableEq n inst✝⁴ : DecidableEq m σ₁ : R₁ →+* R σ₂ : R₂ →+* R inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' M : Matrix n m R P : Matrix n n' R Q : Matrix m m' R ⊢ ↑toMatrix₂' (compl₁₂ (↑toLinearMap₂' M) (↑toLin' P) (↑toLin' Q)) = ↑toMatrix₂' (↑toLinearMap₂' (Pᵀ * M * Q)) [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ B : M₁ →ₗ[R] M₂ →ₗ[R] R i : n j : m ⊢ ↑(toMatrix₂ b₁ b₂) B i j = ↑(↑B (↑b₁ i)) (↑b₂ j) [PROOFSTEP] simp only [LinearMap.toMatrix₂, LinearEquiv.trans_apply, LinearMap.toMatrix₂'_apply, LinearEquiv.trans_apply, LinearMap.toMatrix₂'_apply, LinearEquiv.arrowCongr_apply, Basis.equivFun_symm_stdBasis, LinearEquiv.refl_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ B : M₁ →ₗ[R] M₂ →ₗ[R] R i : n j : m ⊢ ↑(toMatrix₂Aux ↑b₁ ↑b₂) B i j = ↑(toMatrix₂ b₁ b₂) B i j [PROOFSTEP] rw [LinearMap.toMatrix₂_apply, LinearMap.toMatrix₂Aux_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ ⊢ toLinearMap₂ (Pi.basisFun R n) (Pi.basisFun R m) = toLinearMap₂' [PROOFSTEP] ext M [GOAL] case h.h.h.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ M : Matrix n m R i✝¹ : n i✝ : m ⊢ ↑(comp (↑(comp (↑(toLinearMap₂ (Pi.basisFun R n) (Pi.basisFun R m)) M) (single i✝¹)) 1) (single i✝)) 1 = ↑(comp (↑(comp (↑toLinearMap₂' M) (single i✝¹)) 1) (single i✝)) 1 [PROOFSTEP] simp only [Matrix.toLinearMap₂_apply, Matrix.toLinearMap₂'_apply, Pi.basisFun_repr, coe_comp, Function.comp_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ ⊢ toMatrix₂ (Pi.basisFun R n) (Pi.basisFun R m) = toMatrix₂' [PROOFSTEP] ext B [GOAL] case h.a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : DecidableEq n inst✝² : Fintype n inst✝¹ : DecidableEq m inst✝ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ B : (n → R) →ₗ[R] (m → R) →ₗ[R] R i✝ : n x✝ : m ⊢ ↑(toMatrix₂ (Pi.basisFun R n) (Pi.basisFun R m)) B i✝ x✝ = ↑toMatrix₂' B i✝ x✝ [PROOFSTEP] rw [LinearMap.toMatrix₂_apply, LinearMap.toMatrix₂'_apply, Pi.basisFun_apply, Pi.basisFun_apply] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ ⊢ ↑(toMatrix₂ b₁' b₂') (compl₁₂ B l r) = (↑(toMatrix b₁' b₁) l)ᵀ * ↑(toMatrix₂ b₁ b₂) B * ↑(toMatrix b₂' b₂) r [PROOFSTEP] ext i j [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' ⊢ ↑(toMatrix₂ b₁' b₂') (compl₁₂ B l r) i j = ((↑(toMatrix b₁' b₁) l)ᵀ * ↑(toMatrix₂ b₁ b₂) B * ↑(toMatrix b₂' b₂) r) i j [PROOFSTEP] simp only [LinearMap.toMatrix₂_apply, compl₁₂_apply, transpose_apply, Matrix.mul_apply, LinearMap.toMatrix_apply, LinearEquiv.coe_mk, sum_mul] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' ⊢ ↑(↑B (↑l (↑b₁' i))) (↑r (↑b₂' j)) = ∑ x : m, ∑ x_1 : n, ↑(↑b₁.repr (↑l (↑b₁' i))) x_1 * ↑(↑B (↑b₁ x_1)) (↑b₂ x) * ↑(↑b₂.repr (↑r (↑b₂' j))) x [PROOFSTEP] rw [sum_comm] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' ⊢ ↑(↑B (↑l (↑b₁' i))) (↑r (↑b₂' j)) = ∑ y : n, ∑ x : m, ↑(↑b₁.repr (↑l (↑b₁' i))) y * ↑(↑B (↑b₁ y)) (↑b₂ x) * ↑(↑b₂.repr (↑r (↑b₂' j))) x [PROOFSTEP] conv_lhs => rw [← LinearMap.sum_repr_mul_repr_mul b₁ b₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' | ↑(↑B (↑l (↑b₁' i))) (↑r (↑b₂' j)) [PROOFSTEP] rw [← LinearMap.sum_repr_mul_repr_mul b₁ b₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' | ↑(↑B (↑l (↑b₁' i))) (↑r (↑b₂' j)) [PROOFSTEP] rw [← LinearMap.sum_repr_mul_repr_mul b₁ b₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' | ↑(↑B (↑l (↑b₁' i))) (↑r (↑b₂' j)) [PROOFSTEP] rw [← LinearMap.sum_repr_mul_repr_mul b₁ b₂] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' ⊢ (Finsupp.sum (↑b₁.repr (↑l (↑b₁' i))) fun i xi => Finsupp.sum (↑b₂.repr (↑r (↑b₂' j))) fun j yj => xi • yj • ↑(↑B (↑b₁ i)) (↑b₂ j)) = ∑ y : n, ∑ x : m, ↑(↑b₁.repr (↑l (↑b₁' i))) y * ↑(↑B (↑b₁ y)) (↑b₂ x) * ↑(↑b₂.repr (↑r (↑b₂' j))) x [PROOFSTEP] rw [Finsupp.sum_fintype] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' ⊢ (∑ i_1 : n, Finsupp.sum (↑b₂.repr (↑r (↑b₂' j))) fun j yj => ↑(↑b₁.repr (↑l (↑b₁' i))) i_1 • yj • ↑(↑B (↑b₁ i_1)) (↑b₂ j)) = ∑ y : n, ∑ x : m, ↑(↑b₁.repr (↑l (↑b₁' i))) y * ↑(↑B (↑b₁ y)) (↑b₂ x) * ↑(↑b₂.repr (↑r (↑b₂' j))) x [PROOFSTEP] apply sum_congr rfl [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' ⊢ ∀ (x : n), x ∈ univ → (Finsupp.sum (↑b₂.repr (↑r (↑b₂' j))) fun j yj => ↑(↑b₁.repr (↑l (↑b₁' i))) x • yj • ↑(↑B (↑b₁ x)) (↑b₂ j)) = ∑ x_1 : m, ↑(↑b₁.repr (↑l (↑b₁' i))) x * ↑(↑B (↑b₁ x)) (↑b₂ x_1) * ↑(↑b₂.repr (↑r (↑b₂' j))) x_1 [PROOFSTEP] rintro i' - [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' i' : n ⊢ (Finsupp.sum (↑b₂.repr (↑r (↑b₂' j))) fun j yj => ↑(↑b₁.repr (↑l (↑b₁' i))) i' • yj • ↑(↑B (↑b₁ i')) (↑b₂ j)) = ∑ x : m, ↑(↑b₁.repr (↑l (↑b₁' i))) i' * ↑(↑B (↑b₁ i')) (↑b₂ x) * ↑(↑b₂.repr (↑r (↑b₂' j))) x [PROOFSTEP] rw [Finsupp.sum_fintype] [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' i' : n ⊢ ∑ i_1 : m, ↑(↑b₁.repr (↑l (↑b₁' i))) i' • ↑(↑b₂.repr (↑r (↑b₂' j))) i_1 • ↑(↑B (↑b₁ i')) (↑b₂ i_1) = ∑ x : m, ↑(↑b₁.repr (↑l (↑b₁' i))) i' * ↑(↑B (↑b₁ i')) (↑b₂ x) * ↑(↑b₂.repr (↑r (↑b₂' j))) x [PROOFSTEP] apply sum_congr rfl [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' i' : n ⊢ ∀ (x : m), x ∈ univ → ↑(↑b₁.repr (↑l (↑b₁' i))) i' • ↑(↑b₂.repr (↑r (↑b₂' j))) x • ↑(↑B (↑b₁ i')) (↑b₂ x) = ↑(↑b₁.repr (↑l (↑b₁' i))) i' * ↑(↑B (↑b₁ i')) (↑b₂ x) * ↑(↑b₂.repr (↑r (↑b₂' j))) x [PROOFSTEP] rintro j' - [GOAL] case a.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' i' : n j' : m ⊢ ↑(↑b₁.repr (↑l (↑b₁' i))) i' • ↑(↑b₂.repr (↑r (↑b₂' j))) j' • ↑(↑B (↑b₁ i')) (↑b₂ j') = ↑(↑b₁.repr (↑l (↑b₁' i))) i' * ↑(↑B (↑b₁ i')) (↑b₂ j') * ↑(↑b₂.repr (↑r (↑b₂' j))) j' [PROOFSTEP] simp only [smul_eq_mul, LinearMap.toMatrix_apply, Basis.equivFun_apply, mul_assoc, mul_comm, mul_left_comm] [GOAL] case a.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' i' : n ⊢ ∀ (i_1 : m), ↑(↑b₁.repr (↑l (↑b₁' i))) i' • 0 • ↑(↑B (↑b₁ i')) (↑b₂ i_1) = 0 [PROOFSTEP] intros [GOAL] case a.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' i' : n i✝ : m ⊢ ↑(↑b₁.repr (↑l (↑b₁' i))) i' • 0 • ↑(↑B (↑b₁ i')) (↑b₂ i✝) = 0 [PROOFSTEP] simp only [zero_smul, smul_zero] [GOAL] case a.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' ⊢ ∀ (i : n), (Finsupp.sum (↑b₂.repr (↑r (↑b₂' j))) fun j yj => 0 • yj • ↑(↑B (↑b₁ i)) (↑b₂ j)) = 0 [PROOFSTEP] intros [GOAL] case a.h.h R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R l : M₁' →ₗ[R] M₁ r : M₂' →ₗ[R] M₂ i : n' j : m' i✝ : n ⊢ (Finsupp.sum (↑b₂.repr (↑r (↑b₂' j))) fun j yj => 0 • yj • ↑(↑B (↑b₁ i✝)) (↑b₂ j)) = 0 [PROOFSTEP] simp only [zero_smul, Finsupp.sum_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R f : M₁' →ₗ[R] M₁ ⊢ ↑(toMatrix₂ b₁' b₂) (comp B f) = (↑(toMatrix b₁' b₁) f)ᵀ * ↑(toMatrix₂ b₁ b₂) B [PROOFSTEP] rw [← LinearMap.compl₂_id (B.comp f), ← LinearMap.compl₁₂, LinearMap.toMatrix₂_compl₁₂ b₁ b₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R f : M₁' →ₗ[R] M₁ ⊢ (↑(toMatrix b₁' b₁) f)ᵀ * ↑(toMatrix₂ b₁ b₂) B * ↑(toMatrix b₂ b₂) id = (↑(toMatrix b₁' b₁) f)ᵀ * ↑(toMatrix₂ b₁ b₂) B [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R f : M₂' →ₗ[R] M₂ ⊢ ↑(toMatrix₂ b₁ b₂') (compl₂ B f) = ↑(toMatrix₂ b₁ b₂) B * ↑(toMatrix b₂' b₂) f [PROOFSTEP] rw [← LinearMap.comp_id B, ← LinearMap.compl₁₂, LinearMap.toMatrix₂_compl₁₂ b₁ b₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R f : M₂' →ₗ[R] M₂ ⊢ (↑(toMatrix b₁ b₁) id)ᵀ * ↑(toMatrix₂ b₁ b₂) B * ↑(toMatrix b₂' b₂) f = ↑(toMatrix₂ b₁ b₂) (comp B id) * ↑(toMatrix b₂' b₂) f [PROOFSTEP] simp [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' c₁ : Basis n' R M₁ c₂ : Basis m' R M₂ B : M₁ →ₗ[R] M₂ →ₗ[R] R ⊢ (Basis.toMatrix b₁ ↑c₁)ᵀ * ↑(toMatrix₂ b₁ b₂) B * Basis.toMatrix b₂ ↑c₂ = ↑(toMatrix₂ c₁ c₂) B [PROOFSTEP] simp_rw [← LinearMap.toMatrix_id_eq_basis_toMatrix] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' c₁ : Basis n' R M₁ c₂ : Basis m' R M₂ B : M₁ →ₗ[R] M₂ →ₗ[R] R ⊢ (↑(toMatrix c₁ b₁) id)ᵀ * ↑(toMatrix₂ b₁ b₂) B * ↑(toMatrix c₂ b₂) id = ↑(toMatrix₂ c₁ c₂) B [PROOFSTEP] rw [← LinearMap.toMatrix₂_compl₁₂, LinearMap.compl₁₂_id_id] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R M : Matrix n' n R N : Matrix m m' R ⊢ M * ↑(toMatrix₂ b₁ b₂) B * N = ↑(toMatrix₂ b₁' b₂') (compl₁₂ B (↑(toLin b₁' b₁) Mᵀ) (↑(toLin b₂' b₂) N)) [PROOFSTEP] simp_rw [LinearMap.toMatrix₂_compl₁₂ b₁ b₂, toMatrix_toLin, transpose_transpose] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R M : Matrix n' n R ⊢ M * ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁' b₂) (comp B (↑(toLin b₁' b₁) Mᵀ)) [PROOFSTEP] rw [LinearMap.toMatrix₂_comp b₁, toMatrix_toLin, transpose_transpose] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' B : M₁ →ₗ[R] M₂ →ₗ[R] R M : Matrix m m' R ⊢ ↑(toMatrix₂ b₁ b₂) B * M = ↑(toMatrix₂ b₁ b₂') (compl₂ B (↑(toLin b₂' b₂) M)) [PROOFSTEP] rw [LinearMap.toMatrix₂_compl₂ b₁ b₂, toMatrix_toLin] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝¹⁶ : CommRing R inst✝¹⁵ : AddCommMonoid M₁ inst✝¹⁴ : Module R M₁ inst✝¹³ : AddCommMonoid M₂ inst✝¹² : Module R M₂ inst✝¹¹ : DecidableEq n inst✝¹⁰ : Fintype n inst✝⁹ : DecidableEq m inst✝⁸ : Fintype m b₁ : Basis n R M₁ b₂ : Basis m R M₂ inst✝⁷ : AddCommMonoid M₁' inst✝⁶ : Module R M₁' inst✝⁵ : AddCommMonoid M₂' inst✝⁴ : Module R M₂' b₁' : Basis n' R M₁' b₂' : Basis m' R M₂' inst✝³ : Fintype n' inst✝² : Fintype m' inst✝¹ : DecidableEq n' inst✝ : DecidableEq m' M : Matrix n m R P : Matrix n n' R Q : Matrix m m' R ⊢ ↑(toMatrix₂ b₁' b₂') (compl₁₂ (↑(toLinearMap₂ b₁ b₂) M) (↑(toLin b₁' b₁) P) (↑(toLin b₂' b₂) Q)) = ↑(toMatrix₂ b₁' b₂') (↑(toLinearMap₂ b₁' b₂') (Pᵀ * M * Q)) [PROOFSTEP] simp only [LinearMap.toMatrix₂_compl₁₂ b₁ b₂, LinearMap.toMatrix₂_toLinearMap₂, toMatrix_toLin] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ LinearMap.IsAdjointPair (↑toLinearMap₂' J) (↑toLinearMap₂' J') (↑toLin' A) (↑toLin' A') ↔ Matrix.IsAdjointPair J J' A A' [PROOFSTEP] rw [isAdjointPair_iff_comp_eq_compl₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ comp (↑toLinearMap₂' J') (↑toLin' A) = compl₂ (↑toLinearMap₂' J) (↑toLin' A') ↔ Matrix.IsAdjointPair J J' A A' [PROOFSTEP] have h : ∀ B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R, B = B' ↔ LinearMap.toMatrix₂' B = LinearMap.toMatrix₂' B' := by intro B B' constructor <;> intro h · rw [h] · exact LinearMap.toMatrix₂'.injective h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ ∀ (B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R), B = B' ↔ ↑toMatrix₂' B = ↑toMatrix₂' B' [PROOFSTEP] intro B B' [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R ⊢ B = B' ↔ ↑toMatrix₂' B = ↑toMatrix₂' B' [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R ⊢ B = B' → ↑toMatrix₂' B = ↑toMatrix₂' B' [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R ⊢ ↑toMatrix₂' B = ↑toMatrix₂' B' → B = B' [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R h : B = B' ⊢ ↑toMatrix₂' B = ↑toMatrix₂' B' [PROOFSTEP] rw [h] [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R h : ↑toMatrix₂' B = ↑toMatrix₂' B' ⊢ B = B' [PROOFSTEP] exact LinearMap.toMatrix₂'.injective h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : ∀ (B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R), B = B' ↔ ↑toMatrix₂' B = ↑toMatrix₂' B' ⊢ comp (↑toLinearMap₂' J') (↑toLin' A) = compl₂ (↑toLinearMap₂' J) (↑toLin' A') ↔ Matrix.IsAdjointPair J J' A A' [PROOFSTEP] simp_rw [h, LinearMap.toMatrix₂'_comp, LinearMap.toMatrix₂'_compl₂, LinearMap.toMatrix'_toLin', LinearMap.toMatrix'_toLinearMap₂'] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : ∀ (B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R), B = B' ↔ ↑toMatrix₂' B = ↑toMatrix₂' B' ⊢ Aᵀ * J' = J * A' ↔ Matrix.IsAdjointPair J J' A A' [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ LinearMap.IsAdjointPair (↑(toLinearMap₂ b₁ b₁) J) (↑(toLinearMap₂ b₂ b₂) J') (↑(toLin b₁ b₂) A) (↑(toLin b₂ b₁) A') ↔ Matrix.IsAdjointPair J J' A A' [PROOFSTEP] rw [isAdjointPair_iff_comp_eq_compl₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ comp (↑(toLinearMap₂ b₂ b₂) J') (↑(toLin b₁ b₂) A) = compl₂ (↑(toLinearMap₂ b₁ b₁) J) (↑(toLin b₂ b₁) A') ↔ Matrix.IsAdjointPair J J' A A' [PROOFSTEP] have h : ∀ B B' : M₁ →ₗ[R] M₂ →ₗ[R] R, B = B' ↔ LinearMap.toMatrix₂ b₁ b₂ B = LinearMap.toMatrix₂ b₁ b₂ B' := by intro B B' constructor <;> intro h · rw [h] · exact (LinearMap.toMatrix₂ b₁ b₂).injective h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ ∀ (B B' : M₁ →ₗ[R] M₂ →ₗ[R] R), B = B' ↔ ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁ b₂) B' [PROOFSTEP] intro B B' [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : M₁ →ₗ[R] M₂ →ₗ[R] R ⊢ B = B' ↔ ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁ b₂) B' [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : M₁ →ₗ[R] M₂ →ₗ[R] R ⊢ B = B' → ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁ b₂) B' [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : M₁ →ₗ[R] M₂ →ₗ[R] R ⊢ ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁ b₂) B' → B = B' [PROOFSTEP] intro h [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : M₁ →ₗ[R] M₂ →ₗ[R] R h : B = B' ⊢ ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁ b₂) B' [PROOFSTEP] rw [h] [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : M₁ →ₗ[R] M₂ →ₗ[R] R h : ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁ b₂) B' ⊢ B = B' [PROOFSTEP] exact (LinearMap.toMatrix₂ b₁ b₂).injective h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : ∀ (B B' : M₁ →ₗ[R] M₂ →ₗ[R] R), B = B' ↔ ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁ b₂) B' ⊢ comp (↑(toLinearMap₂ b₂ b₂) J') (↑(toLin b₁ b₂) A) = compl₂ (↑(toLinearMap₂ b₁ b₁) J) (↑(toLin b₂ b₁) A') ↔ Matrix.IsAdjointPair J J' A A' [PROOFSTEP] simp_rw [h, LinearMap.toMatrix₂_comp b₂ b₂, LinearMap.toMatrix₂_compl₂ b₁ b₁, LinearMap.toMatrix_toLin, LinearMap.toMatrix₂_toLinearMap₂] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : ∀ (B B' : M₁ →ₗ[R] M₂ →ₗ[R] R), B = B' ↔ ↑(toMatrix₂ b₁ b₂) B = ↑(toMatrix₂ b₁ b₂) B' ⊢ Aᵀ * J' = J * A' ↔ Matrix.IsAdjointPair J J' A A' [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P ⊢ IsAdjointPair (Pᵀ * J * P) (Pᵀ * J * P) A₁ A₁ ↔ IsAdjointPair J J (P * A₁ * P⁻¹) (P * A₁ * P⁻¹) [PROOFSTEP] have h' : IsUnit P.det := P.isUnit_iff_isUnit_det.mp h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) ⊢ IsAdjointPair (Pᵀ * J * P) (Pᵀ * J * P) A₁ A₁ ↔ IsAdjointPair J J (P * A₁ * P⁻¹) (P * A₁ * P⁻¹) [PROOFSTEP] let u := P.nonsingInvUnit h' [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' ⊢ IsAdjointPair (Pᵀ * J * P) (Pᵀ * J * P) A₁ A₁ ↔ IsAdjointPair J J (P * A₁ * P⁻¹) (P * A₁ * P⁻¹) [PROOFSTEP] let v := Pᵀ.nonsingInvUnit (P.isUnit_det_transpose h') [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) ⊢ IsAdjointPair (Pᵀ * J * P) (Pᵀ * J * P) A₁ A₁ ↔ IsAdjointPair J J (P * A₁ * P⁻¹) (P * A₁ * P⁻¹) [PROOFSTEP] let x := A₁ᵀ * Pᵀ * J [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J ⊢ IsAdjointPair (Pᵀ * J * P) (Pᵀ * J * P) A₁ A₁ ↔ IsAdjointPair J J (P * A₁ * P⁻¹) (P * A₁ * P⁻¹) [PROOFSTEP] let y := J * P * A₁ [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ ⊢ IsAdjointPair (Pᵀ * J * P) (Pᵀ * J * P) A₁ A₁ ↔ IsAdjointPair J J (P * A₁ * P⁻¹) (P * A₁ * P⁻¹) [PROOFSTEP] suffices x * u.val = v.val * y ↔ (v⁻¹).val * x = y * (u⁻¹).val by dsimp only [Matrix.IsAdjointPair] simp only [Matrix.transpose_mul] simp only [← mul_assoc, P.transpose_nonsing_inv] -- porting note: the previous proof used `conv` and was causing timeouts, so we use `convert` convert this using 2 · rw [mul_assoc, mul_assoc, ← mul_assoc J] rfl · rw [mul_assoc, mul_assoc, ← mul_assoc _ _ J] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ this : x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ ⊢ IsAdjointPair (Pᵀ * J * P) (Pᵀ * J * P) A₁ A₁ ↔ IsAdjointPair J J (P * A₁ * P⁻¹) (P * A₁ * P⁻¹) [PROOFSTEP] dsimp only [Matrix.IsAdjointPair] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ this : x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ ⊢ A₁ᵀ * (Pᵀ * J * P) = Pᵀ * J * P * A₁ ↔ (P * A₁ * P⁻¹)ᵀ * J = J * (P * A₁ * P⁻¹) [PROOFSTEP] simp only [Matrix.transpose_mul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ this : x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ ⊢ A₁ᵀ * (Pᵀ * J * P) = Pᵀ * J * P * A₁ ↔ P⁻¹ᵀ * (A₁ᵀ * Pᵀ) * J = J * (P * A₁ * P⁻¹) [PROOFSTEP] simp only [← mul_assoc, P.transpose_nonsing_inv] -- porting note: the previous proof used `conv` and was causing timeouts, so we use `convert` [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ this : x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ ⊢ A₁ᵀ * Pᵀ * J * P = Pᵀ * J * P * A₁ ↔ Pᵀ⁻¹ * A₁ᵀ * Pᵀ * J = J * P * A₁ * P⁻¹ [PROOFSTEP] convert this using 2 [GOAL] case h.e'_1.h.e'_3 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ this : x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ ⊢ Pᵀ * J * P * A₁ = ↑v * y [PROOFSTEP] rw [mul_assoc, mul_assoc, ← mul_assoc J] [GOAL] case h.e'_1.h.e'_3 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ this : x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ ⊢ Pᵀ * (J * P * A₁) = ↑v * y [PROOFSTEP] rfl [GOAL] case h.e'_2.h.e'_2 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ this : x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ ⊢ Pᵀ⁻¹ * A₁ᵀ * Pᵀ * J = ↑v⁻¹ * x [PROOFSTEP] rw [mul_assoc, mul_assoc, ← mul_assoc _ _ J] [GOAL] case h.e'_2.h.e'_2 R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ this : x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ ⊢ Pᵀ⁻¹ * (A₁ᵀ * Pᵀ * J) = ↑v⁻¹ * x [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ ⊢ x * ↑u = ↑v * y ↔ ↑v⁻¹ * x = y * ↑u⁻¹ [PROOFSTEP] rw [Units.eq_mul_inv_iff_mul_eq] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ ⊢ x * ↑u = ↑v * y ↔ ↑v⁻¹ * x * ↑u = y [PROOFSTEP] conv_rhs => rw [mul_assoc] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ | ↑v⁻¹ * x * ↑u = y [PROOFSTEP] rw [mul_assoc] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ | ↑v⁻¹ * x * ↑u = y [PROOFSTEP] rw [mul_assoc] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ | ↑v⁻¹ * x * ↑u = y [PROOFSTEP] rw [mul_assoc] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' P : Matrix n n R h : IsUnit P h' : IsUnit (det P) u : (Matrix n n R)ˣ := nonsingInvUnit P h' v : (Matrix n n R)ˣ := nonsingInvUnit Pᵀ (_ : IsUnit (det Pᵀ)) x : Matrix n n R := A₁ᵀ * Pᵀ * J y : Matrix n n R := J * P * A₁ ⊢ x * ↑u = ↑v * y ↔ ↑v⁻¹ * (x * ↑u) = y [PROOFSTEP] rw [v.inv_mul_eq_iff_eq_mul] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ A₁ ∈ pairSelfAdjointMatricesSubmodule J J₂ ↔ Matrix.IsAdjointPair J J₂ A₁ A₁ [PROOFSTEP] simp only [pairSelfAdjointMatricesSubmodule, LinearEquiv.coe_coe, LinearMap.toMatrix'_apply, Submodule.mem_map, mem_isPairSelfAdjointSubmodule] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ (∃ y, IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) y ∧ ↑toMatrix' y = A₁) ↔ Matrix.IsAdjointPair J J₂ A₁ A₁ [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ (∃ y, IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) y ∧ ↑toMatrix' y = A₁) → Matrix.IsAdjointPair J J₂ A₁ A₁ [PROOFSTEP] rintro ⟨f, hf, hA⟩ [GOAL] case mp.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' f : Module.End R (n → R) hf : IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) f hA : ↑toMatrix' f = A₁ ⊢ Matrix.IsAdjointPair J J₂ A₁ A₁ [PROOFSTEP] have hf' : f = toLin' A₁ := by rw [← hA, Matrix.toLin'_toMatrix'] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' f : Module.End R (n → R) hf : IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) f hA : ↑toMatrix' f = A₁ ⊢ f = ↑toLin' A₁ [PROOFSTEP] rw [← hA, Matrix.toLin'_toMatrix'] [GOAL] case mp.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' f : Module.End R (n → R) hf : IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) f hA : ↑toMatrix' f = A₁ hf' : f = ↑toLin' A₁ ⊢ Matrix.IsAdjointPair J J₂ A₁ A₁ [PROOFSTEP] rw [hf'] at hf [GOAL] case mp.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' f : Module.End R (n → R) hf : IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) (↑toLin' A₁) hA : ↑toMatrix' f = A₁ hf' : f = ↑toLin' A₁ ⊢ Matrix.IsAdjointPair J J₂ A₁ A₁ [PROOFSTEP] rw [← isAdjointPair_toLinearMap₂'] [GOAL] case mp.intro.intro R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' f : Module.End R (n → R) hf : IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) (↑toLin' A₁) hA : ↑toMatrix' f = A₁ hf' : f = ↑toLin' A₁ ⊢ LinearMap.IsAdjointPair (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) (↑toLin' A₁) (↑toLin' A₁) [PROOFSTEP] exact hf [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ Matrix.IsAdjointPair J J₂ A₁ A₁ → ∃ y, IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) y ∧ ↑toMatrix' y = A₁ [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : Matrix.IsAdjointPair J J₂ A₁ A₁ ⊢ ∃ y, IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) y ∧ ↑toMatrix' y = A₁ [PROOFSTEP] refine' ⟨toLin' A₁, _, LinearMap.toMatrix'_toLin' _⟩ [GOAL] case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : Matrix.IsAdjointPair J J₂ A₁ A₁ ⊢ IsPairSelfAdjoint (↑toLinearMap₂' J) (↑toLinearMap₂' J₂) (↑toLin' A₁) [PROOFSTEP] exact (isAdjointPair_toLinearMap₂' _ _ _ _).mpr h [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ A₁ ∈ selfAdjointMatricesSubmodule J ↔ Matrix.IsSelfAdjoint J A₁ [PROOFSTEP] erw [mem_pairSelfAdjointMatricesSubmodule] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ Matrix.IsAdjointPair J J A₁ A₁ ↔ Matrix.IsSelfAdjoint J A₁ [PROOFSTEP] rfl [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ A₁ ∈ skewAdjointMatricesSubmodule J ↔ Matrix.IsSkewAdjoint J A₁ [PROOFSTEP] erw [mem_pairSelfAdjointMatricesSubmodule] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ Matrix.IsAdjointPair (-J) J A₁ A₁ ↔ Matrix.IsSkewAdjoint J A₁ [PROOFSTEP] simp [Matrix.IsSkewAdjoint, Matrix.IsAdjointPair] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁴ : CommRing R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ inst✝¹ : DecidableEq ι inst✝ : Fintype ι B : M₁ →ₗ[R₁] M₁ →ₗ[R₁] R₁ M : Matrix ι ι R₁ h : Matrix.Nondegenerate M x : ι → R₁ hx : ∀ (y : ι → R₁), ↑(↑(↑Matrix.toLinearMap₂' M) x) y = 0 y : ι → R₁ ⊢ x ⬝ᵥ mulVec M y = 0 [PROOFSTEP] simpa only [toLinearMap₂'_apply'] using hx y [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁴ : CommRing R₁ inst✝³ : AddCommMonoid M₁ inst✝² : Module R₁ M₁ inst✝¹ : DecidableEq ι inst✝ : Fintype ι B : M₁ →ₗ[R₁] M₁ →ₗ[R₁] R₁ M : Matrix ι ι R₁ b : Basis ι R₁ M₁ ⊢ SeparatingLeft (↑(toLinearMap₂ b b) M) ↔ Matrix.Nondegenerate M [PROOFSTEP] rw [← Matrix.separatingLeft_toLinearMap₂'_iff_separatingLeft_toLinearMap₂, Matrix.separatingLeft_toLinearMap₂'_iff] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M✝ : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : DecidableEq ι inst✝¹ : Fintype ι B : M₁ →ₗ[R₁] M₁ →ₗ[R₁] R₁ inst✝ : IsDomain R₁ M : Matrix ι ι R₁ ⊢ SeparatingLeft (↑toLinearMap₂' M) ↔ det M ≠ 0 [PROOFSTEP] rw [Matrix.separatingLeft_toLinearMap₂'_iff, Matrix.nondegenerate_iff_det_ne_zero] [GOAL] R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁵ : CommRing R₁ inst✝⁴ : AddCommMonoid M₁ inst✝³ : Module R₁ M₁ inst✝² : DecidableEq ι inst✝¹ : Fintype ι B✝ : M₁ →ₗ[R₁] M₁ →ₗ[R₁] R₁ inst✝ : IsDomain R₁ B : M₁ →ₗ[R₁] M₁ →ₗ[R₁] R₁ b : Basis ι R₁ M₁ ⊢ SeparatingLeft B ↔ det (↑(toMatrix₂ b b) B) ≠ 0 [PROOFSTEP] rw [← Matrix.nondegenerate_iff_det_ne_zero, nondegenerate_toMatrix_iff]
{"mathlib_filename": "Mathlib.LinearAlgebra.Matrix.SesquilinearForm", "llama_tokens": 60072}
[GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 t t' : Bornology α h_cobounded : cobounded α = cobounded α ⊢ t = t' [PROOFSTEP] cases t [GOAL] case mk ι : Type u_1 α : Type u_2 β : Type u_3 t' : Bornology α cobounded'✝ : Filter α le_cofinite'✝ : cobounded'✝ ≤ cofinite h_cobounded : cobounded α = cobounded α ⊢ { cobounded' := cobounded'✝, le_cofinite' := le_cofinite'✝ } = t' [PROOFSTEP] cases t' [GOAL] case mk.mk ι : Type u_1 α : Type u_2 β : Type u_3 cobounded'✝¹ : Filter α le_cofinite'✝¹ : cobounded'✝¹ ≤ cofinite cobounded'✝ : Filter α le_cofinite'✝ : cobounded'✝ ≤ cofinite h_cobounded : cobounded α = cobounded α ⊢ { cobounded' := cobounded'✝¹, le_cofinite' := le_cofinite'✝¹ } = { cobounded' := cobounded'✝, le_cofinite' := le_cofinite'✝ } [PROOFSTEP] congr [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B singleton_mem : ∀ (x : α), {x} ∈ B ⊢ univ ∈ {s | sᶜ ∈ B} [PROOFSTEP] rwa [← compl_univ] at empty_mem [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B singleton_mem : ∀ (x : α), {x} ∈ B x✝ y✝ : Set α hx : x✝ ∈ {s | sᶜ ∈ B} hy : y✝ ∈ {s | sᶜ ∈ B} ⊢ x✝ ∩ y✝ ∈ {s | sᶜ ∈ B} [PROOFSTEP] simpa [compl_inter] using union_mem _ hx _ hy [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B singleton_mem : ∀ (x : α), {x} ∈ B ⊢ { sets := {s | sᶜ ∈ B}, univ_sets := (_ : univᶜ ∈ B), sets_of_superset := (_ : ∀ {x y : Set α}, x ∈ {s | sᶜ ∈ B} → x ⊆ y → yᶜ ∈ B), inter_sets := (_ : ∀ {x y : Set α}, x ∈ {s | sᶜ ∈ B} → y ∈ {s | sᶜ ∈ B} → x ∩ y ∈ {s | sᶜ ∈ B}) } ≤ cofinite [PROOFSTEP] rw [le_cofinite_iff_compl_singleton_mem] [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B singleton_mem : ∀ (x : α), {x} ∈ B ⊢ ∀ (x : α), {x}ᶜ ∈ { sets := {s | sᶜ ∈ B}, univ_sets := (_ : univᶜ ∈ B), sets_of_superset := (_ : ∀ {x y : Set α}, x ∈ {s | sᶜ ∈ B} → x ⊆ y → yᶜ ∈ B), inter_sets := (_ : ∀ {x y : Set α}, x ∈ {s | sᶜ ∈ B} → y ∈ {s | sᶜ ∈ B} → x ∩ y ∈ {s | sᶜ ∈ B}) } [PROOFSTEP] intro x [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B singleton_mem : ∀ (x : α), {x} ∈ B x : α ⊢ {x}ᶜ ∈ { sets := {s | sᶜ ∈ B}, univ_sets := (_ : univᶜ ∈ B), sets_of_superset := (_ : ∀ {x y : Set α}, x ∈ {s | sᶜ ∈ B} → x ⊆ y → yᶜ ∈ B), inter_sets := (_ : ∀ {x y : Set α}, x ∈ {s | sᶜ ∈ B} → y ∈ {s | sᶜ ∈ B} → x ∩ y ∈ {s | sᶜ ∈ B}) } [PROOFSTEP] change { x }ᶜᶜ ∈ B [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B singleton_mem : ∀ (x : α), {x} ∈ B x : α ⊢ {x}ᶜᶜ ∈ B [PROOFSTEP] rw [compl_compl] [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B singleton_mem : ∀ (x : α), {x} ∈ B x : α ⊢ {x} ∈ B [PROOFSTEP] exact singleton_mem x [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B sUnion_univ : ⋃₀ B = univ x : α ⊢ {x} ∈ B [PROOFSTEP] rw [sUnion_eq_univ_iff] at sUnion_univ [GOAL] ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B sUnion_univ : ∀ (a : α), ∃ b, b ∈ B ∧ a ∈ b x : α ⊢ {x} ∈ B [PROOFSTEP] rcases sUnion_univ x with ⟨s, hs, hxs⟩ [GOAL] case intro.intro ι : Type u_1 α✝ : Type u_2 β : Type u_3 α : Type u_4 B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B sUnion_univ : ∀ (a : α), ∃ b, b ∈ B ∧ a ∈ b x : α s : Set α hs : s ∈ B hxs : x ∈ s ⊢ {x} ∈ B [PROOFSTEP] exact subset_mem s hs { x } (singleton_subset_iff.mpr hxs) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : Bornology α s t : Set α x : α ⊢ IsBounded sᶜ ↔ IsCobounded s [PROOFSTEP] rw [isBounded_def, isCobounded_def, compl_compl] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : Bornology α s t : Set α x : α ⊢ IsBounded ∅ [PROOFSTEP] rw [isBounded_def, compl_empty] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : Bornology α s t : Set α x : α ⊢ univ ∈ cobounded α [PROOFSTEP] exact univ_mem [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : Bornology α s t : Set α x : α ⊢ IsBounded {x} [PROOFSTEP] rw [isBounded_def] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : Bornology α s t : Set α x : α ⊢ {x}ᶜ ∈ cobounded α [PROOFSTEP] exact le_cofinite _ (finite_singleton x).compl_mem_cofinite [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : Bornology α s t : Set α x : α ⊢ IsBounded (s ∪ t) ↔ IsBounded s ∧ IsBounded t [PROOFSTEP] simp only [← isCobounded_compl_iff, compl_union, isCobounded_inter] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : Bornology α s t : Set α x : α inst✝ : Bornology β f : α → β ⊢ comap f (cobounded β) ≤ cobounded α ↔ ∀ ⦃s : Set α⦄, IsBounded s → IsBounded (f '' s) [PROOFSTEP] refine' ⟨fun h s hs => _, fun h t ht => ⟨(f '' tᶜ)ᶜ, h <| IsCobounded.compl ht, compl_subset_comm.1 <| subset_preimage_image _ _⟩⟩ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : Bornology α s✝ t : Set α x : α inst✝ : Bornology β f : α → β h : comap f (cobounded β) ≤ cobounded α s : Set α hs : IsBounded s ⊢ IsBounded (f '' s) [PROOFSTEP] obtain ⟨t, ht, hts⟩ := h hs.compl [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : Bornology α s✝ t✝ : Set α x : α inst✝ : Bornology β f : α → β h : comap f (cobounded β) ≤ cobounded α s : Set α hs : IsBounded s t : Set β ht : t ∈ cobounded β hts : f ⁻¹' t ⊆ sᶜ ⊢ IsBounded (f '' s) [PROOFSTEP] rw [subset_compl_comm, ← preimage_compl] at hts [GOAL] case intro.intro ι : Type u_1 α : Type u_2 β : Type u_3 inst✝¹ : Bornology α s✝ t✝ : Set α x : α inst✝ : Bornology β f : α → β h : comap f (cobounded β) ≤ cobounded α s : Set α hs : IsBounded s t : Set β ht : t ∈ cobounded β hts : s ⊆ f ⁻¹' tᶜ ⊢ IsBounded (f '' s) [PROOFSTEP] exact (IsCobounded.compl ht).subset ((image_subset f hts).trans <| image_preimage_subset _ _) [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 t t' : Bornology α h : ∀ (s : Set α), IsBounded s ↔ IsBounded s ⊢ t = t' [PROOFSTEP] ext s [GOAL] case h_cobounded.a ι : Type u_1 α : Type u_2 β : Type u_3 t t' : Bornology α h : ∀ (s : Set α), IsBounded s ↔ IsBounded s s : Set α ⊢ s ∈ cobounded α ↔ s ∈ cobounded α [PROOFSTEP] simpa [@isBounded_def _ t, isBounded_def, compl_compl] using h sᶜ [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 s : Set α B : Set (Set α) empty_mem : ∅ ∈ B subset_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ⊆ s₁ → s₂ ∈ B union_mem : ∀ (s₁ : Set α), s₁ ∈ B → ∀ (s₂ : Set α), s₂ ∈ B → s₁ ∪ s₂ ∈ B sUnion_univ : ∀ (x : α), {x} ∈ B ⊢ IsBounded s ↔ s ∈ B [PROOFSTEP] rw [@isBounded_def _ (ofBounded B empty_mem subset_mem union_mem sUnion_univ), ← Filter.mem_sets, ofBounded_cobounded_sets, Set.mem_setOf_eq, compl_compl] -- porting note: again had to use `@isBounded_def _` and feed Lean the instance [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 s✝ : Set α inst✝ : Bornology α s : Set ι f : ι → Set α hs : Set.Finite s ⊢ IsBounded (⋃ (i : ι) (_ : i ∈ s), f i) ↔ ∀ (i : ι), i ∈ s → IsBounded (f i) [PROOFSTEP] simp only [← isCobounded_compl_iff, compl_iUnion, isCobounded_biInter hs] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 s : Set α inst✝ : Bornology α S : Set (Set α) hs : Set.Finite S ⊢ IsBounded (⋃₀ S) ↔ ∀ (s : Set α), s ∈ S → IsBounded s [PROOFSTEP] rw [sUnion_eq_biUnion, isBounded_biUnion hs] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 s✝ : Set α inst✝¹ : Bornology α inst✝ : Finite ι s : ι → Set α ⊢ IsBounded (⋃ (i : ι), s i) ↔ ∀ (i : ι), IsBounded (s i) [PROOFSTEP] rw [← sUnion_range, isBounded_sUnion (finite_range s), forall_range_iff] [GOAL] ι : Type u_1 α : Type u_2 β : Type u_3 inst✝ : Bornology α ⊢ cobounded α = ⊥ ↔ BoundedSpace α [PROOFSTEP] rw [← isBounded_univ, isBounded_def, compl_univ, empty_mem_iff_bot]
{"mathlib_filename": "Mathlib.Topology.Bornology.Basic", "llama_tokens": 5000}
[GOAL] α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : T2Space β hf : UniformContinuous f a : α ⊢ AbstractCompletion.extend pkg f (coe pkg a) = f a [PROOFSTEP] rw [pkg.extend_def hf] [GOAL] α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : T2Space β hf : UniformContinuous f a : α ⊢ DenseInducing.extend (_ : DenseInducing pkg.coe) f (coe pkg a) = f a [PROOFSTEP] exact pkg.denseInducing.extend_eq hf.continuous a [GOAL] α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : CompleteSpace β ⊢ UniformContinuous (AbstractCompletion.extend pkg f) [PROOFSTEP] by_cases hf : UniformContinuous f [GOAL] case pos α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : CompleteSpace β hf : UniformContinuous f ⊢ UniformContinuous (AbstractCompletion.extend pkg f) [PROOFSTEP] rw [pkg.extend_def hf] [GOAL] case pos α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : CompleteSpace β hf : UniformContinuous f ⊢ UniformContinuous (DenseInducing.extend (_ : DenseInducing pkg.coe) f) [PROOFSTEP] exact uniformContinuous_uniformly_extend pkg.uniformInducing pkg.dense hf [GOAL] case neg α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : CompleteSpace β hf : ¬UniformContinuous f ⊢ UniformContinuous (AbstractCompletion.extend pkg f) [PROOFSTEP] change UniformContinuous (ite _ _ _) [GOAL] case neg α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : CompleteSpace β hf : ¬UniformContinuous f ⊢ UniformContinuous (if UniformContinuous f then DenseInducing.extend (_ : DenseInducing pkg.coe) f else fun x => f (DenseRange.some (_ : DenseRange pkg.coe) x)) [PROOFSTEP] rw [if_neg hf] [GOAL] case neg α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : CompleteSpace β hf : ¬UniformContinuous f ⊢ UniformContinuous fun x => f (DenseRange.some (_ : DenseRange pkg.coe) x) [PROOFSTEP] exact uniformContinuous_of_const fun a b => by congr 1 [GOAL] α : Type u_1 inst✝² : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝¹ : UniformSpace β f : α → β inst✝ : CompleteSpace β hf : ¬UniformContinuous f a b : pkg.space ⊢ f (DenseRange.some (_ : DenseRange pkg.coe) a) = f (DenseRange.some (_ : DenseRange pkg.coe) b) [PROOFSTEP] congr 1 [GOAL] α : Type u_1 inst✝³ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝² : UniformSpace β f : α → β inst✝¹ : CompleteSpace β inst✝ : SeparatedSpace β hf : UniformContinuous f g : pkg.space → β hg : UniformContinuous g h : ∀ (a : α), f a = g (coe pkg a) ⊢ AbstractCompletion.extend pkg f = g [PROOFSTEP] apply pkg.funext pkg.continuous_extend hg.continuous [GOAL] α : Type u_1 inst✝³ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝² : UniformSpace β f : α → β inst✝¹ : CompleteSpace β inst✝ : SeparatedSpace β hf : UniformContinuous f g : pkg.space → β hg : UniformContinuous g h : ∀ (a : α), f a = g (coe pkg a) ⊢ ∀ (a : α), AbstractCompletion.extend pkg f (coe pkg a) = g (coe pkg a) [PROOFSTEP] simpa only [pkg.extend_coe hf] using h [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion β f✝ f : α → β g : pkg.space → pkg'.space hg : UniformContinuous g h : ∀ (a : α), coe pkg' (f a) = g (coe pkg a) ⊢ ∀ (a : α), AbstractCompletion.map pkg pkg' f (coe pkg a) = g (coe pkg a) [PROOFSTEP] intro a [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion β f✝ f : α → β g : pkg.space → pkg'.space hg : UniformContinuous g h : ∀ (a : α), coe pkg' (f a) = g (coe pkg a) a : α ⊢ AbstractCompletion.map pkg pkg' f (coe pkg a) = g (coe pkg a) [PROOFSTEP] change pkg.extend (ι' ∘ f) _ = _ [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion β f✝ f : α → β g : pkg.space → pkg'.space hg : UniformContinuous g h : ∀ (a : α), coe pkg' (f a) = g (coe pkg a) a : α ⊢ AbstractCompletion.extend pkg (pkg'.coe ∘ f) (coe pkg a) = g (coe pkg a) [PROOFSTEP] simp only [(· ∘ ·), h, ← comp_apply (f := g)] [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion β f✝ f : α → β g : pkg.space → pkg'.space hg : UniformContinuous g h : ∀ (a : α), coe pkg' (f a) = g (coe pkg a) a : α ⊢ AbstractCompletion.extend pkg (fun x => (g ∘ pkg.coe) x) (coe pkg a) = (g ∘ pkg.coe) a [PROOFSTEP] rw [pkg.extend_coe (hg.comp pkg.uniformContinuous_coe)] [GOAL] α : Type u_1 inst✝⁴ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝³ : UniformSpace β pkg' : AbstractCompletion β f✝ : α → β γ : Type u_3 inst✝² : UniformSpace γ inst✝¹ : CompleteSpace γ inst✝ : SeparatedSpace γ f : β → γ g : α → β hf : UniformContinuous f hg : UniformContinuous g a : α ⊢ (AbstractCompletion.extend pkg' f ∘ AbstractCompletion.map pkg pkg' g) (coe pkg a) = AbstractCompletion.extend pkg (f ∘ g) (coe pkg a) [PROOFSTEP] rw [pkg.extend_coe (hf.comp hg), comp_apply, pkg.map_coe pkg' hg, pkg'.extend_coe hf] [GOAL] α : Type u_1 inst✝⁴ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝³ : UniformSpace β pkg' : AbstractCompletion β f✝ : α → β γ : Type u_3 inst✝² : UniformSpace γ inst✝¹ : CompleteSpace γ inst✝ : SeparatedSpace γ f : β → γ g : α → β hf : UniformContinuous f hg : UniformContinuous g a : α ⊢ f (g a) = (f ∘ g) a [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion α ⊢ compare pkg pkg' ∘ compare pkg' pkg = id [PROOFSTEP] have uc := pkg.uniformContinuous_compare pkg' [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion α uc : UniformContinuous (compare pkg pkg') ⊢ compare pkg pkg' ∘ compare pkg' pkg = id [PROOFSTEP] have uc' := pkg'.uniformContinuous_compare pkg [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion α uc : UniformContinuous (compare pkg pkg') uc' : UniformContinuous (compare pkg' pkg) ⊢ compare pkg pkg' ∘ compare pkg' pkg = id [PROOFSTEP] apply pkg'.funext (uc.comp uc').continuous continuous_id [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion α uc : UniformContinuous (compare pkg pkg') uc' : UniformContinuous (compare pkg' pkg) ⊢ ∀ (a : α), (compare pkg pkg' ∘ compare pkg' pkg) (coe pkg' a) = id (coe pkg' a) [PROOFSTEP] intro a [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion α uc : UniformContinuous (compare pkg pkg') uc' : UniformContinuous (compare pkg' pkg) a : α ⊢ (compare pkg pkg' ∘ compare pkg' pkg) (coe pkg' a) = id (coe pkg' a) [PROOFSTEP] rw [comp_apply, pkg'.compare_coe pkg, pkg.compare_coe pkg'] [GOAL] α : Type u_1 inst✝¹ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝ : UniformSpace β pkg' : AbstractCompletion α uc : UniformContinuous (compare pkg pkg') uc' : UniformContinuous (compare pkg' pkg) a : α ⊢ coe pkg' a = id (coe pkg' a) [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝³ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝² : UniformSpace β pkg' : AbstractCompletion β γ : Type u_3 inst✝¹ : UniformSpace γ f : α → β → γ inst✝ : CompleteSpace γ ⊢ UniformContinuous₂ (AbstractCompletion.extend₂ pkg pkg' f) [PROOFSTEP] rw [uniformContinuous₂_def, AbstractCompletion.extend₂, uncurry_curry] [GOAL] α : Type u_1 inst✝³ : UniformSpace α pkg : AbstractCompletion α β : Type u_2 inst✝² : UniformSpace β pkg' : AbstractCompletion β γ : Type u_3 inst✝¹ : UniformSpace γ f : α → β → γ inst✝ : CompleteSpace γ ⊢ UniformContinuous (AbstractCompletion.extend (AbstractCompletion.prod pkg pkg') (uncurry f)) [PROOFSTEP] apply uniformContinuous_extend
{"mathlib_filename": "Mathlib.Topology.UniformSpace.AbstractCompletion", "llama_tokens": 3685}
[GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) ⊢ IsBounded (s ×ˢ t) ↔ s = ∅ ∨ t = ∅ ∨ IsBounded s ∧ IsBounded t [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | hs) [GOAL] case inl α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) t : Set β S : (i : ι) → Set (π i) ⊢ IsBounded (∅ ×ˢ t) ↔ ∅ = ∅ ∨ t = ∅ ∨ IsBounded ∅ ∧ IsBounded t [PROOFSTEP] simp [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) hs : Set.Nonempty s ⊢ IsBounded (s ×ˢ t) ↔ s = ∅ ∨ t = ∅ ∨ IsBounded s ∧ IsBounded t [PROOFSTEP] rcases t.eq_empty_or_nonempty with (rfl | ht) [GOAL] case inr.inl α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α S : (i : ι) → Set (π i) hs : Set.Nonempty s ⊢ IsBounded (s ×ˢ ∅) ↔ s = ∅ ∨ ∅ = ∅ ∨ IsBounded s ∧ IsBounded ∅ [PROOFSTEP] simp [GOAL] case inr.inr α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) hs : Set.Nonempty s ht : Set.Nonempty t ⊢ IsBounded (s ×ˢ t) ↔ s = ∅ ∨ t = ∅ ∨ IsBounded s ∧ IsBounded t [PROOFSTEP] simp only [hs.ne_empty, ht.ne_empty, isBounded_prod_of_nonempty (hs.prod ht), false_or_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) ⊢ IsBounded (s ×ˢ s) ↔ IsBounded s [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | hs) [GOAL] case inl α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) t : Set β S : (i : ι) → Set (π i) ⊢ IsBounded (∅ ×ˢ ∅) ↔ IsBounded ∅ [PROOFSTEP] simp [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) hs : Set.Nonempty s ⊢ IsBounded (s ×ˢ s) ↔ IsBounded s [PROOFSTEP] exact (isBounded_prod_of_nonempty (hs.prod hs)).trans (and_self_iff _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) ⊢ IsBounded (Set.pi univ S) ↔ (∃ i, S i = ∅) ∨ ∀ (i : ι), IsBounded (S i) [PROOFSTEP] by_cases hne : ∃ i, S i = ∅ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) hne : ∃ i, S i = ∅ ⊢ IsBounded (Set.pi univ S) ↔ (∃ i, S i = ∅) ∨ ∀ (i : ι), IsBounded (S i) [PROOFSTEP] simp [hne, univ_pi_eq_empty_iff.2 hne] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) hne : ¬∃ i, S i = ∅ ⊢ IsBounded (Set.pi univ S) ↔ (∃ i, S i = ∅) ∨ ∀ (i : ι), IsBounded (S i) [PROOFSTEP] simp only [hne, false_or_iff] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) hne : ¬∃ i, S i = ∅ ⊢ IsBounded (Set.pi univ S) ↔ ∀ (i : ι), IsBounded (S i) [PROOFSTEP] simp only [not_exists, ← Ne.def, ← nonempty_iff_ne_empty, ← univ_pi_nonempty_iff] at hne [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) s : Set α t : Set β S : (i : ι) → Set (π i) hne : Set.Nonempty (Set.pi univ fun i => S i) ⊢ IsBounded (Set.pi univ S) ↔ ∀ (i : ι), IsBounded (S i) [PROOFSTEP] exact isBounded_pi_of_nonempty hne [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝⁵ : Fintype ι inst✝⁴ : Bornology α inst✝³ : Bornology β inst✝² : (i : ι) → Bornology (π i) inst✝¹ : BoundedSpace α inst✝ : BoundedSpace β ⊢ BoundedSpace (α × β) [PROOFSTEP] simp [← cobounded_eq_bot_iff, cobounded_prod] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝⁴ : Fintype ι inst✝³ : Bornology α inst✝² : Bornology β inst✝¹ : (i : ι) → Bornology (π i) inst✝ : ∀ (i : ι), BoundedSpace (π i) ⊢ BoundedSpace ((i : ι) → π i) [PROOFSTEP] simp [← cobounded_eq_bot_iff, cobounded_pi] [GOAL] α✝ : Type u_1 β✝ : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝⁴ : Fintype ι inst✝³ : Bornology α✝ inst✝² : Bornology β✝ inst✝¹ : (i : ι) → Bornology (π i) α : Type u_5 β : Type u_6 inst✝ : Bornology β f : α → β ⊢ BoundedSpace α ↔ IsBounded (range f) [PROOFSTEP] rw [← @isBounded_univ _ (Bornology.induced f), isBounded_induced, image_univ] -- porting note: had to explicitly provided the bornology to `isBounded_univ`. [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 π : ι → Type u_4 inst✝³ : Fintype ι inst✝² : Bornology α inst✝¹ : Bornology β inst✝ : (i : ι) → Bornology (π i) p : α → Prop ⊢ BoundedSpace (Subtype p) ↔ IsBounded {x | p x} [PROOFSTEP] rw [boundedSpace_induced_iff, Subtype.range_coe_subtype]
{"mathlib_filename": "Mathlib.Topology.Bornology.Constructions", "llama_tokens": 3027}
[GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β ⊢ UniformInducing f ↔ UniformContinuous f ∧ comap (Prod.map f f) (𝓤 β) ≤ 𝓤 α [PROOFSTEP] rw [uniformInducing_iff, UniformContinuous, tendsto_iff_comap, le_antisymm_iff, and_comm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β ⊢ 𝓤 α ≤ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) ∧ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) ≤ 𝓤 α ↔ 𝓤 α ≤ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) ∧ comap (Prod.map f f) (𝓤 β) ≤ 𝓤 α [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ι : Sort u_1 ι' : Sort u_2 p : ι → Prop p' : ι' → Prop s : ι → Set (α × α) s' : ι' → Set (β × β) h : HasBasis (𝓤 α) p s h' : HasBasis (𝓤 β) p' s' f : α → β ⊢ UniformInducing f ↔ (∀ (i : ι'), p' i → ∃ j, p j ∧ ∀ (x y : α), (x, y) ∈ s j → (f x, f y) ∈ s' i) ∧ ∀ (j : ι), p j → ∃ i, p' i ∧ ∀ (x y : α), (f x, f y) ∈ s' i → (x, y) ∈ s j [PROOFSTEP] simp [uniformInducing_iff', h.uniformContinuous_iff h', (h'.comap _).le_basis_iff h, subset_def] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β h : ∀ (s : Set (α × α)), s ∈ 𝓤 α ↔ ∃ t, t ∈ 𝓤 β ∧ ∀ (x y : α), (f x, f y) ∈ t → (x, y) ∈ s ⊢ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) = 𝓤 α [PROOFSTEP] simp [eq_comm, Filter.ext_iff, subset_def, h] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ comap (fun x => (id x.fst, id x.snd)) (𝓤 α) = 𝓤 α [PROOFSTEP] rw [← Prod.map_def, Prod.map_id, comap_id] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ g : β → γ hg : UniformInducing g f : α → β hf : UniformInducing f ⊢ comap (fun x => ((g ∘ f) x.fst, (g ∘ f) x.snd)) (𝓤 γ) = 𝓤 α [PROOFSTEP] rw [← hf.1, ← hg.1, comap_comap] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ g : β → γ hg : UniformInducing g f : α → β hf : UniformInducing f ⊢ comap (fun x => ((g ∘ f) x.fst, (g ∘ f) x.snd)) (𝓤 γ) = comap ((fun x => (g x.fst, g x.snd)) ∘ fun x => (f x.fst, f x.snd)) (𝓤 γ) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β hf : UniformInducing f F : Filter α ⊢ Cauchy (map f F) ↔ Cauchy F [PROOFSTEP] simp only [Cauchy, map_neBot_iff, prod_map_map_eq, map_le_iff_le_comap, ← hf.comap_uniformity] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hf : UniformContinuous f hg : UniformContinuous g hgf : UniformInducing (g ∘ f) ⊢ UniformInducing f [PROOFSTEP] refine' ⟨le_antisymm _ hf.le_comap⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hf : UniformContinuous f hg : UniformContinuous g hgf : UniformInducing (g ∘ f) ⊢ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) ≤ 𝓤 α [PROOFSTEP] rw [← hgf.1, ← Prod.map_def, ← Prod.map_def, ← Prod.map_comp_map f f g g, ← comap_comap] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hf : UniformContinuous f hg : UniformContinuous g hgf : UniformInducing (g ∘ f) ⊢ comap (Prod.map f f) (𝓤 β) ≤ comap (Prod.map f f) (comap (Prod.map g g) (𝓤 γ)) [PROOFSTEP] exact comap_mono hg.le_comap [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hg : UniformInducing g ⊢ UniformContinuous f ↔ UniformContinuous (g ∘ f) [PROOFSTEP] dsimp only [UniformContinuous, Tendsto] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hg : UniformInducing g ⊢ map (fun x => (f x.fst, f x.snd)) (𝓤 α) ≤ 𝓤 β ↔ map (fun x => ((g ∘ f) x.fst, (g ∘ f) x.snd)) (𝓤 α) ≤ 𝓤 γ [PROOFSTEP] rw [← hg.comap_uniformity, ← map_le_iff_le_comap, Filter.map_map] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β g : β → γ hg : UniformInducing g ⊢ map ((fun x => (g x.fst, g x.snd)) ∘ fun x => (f x.fst, f x.snd)) (𝓤 α) ≤ 𝓤 γ ↔ map (fun x => ((g ∘ f) x.fst, (g ∘ f) x.snd)) (𝓤 α) ≤ 𝓤 γ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β h : UniformInducing f ⊢ Inducing f [PROOFSTEP] obtain rfl := h.comap_uniformSpace [GOAL] α : Type u β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β h : UniformInducing f ⊢ Inducing f [PROOFSTEP] exact inducing_induced f [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : UniformSpace γ α' : Type u_1 β' : Type u_2 inst✝¹ : UniformSpace α' inst✝ : UniformSpace β' e₁ : α → α' e₂ : β → β' h₁ : UniformInducing e₁ h₂ : UniformInducing e₂ ⊢ comap (fun x => ((e₁ x.fst.fst, e₂ x.fst.snd), e₁ x.snd.fst, e₂ x.snd.snd)) (𝓤 (α' × β')) = 𝓤 (α × β) [PROOFSTEP] simp [(· ∘ ·), uniformity_prod, ← h₁.1, ← h₂.1, comap_inf, comap_comap] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β ⊢ UniformEmbedding f ↔ Injective f ∧ UniformContinuous f ∧ comap (Prod.map f f) (𝓤 β) ≤ 𝓤 α [PROOFSTEP] rw [uniformEmbedding_iff, and_comm, uniformInducing_iff'] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ι : Sort u_1 ι' : Sort u_2 p : ι → Prop p' : ι' → Prop s : ι → Set (α × α) s' : ι' → Set (β × β) h : HasBasis (𝓤 α) p s h' : HasBasis (𝓤 β) p' s' f : α → β ⊢ UniformEmbedding f ↔ Injective f ∧ (∀ (i : ι'), p' i → ∃ j, p j ∧ ∀ (x y : α), (x, y) ∈ s j → (f x, f y) ∈ s' i) ∧ ∀ (j : ι), p j → ∃ i, p' i ∧ ∀ (x y : α), (f x, f y) ∈ s' i → (x, y) ∈ s j [PROOFSTEP] rw [uniformEmbedding_iff, and_comm, h.uniformInducing_iff h'] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ι : Sort u_1 ι' : Sort u_2 p : ι → Prop p' : ι' → Prop s : ι → Set (α × α) s' : ι' → Set (β × β) h : HasBasis (𝓤 α) p s h' : HasBasis (𝓤 β) p' s' f : α → β ⊢ UniformEmbedding f ↔ Injective f ∧ UniformContinuous f ∧ ∀ (j : ι), p j → ∃ i, p' i ∧ ∀ (x y : α), (f x, f y) ∈ s' i → (x, y) ∈ s j [PROOFSTEP] simp only [h.uniformEmbedding_iff' h', h.uniformContinuous_iff h'] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s t : Set α hst : s ⊆ t ⊢ comap (fun x => (inclusion hst x.fst, inclusion hst x.snd)) (𝓤 ↑t) = 𝓤 ↑s [PROOFSTEP] rw [uniformity_subtype, uniformity_subtype, comap_comap] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s t : Set α hst : s ⊆ t ⊢ comap ((fun q => (↑q.fst, ↑q.snd)) ∘ fun x => (inclusion hst x.fst, inclusion hst x.snd)) (𝓤 α) = comap (fun q => (↑q.fst, ↑q.snd)) (𝓤 α) [PROOFSTEP] rfl [GOAL] α✝ : Type u β✝ : Type v γ : Type w inst✝⁴ : UniformSpace α✝ inst✝³ : UniformSpace β✝ inst✝² : UniformSpace γ α : Type u_1 β : Type u_2 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α ≃ β h₁ : UniformContinuous ↑f h₂ : UniformContinuous ↑f.symm ⊢ comap (Prod.map ↑f ↑f) (𝓤 β) ≤ 𝓤 α [PROOFSTEP] rwa [← Equiv.prodCongr_apply, ← map_equiv_symm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) hs : s ∈ 𝓤 α x : α × α h : x ∈ Prod.map Sum.inl Sum.inl ⁻¹' (Prod.map Sum.inl Sum.inl '' s ∪ range (Prod.map Sum.inr Sum.inr)) ⊢ x ∈ s [PROOFSTEP] simpa using h [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (β × β) hs : s ∈ 𝓤 β x : β × β h : x ∈ Prod.map Sum.inr Sum.inr ⁻¹' (range (Prod.map Sum.inl Sum.inl) ∪ Prod.map Sum.inr Sum.inr '' s) ⊢ x ∈ s [PROOFSTEP] simpa using h [GOAL] α✝ : Type u β : Type v γ : Type w inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α : Type u_1 f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s ⊢ comap (Prod.map f f) (𝓤 β) = 𝓟 idRel [PROOFSTEP] refine' le_antisymm _ (@refl_le_uniformity α (UniformSpace.comap f _)) [GOAL] α✝ : Type u β : Type v γ : Type w inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α : Type u_1 f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s ⊢ comap (Prod.map f f) (𝓤 β) ≤ 𝓟 idRel [PROOFSTEP] calc comap (Prod.map f f) (𝓤 β) ≤ comap (Prod.map f f) (𝓟 s) := comap_mono (le_principal_iff.2 hs) _ = 𝓟 (Prod.map f f ⁻¹' s) := comap_principal _ ≤ 𝓟 idRel := principal_mono.2 ?_ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α : Type u_1 f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s ⊢ Prod.map f f ⁻¹' s ⊆ idRel [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case mk α✝ : Type u β : Type v γ : Type w inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α : Type u_1 f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s x y : α ⊢ (x, y) ∈ Prod.map f f ⁻¹' s → (x, y) ∈ idRel [PROOFSTEP] simpa [not_imp_not] using @hf x y [GOAL] α✝ : Type u β : Type v γ : Type w inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α : Type u_1 f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s ⊢ UniformEmbedding f [PROOFSTEP] let _ : UniformSpace α := ⊥ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α : Type u_1 f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s x✝ : UniformSpace α := ⊥ ⊢ UniformEmbedding f [PROOFSTEP] have := discreteTopology_bot α [GOAL] α✝ : Type u β : Type v γ : Type w inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β inst✝ : UniformSpace γ α : Type u_1 f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s x✝ : UniformSpace α := ⊥ this : DiscreteTopology α ⊢ UniformEmbedding f [PROOFSTEP] exact UniformInducing.uniformEmbedding ⟨comap_uniformity_of_spaced_out hs hf⟩ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁵ : UniformSpace α✝ inst✝⁴ : UniformSpace β inst✝³ : UniformSpace γ α : Type u_1 inst✝² : TopologicalSpace α inst✝¹ : DiscreteTopology α inst✝ : SeparatedSpace β f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s ⊢ ClosedEmbedding f [PROOFSTEP] rcases@DiscreteTopology.eq_bot α _ _ with rfl [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁴ : UniformSpace α✝ inst✝³ : UniformSpace β inst✝² : UniformSpace γ α : Type u_1 inst✝¹ : SeparatedSpace β f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s inst✝ : DiscreteTopology α ⊢ ClosedEmbedding f [PROOFSTEP] let _ : UniformSpace α := ⊥ [GOAL] α✝ : Type u β : Type v γ : Type w inst✝⁴ : UniformSpace α✝ inst✝³ : UniformSpace β inst✝² : UniformSpace γ α : Type u_1 inst✝¹ : SeparatedSpace β f : α → β s : Set (β × β) hs : s ∈ 𝓤 β hf : Pairwise fun x y => ¬(f x, f y) ∈ s inst✝ : DiscreteTopology α x✝ : UniformSpace α := ⊥ ⊢ ClosedEmbedding f [PROOFSTEP] exact { (uniformEmbedding_of_spaced_out hs hf).embedding with closed_range := isClosed_range_of_spaced_out hs hf } [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs : s ∈ 𝓤 α ⊢ ∃ a, closure (e '' {a' | (a, a') ∈ s}) ∈ 𝓝 b [PROOFSTEP] obtain ⟨U, ⟨hU, hUo, hsymm⟩, hs⟩ : ∃ U, (U ∈ 𝓤 β ∧ IsOpen U ∧ SymmetricRel U) ∧ Prod.map e e ⁻¹' U ⊆ s := by rwa [← he₁.comap_uniformity, (uniformity_hasBasis_open_symmetric.comap _).mem_iff] at hs [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs : s ∈ 𝓤 α ⊢ ∃ U, (U ∈ 𝓤 β ∧ IsOpen U ∧ SymmetricRel U) ∧ Prod.map e e ⁻¹' U ⊆ s [PROOFSTEP] rwa [← he₁.comap_uniformity, (uniformity_hasBasis_open_symmetric.comap _).mem_iff] at hs [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs✝ : s ∈ 𝓤 α U : Set (β × β) hs : Prod.map e e ⁻¹' U ⊆ s hU : U ∈ 𝓤 β hUo : IsOpen U hsymm : SymmetricRel U ⊢ ∃ a, closure (e '' {a' | (a, a') ∈ s}) ∈ 𝓝 b [PROOFSTEP] rcases he₂.dense.mem_nhds (UniformSpace.ball_mem_nhds b hU) with ⟨a, ha⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs✝ : s ∈ 𝓤 α U : Set (β × β) hs : Prod.map e e ⁻¹' U ⊆ s hU : U ∈ 𝓤 β hUo : IsOpen U hsymm : SymmetricRel U a : α ha : e a ∈ UniformSpace.ball b U ⊢ ∃ a, closure (e '' {a' | (a, a') ∈ s}) ∈ 𝓝 b [PROOFSTEP] refine ⟨a, mem_of_superset ?_ (closure_mono <| image_subset _ <| ball_mono hs a)⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs✝ : s ∈ 𝓤 α U : Set (β × β) hs : Prod.map e e ⁻¹' U ⊆ s hU : U ∈ 𝓤 β hUo : IsOpen U hsymm : SymmetricRel U a : α ha : e a ∈ UniformSpace.ball b U ⊢ closure (e '' UniformSpace.ball a (Prod.map e e ⁻¹' U)) ∈ 𝓝 b [PROOFSTEP] have ho : IsOpen (UniformSpace.ball (e a) U) := UniformSpace.isOpen_ball (e a) hUo [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs✝ : s ∈ 𝓤 α U : Set (β × β) hs : Prod.map e e ⁻¹' U ⊆ s hU : U ∈ 𝓤 β hUo : IsOpen U hsymm : SymmetricRel U a : α ha : e a ∈ UniformSpace.ball b U ho : IsOpen (UniformSpace.ball (e a) U) ⊢ closure (e '' UniformSpace.ball a (Prod.map e e ⁻¹' U)) ∈ 𝓝 b [PROOFSTEP] refine mem_of_superset (ho.mem_nhds <| (mem_ball_symmetry hsymm).2 ha) fun y hy => ?_ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs✝ : s ∈ 𝓤 α U : Set (β × β) hs : Prod.map e e ⁻¹' U ⊆ s hU : U ∈ 𝓤 β hUo : IsOpen U hsymm : SymmetricRel U a : α ha : e a ∈ UniformSpace.ball b U ho : IsOpen (UniformSpace.ball (e a) U) y : β hy : y ∈ UniformSpace.ball (e a) U ⊢ y ∈ closure (e '' UniformSpace.ball a (Prod.map e e ⁻¹' U)) [PROOFSTEP] refine mem_closure_iff_nhds.2 fun V hV => ?_ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs✝ : s ∈ 𝓤 α U : Set (β × β) hs : Prod.map e e ⁻¹' U ⊆ s hU : U ∈ 𝓤 β hUo : IsOpen U hsymm : SymmetricRel U a : α ha : e a ∈ UniformSpace.ball b U ho : IsOpen (UniformSpace.ball (e a) U) y : β hy : y ∈ UniformSpace.ball (e a) U V : Set β hV : V ∈ 𝓝 y ⊢ Set.Nonempty (V ∩ e '' UniformSpace.ball a (Prod.map e e ⁻¹' U)) [PROOFSTEP] rcases he₂.dense.mem_nhds (inter_mem hV (ho.mem_nhds hy)) with ⟨x, hxV, hxU⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) e : α → β b : β he₁ : UniformInducing e he₂ : DenseInducing e hs✝ : s ∈ 𝓤 α U : Set (β × β) hs : Prod.map e e ⁻¹' U ⊆ s hU : U ∈ 𝓤 β hUo : IsOpen U hsymm : SymmetricRel U a : α ha : e a ∈ UniformSpace.ball b U ho : IsOpen (UniformSpace.ball (e a) U) y : β hy : y ∈ UniformSpace.ball (e a) U V : Set β hV : V ∈ 𝓝 y x : α hxV : e x ∈ V hxU : e x ∈ UniformSpace.ball (e a) U ⊢ Set.Nonempty (V ∩ e '' UniformSpace.ball a (Prod.map e e ⁻¹' U)) [PROOFSTEP] exact ⟨e x, hxV, mem_image_of_mem e hxU⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ p : α → Prop e : α → β ue : UniformEmbedding e de : DenseEmbedding e ⊢ comap (fun x => (DenseEmbedding.subtypeEmb p e x.fst, DenseEmbedding.subtypeEmb p e x.snd)) (𝓤 { x // x ∈ closure (e '' {x | p x}) }) = 𝓤 { x // p x } [PROOFSTEP] simp [comap_comap, (· ∘ ·), DenseEmbedding.subtypeEmb, uniformity_subtype, ue.comap_uniformity.symm] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m hs : IsComplete (m '' s) ⊢ IsComplete s [PROOFSTEP] intro f hf hfs [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m hs : IsComplete (m '' s) f : Filter α hf : Cauchy f hfs : f ≤ 𝓟 s ⊢ ∃ x, x ∈ s ∧ f ≤ 𝓝 x [PROOFSTEP] rw [le_principal_iff] at hfs [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m hs : IsComplete (m '' s) f : Filter α hf : Cauchy f hfs : s ∈ f ⊢ ∃ x, x ∈ s ∧ f ≤ 𝓝 x [PROOFSTEP] obtain ⟨_, ⟨x, hx, rfl⟩, hyf⟩ : ∃ y ∈ m '' s, map m f ≤ 𝓝 y [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m hs : IsComplete (m '' s) f : Filter α hf : Cauchy f hfs : s ∈ f ⊢ ∃ y, y ∈ m '' s ∧ map m f ≤ 𝓝 y case intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m hs : IsComplete (m '' s) f : Filter α hf : Cauchy f hfs : s ∈ f x : α hx : x ∈ s hyf : map m f ≤ 𝓝 (m x) ⊢ ∃ x, x ∈ s ∧ f ≤ 𝓝 x [PROOFSTEP] exact hs (f.map m) (hf.map hm.uniformContinuous) (le_principal_iff.2 (image_mem_map hfs)) [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m hs : IsComplete (m '' s) f : Filter α hf : Cauchy f hfs : s ∈ f x : α hx : x ∈ s hyf : map m f ≤ 𝓝 (m x) ⊢ ∃ x, x ∈ s ∧ f ≤ 𝓝 x [PROOFSTEP] rw [map_le_iff_le_comap, ← nhds_induced, ← hm.inducing.induced] at hyf [GOAL] case intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m hs : IsComplete (m '' s) f : Filter α hf : Cauchy f hfs : s ∈ f x : α hx : x ∈ s hyf : f ≤ 𝓝 x ⊢ ∃ x, x ∈ s ∧ f ≤ 𝓝 x [PROOFSTEP] exact ⟨x, hx, hyf⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set α hs : IsComplete s ⊢ IsComplete (Subtype.val '' univ) [PROOFSTEP] simp [hs] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m ⊢ IsComplete (m '' s) ↔ IsComplete s [PROOFSTEP] refine' ⟨isComplete_of_complete_image hm, fun c => _⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s ⊢ IsComplete (m '' s) [PROOFSTEP] haveI : CompleteSpace s := c.completeSpace_coe [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s ⊢ IsComplete (m '' s) [PROOFSTEP] set m' : s → β := m ∘ (↑) [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val ⊢ IsComplete (m '' s) [PROOFSTEP] suffices IsComplete (range m') by rwa [range_comp, Subtype.range_coe] at this [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this✝ : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val this : IsComplete (range m') ⊢ IsComplete (m '' s) [PROOFSTEP] rwa [range_comp, Subtype.range_coe] at this [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val ⊢ IsComplete (range m') [PROOFSTEP] have hm' : UniformInducing m' := hm.comp uniformEmbedding_subtype_val.toUniformInducing [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val hm' : UniformInducing m' ⊢ IsComplete (range m') [PROOFSTEP] intro f hf hfm [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val hm' : UniformInducing m' f : Filter β hf : Cauchy f hfm : f ≤ 𝓟 (range m') ⊢ ∃ x, x ∈ range m' ∧ f ≤ 𝓝 x [PROOFSTEP] rw [Filter.le_principal_iff] at hfm [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val hm' : UniformInducing m' f : Filter β hf : Cauchy f hfm : range m' ∈ f ⊢ ∃ x, x ∈ range m' ∧ f ≤ 𝓝 x [PROOFSTEP] have cf' : Cauchy (comap m' f) := hf.comap' hm'.comap_uniformity.le (NeBot.comap_of_range_mem hf.1 hfm) [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val hm' : UniformInducing m' f : Filter β hf : Cauchy f hfm : range m' ∈ f cf' : Cauchy (comap m' f) ⊢ ∃ x, x ∈ range m' ∧ f ≤ 𝓝 x [PROOFSTEP] rcases CompleteSpace.complete cf' with ⟨x, hx⟩ [GOAL] case intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val hm' : UniformInducing m' f : Filter β hf : Cauchy f hfm : range m' ∈ f cf' : Cauchy (comap m' f) x : ↑s hx : comap m' f ≤ 𝓝 x ⊢ ∃ x, x ∈ range m' ∧ f ≤ 𝓝 x [PROOFSTEP] rw [hm'.inducing.nhds_eq_comap, comap_le_comap_iff hfm] at hx [GOAL] case intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : α → β s : Set α hm : UniformInducing m c : IsComplete s this : CompleteSpace ↑s m' : ↑s → β := m ∘ Subtype.val hm' : UniformInducing m' f : Filter β hf : Cauchy f hfm : range m' ∈ f cf' : Cauchy (comap m' f) x : ↑s hx : f ≤ 𝓝 (m' x) ⊢ ∃ x, x ∈ range m' ∧ f ≤ 𝓝 x [PROOFSTEP] exact ⟨m' x, mem_range_self _, hx⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β hf : UniformInducing f ⊢ CompleteSpace α ↔ IsComplete (range f) [PROOFSTEP] rw [completeSpace_iff_isComplete_univ, ← isComplete_image_iff hf, image_univ] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ e : α ≃ β he : UniformEmbedding ↑e ⊢ CompleteSpace α ↔ CompleteSpace β [PROOFSTEP] rw [completeSpace_iff_isComplete_range he.toUniformInducing, e.range_eq_univ, completeSpace_iff_isComplete_univ] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set α ⊢ IsComplete (range Subtype.val) ↔ IsComplete s [PROOFSTEP] rw [Subtype.range_coe] [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ m : β → α hm : UniformInducing m dense : DenseRange m h : ∀ (f : Filter β), Cauchy f → ∃ x, map m f ≤ 𝓝 x f : Filter α hf : Cauchy f p : Set (α × α) → Set α → Set α := fun s t => {y | ∃ x, x ∈ t ∧ (x, y) ∈ s} g : Filter α := Filter.lift (𝓤 α) fun s => Filter.lift' f (p s) mp₀ : Monotone p mp₁ : ∀ {s : Set (α × α)}, Monotone (p s) this✝⁵ : f ≤ g this✝⁴ : NeBot g this✝³ : NeBot (comap m g) this✝² : Cauchy g this✝¹ : Cauchy (comap m g) x : α hx : map m (comap m g) ≤ 𝓝 x this✝ : ClusterPt x (map m (comap m g)) this : ClusterPt x g ⊢ f ≤ g [PROOFSTEP] assumption [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ 𝓤 α ⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t} [PROOFSTEP] rw [← hf.comap_uniformity] at ht [GOAL] α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) ⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t} [PROOFSTEP] rcases mem_comap.2 ht with ⟨t', ht', ts⟩ [GOAL] case intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) t' : Set (β × β) ht' : t' ∈ 𝓤 β ts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t ⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t} [PROOFSTEP] rcases totallyBounded_iff_subset.1 (totallyBounded_subset (image_preimage_subset f s) hs) _ ht' with ⟨c, cs, hfc, hct⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) t' : Set (β × β) ht' : t' ∈ 𝓤 β ts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t c : Set β cs : c ⊆ f '' (f ⁻¹' s) hfc : Set.Finite c hct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'} ⊢ ∃ t_1, Set.Finite t_1 ∧ f ⁻¹' s ⊆ ⋃ (y : α) (_ : y ∈ t_1), {x | (x, y) ∈ t} [PROOFSTEP] refine' ⟨f ⁻¹' c, hfc.preimage (hf.inj.injOn _), fun x h => _⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) t' : Set (β × β) ht' : t' ∈ 𝓤 β ts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t c : Set β cs : c ⊆ f '' (f ⁻¹' s) hfc : Set.Finite c hct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'} x : α h : x ∈ f ⁻¹' s ⊢ x ∈ ⋃ (y : α) (_ : y ∈ f ⁻¹' c), {x | (x, y) ∈ t} [PROOFSTEP] have := hct (mem_image_of_mem f h) [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) t' : Set (β × β) ht' : t' ∈ 𝓤 β ts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t c : Set β cs : c ⊆ f '' (f ⁻¹' s) hfc : Set.Finite c hct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'} x : α h : x ∈ f ⁻¹' s this : f x ∈ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'} ⊢ x ∈ ⋃ (y : α) (_ : y ∈ f ⁻¹' c), {x | (x, y) ∈ t} [PROOFSTEP] simp at this ⊢ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) t' : Set (β × β) ht' : t' ∈ 𝓤 β ts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t c : Set β cs : c ⊆ f '' (f ⁻¹' s) hfc : Set.Finite c hct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'} x : α h : x ∈ f ⁻¹' s this : ∃ i, i ∈ c ∧ (f x, i) ∈ t' ⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t [PROOFSTEP] rcases this with ⟨z, zc, zt⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) t' : Set (β × β) ht' : t' ∈ 𝓤 β ts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t c : Set β cs : c ⊆ f '' (f ⁻¹' s) hfc : Set.Finite c hct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'} x : α h : x ∈ f ⁻¹' s z : β zc : z ∈ c zt : (f x, z) ∈ t' ⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t [PROOFSTEP] rcases cs zc with ⟨y, -, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u β : Type v γ : Type w inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : α → β s : Set β hf : UniformEmbedding f hs : TotallyBounded s t : Set (α × α) ht : t ∈ comap (fun x => (f x.fst, f x.snd)) (𝓤 β) t' : Set (β × β) ht' : t' ∈ 𝓤 β ts : (fun x => (f x.fst, f x.snd)) ⁻¹' t' ⊆ t c : Set β cs : c ⊆ f '' (f ⁻¹' s) hfc : Set.Finite c hct : f '' (f ⁻¹' s) ⊆ ⋃ (y : β) (_ : y ∈ c), {x | (x, y) ∈ t'} x : α h : x ∈ f ⁻¹' s y : α zc : f y ∈ c zt : (f x, f y) ∈ t' ⊢ ∃ i, f i ∈ c ∧ (x, i) ∈ t [PROOFSTEP] exact ⟨y, zc, ts zt⟩ [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : UniformSpace γ inst✝¹ : CompleteSpace α inst✝ : CompleteSpace β ⊢ CompleteSpace (α ⊕ β) [PROOFSTEP] rw [completeSpace_iff_isComplete_univ, ← range_inl_union_range_inr] [GOAL] α : Type u β : Type v γ : Type w inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : UniformSpace γ inst✝¹ : CompleteSpace α inst✝ : CompleteSpace β ⊢ IsComplete (range Sum.inl ∪ range Sum.inr) [PROOFSTEP] exact uniformEmbedding_inl.toUniformInducing.isComplete_range.union uniformEmbedding_inr.toUniformInducing.isComplete_range [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x ⊢ ∃ c, Tendsto f (comap e (𝓝 b)) (𝓝 c) [PROOFSTEP] have de : DenseEmbedding e := he.denseEmbedding hd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e ⊢ ∃ c, Tendsto f (comap e (𝓝 b)) (𝓝 c) [PROOFSTEP] have de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) := de.subtype p [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ⊢ ∃ c, Tendsto f (comap e (𝓝 b)) (𝓝 c) [PROOFSTEP] have ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) := uniformEmbedding_subtypeEmb _ he de [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) ⊢ ∃ c, Tendsto f (comap e (𝓝 b)) (𝓝 c) [PROOFSTEP] have : b ∈ closure (e '' {x | p x}) := (closure_mono <| monotone_image <| hp) (mem_of_mem_nhds hb) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) this : b ∈ closure (e '' {x | p x}) ⊢ ∃ c, Tendsto f (comap e (𝓝 b)) (𝓝 c) [PROOFSTEP] let ⟨c, hc⟩ := uniformly_extend_exists ue'.toUniformInducing de'.dense hf ⟨b, this⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) this : b ∈ closure (e '' {x | p x}) c : γ hc : Tendsto (fun x => f ↑x) (comap (DenseEmbedding.subtypeEmb p e) (𝓝 { val := b, property := this })) (𝓝 c) ⊢ ∃ c, Tendsto f (comap e (𝓝 b)) (𝓝 c) [PROOFSTEP] replace hc : Tendsto (f ∘ Subtype.val) (((𝓝 b).comap e).comap Subtype.val) (𝓝 c) := by simpa only [nhds_subtype_eq_comap, comap_comap, DenseEmbedding.subtypeEmb_coe] using hc [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) this : b ∈ closure (e '' {x | p x}) c : γ hc : Tendsto (fun x => f ↑x) (comap (DenseEmbedding.subtypeEmb p e) (𝓝 { val := b, property := this })) (𝓝 c) ⊢ Tendsto (f ∘ Subtype.val) (comap Subtype.val (comap e (𝓝 b))) (𝓝 c) [PROOFSTEP] simpa only [nhds_subtype_eq_comap, comap_comap, DenseEmbedding.subtypeEmb_coe] using hc [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) this : b ∈ closure (e '' {x | p x}) c : γ hc : Tendsto (f ∘ Subtype.val) (comap Subtype.val (comap e (𝓝 b))) (𝓝 c) ⊢ ∃ c, Tendsto f (comap e (𝓝 b)) (𝓝 c) [PROOFSTEP] refine ⟨c, (tendsto_comap'_iff ?_).1 hc⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) this : b ∈ closure (e '' {x | p x}) c : γ hc : Tendsto (f ∘ Subtype.val) (comap Subtype.val (comap e (𝓝 b))) (𝓝 c) ⊢ range Subtype.val ∈ comap e (𝓝 b) [PROOFSTEP] rw [Subtype.range_coe_subtype] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) this : b ∈ closure (e '' {x | p x}) c : γ hc : Tendsto (f ∘ Subtype.val) (comap Subtype.val (comap e (𝓝 b))) (𝓝 c) ⊢ {x | p x} ∈ comap e (𝓝 b) [PROOFSTEP] exact ⟨_, hb, by rwa [← de.toInducing.closure_eq_preimage_closure_image, hs.closure_eq]⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e✝ : β → α h_e : UniformInducing e✝ h_dense : DenseRange e✝ f✝ : β → γ h_f : UniformContinuous f✝ inst✝ : CompleteSpace γ p : α → Prop e : α → β f : α → γ b : β s : Set α hf : UniformContinuous fun x => f ↑x he : UniformEmbedding e hd : ∀ (x : β), x ∈ closure (range e) hb : closure (e '' s) ∈ 𝓝 b hs : IsClosed s hp : ∀ (x : α), x ∈ s → p x de : DenseEmbedding e de' : DenseEmbedding (DenseEmbedding.subtypeEmb p e) ue' : UniformEmbedding (DenseEmbedding.subtypeEmb p e) this : b ∈ closure (e '' {x | p x}) c : γ hc : Tendsto (f ∘ Subtype.val) (comap Subtype.val (comap e (𝓝 b))) (𝓝 c) ⊢ e ⁻¹' closure (e '' s) ⊆ {x | p x} [PROOFSTEP] rwa [← de.toInducing.closure_eq_preimage_closure_image, hs.closure_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e : β → α h_e : UniformInducing e h_dense : DenseRange e f : β → γ h_f : UniformContinuous f inst✝ : CompleteSpace γ a : α ⊢ Tendsto f (comap e (𝓝 a)) (𝓝 (DenseInducing.extend (_ : DenseInducing e) f a)) [PROOFSTEP] simpa only [DenseInducing.extend] using tendsto_nhds_limUnder (uniformly_extend_exists h_e ‹_› h_f _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e : β → α h_e : UniformInducing e h_dense : DenseRange e f : β → γ h_f : UniformContinuous f inst✝ : CompleteSpace γ d : Set (γ × γ) hd : d ∈ 𝓤 γ s : Set (γ × γ) hs : s ∈ 𝓤 γ hs_comp : s ○ (s ○ s) ⊆ d h_pnt : ∀ {a : α} {m : Set α}, m ∈ 𝓝 a → ∃ c, c ∈ f '' (e ⁻¹' m) ∧ (c, DenseInducing.extend (_ : DenseInducing e) f a) ∈ s ∧ (DenseInducing.extend (_ : DenseInducing e) f a, c) ∈ s this : Prod.map f f ⁻¹' s ∈ 𝓤 β ⊢ Prod.map f f ⁻¹' s ∈ comap (Prod.map e e) (𝓤 α) [PROOFSTEP] rwa [← h_e.comap_uniformity] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e : β → α h_e : UniformInducing e h_dense : DenseRange e f : β → γ h_f : UniformContinuous f inst✝ : CompleteSpace γ d : Set (γ × γ) hd : d ∈ 𝓤 γ s : Set (γ × γ) hs : s ∈ 𝓤 γ hs_comp : s ○ (s ○ s) ⊆ d h_pnt : ∀ {a : α} {m : Set α}, m ∈ 𝓝 a → ∃ c, c ∈ f '' (e ⁻¹' m) ∧ (c, DenseInducing.extend (_ : DenseInducing e) f a) ∈ s ∧ (DenseInducing.extend (_ : DenseInducing e) f a, c) ∈ s this✝ : Prod.map f f ⁻¹' s ∈ 𝓤 β this : Prod.map f f ⁻¹' s ∈ comap (Prod.map e e) (𝓤 α) t : Set (α × α) ht : t ∈ 𝓤 α ts : Prod.map e e ⁻¹' t ⊆ Prod.map f f ⁻¹' s x✝ : α × α x₁ x₂ : α hx_t : (x₁, x₂) ∈ interior t ⊢ (x₁, x₂) ∈ Prod.map (DenseInducing.extend (_ : DenseInducing e) f) (DenseInducing.extend (_ : DenseInducing e) f) ⁻¹' d [PROOFSTEP] have : interior t ∈ 𝓝 (x₁, x₂) := isOpen_interior.mem_nhds hx_t [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e : β → α h_e : UniformInducing e h_dense : DenseRange e f : β → γ h_f : UniformContinuous f inst✝ : CompleteSpace γ d : Set (γ × γ) hd : d ∈ 𝓤 γ s : Set (γ × γ) hs : s ∈ 𝓤 γ hs_comp : s ○ (s ○ s) ⊆ d h_pnt : ∀ {a : α} {m : Set α}, m ∈ 𝓝 a → ∃ c, c ∈ f '' (e ⁻¹' m) ∧ (c, DenseInducing.extend (_ : DenseInducing e) f a) ∈ s ∧ (DenseInducing.extend (_ : DenseInducing e) f a, c) ∈ s this✝¹ : Prod.map f f ⁻¹' s ∈ 𝓤 β this✝ : Prod.map f f ⁻¹' s ∈ comap (Prod.map e e) (𝓤 α) t : Set (α × α) ht : t ∈ 𝓤 α ts : Prod.map e e ⁻¹' t ⊆ Prod.map f f ⁻¹' s x✝ : α × α x₁ x₂ : α hx_t : (x₁, x₂) ∈ interior t this : interior t ∈ 𝓝 (x₁, x₂) ⊢ (x₁, x₂) ∈ Prod.map (DenseInducing.extend (_ : DenseInducing e) f) (DenseInducing.extend (_ : DenseInducing e) f) ⁻¹' d [PROOFSTEP] let ⟨m₁, hm₁, m₂, hm₂, (hm : m₁ ×ˢ m₂ ⊆ interior t)⟩ := mem_nhds_prod_iff.mp this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e : β → α h_e : UniformInducing e h_dense : DenseRange e f : β → γ h_f : UniformContinuous f inst✝ : CompleteSpace γ d : Set (γ × γ) hd : d ∈ 𝓤 γ s : Set (γ × γ) hs : s ∈ 𝓤 γ hs_comp : s ○ (s ○ s) ⊆ d h_pnt : ∀ {a : α} {m : Set α}, m ∈ 𝓝 a → ∃ c, c ∈ f '' (e ⁻¹' m) ∧ (c, DenseInducing.extend (_ : DenseInducing e) f a) ∈ s ∧ (DenseInducing.extend (_ : DenseInducing e) f a, c) ∈ s this✝¹ : Prod.map f f ⁻¹' s ∈ 𝓤 β this✝ : Prod.map f f ⁻¹' s ∈ comap (Prod.map e e) (𝓤 α) t : Set (α × α) ht : t ∈ 𝓤 α ts : Prod.map e e ⁻¹' t ⊆ Prod.map f f ⁻¹' s x✝ : α × α x₁ x₂ : α hx_t : (x₁, x₂) ∈ interior t this : interior t ∈ 𝓝 (x₁, x₂) m₁ : Set α hm₁ : m₁ ∈ 𝓝 x₁ m₂ : Set α hm₂ : m₂ ∈ 𝓝 x₂ hm : m₁ ×ˢ m₂ ⊆ interior t ⊢ (x₁, x₂) ∈ Prod.map (DenseInducing.extend (_ : DenseInducing e) f) (DenseInducing.extend (_ : DenseInducing e) f) ⁻¹' d [PROOFSTEP] obtain ⟨_, ⟨a, ha₁, rfl⟩, _, ha₂⟩ := h_pnt hm₁ [GOAL] case intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e : β → α h_e : UniformInducing e h_dense : DenseRange e f : β → γ h_f : UniformContinuous f inst✝ : CompleteSpace γ d : Set (γ × γ) hd : d ∈ 𝓤 γ s : Set (γ × γ) hs : s ∈ 𝓤 γ hs_comp : s ○ (s ○ s) ⊆ d h_pnt : ∀ {a : α} {m : Set α}, m ∈ 𝓝 a → ∃ c, c ∈ f '' (e ⁻¹' m) ∧ (c, DenseInducing.extend (_ : DenseInducing e) f a) ∈ s ∧ (DenseInducing.extend (_ : DenseInducing e) f a, c) ∈ s this✝¹ : Prod.map f f ⁻¹' s ∈ 𝓤 β this✝ : Prod.map f f ⁻¹' s ∈ comap (Prod.map e e) (𝓤 α) t : Set (α × α) ht : t ∈ 𝓤 α ts : Prod.map e e ⁻¹' t ⊆ Prod.map f f ⁻¹' s x✝ : α × α x₁ x₂ : α hx_t : (x₁, x₂) ∈ interior t this : interior t ∈ 𝓝 (x₁, x₂) m₁ : Set α hm₁ : m₁ ∈ 𝓝 x₁ m₂ : Set α hm₂ : m₂ ∈ 𝓝 x₂ hm : m₁ ×ˢ m₂ ⊆ interior t a : β ha₁ : a ∈ e ⁻¹' m₁ left✝ : (f a, DenseInducing.extend (_ : DenseInducing e) f x₁) ∈ s ha₂ : (DenseInducing.extend (_ : DenseInducing e) f x₁, f a) ∈ s ⊢ (x₁, x₂) ∈ Prod.map (DenseInducing.extend (_ : DenseInducing e) f) (DenseInducing.extend (_ : DenseInducing e) f) ⁻¹' d [PROOFSTEP] obtain ⟨_, ⟨b, hb₁, rfl⟩, hb₂, _⟩ := h_pnt hm₂ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e : β → α h_e : UniformInducing e h_dense : DenseRange e f : β → γ h_f : UniformContinuous f inst✝ : CompleteSpace γ d : Set (γ × γ) hd : d ∈ 𝓤 γ s : Set (γ × γ) hs : s ∈ 𝓤 γ hs_comp : s ○ (s ○ s) ⊆ d h_pnt : ∀ {a : α} {m : Set α}, m ∈ 𝓝 a → ∃ c, c ∈ f '' (e ⁻¹' m) ∧ (c, DenseInducing.extend (_ : DenseInducing e) f a) ∈ s ∧ (DenseInducing.extend (_ : DenseInducing e) f a, c) ∈ s this✝¹ : Prod.map f f ⁻¹' s ∈ 𝓤 β this✝ : Prod.map f f ⁻¹' s ∈ comap (Prod.map e e) (𝓤 α) t : Set (α × α) ht : t ∈ 𝓤 α ts : Prod.map e e ⁻¹' t ⊆ Prod.map f f ⁻¹' s x✝ : α × α x₁ x₂ : α hx_t : (x₁, x₂) ∈ interior t this : interior t ∈ 𝓝 (x₁, x₂) m₁ : Set α hm₁ : m₁ ∈ 𝓝 x₁ m₂ : Set α hm₂ : m₂ ∈ 𝓝 x₂ hm : m₁ ×ˢ m₂ ⊆ interior t a : β ha₁ : a ∈ e ⁻¹' m₁ left✝ : (f a, DenseInducing.extend (_ : DenseInducing e) f x₁) ∈ s ha₂ : (DenseInducing.extend (_ : DenseInducing e) f x₁, f a) ∈ s b : β hb₁ : b ∈ e ⁻¹' m₂ hb₂ : (f b, DenseInducing.extend (_ : DenseInducing e) f x₂) ∈ s right✝ : (DenseInducing.extend (_ : DenseInducing e) f x₂, f b) ∈ s ⊢ (x₁, x₂) ∈ Prod.map (DenseInducing.extend (_ : DenseInducing e) f) (DenseInducing.extend (_ : DenseInducing e) f) ⁻¹' d [PROOFSTEP] have : Prod.map f f (a, b) ∈ s := ts <| mem_preimage.2 <| interior_subset (@hm (e a, e b) ⟨ha₁, hb₁⟩) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ e : β → α h_e : UniformInducing e h_dense : DenseRange e f : β → γ h_f : UniformContinuous f inst✝ : CompleteSpace γ d : Set (γ × γ) hd : d ∈ 𝓤 γ s : Set (γ × γ) hs : s ∈ 𝓤 γ hs_comp : s ○ (s ○ s) ⊆ d h_pnt : ∀ {a : α} {m : Set α}, m ∈ 𝓝 a → ∃ c, c ∈ f '' (e ⁻¹' m) ∧ (c, DenseInducing.extend (_ : DenseInducing e) f a) ∈ s ∧ (DenseInducing.extend (_ : DenseInducing e) f a, c) ∈ s this✝² : Prod.map f f ⁻¹' s ∈ 𝓤 β this✝¹ : Prod.map f f ⁻¹' s ∈ comap (Prod.map e e) (𝓤 α) t : Set (α × α) ht : t ∈ 𝓤 α ts : Prod.map e e ⁻¹' t ⊆ Prod.map f f ⁻¹' s x✝ : α × α x₁ x₂ : α hx_t : (x₁, x₂) ∈ interior t this✝ : interior t ∈ 𝓝 (x₁, x₂) m₁ : Set α hm₁ : m₁ ∈ 𝓝 x₁ m₂ : Set α hm₂ : m₂ ∈ 𝓝 x₂ hm : m₁ ×ˢ m₂ ⊆ interior t a : β ha₁ : a ∈ e ⁻¹' m₁ left✝ : (f a, DenseInducing.extend (_ : DenseInducing e) f x₁) ∈ s ha₂ : (DenseInducing.extend (_ : DenseInducing e) f x₁, f a) ∈ s b : β hb₁ : b ∈ e ⁻¹' m₂ hb₂ : (f b, DenseInducing.extend (_ : DenseInducing e) f x₂) ∈ s right✝ : (DenseInducing.extend (_ : DenseInducing e) f x₂, f b) ∈ s this : Prod.map f f (a, b) ∈ s ⊢ (x₁, x₂) ∈ Prod.map (DenseInducing.extend (_ : DenseInducing e) f) (DenseInducing.extend (_ : DenseInducing e) f) ⁻¹' d [PROOFSTEP] exact hs_comp ⟨f a, ha₂, ⟨f b, this, hb₂⟩⟩
{"mathlib_filename": "Mathlib.Topology.UniformSpace.UniformEmbedding", "llama_tokens": 24935}
[GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ 𝓝 0 = ⨅ (γ : Γ₀) (_ : γ ≠ 0), 𝓟 (Iio γ) [PROOFSTEP] rw [nhds_eq_update, update_same] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ HasBasis (𝓝 0) (fun γ => γ ≠ 0) Iio [PROOFSTEP] rw [nhds_zero] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ HasBasis (⨅ (γ : Γ₀) (_ : γ ≠ 0), 𝓟 (Iio γ)) (fun γ => γ ≠ 0) Iio [PROOFSTEP] refine' hasBasis_biInf_principal _ ⟨1, one_ne_zero⟩ [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ DirectedOn ((fun γ => Iio γ) ⁻¹'o fun x x_1 => x ≥ x_1) fun γ => γ = 0 → False [PROOFSTEP] exact directedOn_iff_directed.2 (directed_of_inf fun a b hab => Iio_subset_Iio hab) [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ Tendsto f l (𝓝 0) ↔ ∀ (γ₀ : Γ₀), γ₀ ≠ 0 → ∀ᶠ (x : α) in l, f x < γ₀ [PROOFSTEP] simp [nhds_zero] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ γ : Γ₀ h₀ : γ ≠ 0 ⊢ 𝓝 γ = pure γ [PROOFSTEP] rw [nhds_eq_update, update_noteq h₀] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ γ : Γ₀ˣ ⊢ {↑γ} ∈ 𝓝 ↑γ [PROOFSTEP] simp [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ h : γ ≠ 0 ⊢ {γ} ∈ 𝓝 γ [PROOFSTEP] simp [h] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x : Γ₀ h : x ≠ 0 ⊢ HasBasis (𝓝 x) (fun x => True) fun x_1 => {x} [PROOFSTEP] rw [nhds_of_ne_zero h] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x : Γ₀ h : x ≠ 0 ⊢ HasBasis (pure x) (fun x => True) fun x_1 => {x} [PROOFSTEP] exact hasBasis_pure _ [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ γ : Γ₀ h : γ ≠ 0 ⊢ Tendsto f l (𝓝 γ) ↔ ∀ᶠ (x : α) in l, f x = γ [PROOFSTEP] rw [nhds_of_ne_zero h, tendsto_pure] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ h : γ₁ < γ₂ ⊢ Iio γ₂ ∈ 𝓝 γ₁ [PROOFSTEP] rcases eq_or_ne γ₁ 0 with (rfl | h₀) [GOAL] case inl α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₂ : Γ₀ l : Filter α f : α → Γ₀ h : 0 < γ₂ ⊢ Iio γ₂ ∈ 𝓝 0 [PROOFSTEP] simp [*, h.ne', Iio_mem_nhds_zero] [GOAL] case inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ h : γ₁ < γ₂ h₀ : γ₁ ≠ 0 ⊢ Iio γ₂ ∈ 𝓝 γ₁ [PROOFSTEP] simp [*, h.ne', Iio_mem_nhds_zero] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ s : Set Γ₀ ⊢ IsOpen s ↔ ¬0 ∈ s ∨ ∃ γ, γ ≠ 0 ∧ Iio γ ⊆ s [PROOFSTEP] rw [isOpen_iff_mem_nhds, ← and_forall_ne (0 : Γ₀)] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ s : Set Γ₀ ⊢ ((0 ∈ s → s ∈ 𝓝 0) ∧ ∀ (b : Γ₀), b ≠ 0 → b ∈ s → s ∈ 𝓝 b) ↔ ¬0 ∈ s ∨ ∃ γ, γ ≠ 0 ∧ Iio γ ⊆ s [PROOFSTEP] simp (config := { contextual := true }) [nhds_of_ne_zero, imp_iff_not_or, hasBasis_nhds_zero.mem_iff] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ s : Set Γ₀ ⊢ IsClosed s ↔ 0 ∈ s ∨ ∃ γ, γ ≠ 0 ∧ s ⊆ Ici γ [PROOFSTEP] simp only [← isOpen_compl_iff, isOpen_iff, mem_compl_iff, not_not, ← compl_Ici, compl_subset_compl] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ IsClosed {p | p.fst ≤ p.snd} [PROOFSTEP] simp only [← isOpen_compl_iff, compl_setOf, not_le, isOpen_iff_mem_nhds] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ ∀ (a : Γ₀ × Γ₀), a ∈ {a | a.snd < a.fst} → {a | a.snd < a.fst} ∈ 𝓝 a [PROOFSTEP] rintro ⟨a, b⟩ (hab : b < a) [GOAL] case mk α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ a b : Γ₀ hab : b < a ⊢ {a | a.snd < a.fst} ∈ 𝓝 (a, b) [PROOFSTEP] rw [nhds_prod_eq, nhds_of_ne_zero (zero_le'.trans_lt hab).ne', pure_prod] [GOAL] case mk α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ a b : Γ₀ hab : b < a ⊢ {a | a.snd < a.fst} ∈ map (Prod.mk a) (𝓝 b) [PROOFSTEP] exact Iio_mem_nhds hab [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ s t : Set Γ₀ h₁ : Disjoint (closure s) t h₂ : Disjoint s (closure t) ⊢ Disjoint (𝓝ˢ s) (𝓝ˢ t) [PROOFSTEP] by_cases hs : 0 ∈ s [GOAL] case pos α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ s t : Set Γ₀ h₁ : Disjoint (closure s) t h₂ : Disjoint s (closure t) hs : 0 ∈ s ⊢ Disjoint (𝓝ˢ s) (𝓝ˢ t) [PROOFSTEP] have ht : 0 ∉ t := fun ht => disjoint_left.1 h₁ (subset_closure hs) ht [GOAL] case pos α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ s t : Set Γ₀ h₁ : Disjoint (closure s) t h₂ : Disjoint s (closure t) hs : 0 ∈ s ht : ¬0 ∈ t ⊢ Disjoint (𝓝ˢ s) (𝓝ˢ t) [PROOFSTEP] rwa [(isOpen_iff.2 (.inl ht)).nhdsSet_eq, disjoint_nhdsSet_principal] [GOAL] case neg α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ s t : Set Γ₀ h₁ : Disjoint (closure s) t h₂ : Disjoint s (closure t) hs : ¬0 ∈ s ⊢ Disjoint (𝓝ˢ s) (𝓝ˢ t) [PROOFSTEP] rwa [(isOpen_iff.2 (.inl hs)).nhdsSet_eq, disjoint_principal_nhdsSet] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] simp only [continuous_iff_continuousAt, ContinuousAt] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ ⊢ ∀ (x : Γ₀ × Γ₀), Tendsto (fun p => p.fst * p.snd) (𝓝 x) (𝓝 (x.fst * x.snd)) [PROOFSTEP] rintro ⟨x, y⟩ [GOAL] case mk α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] wlog hle : x ≤ y generalizing x y [GOAL] case mk.inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ this : ∀ (x y : Γ₀), x ≤ y → Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) hle : ¬x ≤ y ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] have := (this y x (le_of_not_le hle)).comp (continuous_swap.tendsto (x, y)) [GOAL] case mk.inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ this✝ : ∀ (x y : Γ₀), x ≤ y → Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) hle : ¬x ≤ y this : Tendsto ((fun p => p.fst * p.snd) ∘ Prod.swap) (𝓝 (x, y)) (𝓝 ((y, x).fst * (y, x).snd)) ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] simpa only [mul_comm, Function.comp, Prod.swap] using this [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ hle : x ≤ y ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) <;> [rcases eq_or_ne y 0 with (rfl | hy); skip] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ hle : x ≤ y ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | hx) [GOAL] case inl α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ y : Γ₀ hle : 0 ≤ y ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (0, y)) (𝓝 ((0, y).fst * (0, y).snd)) [PROOFSTEP] rcases eq_or_ne y 0 with (rfl | hy) [GOAL] case inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ hle : x ≤ y hx : x ≠ 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] skip [GOAL] case inl.inl α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ hle : 0 ≤ 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (0, 0)) (𝓝 ((0, 0).fst * (0, 0).snd)) [PROOFSTEP] rw [zero_mul] [GOAL] case inl.inl α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ hle : 0 ≤ 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (0, 0)) (𝓝 0) [PROOFSTEP] refine ((hasBasis_nhds_zero.prod_nhds hasBasis_nhds_zero).tendsto_iff hasBasis_nhds_zero).2 fun γ hγ => ⟨(γ, 1), ⟨hγ, one_ne_zero⟩, ?_⟩ [GOAL] case inl.inl α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ hle : 0 ≤ 0 γ : Γ₀ hγ : γ ≠ 0 ⊢ ∀ (x : Γ₀ × Γ₀), x ∈ Iio (γ, 1).fst ×ˢ Iio (γ, 1).snd → x.fst * x.snd ∈ Iio γ [PROOFSTEP] rintro ⟨x, y⟩ ⟨hx : x < γ, hy : y < 1⟩ [GOAL] case inl.inl.mk.intro α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ hle : 0 ≤ 0 γ : Γ₀ hγ : γ ≠ 0 x y : Γ₀ hx : x < γ hy : y < 1 ⊢ (x, y).fst * (x, y).snd ∈ Iio γ [PROOFSTEP] exact (mul_lt_mul₀ hx hy).trans_eq (mul_one γ) [GOAL] case inl.inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ y : Γ₀ hle : 0 ≤ y hy : y ≠ 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (0, y)) (𝓝 ((0, y).fst * (0, y).snd)) [PROOFSTEP] rw [zero_mul, nhds_prod_eq, nhds_of_ne_zero hy, prod_pure, tendsto_map'_iff] [GOAL] case inl.inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ y : Γ₀ hle : 0 ≤ y hy : y ≠ 0 ⊢ Tendsto ((fun p => p.fst * p.snd) ∘ fun a => (a, y)) (𝓝 0) (𝓝 0) [PROOFSTEP] refine' (hasBasis_nhds_zero.tendsto_iff hasBasis_nhds_zero).2 fun γ hγ => _ [GOAL] case inl.inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ y : Γ₀ hle : 0 ≤ y hy : y ≠ 0 γ : Γ₀ hγ : γ ≠ 0 ⊢ ∃ ia, ia ≠ 0 ∧ ∀ (x : Γ₀), x ∈ Iio ia → ((fun p => p.fst * p.snd) ∘ fun a => (a, y)) x ∈ Iio γ [PROOFSTEP] refine' ⟨γ / y, div_ne_zero hγ hy, fun x hx => _⟩ [GOAL] case inl.inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ y : Γ₀ hle : 0 ≤ y hy : y ≠ 0 γ : Γ₀ hγ : γ ≠ 0 x : Γ₀ hx : x ∈ Iio (γ / y) ⊢ ((fun p => p.fst * p.snd) ∘ fun a => (a, y)) x ∈ Iio γ [PROOFSTEP] calc x * y < γ / y * y := mul_lt_right₀ _ hx hy _ = γ := div_mul_cancel _ hy [GOAL] case inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ hle : x ≤ y hx : x ≠ 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] have hy : y ≠ 0 := ((zero_lt_iff.mpr hx).trans_le hle).ne' [GOAL] case inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ hle : x ≤ y hx : x ≠ 0 hy : y ≠ 0 ⊢ Tendsto (fun p => p.fst * p.snd) (𝓝 (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] rw [nhds_prod_eq, nhds_of_ne_zero hx, nhds_of_ne_zero hy, prod_pure_pure] [GOAL] case inr α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ x y : Γ₀ hle : x ≤ y hx : x ≠ 0 hy : y ≠ 0 ⊢ Tendsto (fun p => p.fst * p.snd) (pure (x, y)) (𝓝 ((x, y).fst * (x, y).snd)) [PROOFSTEP] exact pure_le_nhds (x * y) [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ γ : Γ₀ h : γ ≠ 0 ⊢ ContinuousAt Inv.inv γ [PROOFSTEP] rw [ContinuousAt, nhds_of_ne_zero h] [GOAL] α : Type u_1 Γ₀ : Type u_2 inst✝ : LinearOrderedCommGroupWithZero Γ₀ γ✝ γ₁ γ₂ : Γ₀ l : Filter α f : α → Γ₀ γ : Γ₀ h : γ ≠ 0 ⊢ Tendsto Inv.inv (pure γ) (𝓝 γ⁻¹) [PROOFSTEP] exact pure_le_nhds γ⁻¹
{"mathlib_filename": "Mathlib.Topology.Algebra.WithZeroTopology", "llama_tokens": 6977}
[GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ map Prod.swap (Filter.lift' (𝓤 α) gen) ≤ Filter.lift' (𝓤 α) gen [PROOFSTEP] let f := fun s : Set (α × α) => {p : CauchyFilter α × CauchyFilter α | s ∈ (p.2.val ×ˢ p.1.val : Filter (α × α))} [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Set (α × α) → Set (CauchyFilter α × CauchyFilter α) := fun s => {p | s ∈ ↑p.snd ×ˢ ↑p.fst} ⊢ map Prod.swap (Filter.lift' (𝓤 α) gen) ≤ Filter.lift' (𝓤 α) gen [PROOFSTEP] have h₁ : map Prod.swap ((𝓤 α).lift' gen) = (𝓤 α).lift' f := by delta gen simp [map_lift'_eq, monotone_setOf, Filter.monotone_mem, Function.comp, image_swap_eq_preimage_swap] [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Set (α × α) → Set (CauchyFilter α × CauchyFilter α) := fun s => {p | s ∈ ↑p.snd ×ˢ ↑p.fst} ⊢ map Prod.swap (Filter.lift' (𝓤 α) gen) = Filter.lift' (𝓤 α) f [PROOFSTEP] delta gen [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Set (α × α) → Set (CauchyFilter α × CauchyFilter α) := fun s => {p | s ∈ ↑p.snd ×ˢ ↑p.fst} ⊢ map Prod.swap (Filter.lift' (𝓤 α) fun s => {p | s ∈ ↑p.fst ×ˢ ↑p.snd}) = Filter.lift' (𝓤 α) f [PROOFSTEP] simp [map_lift'_eq, monotone_setOf, Filter.monotone_mem, Function.comp, image_swap_eq_preimage_swap] [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Set (α × α) → Set (CauchyFilter α × CauchyFilter α) := fun s => {p | s ∈ ↑p.snd ×ˢ ↑p.fst} h₁ : map Prod.swap (Filter.lift' (𝓤 α) gen) = Filter.lift' (𝓤 α) f ⊢ map Prod.swap (Filter.lift' (𝓤 α) gen) ≤ Filter.lift' (𝓤 α) gen [PROOFSTEP] have h₂ : (𝓤 α).lift' f ≤ (𝓤 α).lift' gen := uniformity_lift_le_swap (monotone_principal.comp (monotone_setOf fun p => @Filter.monotone_mem _ (p.2.val ×ˢ p.1.val))) (by have h := fun p : CauchyFilter α × CauchyFilter α => @Filter.prod_comm _ _ p.2.val p.1.val simp [Function.comp, h, mem_map'] exact le_rfl) [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Set (α × α) → Set (CauchyFilter α × CauchyFilter α) := fun s => {p | s ∈ ↑p.snd ×ˢ ↑p.fst} h₁ : map Prod.swap (Filter.lift' (𝓤 α) gen) = Filter.lift' (𝓤 α) f ⊢ (Filter.lift (𝓤 α) fun s => (𝓟 ∘ f) (Prod.swap ⁻¹' s)) ≤ Filter.lift' (𝓤 α) gen [PROOFSTEP] have h := fun p : CauchyFilter α × CauchyFilter α => @Filter.prod_comm _ _ p.2.val p.1.val [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Set (α × α) → Set (CauchyFilter α × CauchyFilter α) := fun s => {p | s ∈ ↑p.snd ×ˢ ↑p.fst} h₁ : map Prod.swap (Filter.lift' (𝓤 α) gen) = Filter.lift' (𝓤 α) f h : ∀ (p : CauchyFilter α × CauchyFilter α), ↑p.snd ×ˢ ↑p.fst = map (fun p => (p.snd, p.fst)) (↑p.fst ×ˢ ↑p.snd) ⊢ (Filter.lift (𝓤 α) fun s => (𝓟 ∘ f) (Prod.swap ⁻¹' s)) ≤ Filter.lift' (𝓤 α) gen [PROOFSTEP] simp [Function.comp, h, mem_map'] [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Set (α × α) → Set (CauchyFilter α × CauchyFilter α) := fun s => {p | s ∈ ↑p.snd ×ˢ ↑p.fst} h₁ : map Prod.swap (Filter.lift' (𝓤 α) gen) = Filter.lift' (𝓤 α) f h : ∀ (p : CauchyFilter α × CauchyFilter α), ↑p.snd ×ˢ ↑p.fst = map (fun p => (p.snd, p.fst)) (↑p.fst ×ˢ ↑p.snd) ⊢ (Filter.lift (𝓤 α) fun s => 𝓟 {p | (fun p => (p.snd, p.fst)) ⁻¹' (Prod.swap ⁻¹' s) ∈ ↑p.fst ×ˢ ↑p.snd}) ≤ Filter.lift' (𝓤 α) gen [PROOFSTEP] exact le_rfl [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Set (α × α) → Set (CauchyFilter α × CauchyFilter α) := fun s => {p | s ∈ ↑p.snd ×ˢ ↑p.fst} h₁ : map Prod.swap (Filter.lift' (𝓤 α) gen) = Filter.lift' (𝓤 α) f h₂ : Filter.lift' (𝓤 α) f ≤ Filter.lift' (𝓤 α) gen ⊢ map Prod.swap (Filter.lift' (𝓤 α) gen) ≤ Filter.lift' (𝓤 α) gen [PROOFSTEP] exact h₁.trans_le h₂ [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ (Filter.lift' (Filter.lift' (𝓤 α) gen) fun s => s ○ s) = Filter.lift' (𝓤 α) fun s => gen s ○ gen s [PROOFSTEP] rw [lift'_lift'_assoc] [GOAL] case hg α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ Monotone gen [PROOFSTEP] exact monotone_gen [GOAL] case hh α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ Monotone fun s => s ○ s [PROOFSTEP] exact monotone_id.compRel monotone_id [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ (Filter.lift' (𝓤 α) fun s => gen (s ○ s)) = Filter.lift' (Filter.lift' (𝓤 α) fun s => s ○ s) gen [PROOFSTEP] rw [lift'_lift'_assoc] [GOAL] case hg α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ Monotone fun s => s ○ s [PROOFSTEP] exact monotone_id.compRel monotone_id [GOAL] case hh α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ Monotone gen [PROOFSTEP] exact monotone_gen [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (CauchyFilter α × CauchyFilter α) ⊢ s ∈ 𝓤 (CauchyFilter α) ↔ ∃ t, t ∈ 𝓤 α ∧ ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s [PROOFSTEP] refine mem_uniformity.trans (exists_congr (fun t => and_congr_right_iff.mpr (fun _h => ?_))) [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (CauchyFilter α × CauchyFilter α) t : Set (α × α) _h : t ∈ 𝓤 α ⊢ gen t ⊆ s ↔ ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s [PROOFSTEP] exact ⟨fun h _f _g ht => h ht, fun h _p hp => h _ _ hp⟩ [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ s : Set (α × α) x✝ : α × α a₁ a₂ : α ⊢ (a₁, a₂) ∈ ((preimage fun x => (pureCauchy x.fst, pureCauchy x.snd)) ∘ gen) s ↔ (a₁, a₂) ∈ id s [PROOFSTEP] simp [preimage, gen, pureCauchy, prod_principal_principal] [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ this : (preimage fun x => (pureCauchy x.fst, pureCauchy x.snd)) ∘ gen = id ⊢ Filter.lift' (𝓤 α) ((preimage fun x => (pureCauchy x.fst, pureCauchy x.snd)) ∘ gen) = 𝓤 α [PROOFSTEP] simp [this] [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α ⊢ f ∈ closure (range pureCauchy) [PROOFSTEP] have h_ex : ∀ s ∈ 𝓤 (CauchyFilter α), ∃ y : α, (f, pureCauchy y) ∈ s := fun s hs => let ⟨t'', ht''₁, (ht''₂ : gen t'' ⊆ s)⟩ := (mem_lift'_sets monotone_gen).mp hs let ⟨t', ht'₁, ht'₂⟩ := comp_mem_uniformity_sets ht''₁ have : t' ∈ f.val ×ˢ f.val := f.property.right ht'₁ let ⟨t, ht, (h : t ×ˢ t ⊆ t')⟩ := mem_prod_same_iff.mp this let ⟨x, (hx : x ∈ t)⟩ := f.property.left.nonempty_of_mem ht have : t'' ∈ f.val ×ˢ pure x := mem_prod_iff.mpr ⟨t, ht, {y : α | (x, y) ∈ t'}, h <| mk_mem_prod hx hx, fun ⟨a, b⟩ ⟨(h₁ : a ∈ t), (h₂ : (x, b) ∈ t')⟩ => ht'₂ <| prod_mk_mem_compRel (@h (a, x) ⟨h₁, hx⟩) h₂⟩ ⟨x, ht''₂ <| by dsimp [gen]; exact this⟩ [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ 𝓤 (CauchyFilter α) t'' : Set (α × α) ht''₁ : t'' ∈ 𝓤 α ht''₂ : gen t'' ⊆ s t' : Set (α × α) ht'₁ : t' ∈ 𝓤 α ht'₂ : t' ○ t' ⊆ t'' this✝ : t' ∈ ↑f ×ˢ ↑f t : Set α ht : t ∈ ↑f h : t ×ˢ t ⊆ t' x : α hx : x ∈ t this : t'' ∈ ↑f ×ˢ pure x ⊢ (f, pureCauchy x) ∈ gen t'' [PROOFSTEP] dsimp [gen] [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ 𝓤 (CauchyFilter α) t'' : Set (α × α) ht''₁ : t'' ∈ 𝓤 α ht''₂ : gen t'' ⊆ s t' : Set (α × α) ht'₁ : t' ∈ 𝓤 α ht'₂ : t' ○ t' ⊆ t'' this✝ : t' ∈ ↑f ×ˢ ↑f t : Set α ht : t ∈ ↑f h : t ×ˢ t ⊆ t' x : α hx : x ∈ t this : t'' ∈ ↑f ×ˢ pure x ⊢ t'' ∈ ↑f ×ˢ ↑(pureCauchy x) [PROOFSTEP] exact this [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α h_ex : ∀ (s : Set (CauchyFilter α × CauchyFilter α)), s ∈ 𝓤 (CauchyFilter α) → ∃ y, (f, pureCauchy y) ∈ s ⊢ f ∈ closure (range pureCauchy) [PROOFSTEP] simp only [closure_eq_cluster_pts, ClusterPt, nhds_eq_uniformity, lift'_inf_principal_eq, Set.inter_comm _ (range pureCauchy), mem_setOf_eq] [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α h_ex : ∀ (s : Set (CauchyFilter α × CauchyFilter α)), s ∈ 𝓤 (CauchyFilter α) → ∃ y, (f, pureCauchy y) ∈ s ⊢ NeBot (Filter.lift' (𝓤 (CauchyFilter α)) fun t => range pureCauchy ∩ UniformSpace.ball f t) [PROOFSTEP] refine (lift'_neBot_iff ?_).mpr (fun s hs => ?_) [GOAL] case refine_1 α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α h_ex : ∀ (s : Set (CauchyFilter α × CauchyFilter α)), s ∈ 𝓤 (CauchyFilter α) → ∃ y, (f, pureCauchy y) ∈ s ⊢ Monotone fun t => range pureCauchy ∩ UniformSpace.ball f t [PROOFSTEP] refine monotone_const.inter ?_ [GOAL] case refine_1 α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α h_ex : ∀ (s : Set (CauchyFilter α × CauchyFilter α)), s ∈ 𝓤 (CauchyFilter α) → ∃ y, (f, pureCauchy y) ∈ s ⊢ Monotone fun t => UniformSpace.ball f t [PROOFSTEP] simp_rw [UniformSpace.ball] [GOAL] case refine_1 α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α h_ex : ∀ (s : Set (CauchyFilter α × CauchyFilter α)), s ∈ 𝓤 (CauchyFilter α) → ∃ y, (f, pureCauchy y) ∈ s ⊢ Monotone fun t => Prod.mk f ⁻¹' t [PROOFSTEP] exact monotone_preimage [GOAL] case refine_2 α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α h_ex : ∀ (s : Set (CauchyFilter α × CauchyFilter α)), s ∈ 𝓤 (CauchyFilter α) → ∃ y, (f, pureCauchy y) ∈ s s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ 𝓤 (CauchyFilter α) ⊢ Set.Nonempty (range pureCauchy ∩ UniformSpace.ball f s) [PROOFSTEP] let ⟨y, hy⟩ := h_ex s hs [GOAL] case refine_2 α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α h_ex : ∀ (s : Set (CauchyFilter α × CauchyFilter α)), s ∈ 𝓤 (CauchyFilter α) → ∃ y, (f, pureCauchy y) ∈ s s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ 𝓤 (CauchyFilter α) y : α hy : (f, pureCauchy y) ∈ s ⊢ Set.Nonempty (range pureCauchy ∩ UniformSpace.ball f s) [PROOFSTEP] have : pureCauchy y ∈ range pureCauchy ∩ {y : CauchyFilter α | (f, y) ∈ s} := ⟨mem_range_self y, hy⟩ [GOAL] case refine_2 α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : CauchyFilter α h_ex : ∀ (s : Set (CauchyFilter α × CauchyFilter α)), s ∈ 𝓤 (CauchyFilter α) → ∃ y, (f, pureCauchy y) ∈ s s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ 𝓤 (CauchyFilter α) y : α hy : (f, pureCauchy y) ∈ s this : pureCauchy y ∈ range pureCauchy ∩ {y | (f, y) ∈ s} ⊢ Set.Nonempty (range pureCauchy ∩ UniformSpace.ball f s) [PROOFSTEP] exact ⟨_, this⟩ [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ Nonempty (CauchyFilter α) ↔ Nonempty α [PROOFSTEP] constructor [GOAL] case mp α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ Nonempty (CauchyFilter α) → Nonempty α [PROOFSTEP] rintro ⟨c⟩ [GOAL] case mpr α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ ⊢ Nonempty α → Nonempty (CauchyFilter α) [PROOFSTEP] rintro ⟨c⟩ [GOAL] case mp.intro α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ c : CauchyFilter α ⊢ Nonempty α [PROOFSTEP] have := eq_univ_iff_forall.1 denseEmbedding_pureCauchy.toDenseInducing.closure_range c [GOAL] case mp.intro α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ c : CauchyFilter α this : c ∈ closure (range pureCauchy) ⊢ Nonempty α [PROOFSTEP] obtain ⟨_, ⟨_, a, _⟩⟩ := mem_closure_iff.1 this _ isOpen_univ trivial [GOAL] case mp.intro.intro.intro.intro α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ c : CauchyFilter α this : c ∈ closure (range pureCauchy) w✝ : CauchyFilter α left✝ : w✝ ∈ univ a : α h✝ : pureCauchy a = w✝ ⊢ Nonempty α [PROOFSTEP] exact ⟨a⟩ [GOAL] case mpr.intro α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ c : α ⊢ Nonempty (CauchyFilter α) [PROOFSTEP] exact ⟨pureCauchy c⟩ [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Filter α hf : Cauchy f f' : CauchyFilter α := { val := f, property := hf } this : map pureCauchy f ≤ Filter.lift' (𝓤 (CauchyFilter α)) (preimage (Prod.mk f')) ⊢ map pureCauchy f ≤ 𝓝 f' [PROOFSTEP] simp [nhds_eq_uniformity] [GOAL] α : Type u inst✝² : UniformSpace α β : Type v γ : Type w inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f : Filter α hf : Cauchy f f' : CauchyFilter α := { val := f, property := hf } this : map pureCauchy f ≤ Filter.lift' (𝓤 (CauchyFilter α)) (preimage (Prod.mk f')) ⊢ map pureCauchy f ≤ Filter.lift' (𝓤 (CauchyFilter α)) (UniformSpace.ball { val := f, property := hf }) [PROOFSTEP] assumption [GOAL] α : Type u inst✝³ : UniformSpace α β : Type v γ : Type w inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β hf : UniformContinuous f a : α ⊢ extend f (pureCauchy a) = f a [PROOFSTEP] rw [extend, if_pos hf] [GOAL] α : Type u inst✝³ : UniformSpace α β : Type v γ : Type w inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : SeparatedSpace β f : α → β hf : UniformContinuous f a : α ⊢ DenseInducing.extend (_ : DenseInducing pureCauchy) f (pureCauchy a) = f a [PROOFSTEP] exact uniformly_extend_of_ind uniformInducing_pureCauchy denseRange_pureCauchy hf _ [GOAL] α : Type u inst✝³ : UniformSpace α β : Type v γ : Type w inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : CompleteSpace β f : α → β ⊢ UniformContinuous (extend f) [PROOFSTEP] by_cases hf : UniformContinuous f [GOAL] case pos α : Type u inst✝³ : UniformSpace α β : Type v γ : Type w inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : CompleteSpace β f : α → β hf : UniformContinuous f ⊢ UniformContinuous (extend f) [PROOFSTEP] rw [extend, if_pos hf] [GOAL] case pos α : Type u inst✝³ : UniformSpace α β : Type v γ : Type w inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : CompleteSpace β f : α → β hf : UniformContinuous f ⊢ UniformContinuous (DenseInducing.extend (_ : DenseInducing pureCauchy) f) [PROOFSTEP] exact uniformContinuous_uniformly_extend uniformInducing_pureCauchy denseRange_pureCauchy hf [GOAL] case neg α : Type u inst✝³ : UniformSpace α β : Type v γ : Type w inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : CompleteSpace β f : α → β hf : ¬UniformContinuous f ⊢ UniformContinuous (extend f) [PROOFSTEP] rw [extend, if_neg hf] [GOAL] case neg α : Type u inst✝³ : UniformSpace α β : Type v γ : Type w inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : CompleteSpace β f : α → β hf : ¬UniformContinuous f ⊢ UniformContinuous fun x => f (Nonempty.some (_ : Nonempty α)) [PROOFSTEP] exact uniformContinuous_of_const fun a _b => by congr [GOAL] α : Type u inst✝³ : UniformSpace α β : Type v γ : Type w inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : CompleteSpace β f : α → β hf : ¬UniformContinuous f a _b : CauchyFilter α ⊢ f (Nonempty.some (_ : Nonempty α)) = f (Nonempty.some (_ : Nonempty α)) [PROOFSTEP] congr [GOAL] α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α ⊢ lim ↑f = lim ↑g ↔ (f, g) ∈ 𝓢 (CauchyFilter α) [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α ⊢ lim ↑f = lim ↑g → (f, g) ∈ 𝓢 (CauchyFilter α) [PROOFSTEP] intro e s hs [GOAL] case mp α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α e : lim ↑f = lim ↑g s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ (𝓤 (CauchyFilter α)).sets ⊢ (f, g) ∈ s [PROOFSTEP] rcases CauchyFilter.mem_uniformity'.1 hs with ⟨t, tu, ts⟩ [GOAL] case mp.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α e : lim ↑f = lim ↑g s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ (𝓤 (CauchyFilter α)).sets t : Set (α × α) tu : t ∈ 𝓤 α ts : ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s ⊢ (f, g) ∈ s [PROOFSTEP] apply ts [GOAL] case mp.intro.intro.a α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α e : lim ↑f = lim ↑g s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ (𝓤 (CauchyFilter α)).sets t : Set (α × α) tu : t ∈ 𝓤 α ts : ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s ⊢ t ∈ ↑f ×ˢ ↑g [PROOFSTEP] rcases comp_mem_uniformity_sets tu with ⟨d, du, dt⟩ [GOAL] case mp.intro.intro.a.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α e : lim ↑f = lim ↑g s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ (𝓤 (CauchyFilter α)).sets t : Set (α × α) tu : t ∈ 𝓤 α ts : ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s d : Set (α × α) du : d ∈ 𝓤 α dt : d ○ d ⊆ t ⊢ t ∈ ↑f ×ˢ ↑g [PROOFSTEP] refine' mem_prod_iff.2 ⟨_, f.2.le_nhds_lim (mem_nhds_right (lim f.1) du), _, g.2.le_nhds_lim (mem_nhds_left (lim g.1) du), fun x h => _⟩ [GOAL] case mp.intro.intro.a.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α e : lim ↑f = lim ↑g s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ (𝓤 (CauchyFilter α)).sets t : Set (α × α) tu : t ∈ 𝓤 α ts : ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s d : Set (α × α) du : d ∈ 𝓤 α dt : d ○ d ⊆ t x : α × α h : x ∈ {x | (x, lim ↑f) ∈ d} ×ˢ {y | (lim ↑g, y) ∈ d} ⊢ x ∈ t [PROOFSTEP] cases' x with a b [GOAL] case mp.intro.intro.a.intro.intro.mk α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α e : lim ↑f = lim ↑g s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ (𝓤 (CauchyFilter α)).sets t : Set (α × α) tu : t ∈ 𝓤 α ts : ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s d : Set (α × α) du : d ∈ 𝓤 α dt : d ○ d ⊆ t a b : α h : (a, b) ∈ {x | (x, lim ↑f) ∈ d} ×ˢ {y | (lim ↑g, y) ∈ d} ⊢ (a, b) ∈ t [PROOFSTEP] cases' h with h₁ h₂ [GOAL] case mp.intro.intro.a.intro.intro.mk.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α e : lim ↑f = lim ↑g s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ (𝓤 (CauchyFilter α)).sets t : Set (α × α) tu : t ∈ 𝓤 α ts : ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s d : Set (α × α) du : d ∈ 𝓤 α dt : d ○ d ⊆ t a b : α h₁ : (a, b).fst ∈ {x | (x, lim ↑f) ∈ d} h₂ : (a, b).snd ∈ {y | (lim ↑g, y) ∈ d} ⊢ (a, b) ∈ t [PROOFSTEP] rw [← e] at h₂ [GOAL] case mp.intro.intro.a.intro.intro.mk.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α e : lim ↑f = lim ↑g s : Set (CauchyFilter α × CauchyFilter α) hs : s ∈ (𝓤 (CauchyFilter α)).sets t : Set (α × α) tu : t ∈ 𝓤 α ts : ∀ (f g : CauchyFilter α), t ∈ ↑f ×ˢ ↑g → (f, g) ∈ s d : Set (α × α) du : d ∈ 𝓤 α dt : d ○ d ⊆ t a b : α h₁ : (a, b).fst ∈ {x | (x, lim ↑f) ∈ d} h₂ : (a, b).snd ∈ {y | (lim ↑f, y) ∈ d} ⊢ (a, b) ∈ t [PROOFSTEP] exact dt ⟨_, h₁, h₂⟩ [GOAL] case mpr α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α ⊢ (f, g) ∈ 𝓢 (CauchyFilter α) → lim ↑f = lim ↑g [PROOFSTEP] intro H [GOAL] case mpr α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α H : (f, g) ∈ 𝓢 (CauchyFilter α) ⊢ lim ↑f = lim ↑g [PROOFSTEP] refine' separated_def.1 (by infer_instance) _ _ fun t tu => _ [GOAL] α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α H : (f, g) ∈ 𝓢 (CauchyFilter α) ⊢ SeparatedSpace α [PROOFSTEP] infer_instance [GOAL] case mpr α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α H : (f, g) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α ⊢ (lim ↑f, lim ↑g) ∈ t [PROOFSTEP] rcases mem_uniformity_isClosed tu with ⟨d, du, dc, dt⟩ [GOAL] case mpr.intro.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f g : CauchyFilter α H : (f, g) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t ⊢ (lim ↑f, lim ↑g) ∈ t [PROOFSTEP] refine' H {p | (lim p.1.1, lim p.2.1) ∈ t} (CauchyFilter.mem_uniformity'.2 ⟨d, du, fun f g h => _⟩) [GOAL] case mpr.intro.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h : d ∈ ↑f ×ˢ ↑g ⊢ (f, g) ∈ {p | (lim ↑p.fst, lim ↑p.snd) ∈ t} [PROOFSTEP] rcases mem_prod_iff.1 h with ⟨x, xf, y, yg, h⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d ⊢ (f, g) ∈ {p | (lim ↑p.fst, lim ↑p.snd) ∈ t} [PROOFSTEP] have limc : ∀ (f : CauchyFilter α), ∀ x ∈ f.1, lim f.1 ∈ closure x := by intro f x xf rw [closure_eq_cluster_pts] exact f.2.1.mono (le_inf f.2.le_nhds_lim (le_principal_iff.2 xf)) [GOAL] α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d ⊢ ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x [PROOFSTEP] intro f x xf [GOAL] α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝¹ g✝ : CauchyFilter α H : (f✝¹, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f✝ g : CauchyFilter α h✝ : d ∈ ↑f✝ ×ˢ ↑g x✝ : Set α xf✝ : x✝ ∈ ↑f✝ y : Set α yg : y ∈ ↑g h : x✝ ×ˢ y ⊆ d f : CauchyFilter α x : Set α xf : x ∈ ↑f ⊢ lim ↑f ∈ closure x [PROOFSTEP] rw [closure_eq_cluster_pts] [GOAL] α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝¹ g✝ : CauchyFilter α H : (f✝¹, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f✝ g : CauchyFilter α h✝ : d ∈ ↑f✝ ×ˢ ↑g x✝ : Set α xf✝ : x✝ ∈ ↑f✝ y : Set α yg : y ∈ ↑g h : x✝ ×ˢ y ⊆ d f : CauchyFilter α x : Set α xf : x ∈ ↑f ⊢ lim ↑f ∈ {a | ClusterPt a (𝓟 x)} [PROOFSTEP] exact f.2.1.mono (le_inf f.2.le_nhds_lim (le_principal_iff.2 xf)) [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x ⊢ (f, g) ∈ {p | (lim ↑p.fst, lim ↑p.snd) ∈ t} [PROOFSTEP] have := dc.closure_subset_iff.2 h [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x this : closure (x ×ˢ y) ⊆ d ⊢ (f, g) ∈ {p | (lim ↑p.fst, lim ↑p.snd) ∈ t} [PROOFSTEP] rw [closure_prod_eq] at this [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x this : closure x ×ˢ closure y ⊆ d ⊢ (f, g) ∈ {p | (lim ↑p.fst, lim ↑p.snd) ∈ t} [PROOFSTEP] refine' dt (this ⟨_, _⟩) [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.refine'_1 α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x this : closure x ×ˢ closure y ⊆ d ⊢ (lim ↑(f, g).fst, lim ↑(f, g).snd).fst ∈ closure x [PROOFSTEP] dsimp [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.refine'_2 α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x this : closure x ×ˢ closure y ⊆ d ⊢ (lim ↑(f, g).fst, lim ↑(f, g).snd).snd ∈ closure y [PROOFSTEP] dsimp [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.refine'_1 α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x this : closure x ×ˢ closure y ⊆ d ⊢ lim ↑f ∈ closure x [PROOFSTEP] apply limc [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.refine'_2 α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x this : closure x ×ˢ closure y ⊆ d ⊢ lim ↑g ∈ closure y [PROOFSTEP] apply limc [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.refine'_1.a α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x this : closure x ×ˢ closure y ⊆ d ⊢ x ∈ ↑f [PROOFSTEP] assumption [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.refine'_2.a α : Type u_1 inst✝³ : Inhabited α inst✝² : UniformSpace α inst✝¹ : CompleteSpace α inst✝ : SeparatedSpace α f✝ g✝ : CauchyFilter α H : (f✝, g✝) ∈ 𝓢 (CauchyFilter α) t : Set (α × α) tu : t ∈ 𝓤 α d : Set (α × α) du : d ∈ 𝓤 α dc : IsClosed d dt : d ⊆ t f g : CauchyFilter α h✝ : d ∈ ↑f ×ˢ ↑g x : Set α xf : x ∈ ↑f y : Set α yg : y ∈ ↑g h : x ×ˢ y ⊆ d limc : ∀ (f : CauchyFilter α) (x : Set α), x ∈ ↑f → lim ↑f ∈ closure x this : closure x ×ˢ closure y ⊆ d ⊢ y ∈ ↑g [PROOFSTEP] assumption [GOAL] α : Type u_1 inst✝ : UniformSpace α s : SeparatedSpace α a b : α h : (fun a => Quotient.mk (UniformSpace.separationSetoid (CauchyFilter α)) (pureCauchy a)) a = (fun a => Quotient.mk (UniformSpace.separationSetoid (CauchyFilter α)) (pureCauchy a)) b ⊢ a = b [PROOFSTEP] refine separated_def.1 s _ _ (fun s hs => ?_) [GOAL] α : Type u_1 inst✝ : UniformSpace α s✝ : SeparatedSpace α a b : α h : (fun a => Quotient.mk (UniformSpace.separationSetoid (CauchyFilter α)) (pureCauchy a)) a = (fun a => Quotient.mk (UniformSpace.separationSetoid (CauchyFilter α)) (pureCauchy a)) b s : Set (α × α) hs : s ∈ 𝓤 α ⊢ (a, b) ∈ s [PROOFSTEP] rw [← (@uniformEmbedding_pureCauchy α _).comap_uniformity, Filter.mem_comap] at hs [GOAL] α : Type u_1 inst✝ : UniformSpace α s✝ : SeparatedSpace α a b : α h : (fun a => Quotient.mk (UniformSpace.separationSetoid (CauchyFilter α)) (pureCauchy a)) a = (fun a => Quotient.mk (UniformSpace.separationSetoid (CauchyFilter α)) (pureCauchy a)) b s : Set (α × α) hs : ∃ t, t ∈ 𝓤 (CauchyFilter α) ∧ (fun x => (pureCauchy x.fst, pureCauchy x.snd)) ⁻¹' t ⊆ s ⊢ (a, b) ∈ s [PROOFSTEP] obtain ⟨t, ht, hts⟩ := hs [GOAL] case intro.intro α : Type u_1 inst✝ : UniformSpace α s✝ : SeparatedSpace α a b : α h : (fun a => Quotient.mk (UniformSpace.separationSetoid (CauchyFilter α)) (pureCauchy a)) a = (fun a => Quotient.mk (UniformSpace.separationSetoid (CauchyFilter α)) (pureCauchy a)) b s : Set (α × α) t : Set (CauchyFilter α × CauchyFilter α) ht : t ∈ 𝓤 (CauchyFilter α) hts : (fun x => (pureCauchy x.fst, pureCauchy x.snd)) ⁻¹' t ⊆ s ⊢ (a, b) ∈ s [PROOFSTEP] exact @hts (a, b) (Quotient.exact h t ht) [GOAL] α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ h : CompleteSpace α ⊢ CompleteSpace (Quotient (separationSetoid α)) [PROOFSTEP] constructor [GOAL] case complete α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ h : CompleteSpace α ⊢ ∀ {f : Filter (Quotient (separationSetoid α))}, Cauchy f → ∃ x, f ≤ 𝓝 x [PROOFSTEP] intro f hf [GOAL] case complete α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ h : CompleteSpace α f : Filter (Quotient (separationSetoid α)) hf : Cauchy f ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] have : Cauchy (f.comap fun x => ⟦x⟧) := hf.comap' comap_quotient_le_uniformity <| hf.left.comap_of_surj (surjective_quotient_mk _) [GOAL] case complete α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ h : CompleteSpace α f : Filter (Quotient (separationSetoid α)) hf : Cauchy f this : Cauchy (Filter.comap (fun x => Quotient.mk (separationSetoid α) x) f) ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] let ⟨x, (hx : (f.comap fun x => ⟦x⟧) ≤ 𝓝 x)⟩ := CompleteSpace.complete this [GOAL] case complete α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ h : CompleteSpace α f : Filter (Quotient (separationSetoid α)) hf : Cauchy f this : Cauchy (Filter.comap (fun x => Quotient.mk (separationSetoid α) x) f) x : α hx : Filter.comap (fun x => Quotient.mk (separationSetoid α) x) f ≤ 𝓝 x ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] exact ⟨⟦x⟧, (comap_le_comap_iff <| by simp).1 (hx.trans <| map_le_iff_le_comap.1 continuous_quotient_mk'.continuousAt)⟩ [GOAL] α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ h : CompleteSpace α f : Filter (Quotient (separationSetoid α)) hf : Cauchy f this : Cauchy (Filter.comap (fun x => Quotient.mk (separationSetoid α) x) f) x : α hx : Filter.comap (fun x => Quotient.mk (separationSetoid α) x) f ≤ 𝓝 x ⊢ (range fun x => Quotient.mk (separationSetoid α) x) ∈ f [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ ⊢ Filter.comap (fun p => (↑α p.fst, ↑α p.snd)) (𝓤 (Completion α)) = 𝓤 α [PROOFSTEP] have : (fun x : α × α => ((x.1 : Completion α), (x.2 : Completion α))) = (fun x : CauchyFilter α × CauchyFilter α => (⟦x.1⟧, ⟦x.2⟧)) ∘ fun x : α × α => (pureCauchy x.1, pureCauchy x.2) := by ext ⟨a, b⟩ <;> simp <;> rfl [GOAL] α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ ⊢ (fun x => (↑α x.fst, ↑α x.snd)) = (fun x => (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst, Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘ fun x => (pureCauchy x.fst, pureCauchy x.snd) [PROOFSTEP] ext ⟨a, b⟩ [GOAL] case h.mk.h₁ α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ a b : α ⊢ (↑α (a, b).fst, ↑α (a, b).snd).fst = (((fun x => (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst, Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘ fun x => (pureCauchy x.fst, pureCauchy x.snd)) (a, b)).fst [PROOFSTEP] simp [GOAL] case h.mk.h₂ α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ a b : α ⊢ (↑α (a, b).fst, ↑α (a, b).snd).snd = (((fun x => (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst, Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘ fun x => (pureCauchy x.fst, pureCauchy x.snd)) (a, b)).snd [PROOFSTEP] simp [GOAL] case h.mk.h₁ α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ a b : α ⊢ ↑α a = Quotient.mk (separationSetoid (CauchyFilter α)) (pureCauchy a) [PROOFSTEP] rfl [GOAL] case h.mk.h₂ α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ a b : α ⊢ ↑α b = Quotient.mk (separationSetoid (CauchyFilter α)) (pureCauchy b) [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ this : (fun x => (↑α x.fst, ↑α x.snd)) = (fun x => (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst, Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘ fun x => (pureCauchy x.fst, pureCauchy x.snd) ⊢ Filter.comap (fun p => (↑α p.fst, ↑α p.snd)) (𝓤 (Completion α)) = 𝓤 α [PROOFSTEP] rw [this, ← Filter.comap_comap] [GOAL] α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ this : (fun x => (↑α x.fst, ↑α x.snd)) = (fun x => (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst, Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘ fun x => (pureCauchy x.fst, pureCauchy x.snd) ⊢ Filter.comap (fun x => (pureCauchy x.fst, pureCauchy x.snd)) (Filter.comap (fun x => (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst, Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) (𝓤 (Completion α))) = 𝓤 α [PROOFSTEP] change Filter.comap _ (Filter.comap _ (𝓤 <| Quotient <| separationSetoid <| CauchyFilter α)) = 𝓤 α [GOAL] α : Type u_1 inst✝² : UniformSpace α β : Type u_2 inst✝¹ : UniformSpace β γ : Type u_3 inst✝ : UniformSpace γ this : (fun x => (↑α x.fst, ↑α x.snd)) = (fun x => (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst, Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) ∘ fun x => (pureCauchy x.fst, pureCauchy x.snd) ⊢ Filter.comap (fun x => (pureCauchy x.fst, pureCauchy x.snd)) (Filter.comap (fun x => (Quotient.mk (separationSetoid (CauchyFilter α)) x.fst, Quotient.mk (separationSetoid (CauchyFilter α)) x.snd)) (𝓤 (Quotient (separationSetoid (CauchyFilter α))))) = 𝓤 α [PROOFSTEP] rw [comap_quotient_eq_uniformity, uniformEmbedding_pureCauchy.comap_uniformity] [GOAL] α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u_4 inst✝ : UniformSpace α ⊢ UniformSpace (Completion α) [PROOFSTEP] infer_instance [GOAL] α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u_4 inst✝ : UniformSpace α ⊢ CompleteSpace (Completion α) [PROOFSTEP] infer_instance [GOAL] α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u_4 inst✝ : UniformSpace α ⊢ SeparatedSpace (Completion α) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝⁴ : UniformSpace α β : Type u_2 inst✝³ : UniformSpace β γ : Type u_3 inst✝² : UniformSpace γ f✝ : α → β inst✝¹ : CompleteSpace γ inst✝ : SeparatedSpace γ f : β → γ g : α → β hf : UniformContinuous f hg : UniformContinuous g ⊢ ∀ (a : α), (Completion.extension f ∘ Completion.map g) (↑α a) = Completion.extension (f ∘ g) (↑α a) [PROOFSTEP] intro a [GOAL] α : Type u_1 inst✝⁴ : UniformSpace α β : Type u_2 inst✝³ : UniformSpace β γ : Type u_3 inst✝² : UniformSpace γ f✝ : α → β inst✝¹ : CompleteSpace γ inst✝ : SeparatedSpace γ f : β → γ g : α → β hf : UniformContinuous f hg : UniformContinuous g a : α ⊢ (Completion.extension f ∘ Completion.map g) (↑α a) = Completion.extension (f ∘ g) (↑α a) [PROOFSTEP] rw [extension_coe (hf.comp hg), Function.comp_apply, map_coe hg, extension_coe hf, Function.comp_apply] [GOAL] α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α ⊢ Completion (SeparationQuotient α) ≃ Completion α [PROOFSTEP] refine' ⟨Completion.extension (SeparationQuotient.lift ((↑) : α → Completion α)), Completion.map Quotient.mk', _, _⟩ [GOAL] case refine'_1 α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α ⊢ Function.LeftInverse (Completion.map Quotient.mk') (Completion.extension (SeparationQuotient.lift ↑α)) [PROOFSTEP] intro a [GOAL] case refine'_1 α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a : Completion (SeparationQuotient α) ⊢ Completion.map Quotient.mk' (Completion.extension (SeparationQuotient.lift ↑α) a) = a [PROOFSTEP] refine' induction_on a (isClosed_eq (continuous_map.comp continuous_extension) continuous_id) _ [GOAL] case refine'_1 α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a : Completion (SeparationQuotient α) ⊢ ∀ (a : SeparationQuotient α), Completion.map Quotient.mk' (Completion.extension (SeparationQuotient.lift ↑α) (↑(SeparationQuotient α) a)) = ↑(SeparationQuotient α) a [PROOFSTEP] rintro ⟨a⟩ -- porting note: had to insert rewrites to switch between Quot.mk, Quotient.mk, Quotient.mk' [GOAL] case refine'_1.mk α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a✝¹ : Completion (SeparationQuotient α) a✝ : SeparationQuotient α a : α ⊢ Completion.map Quotient.mk' (Completion.extension (SeparationQuotient.lift ↑α) (↑(SeparationQuotient α) (Quot.mk Setoid.r a))) = ↑(SeparationQuotient α) (Quot.mk Setoid.r a) [PROOFSTEP] rw [← Quotient.mk, extension_coe (SeparationQuotient.uniformContinuous_lift _), SeparationQuotient.lift_mk (uniformContinuous_coe α), map_coe] [GOAL] case refine'_1.mk α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a✝¹ : Completion (SeparationQuotient α) a✝ : SeparationQuotient α a : α ⊢ ↑(SeparationQuotient α) (Quotient.mk' a) = ↑(SeparationQuotient α) (Quotient.mk (separationSetoid α) a) [PROOFSTEP] rfl [GOAL] case refine'_1.mk.hf α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a✝¹ : Completion (SeparationQuotient α) a✝ : SeparationQuotient α a : α ⊢ UniformContinuous Quotient.mk' [PROOFSTEP] exact uniformContinuous_quotient_mk [GOAL] case refine'_2 α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α ⊢ Function.RightInverse (Completion.map Quotient.mk') (Completion.extension (SeparationQuotient.lift ↑α)) [PROOFSTEP] intro a [GOAL] case refine'_2 α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a : Completion α ⊢ Completion.extension (SeparationQuotient.lift ↑α) (Completion.map Quotient.mk' a) = a [PROOFSTEP] refine' Completion.induction_on a (isClosed_eq (continuous_extension.comp continuous_map) continuous_id) fun a => _ [GOAL] case refine'_2 α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a✝ : Completion α a : α ⊢ Completion.extension (SeparationQuotient.lift ↑α) (Completion.map Quotient.mk' (↑α a)) = ↑α a [PROOFSTEP] rw [map_coe] -- porting note: add SeparationQuotient.lift_mk' for Quotient.mk' ? [GOAL] case refine'_2 α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a✝ : Completion α a : α ⊢ Completion.extension (SeparationQuotient.lift ↑α) (↑(SeparationQuotient α) (Quotient.mk' a)) = ↑α a [PROOFSTEP] rw [extension_coe (SeparationQuotient.uniformContinuous_lift _), Quotient.mk', SeparationQuotient.lift_mk (uniformContinuous_coe α) _] [GOAL] case refine'_2.hf α✝ : Type u_1 inst✝³ : UniformSpace α✝ β : Type u_2 inst✝² : UniformSpace β γ : Type u_3 inst✝¹ : UniformSpace γ α : Type u inst✝ : UniformSpace α a✝ : Completion α a : α ⊢ UniformContinuous Quotient.mk' [PROOFSTEP] exact uniformContinuous_quotient_mk
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Completion", "llama_tokens": 22053}
[GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β ⊢ Isometry f ↔ ∀ (x y : α), nndist (f x) (f y) = nndist x y [PROOFSTEP] simp only [Isometry, edist_nndist, ENNReal.coe_eq_coe] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β ⊢ Isometry f ↔ ∀ (x y : α), dist (f x) (f y) = dist x y [PROOFSTEP] simp only [isometry_iff_nndist_eq, ← coe_nndist, NNReal.coe_eq] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f : α → β x✝ y✝ z : α s : Set α h : Isometry f x y : α ⊢ edist x y ≤ ↑1 * edist (f x) (f y) [PROOFSTEP] simp only [h x y, ENNReal.coe_one, one_mul, le_refl] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : PseudoEMetricSpace α inst✝² : PseudoEMetricSpace β inst✝¹ : PseudoEMetricSpace γ f : α → β x✝ y✝ z : α s : Set α inst✝ : Subsingleton α x y : α ⊢ edist (f x) (f y) = edist x y [PROOFSTEP] rw [Subsingleton.elim x y] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : PseudoEMetricSpace α inst✝² : PseudoEMetricSpace β inst✝¹ : PseudoEMetricSpace γ f : α → β x✝ y✝ z : α s : Set α inst✝ : Subsingleton α x y : α ⊢ edist (f y) (f y) = edist y y [PROOFSTEP] simp [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : PseudoEMetricSpace α inst✝² : PseudoEMetricSpace β inst✝¹ : PseudoEMetricSpace γ f✝ : α → β x✝ y✝ z : α s : Set α δ : Type u_2 inst✝ : PseudoEMetricSpace δ f : α → β g : γ → δ hf : Isometry f hg : Isometry g x y : α × γ ⊢ edist (Prod.map f g x) (Prod.map f g y) = edist x y [PROOFSTEP] simp only [Prod.edist_eq, hf.edist_eq, hg.edist_eq, Prod_map] [GOAL] ι✝ : Type u_1 α✝ : Type u β✝ : Type v γ : Type w inst✝⁵ : PseudoEMetricSpace α✝ inst✝⁴ : PseudoEMetricSpace β✝ inst✝³ : PseudoEMetricSpace γ f✝ : α✝ → β✝ x✝ y✝ z : α✝ s : Set α✝ ι : Type u_4 inst✝² : Fintype ι α : ι → Type u_2 β : ι → Type u_3 inst✝¹ : (i : ι) → PseudoEMetricSpace (α i) inst✝ : (i : ι) → PseudoEMetricSpace (β i) f : (i : ι) → α i → β i hf : ∀ (i : ι), Isometry (f i) x y : (i : ι) → α i ⊢ edist ((fun g i => f i (g i)) x) ((fun g i => f i (g i)) y) = edist x y [PROOFSTEP] simp only [edist_pi_def, (hf _).edist_eq] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f✝ : α → β x✝ y✝ z : α s : Set α f : α → β g : β → α h : Isometry f hg : Function.RightInverse g f x y : β ⊢ edist (g x) (g y) = edist x y [PROOFSTEP] rw [← h, hg _, hg _] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f : α → β x✝ y z : α s : Set α h : Isometry f x : α r : ℝ≥0∞ ⊢ f ⁻¹' EMetric.closedBall (f x) r = EMetric.closedBall x r [PROOFSTEP] ext y [GOAL] case h ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f : α → β x✝ y✝ z : α s : Set α h : Isometry f x : α r : ℝ≥0∞ y : α ⊢ y ∈ f ⁻¹' EMetric.closedBall (f x) r ↔ y ∈ EMetric.closedBall x r [PROOFSTEP] simp [h.edist_eq] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f : α → β x✝ y z : α s : Set α h : Isometry f x : α r : ℝ≥0∞ ⊢ f ⁻¹' EMetric.ball (f x) r = EMetric.ball x r [PROOFSTEP] ext y [GOAL] case h ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f : α → β x✝ y✝ z : α s : Set α h : Isometry f x : α r : ℝ≥0∞ y : α ⊢ y ∈ f ⁻¹' EMetric.ball (f x) r ↔ y ∈ EMetric.ball x r [PROOFSTEP] simp [h.edist_eq] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f : α → β x y z : α s✝ : Set α hf : Isometry f s : Set α d : ℝ≥0∞ ⊢ EMetric.diam (f '' s) ≤ d ↔ EMetric.diam s ≤ d [PROOFSTEP] simp only [EMetric.diam_le_iff, ball_image_iff, hf.edist_eq] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f : α → β x y z : α s : Set α hf : Isometry f ⊢ EMetric.diam (range f) = EMetric.diam univ [PROOFSTEP] rw [← image_univ] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ f : α → β x y z : α s : Set α hf : Isometry f ⊢ EMetric.diam (f '' univ) = EMetric.diam univ [PROOFSTEP] exact hf.ediam_image univ [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β hf : Isometry f s : Set α ⊢ Metric.diam (f '' s) = Metric.diam s [PROOFSTEP] rw [Metric.diam, Metric.diam, hf.ediam_image] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β hf : Isometry f ⊢ Metric.diam (range f) = Metric.diam univ [PROOFSTEP] rw [← image_univ] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β hf : Isometry f ⊢ Metric.diam (f '' univ) = Metric.diam univ [PROOFSTEP] exact hf.diam_image univ [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β hf : Isometry f x : α p : ℝ → Prop ⊢ f ⁻¹' {y | p (dist y (f x))} = {y | p (dist y x)} [PROOFSTEP] ext y [GOAL] case h ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β f : α → β hf : Isometry f x : α p : ℝ → Prop y : α ⊢ y ∈ f ⁻¹' {y | p (dist y (f x))} ↔ y ∈ {y | p (dist y x)} [PROOFSTEP] simp [hf.dist_eq] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ h : α ≃ᵢ β ⊢ EMetric.diam univ = EMetric.diam univ [PROOFSTEP] rw [← h.range_eq_univ, h.isometry.ediam_range] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ h : α ≃ᵢ β s : Set β ⊢ EMetric.diam (↑h ⁻¹' s) = EMetric.diam s [PROOFSTEP] rw [← image_symm, ediam_image] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ h : α ≃ᵢ β x : β r : ℝ≥0∞ ⊢ ↑h ⁻¹' EMetric.ball x r = EMetric.ball (↑(IsometryEquiv.symm h) x) r [PROOFSTEP] rw [← h.isometry.preimage_emetric_ball (h.symm x) r, h.apply_symm_apply] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ h : α ≃ᵢ β x : β r : ℝ≥0∞ ⊢ ↑h ⁻¹' EMetric.closedBall x r = EMetric.closedBall (↑(IsometryEquiv.symm h) x) r [PROOFSTEP] rw [← h.isometry.preimage_emetric_closedBall (h.symm x) r, h.apply_symm_apply] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ h : α ≃ᵢ β x : α r : ℝ≥0∞ ⊢ ↑h '' EMetric.ball x r = EMetric.ball (↑h x) r [PROOFSTEP] rw [← h.preimage_symm, h.symm.preimage_emetric_ball, symm_symm] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ h : α ≃ᵢ β x : α r : ℝ≥0∞ ⊢ ↑h '' EMetric.closedBall x r = EMetric.closedBall (↑h x) r [PROOFSTEP] rw [← h.preimage_symm, h.symm.preimage_emetric_closedBall, symm_symm] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝² : PseudoEMetricSpace α inst✝¹ : PseudoEMetricSpace β inst✝ : PseudoEMetricSpace γ e : α ≃ᵢ β ⊢ CompleteSpace α ↔ CompleteSpace β [PROOFSTEP] simp only [completeSpace_iff_isComplete_univ, ← e.range_eq_univ, ← image_univ, isComplete_image_iff e.isometry.uniformInducing] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : PseudoEMetricSpace α inst✝³ : PseudoEMetricSpace β inst✝² : PseudoEMetricSpace γ inst✝¹ : Unique ι inst✝ : Fintype ι x hx : ι → α ⊢ edist (Equiv.toFun (Equiv.funUnique ι α) x) (Equiv.toFun (Equiv.funUnique ι α) hx) = edist x hx [PROOFSTEP] simp [edist_pi_def, Finset.univ_unique, Finset.sup_singleton] [GOAL] ι : Type u_1 α✝ : Type u β : Type v γ : Type w inst✝³ : PseudoEMetricSpace α✝ inst✝² : PseudoEMetricSpace β inst✝¹ : PseudoEMetricSpace γ α : Fin 2 → Type u_2 inst✝ : (i : Fin 2) → PseudoEMetricSpace (α i) x hx : (i : Fin 2) → α i ⊢ edist (Equiv.toFun (piFinTwoEquiv α) x) (Equiv.toFun (piFinTwoEquiv α) hx) = edist x hx [PROOFSTEP] simp [edist_pi_def, Fin.univ_succ, Prod.edist_eq] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β h : α ≃ᵢ β s : Set β ⊢ Metric.diam (↑h ⁻¹' s) = Metric.diam s [PROOFSTEP] rw [← image_symm, diam_image] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β h✝ h : α ≃ᵢ β x : β r : ℝ ⊢ ↑h ⁻¹' Metric.ball x r = Metric.ball (↑(IsometryEquiv.symm h) x) r [PROOFSTEP] rw [← h.isometry.preimage_ball (h.symm x) r, h.apply_symm_apply] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β h✝ h : α ≃ᵢ β x : β r : ℝ ⊢ ↑h ⁻¹' Metric.sphere x r = Metric.sphere (↑(IsometryEquiv.symm h) x) r [PROOFSTEP] rw [← h.isometry.preimage_sphere (h.symm x) r, h.apply_symm_apply] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β h✝ h : α ≃ᵢ β x : β r : ℝ ⊢ ↑h ⁻¹' Metric.closedBall x r = Metric.closedBall (↑(IsometryEquiv.symm h) x) r [PROOFSTEP] rw [← h.isometry.preimage_closedBall (h.symm x) r, h.apply_symm_apply] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β h✝ h : α ≃ᵢ β x : α r : ℝ ⊢ ↑h '' Metric.ball x r = Metric.ball (↑h x) r [PROOFSTEP] rw [← h.preimage_symm, h.symm.preimage_ball, symm_symm] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β h✝ h : α ≃ᵢ β x : α r : ℝ ⊢ ↑h '' Metric.sphere x r = Metric.sphere (↑h x) r [PROOFSTEP] rw [← h.preimage_symm, h.symm.preimage_sphere, symm_symm] [GOAL] ι : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β h✝ h : α ≃ᵢ β x : α r : ℝ ⊢ ↑h '' Metric.closedBall x r = Metric.closedBall (↑h x) r [PROOFSTEP] rw [← h.preimage_symm, h.symm.preimage_closedBall, symm_symm]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Isometry", "llama_tokens": 5528}
[GOAL] α : Type u β : Type v X : Type u_1 inst✝ : LinearOrder β U : Filter (α × α) z : β D : α → α → β H : ∀ (s : Set (α × α)), s ∈ U ↔ ∃ ε, ε > z ∧ ∀ {a b : α}, D a b < ε → (a, b) ∈ s s : Set (α × α) ⊢ s ∈ U ↔ ∃ i, i > z ∧ {p | D p.fst p.snd < i} ⊆ s [PROOFSTEP] simp only [H, subset_def, Prod.forall, mem_setOf] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ⊢ edist x y ≤ edist z x + edist z y [PROOFSTEP] rw [edist_comm z] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ⊢ edist x y ≤ edist x z + edist z y [PROOFSTEP] apply edist_triangle [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ⊢ edist x y ≤ edist x z + edist y z [PROOFSTEP] rw [edist_comm y] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ⊢ edist x y ≤ edist x z + edist z y [PROOFSTEP] apply edist_triangle [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α h : edist x y = 0 ⊢ edist x z = edist y z [PROOFSTEP] apply le_antisymm [GOAL] case a α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α h : edist x y = 0 ⊢ edist x z ≤ edist y z [PROOFSTEP] rw [← zero_add (edist y z), ← h] [GOAL] case a α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α h : edist x y = 0 ⊢ edist x z ≤ edist x y + edist y z [PROOFSTEP] apply edist_triangle [GOAL] case a α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α h : edist x y = 0 ⊢ edist y z ≤ edist x z [PROOFSTEP] rw [edist_comm] at h [GOAL] case a α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α h : edist y x = 0 ⊢ edist y z ≤ edist x z [PROOFSTEP] rw [← zero_add (edist x z), ← h] [GOAL] case a α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α h : edist y x = 0 ⊢ edist y z ≤ edist y x + edist x z [PROOFSTEP] apply edist_triangle [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α h : edist x y = 0 ⊢ edist z x = edist z y [PROOFSTEP] rw [edist_comm z x, edist_comm z y] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α h : edist x y = 0 ⊢ edist x z = edist y z [PROOFSTEP] apply edist_congr_right h [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n : ℕ h : m ≤ n ⊢ edist (f m) (f n) ≤ ∑ i in Finset.Ico m n, edist (f i) (f (i + 1)) [PROOFSTEP] induction n, h using Nat.le_induction [GOAL] case base α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n : ℕ ⊢ edist (f m) (f m) ≤ ∑ i in Finset.Ico m m, edist (f i) (f (i + 1)) case succ α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n n✝ : ℕ hn✝ : m ≤ n✝ a✝ : edist (f m) (f n✝) ≤ ∑ i in Finset.Ico m n✝, edist (f i) (f (i + 1)) ⊢ edist (f m) (f (n✝ + 1)) ≤ ∑ i in Finset.Ico m (n✝ + 1), edist (f i) (f (i + 1)) [PROOFSTEP] case base => rw [Finset.Ico_self, Finset.sum_empty, edist_self] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n : ℕ ⊢ edist (f m) (f m) ≤ ∑ i in Finset.Ico m m, edist (f i) (f (i + 1)) [PROOFSTEP] case base => rw [Finset.Ico_self, Finset.sum_empty, edist_self] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n : ℕ ⊢ edist (f m) (f m) ≤ ∑ i in Finset.Ico m m, edist (f i) (f (i + 1)) [PROOFSTEP] rw [Finset.Ico_self, Finset.sum_empty, edist_self] [GOAL] case succ α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n n✝ : ℕ hn✝ : m ≤ n✝ a✝ : edist (f m) (f n✝) ≤ ∑ i in Finset.Ico m n✝, edist (f i) (f (i + 1)) ⊢ edist (f m) (f (n✝ + 1)) ≤ ∑ i in Finset.Ico m (n✝ + 1), edist (f i) (f (i + 1)) [PROOFSTEP] case succ n hle ihn => calc edist (f m) (f (n + 1)) ≤ edist (f m) (f n) + edist (f n) (f (n + 1)) := edist_triangle _ _ _ _ ≤ (∑ i in Finset.Ico m n, _) + _ := (add_le_add ihn le_rfl) _ = ∑ i in Finset.Ico m (n + 1), _ := by {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : edist (f m) (f n) ≤ ∑ i in Finset.Ico m n, edist (f i) (f (i + 1)) ⊢ edist (f m) (f (n + 1)) ≤ ∑ i in Finset.Ico m (n + 1), edist (f i) (f (i + 1)) [PROOFSTEP] case succ n hle ihn => calc edist (f m) (f (n + 1)) ≤ edist (f m) (f n) + edist (f n) (f (n + 1)) := edist_triangle _ _ _ _ ≤ (∑ i in Finset.Ico m n, _) + _ := (add_le_add ihn le_rfl) _ = ∑ i in Finset.Ico m (n + 1), _ := by {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : edist (f m) (f n) ≤ ∑ i in Finset.Ico m n, edist (f i) (f (i + 1)) ⊢ edist (f m) (f (n + 1)) ≤ ∑ i in Finset.Ico m (n + 1), edist (f i) (f (i + 1)) [PROOFSTEP] calc edist (f m) (f (n + 1)) ≤ edist (f m) (f n) + edist (f n) (f (n + 1)) := edist_triangle _ _ _ _ ≤ (∑ i in Finset.Ico m n, _) + _ := (add_le_add ihn le_rfl) _ = ∑ i in Finset.Ico m (n + 1), _ := by {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : edist (f m) (f n) ≤ ∑ i in Finset.Ico m n, edist (f i) (f (i + 1)) ⊢ ∑ i in Finset.Ico m n, edist (f i) (f (i + 1)) + edist (f n) (f (n + 1)) = ∑ i in Finset.Ico m (n + 1), edist (f i) (f (i + 1)) [PROOFSTEP] {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : edist (f m) (f n) ≤ ∑ i in Finset.Ico m n, edist (f i) (f (i + 1)) ⊢ ∑ i in Finset.Ico m n, edist (f i) (f (i + 1)) + edist (f n) (f (n + 1)) = ∑ i in Finset.Ico m (n + 1), edist (f i) (f (i + 1)) [PROOFSTEP] rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : edist (f m) (f n) ≤ ∑ i in Finset.Ico m n, edist (f i) (f (i + 1)) ⊢ ¬n ∈ Finset.Ico m n [PROOFSTEP] simp [GOAL] α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε ⊢ HasBasis (𝓤 α) p fun x => {p | edist p.fst p.snd < f x} [PROOFSTEP] refine' ⟨fun s => uniformity_basis_edist.mem_iff.trans _⟩ [GOAL] α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, 0 < i ∧ {p | edist p.fst p.snd < i} ⊆ s) ↔ ∃ i, p i ∧ {p | edist p.fst p.snd < f i} ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, 0 < i ∧ {p | edist p.fst p.snd < i} ⊆ s) → ∃ i, p i ∧ {p | edist p.fst p.snd < f i} ⊆ s [PROOFSTEP] rintro ⟨ε, ε₀, hε⟩ [GOAL] case mp.intro.intro α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ε : ℝ≥0∞ ε₀ : 0 < ε hε : {p | edist p.fst p.snd < ε} ⊆ s ⊢ ∃ i, p i ∧ {p | edist p.fst p.snd < f i} ⊆ s [PROOFSTEP] rcases hf ε ε₀ with ⟨i, hi, H⟩ [GOAL] case mp.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ε : ℝ≥0∞ ε₀ : 0 < ε hε : {p | edist p.fst p.snd < ε} ⊆ s i : β hi : p i H : f i ≤ ε ⊢ ∃ i, p i ∧ {p | edist p.fst p.snd < f i} ⊆ s [PROOFSTEP] exact ⟨i, hi, fun x hx => hε <| lt_of_lt_of_le hx.out H⟩ [GOAL] case mpr α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, p i ∧ {p | edist p.fst p.snd < f i} ⊆ s) → ∃ i, 0 < i ∧ {p | edist p.fst p.snd < i} ⊆ s [PROOFSTEP] exact fun ⟨i, hi, H⟩ => ⟨f i, hf₀ i hi, H⟩ [GOAL] α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε ⊢ HasBasis (𝓤 α) p fun x => {p | edist p.fst p.snd ≤ f x} [PROOFSTEP] refine' ⟨fun s => uniformity_basis_edist.mem_iff.trans _⟩ [GOAL] α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, 0 < i ∧ {p | edist p.fst p.snd < i} ⊆ s) ↔ ∃ i, p i ∧ {p | edist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, 0 < i ∧ {p | edist p.fst p.snd < i} ⊆ s) → ∃ i, p i ∧ {p | edist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] rintro ⟨ε, ε₀, hε⟩ [GOAL] case mp.intro.intro α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ε : ℝ≥0∞ ε₀ : 0 < ε hε : {p | edist p.fst p.snd < ε} ⊆ s ⊢ ∃ i, p i ∧ {p | edist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] rcases exists_between ε₀ with ⟨ε', hε'⟩ [GOAL] case mp.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ε : ℝ≥0∞ ε₀ : 0 < ε hε : {p | edist p.fst p.snd < ε} ⊆ s ε' : ℝ≥0∞ hε' : 0 < ε' ∧ ε' < ε ⊢ ∃ i, p i ∧ {p | edist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] rcases hf ε' hε'.1 with ⟨i, hi, H⟩ [GOAL] case mp.intro.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ε : ℝ≥0∞ ε₀ : 0 < ε hε : {p | edist p.fst p.snd < ε} ⊆ s ε' : ℝ≥0∞ hε' : 0 < ε' ∧ ε' < ε i : β hi : p i H : f i ≤ ε' ⊢ ∃ i, p i ∧ {p | edist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] exact ⟨i, hi, fun x hx => hε <| lt_of_le_of_lt (le_trans hx.out H) hε'.2⟩ [GOAL] case mpr α : Type u β✝ : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α β : Type u_2 p : β → Prop f : β → ℝ≥0∞ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ≥0∞), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, p i ∧ {p | edist p.fst p.snd ≤ f i} ⊆ s) → ∃ i, 0 < i ∧ {p | edist p.fst p.snd < i} ⊆ s [PROOFSTEP] exact fun ⟨i, hi, H⟩ => ⟨f i, hf₀ i hi, fun x hx => H (le_of_lt hx.out)⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β f : α → β ⊢ (∀ (i' : ℝ≥0∞), 0 < i' → ∃ i, 0 < i ∧ Prod.map f f ⁻¹' {p | edist p.fst p.snd < i} ⊆ {p | edist p.fst p.snd < i'}) ↔ ∀ (δ : ℝ≥0∞), δ > 0 → ∃ ε, ε > 0 ∧ ∀ {a b : α}, edist (f a) (f b) < ε → edist a b < δ [PROOFSTEP] simp only [subset_def, Prod.forall] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β f : α → β ⊢ (∀ (i' : ℝ≥0∞), 0 < i' → ∃ i, 0 < i ∧ ∀ (a b : α), (a, b) ∈ Prod.map f f ⁻¹' {p | edist p.fst p.snd < i} → (a, b) ∈ {p | edist p.fst p.snd < i'}) ↔ ∀ (δ : ℝ≥0∞), δ > 0 → ∃ ε, ε > 0 ∧ ∀ {a b : α}, edist (f a) (f b) < ε → edist a b < δ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : Filter α ⊢ Cauchy f ↔ f ≠ ⊥ ∧ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, t ∈ f ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → edist x y < ε [PROOFSTEP] rw [← neBot_iff] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α f : Filter α ⊢ Cauchy f ↔ NeBot f ∧ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, t ∈ f ∧ ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → edist x y < ε [PROOFSTEP] exact uniformity_basis_edist.cauchy_iff [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α ι : Type u_2 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι s : Set β ⊢ TendstoLocallyUniformlyOn F f p s ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε [PROOFSTEP] refine' ⟨fun H ε hε => H _ (edist_mem_uniformity hε), fun H u hu x hx => _⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α ι : Type u_2 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε u : Set (α × α) hu : u ∈ 𝓤 α x : β hx : x ∈ s ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] rcases mem_uniformity_edist.1 hu with ⟨ε, εpos, hε⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α ι : Type u_2 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε u : Set (α × α) hu : u ∈ 𝓤 α x : β hx : x ∈ s ε : ℝ≥0∞ εpos : ε > 0 hε : ∀ {a b : α}, edist a b < ε → (a, b) ∈ u ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] rcases H ε εpos x hx with ⟨t, ht, Ht⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α ι : Type u_2 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε u : Set (α × α) hu : u ∈ 𝓤 α x : β hx : x ∈ s ε : ℝ≥0∞ εpos : ε > 0 hε : ∀ {a b : α}, edist a b < ε → (a, b) ∈ u t : Set β ht : t ∈ 𝓝[s] x Ht : ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] exact ⟨t, ht, Ht.mono fun n hs x hx => hε (hs x hx)⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α ι : Type u_2 F : ι → β → α f : β → α p : Filter ι s : Set β ⊢ TendstoUniformlyOn F f p s ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → edist (f x) (F n x) < ε [PROOFSTEP] refine' ⟨fun H ε hε => H _ (edist_mem_uniformity hε), fun H u hu => _⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α ι : Type u_2 F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ≥0∞), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → edist (f x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ⊢ ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → (f x, F n x) ∈ u [PROOFSTEP] rcases mem_uniformity_edist.1 hu with ⟨ε, εpos, hε⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α ι : Type u_2 F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ≥0∞), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → edist (f x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ≥0∞ εpos : ε > 0 hε : ∀ {a b : α}, edist a b < ε → (a, b) ∈ u ⊢ ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → (f x, F n x) ∈ u [PROOFSTEP] exact (H ε εpos).mono fun n hs x hx => hε (hs x hx) [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α ι : Type u_2 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι ⊢ TendstoLocallyUniformly F f p ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∀ (x : β), ∃ t, t ∈ 𝓝 x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → edist (f y) (F n y) < ε [PROOFSTEP] simp only [← tendstoLocallyUniformlyOn_univ, tendstoLocallyUniformlyOn_iff, mem_univ, forall_const, exists_prop, nhdsWithin_univ] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α ι : Type u_2 F : ι → β → α f : β → α p : Filter ι ⊢ TendstoUniformly F f p ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), edist (f x) (F n x) < ε [PROOFSTEP] simp only [← tendstoUniformlyOn_univ, tendstoUniformlyOn_iff, mem_univ, forall_const] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x : α × β ⊢ edist x x = 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β x y : α × β ⊢ edist x y = edist y x [PROOFSTEP] simp [edist_comm] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α inst✝ : PseudoEMetricSpace β ⊢ comap (fun p => (p.fst.fst, p.snd.fst)) (𝓤 α) ⊓ comap (fun p => (p.fst.snd, p.snd.snd)) (𝓤 β) = ⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 {p | edist p.fst p.snd < ε} [PROOFSTEP] simp [PseudoEMetricSpace.uniformity_edist, ← iInf_inf_eq, setOf_and] [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → EDist (π b) f g : (b : β) → π b d : ℝ≥0∞ ⊢ (∀ (b : β), b ∈ Finset.univ → edist (f b) (g b) ≤ d) ↔ ∀ (b : β), edist (f b) (g b) ≤ d [PROOFSTEP] simp only [Finset.mem_univ, forall_const] [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) f : (b : β) → π b ⊢ ∀ (b : β), b ∈ Finset.univ → edist (f b) (f b) ≤ ⊥ [PROOFSTEP] simp [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) f g : (b : β) → π b ⊢ edist f g = edist g f [PROOFSTEP] simp [edist_pi_def, edist_comm] [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) ⊢ 𝓤 ((b : β) → π b) = ⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 {p | edist p.fst p.snd < ε} [PROOFSTEP] simp only [Pi.uniformity, PseudoEMetricSpace.uniformity_edist, comap_iInf, gt_iff_lt, preimage_setOf_eq, comap_principal, edist_pi_def] [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) ⊢ ⨅ (i : β) (i_1 : ℝ≥0∞) (_ : 0 < i_1), 𝓟 {a | edist (Prod.fst a i) (Prod.snd a i) < i_1} = ⨅ (ε : ℝ≥0∞) (_ : 0 < ε), 𝓟 {p | (sup Finset.univ fun b => edist (Prod.fst p b) (Prod.snd p b)) < ε} [PROOFSTEP] rw [iInf_comm] [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) ⊢ ⨅ (j : ℝ≥0∞) (i : β) (_ : 0 < j), 𝓟 {a | edist (Prod.fst a i) (Prod.snd a i) < j} = ⨅ (ε : ℝ≥0∞) (_ : 0 < ε), 𝓟 {p | (sup Finset.univ fun b => edist (Prod.fst p b) (Prod.snd p b)) < ε} [PROOFSTEP] congr [GOAL] case e_s α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) ⊢ (fun j => ⨅ (i : β) (_ : 0 < j), 𝓟 {a | edist (Prod.fst a i) (Prod.snd a i) < j}) = fun ε => ⨅ (_ : 0 < ε), 𝓟 {p | (sup Finset.univ fun b => edist (Prod.fst p b) (Prod.snd p b)) < ε} [PROOFSTEP] funext ε [GOAL] case e_s.h α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) ε : ℝ≥0∞ ⊢ ⨅ (i : β) (_ : 0 < ε), 𝓟 {a | edist (Prod.fst a i) (Prod.snd a i) < ε} = ⨅ (_ : 0 < ε), 𝓟 {p | (sup Finset.univ fun b => edist (Prod.fst p b) (Prod.snd p b)) < ε} [PROOFSTEP] rw [iInf_comm] [GOAL] case e_s.h α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) ε : ℝ≥0∞ ⊢ ⨅ (_ : 0 < ε) (i : β), 𝓟 {a | edist (Prod.fst a i) (Prod.snd a i) < ε} = ⨅ (_ : 0 < ε), 𝓟 {p | (sup Finset.univ fun b => edist (Prod.fst p b) (Prod.snd p b)) < ε} [PROOFSTEP] congr [GOAL] case e_s.h.e_s α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) ε : ℝ≥0∞ ⊢ (fun j => ⨅ (i : β), 𝓟 {a | edist (Prod.fst a i) (Prod.snd a i) < ε}) = fun x => 𝓟 {p | (sup Finset.univ fun b => edist (Prod.fst p b) (Prod.snd p b)) < ε} [PROOFSTEP] funext εpos [GOAL] case e_s.h.e_s.h α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) ε : ℝ≥0∞ εpos : 0 < ε ⊢ ⨅ (i : β), 𝓟 {a | edist (Prod.fst a i) (Prod.snd a i) < ε} = 𝓟 {p | (sup Finset.univ fun b => edist (Prod.fst p b) (Prod.snd p b)) < ε} [PROOFSTEP] simp [setOf_forall, εpos] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ y ∈ ball x ε ↔ edist x y < ε [PROOFSTEP] rw [edist_comm, mem_ball] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ y ∈ closedBall x ε ↔ edist x y ≤ ε [PROOFSTEP] rw [edist_comm, mem_closedBall] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α h : 0 < ε ⊢ x ∈ ball x ε [PROOFSTEP] rwa [mem_ball, edist_self] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ x ∈ closedBall x ε [PROOFSTEP] rw [mem_closedBall, edist_self] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ 0 ≤ ε [PROOFSTEP] apply zero_le [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ x ∈ ball y ε ↔ y ∈ ball x ε [PROOFSTEP] rw [mem_ball', mem_ball] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ x ∈ closedBall y ε ↔ y ∈ closedBall x ε [PROOFSTEP] rw [mem_closedBall', mem_closedBall] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α h : y ∈ ball x ε ⊢ ∃ ε', ε' > 0 ∧ ball y ε' ⊆ ball x ε [PROOFSTEP] have : 0 < ε - edist y x := by simpa using h [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α h : y ∈ ball x ε ⊢ 0 < ε - edist y x [PROOFSTEP] simpa using h [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α h : y ∈ ball x ε this : 0 < ε - edist y x ⊢ ∃ ε', ε' > 0 ∧ ball y ε' ⊆ ball x ε [PROOFSTEP] refine' ⟨ε - edist y x, this, ball_subset _ (ne_top_of_lt h)⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α h : y ∈ ball x ε this : 0 < ε - edist y x ⊢ edist y x + (ε - edist y x) ≤ ε [PROOFSTEP] exact (add_tsub_cancel_of_le (mem_ball.mp h).le).le [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α x : α ⊢ edist x x < ⊤ [PROOFSTEP] rw [edist_self] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α x : α ⊢ 0 < ⊤ [PROOFSTEP] exact ENNReal.coe_lt_top [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α x✝ y✝ : α h : edist x✝ y✝ < ⊤ ⊢ edist y✝ x✝ < ⊤ [PROOFSTEP] rwa [edist_comm] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ ball x 0 = ∅ [PROOFSTEP] rw [EMetric.ball_eq_empty_iff] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x✝² y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s t✝ : Set α inst✝ : PseudoEMetricSpace β f : α → β t : Set β a : α b : β ε : ℝ≥0∞ x✝¹ : 0 < ε δ : ℝ≥0∞ x✝ : 0 < δ x : α ⊢ x ∈ ball a δ ∩ s → f x ∈ ball b ε ∩ t ↔ x ∈ s → edist x a < δ → f x ∈ t ∧ edist (f x) b < ε [PROOFSTEP] simp [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x✝² y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s t✝ : Set α inst✝ : PseudoEMetricSpace β f : α → β t : Set β a : α b : β ε : ℝ≥0∞ x✝¹ : 0 < ε δ : ℝ≥0∞ x✝ : 0 < δ x : α ⊢ edist x a < δ → x ∈ s → edist (f x) b < ε ∧ f x ∈ t ↔ x ∈ s → edist x a < δ → f x ∈ t ∧ edist (f x) b < ε [PROOFSTEP] tauto [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : PseudoEMetricSpace β f : α → β a : α b : β ⊢ Tendsto f (𝓝[s] a) (𝓝 b) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → edist x a < δ → edist (f x) b < ε [PROOFSTEP] rw [← nhdsWithin_univ b, tendsto_nhdsWithin_nhdsWithin] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : PseudoEMetricSpace β f : α → β a : α b : β ⊢ (∀ (ε : ℝ≥0∞), ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x : α⦄, x ∈ s → edist x a < δ → f x ∈ univ ∧ edist (f x) b < ε) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → edist x a < δ → edist (f x) b < ε [PROOFSTEP] simp only [mem_univ, true_and_iff] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → ∃ ε, ε > 0 ∧ ball x ε ⊆ s [PROOFSTEP] simp [isOpen_iff_nhds, mem_nhds_iff] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x✝ y✝ z✝ : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : PseudoEMetricSpace β x : α y : β r : ℝ≥0∞ z : α × β ⊢ z ∈ ball x r ×ˢ ball y r ↔ z ∈ ball (x, y) r [PROOFSTEP] simp [Prod.edist_eq] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x✝ y✝ z✝ : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : PseudoEMetricSpace β x : α y : β r : ℝ≥0∞ z : α × β ⊢ z ∈ closedBall x r ×ˢ closedBall y r ↔ z ∈ closedBall (x, y) r [PROOFSTEP] simp [Prod.edist_eq] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ (∀ (i : ℝ≥0∞), 0 < i → ∃ y, y ∈ s ∧ y ∈ ball x i) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ y, y ∈ s ∧ edist x y < ε [PROOFSTEP] simp only [mem_ball, edist_comm x] [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α a : α ⊢ (∀ (ib : ℝ≥0∞), 0 < ib → ∃ ia, True ∧ ∀ (x : β), x ∈ Ici ia → u x ∈ ball a ib) ↔ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ N, ∀ (n : β), n ≥ N → edist (u n) a < ε [PROOFSTEP] simp only [exists_prop, true_and_iff, mem_Ici, mem_ball] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ Inseparable x y ↔ edist x y = 0 [PROOFSTEP] simp [inseparable_iff_mem_closure, mem_closure_iff, edist_comm, forall_lt_iff_le'] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ s ⊆ closure t [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | ⟨x₀, hx₀⟩) [GOAL] case inl α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ ∅ ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε ⊢ ∃ t, t ⊆ ∅ ∧ Set.Countable t ∧ ∅ ⊆ closure t [PROOFSTEP] exact ⟨∅, empty_subset _, countable_empty, empty_subset _⟩ [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ s ⊆ closure t [PROOFSTEP] choose! T hTc hsT using fun n : ℕ => hs n⁻¹ (by simp) [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s n : ℕ ⊢ (↑n)⁻¹ > 0 [PROOFSTEP] simp [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ s ⊆ closure t [PROOFSTEP] have : ∀ r x, ∃ y ∈ s, closedBall x r ∩ s ⊆ closedBall y (r * 2) := fun r x => by rcases(closedBall x r ∩ s).eq_empty_or_nonempty with (he | ⟨y, hxy, hys⟩) · refine' ⟨x₀, hx₀, _⟩ rw [he] exact empty_subset _ · refine' ⟨y, hys, fun z hz => _⟩ calc edist z y ≤ edist z x + edist y x := edist_triangle_right _ _ _ _ ≤ r + r := (add_le_add hz.1 hxy) _ = r * 2 := (mul_two r).symm [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ r : ℝ≥0∞ x : α ⊢ ∃ y, y ∈ s ∧ closedBall x r ∩ s ⊆ closedBall y (r * 2) [PROOFSTEP] rcases(closedBall x r ∩ s).eq_empty_or_nonempty with (he | ⟨y, hxy, hys⟩) [GOAL] case inl α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ r : ℝ≥0∞ x : α he : closedBall x r ∩ s = ∅ ⊢ ∃ y, y ∈ s ∧ closedBall x r ∩ s ⊆ closedBall y (r * 2) [PROOFSTEP] refine' ⟨x₀, hx₀, _⟩ [GOAL] case inl α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ r : ℝ≥0∞ x : α he : closedBall x r ∩ s = ∅ ⊢ closedBall x r ∩ s ⊆ closedBall x₀ (r * 2) [PROOFSTEP] rw [he] [GOAL] case inl α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ r : ℝ≥0∞ x : α he : closedBall x r ∩ s = ∅ ⊢ ∅ ⊆ closedBall x₀ (r * 2) [PROOFSTEP] exact empty_subset _ [GOAL] case inr.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y✝ z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ r : ℝ≥0∞ x y : α hxy : y ∈ closedBall x r hys : y ∈ s ⊢ ∃ y, y ∈ s ∧ closedBall x r ∩ s ⊆ closedBall y (r * 2) [PROOFSTEP] refine' ⟨y, hys, fun z hz => _⟩ [GOAL] case inr.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y✝ z✝ : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ r : ℝ≥0∞ x y : α hxy : y ∈ closedBall x r hys : y ∈ s z : α hz : z ∈ closedBall x r ∩ s ⊢ z ∈ closedBall y (r * 2) [PROOFSTEP] calc edist z y ≤ edist z x + edist y x := edist_triangle_right _ _ _ _ ≤ r + r := (add_le_add hz.1 hxy) _ = r * 2 := (mul_two r).symm [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ this : ∀ (r : ℝ≥0∞) (x : α), ∃ y, y ∈ s ∧ closedBall x r ∩ s ⊆ closedBall y (r * 2) ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ s ⊆ closure t [PROOFSTEP] choose f hfs hf using this [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ f : ℝ≥0∞ → α → α hfs : ∀ (r : ℝ≥0∞) (x : α), f r x ∈ s hf : ∀ (r : ℝ≥0∞) (x : α), closedBall x r ∩ s ⊆ closedBall (f r x) (r * 2) ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ s ⊆ closure t [PROOFSTEP] refine' ⟨⋃ n : ℕ, f n⁻¹ '' T n, iUnion_subset fun n => image_subset_iff.2 fun z _ => hfs _ _, countable_iUnion fun n => (hTc n).image _, _⟩ [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ f : ℝ≥0∞ → α → α hfs : ∀ (r : ℝ≥0∞) (x : α), f r x ∈ s hf : ∀ (r : ℝ≥0∞) (x : α), closedBall x r ∩ s ⊆ closedBall (f r x) (r * 2) ⊢ s ⊆ closure (⋃ (n : ℕ), f (↑n)⁻¹ '' T n) [PROOFSTEP] refine' fun x hx => mem_closure_iff.2 fun ε ε0 => _ [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ f : ℝ≥0∞ → α → α hfs : ∀ (r : ℝ≥0∞) (x : α), f r x ∈ s hf : ∀ (r : ℝ≥0∞) (x : α), closedBall x r ∩ s ⊆ closedBall (f r x) (r * 2) x : α hx : x ∈ s ε : ℝ≥0∞ ε0 : ε > 0 ⊢ ∃ y, y ∈ ⋃ (n : ℕ), f (↑n)⁻¹ '' T n ∧ edist x y < ε [PROOFSTEP] rcases ENNReal.exists_inv_nat_lt (ENNReal.half_pos ε0.lt.ne').ne' with ⟨n, hn⟩ [GOAL] case inr.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ f : ℝ≥0∞ → α → α hfs : ∀ (r : ℝ≥0∞) (x : α), f r x ∈ s hf : ∀ (r : ℝ≥0∞) (x : α), closedBall x r ∩ s ⊆ closedBall (f r x) (r * 2) x : α hx : x ∈ s ε : ℝ≥0∞ ε0 : ε > 0 n : ℕ hn : (↑n)⁻¹ < ε / 2 ⊢ ∃ y, y ∈ ⋃ (n : ℕ), f (↑n)⁻¹ '' T n ∧ edist x y < ε [PROOFSTEP] rcases mem_iUnion₂.1 (hsT n hx) with ⟨y, hyn, hyx⟩ [GOAL] case inr.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y✝ z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ f : ℝ≥0∞ → α → α hfs : ∀ (r : ℝ≥0∞) (x : α), f r x ∈ s hf : ∀ (r : ℝ≥0∞) (x : α), closedBall x r ∩ s ⊆ closedBall (f r x) (r * 2) x : α hx : x ∈ s ε : ℝ≥0∞ ε0 : ε > 0 n : ℕ hn : (↑n)⁻¹ < ε / 2 y : α hyn : y ∈ T n hyx : x ∈ closedBall y (↑n)⁻¹ ⊢ ∃ y, y ∈ ⋃ (n : ℕ), f (↑n)⁻¹ '' T n ∧ edist x y < ε [PROOFSTEP] refine' ⟨f n⁻¹ y, mem_iUnion.2 ⟨n, mem_image_of_mem _ hyn⟩, _⟩ [GOAL] case inr.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y✝ z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε x₀ : α hx₀ : x₀ ∈ s T : ℕ → Set α hTc : ∀ (n : ℕ), Set.Countable (T n) hsT : ∀ (n : ℕ), s ⊆ ⋃ (x : α) (_ : x ∈ T n), closedBall x (↑n)⁻¹ f : ℝ≥0∞ → α → α hfs : ∀ (r : ℝ≥0∞) (x : α), f r x ∈ s hf : ∀ (r : ℝ≥0∞) (x : α), closedBall x r ∩ s ⊆ closedBall (f r x) (r * 2) x : α hx : x ∈ s ε : ℝ≥0∞ ε0 : ε > 0 n : ℕ hn : (↑n)⁻¹ < ε / 2 y : α hyn : y ∈ T n hyx : x ∈ closedBall y (↑n)⁻¹ ⊢ edist x (f (↑n)⁻¹ y) < ε [PROOFSTEP] calc edist x (f n⁻¹ y) ≤ (n : ℝ≥0∞)⁻¹ * 2 := hf _ _ ⟨hyx, hx⟩ _ < ε := ENNReal.mul_lt_of_lt_div hn [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : IsSeparable s ⊢ SeparableSpace ↑s [PROOFSTEP] have : ∀ ε > 0, ∃ t : Set α, t.Countable ∧ s ⊆ ⋃ x ∈ t, closedBall x ε := fun ε ε0 => by rcases hs with ⟨t, htc, hst⟩ refine ⟨t, htc, hst.trans fun x hx => ?_⟩ rcases mem_closure_iff.1 hx ε ε0 with ⟨y, hyt, hxy⟩ exact mem_iUnion₂.2 ⟨y, hyt, mem_closedBall.2 hxy.le⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : IsSeparable s ε : ℝ≥0∞ ε0 : ε > 0 ⊢ ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε [PROOFSTEP] rcases hs with ⟨t, htc, hst⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t✝ s : Set α ε : ℝ≥0∞ ε0 : ε > 0 t : Set α htc : Set.Countable t hst : s ⊆ closure t ⊢ ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε [PROOFSTEP] refine ⟨t, htc, hst.trans fun x hx => ?_⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t✝ s : Set α ε : ℝ≥0∞ ε0 : ε > 0 t : Set α htc : Set.Countable t hst : s ⊆ closure t x : α hx : x ∈ closure t ⊢ x ∈ ⋃ (x : α) (_ : x ∈ t), closedBall x ε [PROOFSTEP] rcases mem_closure_iff.1 hx ε ε0 with ⟨y, hyt, hxy⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y✝ z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t✝ s : Set α ε : ℝ≥0∞ ε0 : ε > 0 t : Set α htc : Set.Countable t hst : s ⊆ closure t x : α hx : x ∈ closure t y : α hyt : y ∈ t hxy : edist x y < ε ⊢ x ∈ ⋃ (x : α) (_ : x ∈ t), closedBall x ε [PROOFSTEP] exact mem_iUnion₂.2 ⟨y, hyt, mem_closedBall.2 hxy.le⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : IsSeparable s this : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε ⊢ SeparableSpace ↑s [PROOFSTEP] rcases subset_countable_closure_of_almost_dense_set _ this with ⟨t, hts, htc, hst⟩ [GOAL] case intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t✝ s : Set α hs : IsSeparable s this : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε t : Set α hts : t ⊆ s htc : Set.Countable t hst : s ⊆ closure t ⊢ SeparableSpace ↑s [PROOFSTEP] lift t to Set s using hts [GOAL] case intro.intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t✝ s : Set α hs : IsSeparable s this : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε t : Set ↑s htc : Set.Countable ((fun x x_1 => x '' x_1) Subtype.val t) hst : s ⊆ closure ((fun x x_1 => x '' x_1) Subtype.val t) ⊢ SeparableSpace ↑s [PROOFSTEP] refine ⟨⟨t, countable_of_injective_of_countable_image (Subtype.coe_injective.injOn _) htc, ?_⟩⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t✝ s : Set α hs : IsSeparable s this : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε t : Set ↑s htc : Set.Countable ((fun x x_1 => x '' x_1) Subtype.val t) hst : s ⊆ closure ((fun x x_1 => x '' x_1) Subtype.val t) ⊢ Dense t [PROOFSTEP] rwa [inducing_subtype_val.dense_iff, Subtype.forall] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : IsCompact s ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ s ⊆ closure t [PROOFSTEP] refine' subset_countable_closure_of_almost_dense_set s fun ε hε => _ [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t s : Set α hs : IsCompact s ε : ℝ≥0∞ hε : ε > 0 ⊢ ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε [PROOFSTEP] rcases totallyBounded_iff'.1 hs.totallyBounded ε hε with ⟨t, -, htf, hst⟩ [GOAL] case intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε✝ ε₁ ε₂ : ℝ≥0∞ s✝ t✝ s : Set α hs : IsCompact s ε : ℝ≥0∞ hε : ε > 0 t : Set α htf : Set.Finite t hst : s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε ⊢ ∃ t, Set.Countable t ∧ s ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε [PROOFSTEP] exact ⟨t, htf.countable, hst.trans <| iUnion₂_mono fun _ _ => ball_subset_closedBall⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : SigmaCompactSpace α ⊢ SecondCountableTopology α [PROOFSTEP] suffices SeparableSpace α by exact UniformSpace.secondCountable_of_separable α [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : SigmaCompactSpace α this : SeparableSpace α ⊢ SecondCountableTopology α [PROOFSTEP] exact UniformSpace.secondCountable_of_separable α [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : SigmaCompactSpace α ⊢ SeparableSpace α [PROOFSTEP] choose T _ hTc hsubT using fun n => subset_countable_closure_of_compact (isCompact_compactCovering α n) [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : SigmaCompactSpace α T : ℕ → Set α h✝ : ∀ (n : ℕ), T n ⊆ compactCovering α n hTc : ∀ (n : ℕ), Set.Countable (T n) hsubT : ∀ (n : ℕ), compactCovering α n ⊆ closure (T n) ⊢ SeparableSpace α [PROOFSTEP] refine' ⟨⟨⋃ n, T n, countable_iUnion hTc, fun x => _⟩⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : SigmaCompactSpace α T : ℕ → Set α h✝ : ∀ (n : ℕ), T n ⊆ compactCovering α n hTc : ∀ (n : ℕ), Set.Countable (T n) hsubT : ∀ (n : ℕ), compactCovering α n ⊆ closure (T n) x : α ⊢ x ∈ closure (⋃ (n : ℕ), T n) [PROOFSTEP] rcases iUnion_eq_univ_iff.1 (iUnion_compactCovering α) x with ⟨n, hn⟩ [GOAL] case intro α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α inst✝ : SigmaCompactSpace α T : ℕ → Set α h✝ : ∀ (n : ℕ), T n ⊆ compactCovering α n hTc : ∀ (n : ℕ), Set.Countable (T n) hsubT : ∀ (n : ℕ), compactCovering α n ⊆ closure (T n) x : α n : ℕ hn : x ∈ compactCovering α n ⊢ x ∈ closure (⋃ (n : ℕ), T n) [PROOFSTEP] exact closure_mono (subset_iUnion _ n) (hsubT _ hn) [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ ⋃ (x : α) (_ : x ∈ t), closedBall x ε = univ ⊢ SecondCountableTopology α [PROOFSTEP] suffices SeparableSpace α from UniformSpace.secondCountable_of_separable α [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ ⋃ (x : α) (_ : x ∈ t), closedBall x ε = univ ⊢ SeparableSpace α [PROOFSTEP] have : ∀ ε > 0, ∃ t : Set α, Set.Countable t ∧ univ ⊆ ⋃ x ∈ t, closedBall x ε [GOAL] case this α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ ⋃ (x : α) (_ : x ∈ t), closedBall x ε = univ ⊢ ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ univ ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε [PROOFSTEP] simpa only [univ_subset_iff] using hs [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ ⋃ (x : α) (_ : x ∈ t), closedBall x ε = univ this : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ univ ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε ⊢ SeparableSpace α [PROOFSTEP] rcases subset_countable_closure_of_almost_dense_set (univ : Set α) this with ⟨t, -, htc, ht⟩ [GOAL] case intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ : Set α hs : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ ⋃ (x : α) (_ : x ∈ t), closedBall x ε = univ this : ∀ (ε : ℝ≥0∞), ε > 0 → ∃ t, Set.Countable t ∧ univ ⊆ ⋃ (x : α) (_ : x ∈ t), closedBall x ε t : Set α htc : Set.Countable t ht : univ ⊆ closure t ⊢ SeparableSpace α [PROOFSTEP] exact ⟨⟨t, htc, fun x => ht (mem_univ x)⟩⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α d : ℝ≥0∞ ⊢ diam s ≤ d ↔ ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → edist x y ≤ d [PROOFSTEP] simp only [diam, iSup_le_iff] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t : Set α d : ℝ≥0∞ f : β → α s : Set β ⊢ diam (f '' s) ≤ d ↔ ∀ (x : β), x ∈ s → ∀ (y : β), y ∈ s → edist (f x) (f y) ≤ d [PROOFSTEP] simp only [diam_le_iff, ball_image_iff] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t : Set α ι : Type u_2 o : Option ι s : ι → Set α ⊢ diam (⋃ (i : ι) (_ : i ∈ o), s i) = ⨆ (i : ι) (_ : i ∈ o), diam (s i) [PROOFSTEP] cases o [GOAL] case none α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t : Set α ι : Type u_2 s : ι → Set α ⊢ diam (⋃ (i : ι) (_ : i ∈ none), s i) = ⨆ (i : ι) (_ : i ∈ none), diam (s i) [PROOFSTEP] simp [GOAL] case some α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t : Set α ι : Type u_2 s : ι → Set α val✝ : ι ⊢ diam (⋃ (i : ι) (_ : i ∈ Option.some val✝), s i) = ⨆ (i : ι) (_ : i ∈ Option.some val✝), diam (s i) [PROOFSTEP] simp [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α d : ℝ≥0∞ ⊢ diam (insert x s) ≤ d ↔ max (⨆ (y : α) (_ : y ∈ s), edist x y) (diam s) ≤ d [PROOFSTEP] simp only [diam_le_iff, ball_insert_iff, edist_self, edist_comm x, max_le_iff, iSup_le_iff, zero_le, true_and_iff, forall_and, and_self_iff, ← and_assoc] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ diam {x, y} = edist x y [PROOFSTEP] simp only [iSup_singleton, diam_insert, diam_singleton, ENNReal.max_zero_right] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t : Set α ⊢ diam {x, y, z} = max (max (edist x y) (edist x z)) (edist y z) [PROOFSTEP] simp only [diam_insert, iSup_insert, iSup_singleton, diam_singleton, ENNReal.max_zero_right, ENNReal.sup_eq_max] [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t ⊢ diam (s ∪ t) ≤ diam s + edist x y + diam t [PROOFSTEP] have A : ∀ a ∈ s, ∀ b ∈ t, edist a b ≤ diam s + edist x y + diam t := fun a ha b hb => calc edist a b ≤ edist a x + edist x y + edist y b := edist_triangle4 _ _ _ _ _ ≤ diam s + edist x y + diam t := add_le_add (add_le_add (edist_le_diam_of_mem ha xs) le_rfl) (edist_le_diam_of_mem yt hb) [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t ⊢ diam (s ∪ t) ≤ diam s + edist x y + diam t [PROOFSTEP] refine' diam_le fun a ha b hb => _ [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t ⊢ edist a b ≤ diam s + edist x y + diam t [PROOFSTEP] cases' (mem_union _ _ _).1 ha with h'a h'a [GOAL] case inl α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t h'a : a ∈ s ⊢ edist a b ≤ diam s + edist x y + diam t [PROOFSTEP] cases' (mem_union _ _ _).1 hb with h'b h'b [GOAL] case inr α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t h'a : a ∈ t ⊢ edist a b ≤ diam s + edist x y + diam t [PROOFSTEP] cases' (mem_union _ _ _).1 hb with h'b h'b [GOAL] case inl.inl α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t h'a : a ∈ s h'b : b ∈ s ⊢ edist a b ≤ diam s + edist x y + diam t [PROOFSTEP] calc edist a b ≤ diam s := edist_le_diam_of_mem h'a h'b _ ≤ diam s + (edist x y + diam t) := le_self_add _ = diam s + edist x y + diam t := (add_assoc _ _ _).symm [GOAL] case inl.inr α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t h'a : a ∈ s h'b : b ∈ t ⊢ edist a b ≤ diam s + edist x y + diam t [PROOFSTEP] exact A a h'a b h'b [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t h'a : a ∈ t h'b : b ∈ s ⊢ edist a b ≤ diam s + edist x y + diam t [PROOFSTEP] have Z := A b h'b a h'a [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t h'a : a ∈ t h'b : b ∈ s Z : edist b a ≤ diam s + edist x y + diam t ⊢ edist a b ≤ diam s + edist x y + diam t [PROOFSTEP] rwa [edist_comm] at Z [GOAL] case inr.inr α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α xs : x ∈ s yt : y ∈ t A : ∀ (a : α), a ∈ s → ∀ (b : α), b ∈ t → edist a b ≤ diam s + edist x y + diam t a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t h'a : a ∈ t h'b : b ∈ t ⊢ edist a b ≤ diam s + edist x y + diam t [PROOFSTEP] calc edist a b ≤ diam t := edist_le_diam_of_mem h'a h'b _ ≤ diam s + edist x y + diam t := le_add_self [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α h : Set.Nonempty (s ∩ t) ⊢ diam (s ∪ t) ≤ diam s + diam t [PROOFSTEP] let ⟨x, ⟨xs, xt⟩⟩ := h [GOAL] α : Type u β : Type v X : Type u_1 inst✝ : PseudoEMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ≥0∞ s t✝ t : Set α h : Set.Nonempty (s ∩ t) x : α xs : x ∈ s xt : x ∈ t ⊢ diam (s ∪ t) ≤ diam s + diam t [PROOFSTEP] simpa using diam_union xs xt [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α x y z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t : Set α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) s : (b : β) → Set (π b) c : ℝ≥0∞ h : ∀ (b : β), diam (s b) ≤ c ⊢ diam (Set.pi univ s) ≤ c [PROOFSTEP] refine diam_le fun x hx y hy => edist_pi_le_iff.mpr ?_ [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α x✝ y✝ z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t : Set α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) s : (b : β) → Set (π b) c : ℝ≥0∞ h : ∀ (b : β), diam (s b) ≤ c x : (i : β) → π i hx : x ∈ Set.pi univ s y : (i : β) → π i hy : y ∈ Set.pi univ s ⊢ ∀ (b : β), edist (x b) (y b) ≤ c [PROOFSTEP] rw [mem_univ_pi] at hx hy [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α x✝ y✝ z : α ε ε₁ ε₂ : ℝ≥0∞ s✝ t : Set α π : β → Type u_2 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoEMetricSpace (π b) s : (b : β) → Set (π b) c : ℝ≥0∞ h : ∀ (b : β), diam (s b) ≤ c x : (i : β) → π i hx : ∀ (i : β), x i ∈ s i y : (i : β) → π i hy : ∀ (i : β), y i ∈ s i ⊢ ∀ (b : β), edist (x b) (y b) ≤ c [PROOFSTEP] exact fun b => diam_le_iff.1 (h b) (x b) (hx b) (y b) (hy b) [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α γ : Type w inst✝ : EMetricSpace γ x y : γ ⊢ 0 < edist x y ↔ x ≠ y [PROOFSTEP] simp [← not_le] [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α γ : Type w inst✝¹ : EMetricSpace γ inst✝ : EMetricSpace β f : γ → β ⊢ UniformEmbedding f ↔ (∀ (ε : ℝ≥0∞), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {a b : γ}, edist a b < δ → edist (f a) (f b) < ε) ∧ ∀ (δ : ℝ≥0∞), δ > 0 → ∃ ε, ε > 0 ∧ ∀ {a b : γ}, edist (f a) (f b) < ε → edist a b < δ [PROOFSTEP] rw [uniformEmbedding_iff_uniformInducing, uniformInducing_iff, uniformContinuous_iff] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α γ : Type w inst✝ : EMetricSpace γ s : Set γ hs : IsCompact s ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ s = closure t [PROOFSTEP] rcases subset_countable_closure_of_compact hs with ⟨t, hts, htc, hsub⟩ [GOAL] case intro.intro.intro α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α γ : Type w inst✝ : EMetricSpace γ s : Set γ hs : IsCompact s t : Set γ hts : t ⊆ s htc : Set.Countable t hsub : s ⊆ closure t ⊢ ∃ t, t ⊆ s ∧ Set.Countable t ∧ s = closure t [PROOFSTEP] exact ⟨t, hts, htc, hsub.antisymm (closure_minimal hts hs.isClosed)⟩ [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α γ : Type w inst✝ : EMetricSpace γ s : Set γ ⊢ 0 < diam s ↔ Set.Nontrivial s [PROOFSTEP] simp only [pos_iff_ne_zero, Ne.def, diam_eq_zero_iff, Set.not_subsingleton_iff] [GOAL] α : Type u β : Type v X : Type u_1 inst✝¹ : PseudoEMetricSpace α γ : Type w inst✝ : EMetricSpace γ s : Set γ ⊢ 0 < diam s ↔ ∃ x, x ∈ s ∧ ∃ y, y ∈ s ∧ x ≠ y [PROOFSTEP] simp only [diam_pos_iff, Set.Nontrivial, exists_prop] [GOAL] α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α γ : Type w inst✝¹ : EMetricSpace γ inst✝ : PseudoEMetricSpace X ε : ℝ≥0∞ x✝ : 0 < ε ⊢ (fun p => (Quotient.mk (UniformSpace.separationSetoid X) p.fst, Quotient.mk (UniformSpace.separationSetoid X) p.snd)) '' {p | edist p.fst p.snd < ε} = {p | edist p.fst p.snd < ε} [PROOFSTEP] ext ⟨⟨x⟩, ⟨y⟩⟩ [GOAL] case h.mk.mk.mk α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α γ : Type w inst✝¹ : EMetricSpace γ inst✝ : PseudoEMetricSpace X ε : ℝ≥0∞ x✝ : 0 < ε fst✝ snd✝ : Quotient (UniformSpace.separationSetoid X) x y : X ⊢ (Quot.mk Setoid.r x, Quot.mk Setoid.r y) ∈ (fun p => (Quotient.mk (UniformSpace.separationSetoid X) p.fst, Quotient.mk (UniformSpace.separationSetoid X) p.snd)) '' {p | edist p.fst p.snd < ε} ↔ (Quot.mk Setoid.r x, Quot.mk Setoid.r y) ∈ {p | edist p.fst p.snd < ε} [PROOFSTEP] refine ⟨?_, fun h => ⟨(x, y), h, rfl⟩⟩ [GOAL] case h.mk.mk.mk α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α γ : Type w inst✝¹ : EMetricSpace γ inst✝ : PseudoEMetricSpace X ε : ℝ≥0∞ x✝ : 0 < ε fst✝ snd✝ : Quotient (UniformSpace.separationSetoid X) x y : X ⊢ (Quot.mk Setoid.r x, Quot.mk Setoid.r y) ∈ (fun p => (Quotient.mk (UniformSpace.separationSetoid X) p.fst, Quotient.mk (UniformSpace.separationSetoid X) p.snd)) '' {p | edist p.fst p.snd < ε} → (Quot.mk Setoid.r x, Quot.mk Setoid.r y) ∈ {p | edist p.fst p.snd < ε} [PROOFSTEP] rintro ⟨⟨x', y'⟩, h', h⟩ [GOAL] case h.mk.mk.mk.intro.mk.intro α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α γ : Type w inst✝¹ : EMetricSpace γ inst✝ : PseudoEMetricSpace X ε : ℝ≥0∞ x✝ : 0 < ε fst✝ snd✝ : Quotient (UniformSpace.separationSetoid X) x y x' y' : X h' : (x', y') ∈ {p | edist p.fst p.snd < ε} h : (fun p => (Quotient.mk (UniformSpace.separationSetoid X) p.fst, Quotient.mk (UniformSpace.separationSetoid X) p.snd)) (x', y') = (Quot.mk Setoid.r x, Quot.mk Setoid.r y) ⊢ (Quot.mk Setoid.r x, Quot.mk Setoid.r y) ∈ {p | edist p.fst p.snd < ε} [PROOFSTEP] simp only [Prod.ext_iff] at h [GOAL] case h.mk.mk.mk.intro.mk.intro α : Type u β : Type v X : Type u_1 inst✝² : PseudoEMetricSpace α γ : Type w inst✝¹ : EMetricSpace γ inst✝ : PseudoEMetricSpace X ε : ℝ≥0∞ x✝ : 0 < ε fst✝ snd✝ : Quotient (UniformSpace.separationSetoid X) x y x' y' : X h' : (x', y') ∈ {p | edist p.fst p.snd < ε} h : Quotient.mk (UniformSpace.separationSetoid X) x' = Quot.mk Setoid.r x ∧ Quotient.mk (UniformSpace.separationSetoid X) y' = Quot.mk Setoid.r y ⊢ (Quot.mk Setoid.r x, Quot.mk Setoid.r y) ∈ {p | edist p.fst p.snd < ε} [PROOFSTEP] rwa [← h.1, ← h.2]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.EMetricSpace", "llama_tokens": 32129}
[GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n h : x ≠ y ⊢ x (firstDiff x y) ≠ y (firstDiff x y) [PROOFSTEP] rw [firstDiff_def, dif_pos h] [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n h : x ≠ y ⊢ x (Nat.find (_ : ∃ a, x a ≠ y a)) ≠ y (Nat.find (_ : ∃ a, x a ≠ y a)) [PROOFSTEP] exact Nat.find_spec (ne_iff.1 h) [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hn : n < firstDiff x y ⊢ x n = y n [PROOFSTEP] rw [firstDiff_def] at hn [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hn : n < if h : x ≠ y then Nat.find (_ : ∃ a, x a ≠ y a) else 0 ⊢ x n = y n [PROOFSTEP] split_ifs at hn with h [GOAL] case pos E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : x ≠ y hn : n < Nat.find (_ : ∃ a, x a ≠ y a) ⊢ x n = y n [PROOFSTEP] convert Nat.find_min (ne_iff.1 h) hn [GOAL] case a E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : x ≠ y hn : n < Nat.find (_ : ∃ a, x a ≠ y a) ⊢ x n = y n ↔ ¬x n ≠ y n [PROOFSTEP] simp [GOAL] case neg E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : ¬x ≠ y hn : n < 0 ⊢ x n = y n [PROOFSTEP] exact (not_lt_zero' hn).elim [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n ⊢ firstDiff x y = firstDiff y x [PROOFSTEP] simp only [firstDiff_def, ne_comm] [GOAL] E : ℕ → Type u_1 x y z : (n : ℕ) → E n h : x ≠ z ⊢ min (firstDiff x y) (firstDiff y z) ≤ firstDiff x z [PROOFSTEP] by_contra' H [GOAL] E : ℕ → Type u_1 x y z : (n : ℕ) → E n h : x ≠ z H : firstDiff x z < min (firstDiff x y) (firstDiff y z) ⊢ False [PROOFSTEP] rw [lt_min_iff] at H [GOAL] E : ℕ → Type u_1 x y z : (n : ℕ) → E n h : x ≠ z H : firstDiff x z < firstDiff x y ∧ firstDiff x z < firstDiff y z ⊢ False [PROOFSTEP] refine apply_firstDiff_ne h ?_ [GOAL] E : ℕ → Type u_1 x y z : (n : ℕ) → E n h : x ≠ z H : firstDiff x z < firstDiff x y ∧ firstDiff x z < firstDiff y z ⊢ x (firstDiff x z) = z (firstDiff x z) [PROOFSTEP] calc x (firstDiff x z) = y (firstDiff x z) := apply_eq_of_lt_firstDiff H.1 _ = z (firstDiff x z) := apply_eq_of_lt_firstDiff H.2 [GOAL] E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ ⊢ cylinder x n = Set.pi ↑(Finset.range n) fun i => {x i} [PROOFSTEP] ext y [GOAL] case h E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n ⊢ y ∈ cylinder x n ↔ y ∈ Set.pi ↑(Finset.range n) fun i => {x i} [PROOFSTEP] simp [cylinder] [GOAL] E : ℕ → Type u_1 x : (n : ℕ) → E n ⊢ cylinder x 0 = univ [PROOFSTEP] simp [cylinder_eq_pi] [GOAL] E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ ⊢ x ∈ cylinder x n [PROOFSTEP] simp [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ ⊢ y ∈ cylinder x n ↔ cylinder y n = cylinder x n [PROOFSTEP] constructor [GOAL] case mp E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ ⊢ y ∈ cylinder x n → cylinder y n = cylinder x n [PROOFSTEP] intro hy [GOAL] case mp E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n ⊢ cylinder y n = cylinder x n [PROOFSTEP] apply Subset.antisymm [GOAL] case mp.h₁ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n ⊢ cylinder y n ⊆ cylinder x n [PROOFSTEP] intro z hz i hi [GOAL] case mp.h₁ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n z : (n : ℕ) → E n hz : z ∈ cylinder y n i : ℕ hi : i < n ⊢ z i = x i [PROOFSTEP] rw [← hy i hi] [GOAL] case mp.h₁ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n z : (n : ℕ) → E n hz : z ∈ cylinder y n i : ℕ hi : i < n ⊢ z i = y i [PROOFSTEP] exact hz i hi [GOAL] case mp.h₂ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n ⊢ cylinder x n ⊆ cylinder y n [PROOFSTEP] intro z hz i hi [GOAL] case mp.h₂ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n z : (n : ℕ) → E n hz : z ∈ cylinder x n i : ℕ hi : i < n ⊢ z i = y i [PROOFSTEP] rw [hy i hi] [GOAL] case mp.h₂ E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hy : y ∈ cylinder x n z : (n : ℕ) → E n hz : z ∈ cylinder x n i : ℕ hi : i < n ⊢ z i = x i [PROOFSTEP] exact hz i hi [GOAL] case mpr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ ⊢ cylinder y n = cylinder x n → y ∈ cylinder x n [PROOFSTEP] intro h [GOAL] case mpr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : cylinder y n = cylinder x n ⊢ y ∈ cylinder x n [PROOFSTEP] rw [← h] [GOAL] case mpr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : cylinder y n = cylinder x n ⊢ y ∈ cylinder y n [PROOFSTEP] exact self_mem_cylinder _ _ [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ ⊢ y ∈ cylinder x n ↔ x ∈ cylinder y n [PROOFSTEP] simp [mem_cylinder_iff_eq, eq_comm] [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n hne : x ≠ y i : ℕ ⊢ x ∈ cylinder y i ↔ i ≤ firstDiff x y [PROOFSTEP] constructor [GOAL] case mp E : ℕ → Type u_1 x y : (n : ℕ) → E n hne : x ≠ y i : ℕ ⊢ x ∈ cylinder y i → i ≤ firstDiff x y [PROOFSTEP] intro h [GOAL] case mp E : ℕ → Type u_1 x y : (n : ℕ) → E n hne : x ≠ y i : ℕ h : x ∈ cylinder y i ⊢ i ≤ firstDiff x y [PROOFSTEP] by_contra' [GOAL] case mp E : ℕ → Type u_1 x y : (n : ℕ) → E n hne : x ≠ y i : ℕ h : x ∈ cylinder y i this : firstDiff x y < i ⊢ False [PROOFSTEP] exact apply_firstDiff_ne hne (h _ this) [GOAL] case mpr E : ℕ → Type u_1 x y : (n : ℕ) → E n hne : x ≠ y i : ℕ ⊢ i ≤ firstDiff x y → x ∈ cylinder y i [PROOFSTEP] intro hi j hj [GOAL] case mpr E : ℕ → Type u_1 x y : (n : ℕ) → E n hne : x ≠ y i : ℕ hi : i ≤ firstDiff x y j : ℕ hj : j < i ⊢ x j = y j [PROOFSTEP] exact apply_eq_of_lt_firstDiff (hj.trans_le hi) [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hn : n ≤ firstDiff x y ⊢ cylinder x n = cylinder y n [PROOFSTEP] rw [← mem_cylinder_iff_eq] [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hn : n ≤ firstDiff x y ⊢ x ∈ cylinder y n [PROOFSTEP] intro i hi [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hn : n ≤ firstDiff x y i : ℕ hi : i < n ⊢ x i = y i [PROOFSTEP] exact apply_eq_of_lt_firstDiff (hi.trans_le hn) [GOAL] E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ ⊢ ⋃ (k : E n), cylinder (update x n k) (n + 1) = cylinder x n [PROOFSTEP] ext y [GOAL] case h E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n ⊢ y ∈ ⋃ (k : E n), cylinder (update x n k) (n + 1) ↔ y ∈ cylinder x n [PROOFSTEP] simp only [mem_cylinder_iff, mem_iUnion] [GOAL] case h E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n ⊢ (∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1) ↔ ∀ (i : ℕ), i < n → y i = x i [PROOFSTEP] constructor [GOAL] case h.mp E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n ⊢ (∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1) → ∀ (i : ℕ), i < n → y i = x i [PROOFSTEP] rintro ⟨k, hk⟩ i hi [GOAL] case h.mp.intro E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n k : E n hk : ∀ (i : ℕ), i < n + 1 → y i = update x n k i i : ℕ hi : i < n ⊢ y i = x i [PROOFSTEP] simpa [hi.ne] using hk i (Nat.lt_succ_of_lt hi) [GOAL] case h.mpr E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n ⊢ (∀ (i : ℕ), i < n → y i = x i) → ∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1 [PROOFSTEP] intro H [GOAL] case h.mpr E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n H : ∀ (i : ℕ), i < n → y i = x i ⊢ ∃ i, ∀ (i_1 : ℕ), i_1 < n + 1 → y i_1 = update x n i i_1 [PROOFSTEP] refine' ⟨y n, fun i hi => _⟩ [GOAL] case h.mpr E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n H : ∀ (i : ℕ), i < n → y i = x i i : ℕ hi : i < n + 1 ⊢ y i = update x n (y n) i [PROOFSTEP] rcases Nat.lt_succ_iff_lt_or_eq.1 hi with (h'i | rfl) [GOAL] case h.mpr.inl E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : (n : ℕ) → E n H : ∀ (i : ℕ), i < n → y i = x i i : ℕ hi : i < n + 1 h'i : i < n ⊢ y i = update x n (y n) i [PROOFSTEP] simp [H i h'i, h'i.ne] [GOAL] case h.mpr.inr E : ℕ → Type u_1 x y : (n : ℕ) → E n i : ℕ H : ∀ (i_1 : ℕ), i_1 < i → y i_1 = x i_1 hi : i < i + 1 ⊢ y i = update x i (y i) i [PROOFSTEP] simp [GOAL] E : ℕ → Type u_1 x : (n : ℕ) → E n n : ℕ y : E n i : ℕ hi : i < n ⊢ update x n y i = x i [PROOFSTEP] simp [hi.ne] [GOAL] E : ℕ → Type u_1 α : Type u_2 x : ℕ → α n : ℕ ⊢ length (res x n) = n [PROOFSTEP] induction n [GOAL] case zero E : ℕ → Type u_1 α : Type u_2 x : ℕ → α ⊢ length (res x Nat.zero) = Nat.zero [PROOFSTEP] simp [*] [GOAL] case succ E : ℕ → Type u_1 α : Type u_2 x : ℕ → α n✝ : ℕ n_ih✝ : length (res x n✝) = n✝ ⊢ length (res x (Nat.succ n✝)) = Nat.succ n✝ [PROOFSTEP] simp [*] [GOAL] E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n : ℕ ⊢ res x n = res y n ↔ ∀ ⦃m : ℕ⦄, m < n → x m = y m [PROOFSTEP] constructor [GOAL] case mp E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n : ℕ ⊢ res x n = res y n → ∀ ⦃m : ℕ⦄, m < n → x m = y m [PROOFSTEP] intro h [GOAL] case mpr E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n : ℕ ⊢ (∀ ⦃m : ℕ⦄, m < n → x m = y m) → res x n = res y n [PROOFSTEP] intro h [GOAL] case mp E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n : ℕ h : res x n = res y n ⊢ ∀ ⦃m : ℕ⦄, m < n → x m = y m [PROOFSTEP] induction' n with n ih [GOAL] case mpr E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n : ℕ h : ∀ ⦃m : ℕ⦄, m < n → x m = y m ⊢ res x n = res y n [PROOFSTEP] induction' n with n ih [GOAL] case mp.zero E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n : ℕ h✝ : res x n = res y n h : res x Nat.zero = res y Nat.zero ⊢ ∀ ⦃m : ℕ⦄, m < Nat.zero → x m = y m [PROOFSTEP] simp [GOAL] case mp.succ E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : res x n✝ = res y n✝ n : ℕ ih : res x n = res y n → ∀ ⦃m : ℕ⦄, m < n → x m = y m h : res x (Nat.succ n) = res y (Nat.succ n) ⊢ ∀ ⦃m : ℕ⦄, m < Nat.succ n → x m = y m [PROOFSTEP] intro m hm [GOAL] case mp.succ E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : res x n✝ = res y n✝ n : ℕ ih : res x n = res y n → ∀ ⦃m : ℕ⦄, m < n → x m = y m h : res x (Nat.succ n) = res y (Nat.succ n) m : ℕ hm : m < Nat.succ n ⊢ x m = y m [PROOFSTEP] rw [Nat.lt_succ_iff_lt_or_eq] at hm [GOAL] case mp.succ E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : res x n✝ = res y n✝ n : ℕ ih : res x n = res y n → ∀ ⦃m : ℕ⦄, m < n → x m = y m h : res x (Nat.succ n) = res y (Nat.succ n) m : ℕ hm : m < n ∨ m = n ⊢ x m = y m [PROOFSTEP] simp only [res_succ, cons.injEq] at h [GOAL] case mp.succ E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : res x n✝ = res y n✝ n : ℕ ih : res x n = res y n → ∀ ⦃m : ℕ⦄, m < n → x m = y m m : ℕ hm : m < n ∨ m = n h : x n = y n ∧ res x n = res y n ⊢ x m = y m [PROOFSTEP] cases' hm with hm hm [GOAL] case mp.succ.inl E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : res x n✝ = res y n✝ n : ℕ ih : res x n = res y n → ∀ ⦃m : ℕ⦄, m < n → x m = y m m : ℕ h : x n = y n ∧ res x n = res y n hm : m < n ⊢ x m = y m [PROOFSTEP] exact ih h.2 hm [GOAL] case mp.succ.inr E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : res x n✝ = res y n✝ n : ℕ ih : res x n = res y n → ∀ ⦃m : ℕ⦄, m < n → x m = y m m : ℕ h : x n = y n ∧ res x n = res y n hm : m = n ⊢ x m = y m [PROOFSTEP] rw [hm] [GOAL] case mp.succ.inr E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : res x n✝ = res y n✝ n : ℕ ih : res x n = res y n → ∀ ⦃m : ℕ⦄, m < n → x m = y m m : ℕ h : x n = y n ∧ res x n = res y n hm : m = n ⊢ x n = y n [PROOFSTEP] exact h.1 [GOAL] case mpr.zero E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n : ℕ h✝ : ∀ ⦃m : ℕ⦄, m < n → x m = y m h : ∀ ⦃m : ℕ⦄, m < Nat.zero → x m = y m ⊢ res x Nat.zero = res y Nat.zero [PROOFSTEP] simp [GOAL] case mpr.succ E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : ∀ ⦃m : ℕ⦄, m < n✝ → x m = y m n : ℕ ih : (∀ ⦃m : ℕ⦄, m < n → x m = y m) → res x n = res y n h : ∀ ⦃m : ℕ⦄, m < Nat.succ n → x m = y m ⊢ res x (Nat.succ n) = res y (Nat.succ n) [PROOFSTEP] simp only [res_succ, cons.injEq] [GOAL] case mpr.succ E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : ∀ ⦃m : ℕ⦄, m < n✝ → x m = y m n : ℕ ih : (∀ ⦃m : ℕ⦄, m < n → x m = y m) → res x n = res y n h : ∀ ⦃m : ℕ⦄, m < Nat.succ n → x m = y m ⊢ x n = y n ∧ res x n = res y n [PROOFSTEP] refine' ⟨h (Nat.lt_succ_self _), ih fun m hm => _⟩ [GOAL] case mpr.succ E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α n✝ : ℕ h✝ : ∀ ⦃m : ℕ⦄, m < n✝ → x m = y m n : ℕ ih : (∀ ⦃m : ℕ⦄, m < n → x m = y m) → res x n = res y n h : ∀ ⦃m : ℕ⦄, m < Nat.succ n → x m = y m m : ℕ hm : m < n ⊢ x m = y m [PROOFSTEP] exact h (hm.trans (Nat.lt_succ_self _)) [GOAL] E : ℕ → Type u_1 α : Type u_2 ⊢ Injective res [PROOFSTEP] intro x y h [GOAL] E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α h : res x = res y ⊢ x = y [PROOFSTEP] ext n [GOAL] case h E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α h : res x = res y n : ℕ ⊢ x n = y n [PROOFSTEP] apply res_eq_res.mp _ (Nat.lt_succ_self _) [GOAL] E : ℕ → Type u_1 α : Type u_2 x y : ℕ → α h : res x = res y n : ℕ ⊢ res x (Nat.succ n) = res (fun n => y n) (Nat.succ n) [PROOFSTEP] rw [h] [GOAL] E : ℕ → Type u_1 α : Type u_2 x : ℕ → α n : ℕ ⊢ cylinder x n = {y | res y n = res x n} [PROOFSTEP] ext y [GOAL] case h E : ℕ → Type u_1 α : Type u_2 x : ℕ → α n : ℕ y : ℕ → α ⊢ y ∈ cylinder x n ↔ y ∈ {y | res y n = res x n} [PROOFSTEP] dsimp [cylinder] [GOAL] case h E : ℕ → Type u_1 α : Type u_2 x : ℕ → α n : ℕ y : ℕ → α ⊢ (∀ (i : ℕ), i < n → y i = x i) ↔ res y n = res x n [PROOFSTEP] rw [res_eq_res] [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n h : x ≠ y ⊢ dist x y = (1 / 2) ^ firstDiff x y [PROOFSTEP] simp [dist, h] [GOAL] E : ℕ → Type u_1 x : (n : ℕ) → E n ⊢ dist x x = 0 [PROOFSTEP] simp [dist] [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n ⊢ dist x y = dist y x [PROOFSTEP] simp [dist, @eq_comm _ x y, firstDiff_comm] [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n ⊢ 0 ≤ dist x y [PROOFSTEP] rcases eq_or_ne x y with (rfl | h) [GOAL] case inl E : ℕ → Type u_1 x : (n : ℕ) → E n ⊢ 0 ≤ dist x x [PROOFSTEP] simp [dist] [GOAL] case inr E : ℕ → Type u_1 x y : (n : ℕ) → E n h : x ≠ y ⊢ 0 ≤ dist x y [PROOFSTEP] simp [dist, h, zero_le_two] [GOAL] E : ℕ → Type u_1 x y z : (n : ℕ) → E n ⊢ dist x z ≤ max (dist x y) (dist y z) [PROOFSTEP] rcases eq_or_ne x z with (rfl | hxz) [GOAL] case inl E : ℕ → Type u_1 x y : (n : ℕ) → E n ⊢ dist x x ≤ max (dist x y) (dist y x) [PROOFSTEP] simp [PiNat.dist_self x, PiNat.dist_nonneg] [GOAL] case inr E : ℕ → Type u_1 x y z : (n : ℕ) → E n hxz : x ≠ z ⊢ dist x z ≤ max (dist x y) (dist y z) [PROOFSTEP] rcases eq_or_ne x y with (rfl | hxy) [GOAL] case inr.inl E : ℕ → Type u_1 x z : (n : ℕ) → E n hxz : x ≠ z ⊢ dist x z ≤ max (dist x x) (dist x z) [PROOFSTEP] simp [GOAL] case inr.inr E : ℕ → Type u_1 x y z : (n : ℕ) → E n hxz : x ≠ z hxy : x ≠ y ⊢ dist x z ≤ max (dist x y) (dist y z) [PROOFSTEP] rcases eq_or_ne y z with (rfl | hyz) [GOAL] case inr.inr.inl E : ℕ → Type u_1 x y : (n : ℕ) → E n hxy hxz : x ≠ y ⊢ dist x y ≤ max (dist x y) (dist y y) [PROOFSTEP] simp [GOAL] case inr.inr.inr E : ℕ → Type u_1 x y z : (n : ℕ) → E n hxz : x ≠ z hxy : x ≠ y hyz : y ≠ z ⊢ dist x z ≤ max (dist x y) (dist y z) [PROOFSTEP] simp only [dist_eq_of_ne, hxz, hxy, hyz, inv_le_inv, one_div, inv_pow, zero_lt_two, Ne.def, not_false_iff, le_max_iff, pow_le_pow_iff, one_lt_two, pow_pos, min_le_iff.1 (min_firstDiff_le x y z hxz)] [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n hxy : dist x y = 0 ⊢ x = y [PROOFSTEP] rcases eq_or_ne x y with (rfl | h) [GOAL] case inl E : ℕ → Type u_1 x : (n : ℕ) → E n hxy : dist x x = 0 ⊢ x = x [PROOFSTEP] rfl [GOAL] case inr E : ℕ → Type u_1 x y : (n : ℕ) → E n hxy : dist x y = 0 h : x ≠ y ⊢ x = y [PROOFSTEP] simp [dist_eq_of_ne h] at hxy [GOAL] case inr E : ℕ → Type u_1 x y : (n : ℕ) → E n h : x ≠ y hxy : 2 ^ firstDiff x y = 0 ⊢ x = y [PROOFSTEP] exact (two_ne_zero (pow_eq_zero hxy)).elim [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ ⊢ y ∈ cylinder x n ↔ dist y x ≤ (1 / 2) ^ n [PROOFSTEP] rcases eq_or_ne y x with (rfl | hne) [GOAL] case inl E : ℕ → Type u_1 y : (n : ℕ) → E n n : ℕ ⊢ y ∈ cylinder y n ↔ dist y y ≤ (1 / 2) ^ n [PROOFSTEP] simp [PiNat.dist_self] [GOAL] case inr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hne : y ≠ x ⊢ y ∈ cylinder x n ↔ dist y x ≤ (1 / 2) ^ n [PROOFSTEP] suffices (∀ i : ℕ, i < n → y i = x i) ↔ n ≤ firstDiff y x by simpa [dist_eq_of_ne hne] [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hne : y ≠ x this : (∀ (i : ℕ), i < n → y i = x i) ↔ n ≤ firstDiff y x ⊢ y ∈ cylinder x n ↔ dist y x ≤ (1 / 2) ^ n [PROOFSTEP] simpa [dist_eq_of_ne hne] [GOAL] case inr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hne : y ≠ x ⊢ (∀ (i : ℕ), i < n → y i = x i) ↔ n ≤ firstDiff y x [PROOFSTEP] constructor [GOAL] case inr.mp E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hne : y ≠ x ⊢ (∀ (i : ℕ), i < n → y i = x i) → n ≤ firstDiff y x [PROOFSTEP] intro hy [GOAL] case inr.mp E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hne : y ≠ x hy : ∀ (i : ℕ), i < n → y i = x i ⊢ n ≤ firstDiff y x [PROOFSTEP] by_contra' H [GOAL] case inr.mp E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hne : y ≠ x hy : ∀ (i : ℕ), i < n → y i = x i H : firstDiff y x < n ⊢ False [PROOFSTEP] exact apply_firstDiff_ne hne (hy _ H) [GOAL] case inr.mpr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hne : y ≠ x ⊢ n ≤ firstDiff y x → ∀ (i : ℕ), i < n → y i = x i [PROOFSTEP] intro h i hi [GOAL] case inr.mpr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ hne : y ≠ x h : n ≤ firstDiff y x i : ℕ hi : i < n ⊢ y i = x i [PROOFSTEP] exact apply_eq_of_lt_firstDiff (hi.trans_le h) [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : dist x y < (1 / 2) ^ n i : ℕ hi : i ≤ n ⊢ x i = y i [PROOFSTEP] rcases eq_or_ne x y with (rfl | hne) [GOAL] case inl E : ℕ → Type u_1 x : (n : ℕ) → E n n i : ℕ hi : i ≤ n h : dist x x < (1 / 2) ^ n ⊢ x i = x i [PROOFSTEP] rfl [GOAL] case inr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : dist x y < (1 / 2) ^ n i : ℕ hi : i ≤ n hne : x ≠ y ⊢ x i = y i [PROOFSTEP] have : n < firstDiff x y := by simpa [dist_eq_of_ne hne, inv_lt_inv, pow_lt_pow_iff, one_lt_two] using h [GOAL] E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : dist x y < (1 / 2) ^ n i : ℕ hi : i ≤ n hne : x ≠ y ⊢ n < firstDiff x y [PROOFSTEP] simpa [dist_eq_of_ne hne, inv_lt_inv, pow_lt_pow_iff, one_lt_two] using h [GOAL] case inr E : ℕ → Type u_1 x y : (n : ℕ) → E n n : ℕ h : dist x y < (1 / 2) ^ n i : ℕ hi : i ≤ n hne : x ≠ y this : n < firstDiff x y ⊢ x i = y i [PROOFSTEP] exact apply_eq_of_lt_firstDiff (hi.trans_lt this) [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α ⊢ (∀ (x y : (n : ℕ) → E n), dist (f x) (f y) ≤ dist x y) ↔ ∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n [PROOFSTEP] constructor [GOAL] case mp E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α ⊢ (∀ (x y : (n : ℕ) → E n), dist (f x) (f y) ≤ dist x y) → ∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n [PROOFSTEP] intro H x y n hxy [GOAL] case mp E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n), dist (f x) (f y) ≤ dist x y x y : (n : ℕ) → E n n : ℕ hxy : y ∈ cylinder x n ⊢ dist (f x) (f y) ≤ (1 / 2) ^ n [PROOFSTEP] apply (H x y).trans [GOAL] case mp E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n), dist (f x) (f y) ≤ dist x y x y : (n : ℕ) → E n n : ℕ hxy : y ∈ cylinder x n ⊢ dist x y ≤ (1 / 2) ^ n [PROOFSTEP] rw [PiNat.dist_comm] [GOAL] case mp E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n), dist (f x) (f y) ≤ dist x y x y : (n : ℕ) → E n n : ℕ hxy : y ∈ cylinder x n ⊢ dist y x ≤ (1 / 2) ^ n [PROOFSTEP] exact mem_cylinder_iff_dist_le.1 hxy [GOAL] case mpr E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α ⊢ (∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n) → ∀ (x y : (n : ℕ) → E n), dist (f x) (f y) ≤ dist x y [PROOFSTEP] intro H x y [GOAL] case mpr E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n x y : (n : ℕ) → E n ⊢ dist (f x) (f y) ≤ dist x y [PROOFSTEP] rcases eq_or_ne x y with (rfl | hne) [GOAL] case mpr.inl E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n x : (n : ℕ) → E n ⊢ dist (f x) (f x) ≤ dist x x [PROOFSTEP] simp [PiNat.dist_nonneg] [GOAL] case mpr.inr E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n x y : (n : ℕ) → E n hne : x ≠ y ⊢ dist (f x) (f y) ≤ dist x y [PROOFSTEP] rw [dist_eq_of_ne hne] [GOAL] case mpr.inr E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n x y : (n : ℕ) → E n hne : x ≠ y ⊢ dist (f x) (f y) ≤ (1 / 2) ^ firstDiff x y [PROOFSTEP] apply H x y (firstDiff x y) [GOAL] case mpr.inr E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n x y : (n : ℕ) → E n hne : x ≠ y ⊢ y ∈ cylinder x (firstDiff x y) [PROOFSTEP] rw [firstDiff_comm] [GOAL] case mpr.inr E : ℕ → Type u_1 α : Type u_2 inst✝ : PseudoMetricSpace α f : ((n : ℕ) → E n) → α H : ∀ (x y : (n : ℕ) → E n) (n : ℕ), y ∈ cylinder x n → dist (f x) (f y) ≤ (1 / 2) ^ n x y : (n : ℕ) → E n hne : x ≠ y ⊢ y ∈ cylinder x (firstDiff y x) [PROOFSTEP] exact mem_cylinder_firstDiff _ _ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n n : ℕ ⊢ IsOpen (cylinder x n) [PROOFSTEP] rw [PiNat.cylinder_eq_pi] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n n : ℕ ⊢ IsOpen (Set.pi ↑(Finset.range n) fun i => {x i}) [PROOFSTEP] exact isOpen_set_pi (Finset.range n).finite_toSet fun a _ => isOpen_discrete _ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ IsTopologicalBasis {s | ∃ x n, s = cylinder x n} [PROOFSTEP] apply isTopologicalBasis_of_open_of_nhds [GOAL] case h_open E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ∀ (u : Set ((n : ℕ) → E n)), u ∈ {s | ∃ x n, s = cylinder x n} → IsOpen u [PROOFSTEP] rintro u ⟨x, n, rfl⟩ [GOAL] case h_open.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n n : ℕ ⊢ IsOpen (cylinder x n) [PROOFSTEP] apply isOpen_cylinder [GOAL] case h_nhds E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ∀ (a : (n : ℕ) → E n) (u : Set ((n : ℕ) → E n)), a ∈ u → IsOpen u → ∃ v, v ∈ {s | ∃ x n, s = cylinder x n} ∧ a ∈ v ∧ v ⊆ u [PROOFSTEP] intro x u hx u_open [GOAL] case h_nhds E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u ⊢ ∃ v, v ∈ {s | ∃ x n, s = cylinder x n} ∧ x ∈ v ∧ v ⊆ u [PROOFSTEP] obtain ⟨v, ⟨U, F, -, rfl⟩, xU, Uu⟩ : ∃ v ∈ {S : Set (∀ i : ℕ, E i) | ∃ (U : ∀ i : ℕ, Set (E i)) (F : Finset ℕ), (∀ i : ℕ, i ∈ F → U i ∈ {s : Set (E i) | IsOpen s}) ∧ S = (F : Set ℕ).pi U}, x ∈ v ∧ v ⊆ u := (isTopologicalBasis_pi fun n : ℕ => isTopologicalBasis_opens).exists_subset_of_mem_open hx u_open [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u ⊢ ∃ v, v ∈ {s | ∃ x n, s = cylinder x n} ∧ x ∈ v ∧ v ⊆ u [PROOFSTEP] rcases Finset.bddAbove F with ⟨n, hn⟩ [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F ⊢ ∃ v, v ∈ {s | ∃ x n, s = cylinder x n} ∧ x ∈ v ∧ v ⊆ u [PROOFSTEP] refine' ⟨cylinder x (n + 1), ⟨x, n + 1, rfl⟩, self_mem_cylinder _ _, Subset.trans _ Uu⟩ [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F ⊢ cylinder x (n + 1) ⊆ Set.pi (↑F) U [PROOFSTEP] intro y hy [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F y : (n : ℕ) → E n hy : y ∈ cylinder x (n + 1) ⊢ y ∈ Set.pi (↑F) U [PROOFSTEP] suffices ∀ i : ℕ, i ∈ F → y i ∈ U i by simpa [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F y : (n : ℕ) → E n hy : y ∈ cylinder x (n + 1) this : ∀ (i : ℕ), i ∈ F → y i ∈ U i ⊢ y ∈ Set.pi (↑F) U [PROOFSTEP] simpa [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F y : (n : ℕ) → E n hy : y ∈ cylinder x (n + 1) ⊢ ∀ (i : ℕ), i ∈ F → y i ∈ U i [PROOFSTEP] intro i hi [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F y : (n : ℕ) → E n hy : y ∈ cylinder x (n + 1) i : ℕ hi : i ∈ F ⊢ y i ∈ U i [PROOFSTEP] have : y i = x i := mem_cylinder_iff.1 hy i ((hn hi).trans_lt (lt_add_one n)) [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F y : (n : ℕ) → E n hy : y ∈ cylinder x (n + 1) i : ℕ hi : i ∈ F this : y i = x i ⊢ y i ∈ U i [PROOFSTEP] rw [this] [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ xU : x ∈ Set.pi (↑F) U Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F y : (n : ℕ) → E n hy : y ∈ cylinder x (n + 1) i : ℕ hi : i ∈ F this : y i = x i ⊢ x i ∈ U i [PROOFSTEP] simp only [Set.mem_pi, Finset.mem_coe] at xU [GOAL] case h_nhds.intro.intro.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n u : Set ((n : ℕ) → E n) hx : x ∈ u u_open : IsOpen u U : (i : ℕ) → Set (E i) F : Finset ℕ Uu : Set.pi (↑F) U ⊆ u n : ℕ hn : n ∈ upperBounds ↑F y : (n : ℕ) → E n hy : y ∈ cylinder x (n + 1) i : ℕ hi : i ∈ F this : y i = x i xU : ∀ (i : ℕ), i ∈ F → x i ∈ U i ⊢ x i ∈ U i [PROOFSTEP] exact xU i hi [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) ⊢ IsOpen s ↔ ∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s [PROOFSTEP] constructor [GOAL] case mp E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) ⊢ IsOpen s → ∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s [PROOFSTEP] intro hs x hx [GOAL] case mp E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsOpen s x : (n : ℕ) → E n hx : x ∈ s ⊢ ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s [PROOFSTEP] obtain ⟨v, ⟨y, n, rfl⟩, h'x, h's⟩ : ∃ v ∈ {s | ∃ (x : ∀ n : ℕ, E n) (n : ℕ), s = cylinder x n}, x ∈ v ∧ v ⊆ s := (isTopologicalBasis_cylinders E).exists_subset_of_mem_open hx hs [GOAL] case mp.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsOpen s x : (n : ℕ) → E n hx : x ∈ s y : (n : ℕ) → E n n : ℕ h'x : x ∈ cylinder y n h's : cylinder y n ⊆ s ⊢ ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s [PROOFSTEP] rw [← mem_cylinder_iff_eq.1 h'x] at h's [GOAL] case mp.intro.intro.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsOpen s x : (n : ℕ) → E n hx : x ∈ s y : (n : ℕ) → E n n : ℕ h'x : x ∈ cylinder y n h's : cylinder x n ⊆ s ⊢ ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s [PROOFSTEP] exact ⟨(1 / 2 : ℝ) ^ n, by simp, fun y hy => h's fun i hi => (apply_eq_of_dist_lt hy hi.le).symm⟩ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsOpen s x : (n : ℕ) → E n hx : x ∈ s y : (n : ℕ) → E n n : ℕ h'x : x ∈ cylinder y n h's : cylinder x n ⊆ s ⊢ (1 / 2) ^ n > 0 [PROOFSTEP] simp [GOAL] case mpr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) ⊢ (∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s) → IsOpen s [PROOFSTEP] intro h [GOAL] case mpr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) h : ∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s ⊢ IsOpen s [PROOFSTEP] refine (isTopologicalBasis_cylinders E).isOpen_iff.2 fun x hx => ?_ [GOAL] case mpr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) h : ∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s x : (n : ℕ) → E n hx : x ∈ s ⊢ ∃ t, t ∈ {s | ∃ x n, s = cylinder x n} ∧ x ∈ t ∧ t ⊆ s [PROOFSTEP] rcases h x hx with ⟨ε, εpos, hε⟩ [GOAL] case mpr.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) h : ∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s x : (n : ℕ) → E n hx : x ∈ s ε : ℝ εpos : ε > 0 hε : ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s ⊢ ∃ t, t ∈ {s | ∃ x n, s = cylinder x n} ∧ x ∈ t ∧ t ⊆ s [PROOFSTEP] obtain ⟨n, hn⟩ : ∃ n : ℕ, (1 / 2 : ℝ) ^ n < ε := exists_pow_lt_of_lt_one εpos one_half_lt_one [GOAL] case mpr.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) h : ∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s x : (n : ℕ) → E n hx : x ∈ s ε : ℝ εpos : ε > 0 hε : ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s n : ℕ hn : (1 / 2) ^ n < ε ⊢ ∃ t, t ∈ {s | ∃ x n, s = cylinder x n} ∧ x ∈ t ∧ t ⊆ s [PROOFSTEP] refine' ⟨cylinder x n, ⟨x, n, rfl⟩, self_mem_cylinder x n, fun y hy => hε y _⟩ [GOAL] case mpr.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) h : ∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s x : (n : ℕ) → E n hx : x ∈ s ε : ℝ εpos : ε > 0 hε : ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s n : ℕ hn : (1 / 2) ^ n < ε y : (n : ℕ) → E n hy : y ∈ cylinder x n ⊢ dist x y < ε [PROOFSTEP] rw [PiNat.dist_comm] [GOAL] case mpr.intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) h : ∀ (x : (n : ℕ) → E n), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s x : (n : ℕ) → E n hx : x ∈ s ε : ℝ εpos : ε > 0 hε : ∀ (y : (n : ℕ) → E n), dist x y < ε → y ∈ s n : ℕ hn : (1 / 2) ^ n < ε y : (n : ℕ) → E n hy : y ∈ cylinder x n ⊢ dist y x < ε [PROOFSTEP] exact (mem_cylinder_iff_dist_le.1 hy).trans_lt hn [GOAL] E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) x✝¹ x✝ : (n : ℕ) → E n ⊢ (fun x y => ↑{ val := dist x y, property := (_ : 0 ≤ dist x y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ uniformity ((n : ℕ) → E n) = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] simp [Pi.uniformity, comap_iInf, gt_iff_lt, preimage_setOf_eq, comap_principal, PseudoMetricSpace.uniformity_dist, h, idRel] [GOAL] E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ⨅ (i : ℕ), 𝓟 {a | Prod.fst a i = Prod.snd a i} = ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] apply le_antisymm [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ⨅ (i : ℕ), 𝓟 {a | Prod.fst a i = Prod.snd a i} ≤ ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] simp only [le_iInf_iff, le_principal_iff] [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ∀ (i : ℝ), 0 < i → {p | dist p.fst p.snd < i} ∈ ⨅ (i : ℕ), 𝓟 {a | Prod.fst a i = Prod.snd a i} [PROOFSTEP] intro ε εpos [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε ⊢ {p | dist p.fst p.snd < ε} ∈ ⨅ (i : ℕ), 𝓟 {a | Prod.fst a i = Prod.snd a i} [PROOFSTEP] obtain ⟨n, hn⟩ : ∃ n, (1 / 2 : ℝ) ^ n < ε := exists_pow_lt_of_lt_one εpos (by norm_num) [GOAL] E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε ⊢ 1 / 2 < 1 [PROOFSTEP] norm_num [GOAL] case a.intro E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε n : ℕ hn : (1 / 2) ^ n < ε ⊢ {p | dist p.fst p.snd < ε} ∈ ⨅ (i : ℕ), 𝓟 {a | Prod.fst a i = Prod.snd a i} [PROOFSTEP] apply @mem_iInf_of_iInter _ _ _ _ _ (Finset.range n).finite_toSet fun i => {p : (∀ n : ℕ, E n) × ∀ n : ℕ, E n | p.fst i = p.snd i} [GOAL] case a.intro.hV E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε n : ℕ hn : (1 / 2) ^ n < ε ⊢ ∀ (i : ↑↑(Finset.range n)), {p | Prod.fst p ↑i = Prod.snd p ↑i} ∈ 𝓟 {a | Prod.fst a ↑i = Prod.snd a ↑i} [PROOFSTEP] simp only [mem_principal, setOf_subset_setOf, imp_self, imp_true_iff] [GOAL] case a.intro.hU E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε n : ℕ hn : (1 / 2) ^ n < ε ⊢ ⋂ (i : ↑↑(Finset.range n)), {p | Prod.fst p ↑i = Prod.snd p ↑i} ⊆ {p | dist p.fst p.snd < ε} [PROOFSTEP] rintro ⟨x, y⟩ hxy [GOAL] case a.intro.hU.mk E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε n : ℕ hn : (1 / 2) ^ n < ε x y : (n : ℕ) → E n hxy : (x, y) ∈ ⋂ (i : ↑↑(Finset.range n)), {p | Prod.fst p ↑i = Prod.snd p ↑i} ⊢ (x, y) ∈ {p | dist p.fst p.snd < ε} [PROOFSTEP] simp only [Finset.mem_coe, Finset.mem_range, iInter_coe_set, mem_iInter, mem_setOf_eq] at hxy [GOAL] case a.intro.hU.mk E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε n : ℕ hn : (1 / 2) ^ n < ε x y : (n : ℕ) → E n hxy : ∀ (i : ℕ), i < n → x i = y i ⊢ (x, y) ∈ {p | dist p.fst p.snd < ε} [PROOFSTEP] apply lt_of_le_of_lt _ hn [GOAL] E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε n : ℕ hn : (1 / 2) ^ n < ε x y : (n : ℕ) → E n hxy : ∀ (i : ℕ), i < n → x i = y i ⊢ dist (x, y).fst (x, y).snd ≤ (1 / 2) ^ n [PROOFSTEP] rw [← mem_cylinder_iff_dist_le, mem_cylinder_iff] [GOAL] E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ε : ℝ εpos : 0 < ε n : ℕ hn : (1 / 2) ^ n < ε x y : (n : ℕ) → E n hxy : ∀ (i : ℕ), i < n → x i = y i ⊢ ∀ (i : ℕ), i < n → Prod.fst (x, y) i = Prod.snd (x, y) i [PROOFSTEP] exact hxy [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} ≤ ⨅ (i : ℕ), 𝓟 {a | Prod.fst a i = Prod.snd a i} [PROOFSTEP] simp only [le_iInf_iff, le_principal_iff] [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ∀ (i : ℕ), {a | Prod.fst a i = Prod.snd a i} ∈ ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] intro n [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) n : ℕ ⊢ {a | Prod.fst a n = Prod.snd a n} ∈ ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] refine' mem_iInf_of_mem ((1 / 2) ^ n : ℝ) _ [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) n : ℕ ⊢ {a | Prod.fst a n = Prod.snd a n} ∈ ⨅ (_ : 0 < (1 / 2) ^ n), 𝓟 {p | dist p.fst p.snd < (1 / 2) ^ n} [PROOFSTEP] refine' mem_iInf_of_mem (by positivity) _ [GOAL] E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) n : ℕ ⊢ 0 < (1 / 2) ^ n [PROOFSTEP] positivity [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) n : ℕ ⊢ {a | Prod.fst a n = Prod.snd a n} ∈ 𝓟 {p | dist p.fst p.snd < (1 / 2) ^ n} [PROOFSTEP] simp only [mem_principal, setOf_subset_setOf, Prod.forall] [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) n : ℕ ⊢ ∀ (a b : (n : ℕ) → E n), dist a b < (1 / 2) ^ n → a n = b n [PROOFSTEP] intro x y hxy [GOAL] case a E✝ : ℕ → Type u_1 inst✝² : (n : ℕ) → TopologicalSpace (E✝ n) inst✝¹ : ∀ (n : ℕ), DiscreteTopology (E✝ n) E : ℕ → Type u_2 inst✝ : (n : ℕ) → UniformSpace (E n) h : ∀ (n : ℕ), uniformity (E n) = 𝓟 idRel this : ∀ (n : ℕ), DiscreteTopology (E n) n : ℕ x y : (n : ℕ) → E n hxy : dist x y < (1 / 2) ^ n ⊢ x n = y n [PROOFSTEP] exact apply_eq_of_dist_lt hxy le_rfl [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ CompleteSpace ((n : ℕ) → E n) [PROOFSTEP] refine' Metric.complete_of_convergent_controlled_sequences (fun n => (1 / 2) ^ n) (by simp) _ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ∀ (n : ℕ), 0 < (fun n => (1 / 2) ^ n) n [PROOFSTEP] simp [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) ⊢ ∀ (u : ℕ → (n : ℕ) → E n), (∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun n => (1 / 2) ^ n) N) → ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] intro u hu [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) u : ℕ → (n : ℕ) → E n hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun n => (1 / 2) ^ n) N ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] refine' ⟨fun n => u n n, tendsto_pi_nhds.2 fun i => _⟩ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) u : ℕ → (n : ℕ) → E n hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun n => (1 / 2) ^ n) N i : ℕ ⊢ Tendsto (fun i_1 => u i_1 i) atTop (𝓝 (u i i)) [PROOFSTEP] refine' tendsto_const_nhds.congr' _ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) u : ℕ → (n : ℕ) → E n hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun n => (1 / 2) ^ n) N i : ℕ ⊢ (fun x => u i i) =ᶠ[atTop] fun i_1 => u i_1 i [PROOFSTEP] filter_upwards [Filter.Ici_mem_atTop i] with n hn [GOAL] case h E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) u : ℕ → (n : ℕ) → E n hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < (fun n => (1 / 2) ^ n) N i n : ℕ hn : n ∈ Ici i ⊢ u i i = u n i [PROOFSTEP] exact apply_eq_of_dist_lt (hu i i n le_rfl hn) le_rfl [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s ⊢ ∃ n, Disjoint s (cylinder x n) [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | hne) [GOAL] case inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n hs : IsClosed ∅ hx : ¬x ∈ ∅ ⊢ ∃ n, Disjoint ∅ (cylinder x n) [PROOFSTEP] exact ⟨0, by simp⟩ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x : (n : ℕ) → E n hs : IsClosed ∅ hx : ¬x ∈ ∅ ⊢ Disjoint ∅ (cylinder x 0) [PROOFSTEP] simp [GOAL] case inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s hne : Set.Nonempty s ⊢ ∃ n, Disjoint s (cylinder x n) [PROOFSTEP] have A : 0 < infDist x s := (hs.not_mem_iff_infDist_pos hne).1 hx [GOAL] case inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s hne : Set.Nonempty s A : 0 < infDist x s ⊢ ∃ n, Disjoint s (cylinder x n) [PROOFSTEP] obtain ⟨n, hn⟩ : ∃ n, (1 / 2 : ℝ) ^ n < infDist x s := exists_pow_lt_of_lt_one A one_half_lt_one [GOAL] case inr.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s hne : Set.Nonempty s A : 0 < infDist x s n : ℕ hn : (1 / 2) ^ n < infDist x s ⊢ ∃ n, Disjoint s (cylinder x n) [PROOFSTEP] refine' ⟨n, disjoint_left.2 fun y ys hy => ?_⟩ [GOAL] case inr.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s hne : Set.Nonempty s A : 0 < infDist x s n : ℕ hn : (1 / 2) ^ n < infDist x s y : (n : ℕ) → E n ys : y ∈ s hy : y ∈ cylinder x n ⊢ False [PROOFSTEP] apply lt_irrefl (infDist x s) [GOAL] case inr.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s hne : Set.Nonempty s A : 0 < infDist x s n : ℕ hn : (1 / 2) ^ n < infDist x s y : (n : ℕ) → E n ys : y ∈ s hy : y ∈ cylinder x n ⊢ infDist x s < infDist x s [PROOFSTEP] calc infDist x s ≤ dist x y := infDist_le_dist_of_mem ys _ ≤ (1 / 2) ^ n := by rw [mem_cylinder_comm] at hy exact mem_cylinder_iff_dist_le.1 hy _ < infDist x s := hn [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s hne : Set.Nonempty s A : 0 < infDist x s n : ℕ hn : (1 / 2) ^ n < infDist x s y : (n : ℕ) → E n ys : y ∈ s hy : y ∈ cylinder x n ⊢ dist x y ≤ (1 / 2) ^ n [PROOFSTEP] rw [mem_cylinder_comm] at hy [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s hne : Set.Nonempty s A : 0 < infDist x s n : ℕ hn : (1 / 2) ^ n < infDist x s y : (n : ℕ) → E n ys : y ∈ s hy : x ∈ cylinder y n ⊢ dist x y ≤ (1 / 2) ^ n [PROOFSTEP] exact mem_cylinder_iff_dist_le.1 hy [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s ⊢ firstDiff x y < shortestPrefixDiff x s [PROOFSTEP] have A := exists_disjoint_cylinder hs hx [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s A : ∃ n, Disjoint s (cylinder x n) ⊢ firstDiff x y < shortestPrefixDiff x s [PROOFSTEP] rw [shortestPrefixDiff, dif_pos A] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s A : ∃ n, Disjoint s (cylinder x n) ⊢ firstDiff x y < Nat.find A [PROOFSTEP] have B := Nat.find_spec A [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Disjoint s (cylinder x (Nat.find A)) ⊢ firstDiff x y < Nat.find A [PROOFSTEP] contrapose! B [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A ≤ firstDiff x y ⊢ ¬Disjoint s (cylinder x (Nat.find A)) [PROOFSTEP] rw [not_disjoint_iff_nonempty_inter] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A ≤ firstDiff x y ⊢ Set.Nonempty (s ∩ cylinder x (Nat.find A)) [PROOFSTEP] refine' ⟨y, hy, _⟩ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A ≤ firstDiff x y ⊢ y ∈ cylinder x (Nat.find A) [PROOFSTEP] rw [mem_cylinder_comm] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A ≤ firstDiff x y ⊢ x ∈ cylinder y (Nat.find A) [PROOFSTEP] exact cylinder_anti y B (mem_cylinder_firstDiff x y) [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s ⊢ 0 < shortestPrefixDiff x s [PROOFSTEP] rcases hne with ⟨y, hy⟩ [GOAL] case intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s y : (n : ℕ) → E n hy : y ∈ s ⊢ 0 < shortestPrefixDiff x s [PROOFSTEP] exact (zero_le _).trans_lt (firstDiff_lt_shortestPrefixDiff hs hx hy) [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s ⊢ firstDiff x y ≤ longestPrefix x s [PROOFSTEP] rw [longestPrefix, le_tsub_iff_right] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s ⊢ firstDiff x y + 1 ≤ shortestPrefixDiff x s [PROOFSTEP] exact firstDiff_lt_shortestPrefixDiff hs hx hy [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x y : (n : ℕ) → E n hx : ¬x ∈ s hy : y ∈ s ⊢ 1 ≤ shortestPrefixDiff x s [PROOFSTEP] exact shortestPrefixDiff_pos hs ⟨y, hy⟩ hx [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n ⊢ Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) [PROOFSTEP] by_cases hx : x ∈ s [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : x ∈ s ⊢ Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) [PROOFSTEP] exact ⟨x, hx, self_mem_cylinder _ _⟩ [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s ⊢ Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) [PROOFSTEP] have A := exists_disjoint_cylinder hs hx [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s A : ∃ n, Disjoint s (cylinder x n) ⊢ Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) [PROOFSTEP] have B : longestPrefix x s < shortestPrefixDiff x s := Nat.pred_lt (shortestPrefixDiff_pos hs hne hx).ne' [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s A : ∃ n, Disjoint s (cylinder x n) B : longestPrefix x s < shortestPrefixDiff x s ⊢ Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) [PROOFSTEP] rw [longestPrefix, shortestPrefixDiff, dif_pos A] at B ⊢ [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A - 1 < Nat.find A ⊢ Set.Nonempty (s ∩ cylinder x (Nat.find A - 1)) [PROOFSTEP] obtain ⟨y, ys, hy⟩ : ∃ y : ∀ n : ℕ, E n, y ∈ s ∧ x ∈ cylinder y (Nat.find A - 1) := by simpa only [not_disjoint_iff, mem_cylinder_comm] using Nat.find_min A B [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A - 1 < Nat.find A ⊢ ∃ y, y ∈ s ∧ x ∈ cylinder y (Nat.find A - 1) [PROOFSTEP] simpa only [not_disjoint_iff, mem_cylinder_comm] using Nat.find_min A B [GOAL] case neg.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A - 1 < Nat.find A y : (n : ℕ) → E n ys : y ∈ s hy : x ∈ cylinder y (Nat.find A - 1) ⊢ Set.Nonempty (s ∩ cylinder x (Nat.find A - 1)) [PROOFSTEP] refine' ⟨y, ys, _⟩ [GOAL] case neg.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A - 1 < Nat.find A y : (n : ℕ) → E n ys : y ∈ s hy : x ∈ cylinder y (Nat.find A - 1) ⊢ y ∈ cylinder x (Nat.find A - 1) [PROOFSTEP] rw [mem_cylinder_iff_eq] at hy ⊢ [GOAL] case neg.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s x : (n : ℕ) → E n hx : ¬x ∈ s A : ∃ n, Disjoint s (cylinder x n) B : Nat.find A - 1 < Nat.find A y : (n : ℕ) → E n ys : y ∈ s hy : cylinder x (Nat.find A - 1) = cylinder y (Nat.find A - 1) ⊢ cylinder y (Nat.find A - 1) = cylinder x (Nat.find A - 1) [PROOFSTEP] rw [hy] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s n : ℕ hn : longestPrefix x s < n ⊢ Disjoint s (cylinder x n) [PROOFSTEP] contrapose! hn [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s n : ℕ hn : ¬Disjoint s (cylinder x n) ⊢ n ≤ longestPrefix x s [PROOFSTEP] rcases not_disjoint_iff_nonempty_inter.1 hn with ⟨y, ys, hy⟩ [GOAL] case intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s n : ℕ hn : ¬Disjoint s (cylinder x n) y : (n : ℕ) → E n ys : y ∈ s hy : y ∈ cylinder x n ⊢ n ≤ longestPrefix x s [PROOFSTEP] apply le_trans _ (firstDiff_le_longestPrefix hs hx ys) [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s n : ℕ hn : ¬Disjoint s (cylinder x n) y : (n : ℕ) → E n ys : y ∈ s hy : y ∈ cylinder x n ⊢ n ≤ firstDiff x y [PROOFSTEP] apply (mem_cylinder_iff_le_firstDiff (ne_of_mem_of_not_mem ys hx).symm _).1 [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s x : (n : ℕ) → E n hx : ¬x ∈ s n : ℕ hn : ¬Disjoint s (cylinder x n) y : (n : ℕ) → E n ys : y ∈ s hy : y ∈ cylinder x n ⊢ x ∈ cylinder y n [PROOFSTEP] rwa [mem_cylinder_comm] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s ⊢ cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) [PROOFSTEP] have l_eq : longestPrefix y s = longestPrefix x s := by rcases lt_trichotomy (longestPrefix y s) (longestPrefix x s) with (L | L | L) · have Ax : (s ∩ cylinder x (longestPrefix x s)).Nonempty := inter_cylinder_longestPrefix_nonempty hs hne x have Z := disjoint_cylinder_of_longestPrefix_lt hs ys L rw [firstDiff_comm] at H rw [cylinder_eq_cylinder_of_le_firstDiff _ _ H.le] at Z exact (Ax.not_disjoint Z).elim · exact L · have Ay : (s ∩ cylinder y (longestPrefix y s)).Nonempty := inter_cylinder_longestPrefix_nonempty hs hne y have A'y : (s ∩ cylinder y (longestPrefix x s).succ).Nonempty := Ay.mono (inter_subset_inter_right s (cylinder_anti _ L)) have Z := disjoint_cylinder_of_longestPrefix_lt hs xs (Nat.lt_succ_self _) rw [cylinder_eq_cylinder_of_le_firstDiff _ _ H] at Z exact (A'y.not_disjoint Z).elim [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] rcases lt_trichotomy (longestPrefix y s) (longestPrefix x s) with (L | L | L) [GOAL] case inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix y s < longestPrefix x s ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] have Ax : (s ∩ cylinder x (longestPrefix x s)).Nonempty := inter_cylinder_longestPrefix_nonempty hs hne x [GOAL] case inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix y s < longestPrefix x s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] have Z := disjoint_cylinder_of_longestPrefix_lt hs ys L [GOAL] case inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix y s < longestPrefix x s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) Z : Disjoint s (cylinder y (longestPrefix x s)) ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] rw [firstDiff_comm] at H [GOAL] case inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff y x xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix y s < longestPrefix x s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) Z : Disjoint s (cylinder y (longestPrefix x s)) ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] rw [cylinder_eq_cylinder_of_le_firstDiff _ _ H.le] at Z [GOAL] case inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff y x xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix y s < longestPrefix x s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) Z : Disjoint s (cylinder x (longestPrefix x s)) ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] exact (Ax.not_disjoint Z).elim [GOAL] case inr.inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix y s = longestPrefix x s ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] exact L [GOAL] case inr.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix x s < longestPrefix y s ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] have Ay : (s ∩ cylinder y (longestPrefix y s)).Nonempty := inter_cylinder_longestPrefix_nonempty hs hne y [GOAL] case inr.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix x s < longestPrefix y s Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] have A'y : (s ∩ cylinder y (longestPrefix x s).succ).Nonempty := Ay.mono (inter_subset_inter_right s (cylinder_anti _ L)) [GOAL] case inr.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix x s < longestPrefix y s Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) A'y : Set.Nonempty (s ∩ cylinder y (Nat.succ (longestPrefix x s))) ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] have Z := disjoint_cylinder_of_longestPrefix_lt hs xs (Nat.lt_succ_self _) [GOAL] case inr.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix x s < longestPrefix y s Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) A'y : Set.Nonempty (s ∩ cylinder y (Nat.succ (longestPrefix x s))) Z : Disjoint s (cylinder x (Nat.succ (longestPrefix x s))) ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] rw [cylinder_eq_cylinder_of_le_firstDiff _ _ H] at Z [GOAL] case inr.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s L : longestPrefix x s < longestPrefix y s Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) A'y : Set.Nonempty (s ∩ cylinder y (Nat.succ (longestPrefix x s))) Z : Disjoint s (cylinder y (Nat.succ (longestPrefix x s))) ⊢ longestPrefix y s = longestPrefix x s [PROOFSTEP] exact (A'y.not_disjoint Z).elim [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s l_eq : longestPrefix y s = longestPrefix x s ⊢ cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) [PROOFSTEP] rw [l_eq, ← mem_cylinder_iff_eq] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) x y : (n : ℕ) → E n s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s H : longestPrefix x s < firstDiff x y xs : ¬x ∈ s ys : ¬y ∈ s l_eq : longestPrefix y s = longestPrefix x s ⊢ x ∈ cylinder y (longestPrefix x s) [PROOFSTEP] exact cylinder_anti y H.le (mem_cylinder_firstDiff x y) [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s ⊢ ∃ f, (∀ (x : (n : ℕ) → E n), x ∈ s → f x = x) ∧ range f = s ∧ LipschitzWith 1 f [PROOFSTEP] set f := fun x => if x ∈ s then x else (inter_cylinder_longestPrefix_nonempty hs hne x).some [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) ⊢ ∃ f, (∀ (x : (n : ℕ) → E n), x ∈ s → f x = x) ∧ range f = s ∧ LipschitzWith 1 f [PROOFSTEP] have fs : ∀ x ∈ s, f x = x := fun x xs => by simp [xs] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) x : (n : ℕ) → E n xs : x ∈ s ⊢ f x = x [PROOFSTEP] simp [xs] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x ⊢ ∃ f, (∀ (x : (n : ℕ) → E n), x ∈ s → f x = x) ∧ range f = s ∧ LipschitzWith 1 f [PROOFSTEP] refine' ⟨f, fs, _, _⟩ -- check that the range of `f` is `s`. [GOAL] case refine'_1 E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x ⊢ range f = s [PROOFSTEP] apply Subset.antisymm [GOAL] case refine'_1.h₁ E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x ⊢ range f ⊆ s [PROOFSTEP] rintro x ⟨y, rfl⟩ [GOAL] case refine'_1.h₁.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x y : (n : ℕ) → E n ⊢ f y ∈ s [PROOFSTEP] by_cases hy : y ∈ s [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x y : (n : ℕ) → E n hy : y ∈ s ⊢ f y ∈ s [PROOFSTEP] rwa [fs y hy] [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x y : (n : ℕ) → E n hy : ¬y ∈ s ⊢ f y ∈ s [PROOFSTEP] simpa [if_neg hy] using (inter_cylinder_longestPrefix_nonempty hs hne y).choose_spec.1 [GOAL] case refine'_1.h₂ E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x ⊢ s ⊆ range f [PROOFSTEP] intro x hx [GOAL] case refine'_1.h₂ E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x : (n : ℕ) → E n hx : x ∈ s ⊢ x ∈ range f [PROOFSTEP] rw [← fs x hx] [GOAL] case refine'_1.h₂ E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x : (n : ℕ) → E n hx : x ∈ s ⊢ f x ∈ range f [PROOFSTEP] exact mem_range_self _ -- check that `f` is `1`-Lipschitz, by a case analysis. [GOAL] case refine'_2 E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x ⊢ LipschitzWith 1 f [PROOFSTEP] refine LipschitzWith.mk_one fun x y => ?_ -- exclude the trivial cases where `x = y`, or `f x = f y`. [GOAL] case refine'_2 E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n ⊢ dist (f x) (f y) ≤ dist x y [PROOFSTEP] rcases eq_or_ne x y with (rfl | hxy) [GOAL] case refine'_2.inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x : (n : ℕ) → E n ⊢ dist (f x) (f x) ≤ dist x x [PROOFSTEP] simp [GOAL] case refine'_2.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y ⊢ dist (f x) (f y) ≤ dist x y [PROOFSTEP] rcases eq_or_ne (f x) (f y) with (h' | hfxfy) [GOAL] case refine'_2.inr.inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y h' : f x = f y ⊢ dist (f x) (f y) ≤ dist x y [PROOFSTEP] simp [h', dist_nonneg] [GOAL] case refine'_2.inr.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y ⊢ dist (f x) (f y) ≤ dist x y [PROOFSTEP] have I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) := by rw [← mem_cylinder_iff_eq] apply mem_cylinder_firstDiff [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y ⊢ cylinder x (firstDiff x y) = cylinder y (firstDiff x y) [PROOFSTEP] rw [← mem_cylinder_iff_eq] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y ⊢ x ∈ cylinder y (firstDiff x y) [PROOFSTEP] apply mem_cylinder_firstDiff [GOAL] case refine'_2.inr.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) ⊢ dist (f x) (f y) ≤ dist x y [PROOFSTEP] suffices firstDiff x y ≤ firstDiff (f x) (f y) by simpa [dist_eq_of_ne hxy, dist_eq_of_ne hfxfy] -- case where `x ∈ s` [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) this : firstDiff x y ≤ firstDiff (f x) (f y) ⊢ dist (f x) (f y) ≤ dist x y [PROOFSTEP] simpa [dist_eq_of_ne hxy, dist_eq_of_ne hfxfy] -- case where `x ∈ s` [GOAL] case refine'_2.inr.inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] by_cases xs : x ∈ s [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] rw [fs x xs] at hfxfy ⊢ -- case where `y ∈ s`, trivial [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ⊢ firstDiff x y ≤ firstDiff x (f y) [PROOFSTEP] by_cases ys : y ∈ s [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : y ∈ s ⊢ firstDiff x y ≤ firstDiff x (f y) [PROOFSTEP] rw [fs y ys] -- case where `y ∉ s` [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : ¬y ∈ s ⊢ firstDiff x y ≤ firstDiff x (f y) [PROOFSTEP] have A : (s ∩ cylinder y (longestPrefix y s)).Nonempty := inter_cylinder_longestPrefix_nonempty hs hne y [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : ¬y ∈ s A : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) ⊢ firstDiff x y ≤ firstDiff x (f y) [PROOFSTEP] have fy : f y = A.some := by simp_rw [if_neg ys] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : ¬y ∈ s A : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) ⊢ f y = Set.Nonempty.some A [PROOFSTEP] simp_rw [if_neg ys] [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : ¬y ∈ s A : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some A ⊢ firstDiff x y ≤ firstDiff x (f y) [PROOFSTEP] have I : cylinder A.some (firstDiff x y) = cylinder y (firstDiff x y) := by rw [← mem_cylinder_iff_eq, firstDiff_comm] apply cylinder_anti y _ A.some_mem.2 exact firstDiff_le_longestPrefix hs ys xs [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : ¬y ∈ s A : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some A ⊢ cylinder (Set.Nonempty.some A) (firstDiff x y) = cylinder y (firstDiff x y) [PROOFSTEP] rw [← mem_cylinder_iff_eq, firstDiff_comm] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : ¬y ∈ s A : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some A ⊢ Set.Nonempty.some A ∈ cylinder y (firstDiff y x) [PROOFSTEP] apply cylinder_anti y _ A.some_mem.2 [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : ¬y ∈ s A : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some A ⊢ firstDiff y x ≤ longestPrefix y s [PROOFSTEP] exact firstDiff_le_longestPrefix hs ys xs [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : x ∈ s ys : ¬y ∈ s A : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some A I : cylinder (Set.Nonempty.some A) (firstDiff x y) = cylinder y (firstDiff x y) ⊢ firstDiff x y ≤ firstDiff x (f y) [PROOFSTEP] rwa [← fy, ← I2, ← mem_cylinder_iff_eq, mem_cylinder_iff_le_firstDiff hfxfy.symm, firstDiff_comm _ x] at I [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] by_cases ys : y ∈ s [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have A : (s ∩ cylinder x (longestPrefix x s)).Nonempty := inter_cylinder_longestPrefix_nonempty hs hne x [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s A : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have fx : f x = A.some := by simp_rw [if_neg xs] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s A : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) ⊢ f x = Set.Nonempty.some A [PROOFSTEP] simp_rw [if_neg xs] [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s A : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some A ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have I : cylinder A.some (firstDiff x y) = cylinder x (firstDiff x y) := by rw [← mem_cylinder_iff_eq] apply cylinder_anti x _ A.some_mem.2 apply firstDiff_le_longestPrefix hs xs ys [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s A : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some A ⊢ cylinder (Set.Nonempty.some A) (firstDiff x y) = cylinder x (firstDiff x y) [PROOFSTEP] rw [← mem_cylinder_iff_eq] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s A : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some A ⊢ Set.Nonempty.some A ∈ cylinder x (firstDiff x y) [PROOFSTEP] apply cylinder_anti x _ A.some_mem.2 [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s A : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some A ⊢ firstDiff x y ≤ longestPrefix x s [PROOFSTEP] apply firstDiff_le_longestPrefix hs xs ys [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s A : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some A I : cylinder (Set.Nonempty.some A) (firstDiff x y) = cylinder x (firstDiff x y) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] rw [fs y ys] at hfxfy ⊢ [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : y ∈ s A : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some A I : cylinder (Set.Nonempty.some A) (firstDiff x y) = cylinder x (firstDiff x y) ⊢ firstDiff x y ≤ firstDiff (f x) y [PROOFSTEP] rwa [← fx, I2, ← mem_cylinder_iff_eq, mem_cylinder_iff_le_firstDiff hfxfy] at I [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have Ax : (s ∩ cylinder x (longestPrefix x s)).Nonempty := inter_cylinder_longestPrefix_nonempty hs hne x [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have fx : f x = Ax.some := by simp_rw [if_neg xs] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) ⊢ f x = Set.Nonempty.some Ax [PROOFSTEP] simp_rw [if_neg xs] [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have Ay : (s ∩ cylinder y (longestPrefix y s)).Nonempty := inter_cylinder_longestPrefix_nonempty hs hne y [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have fy : f y = Ay.some := by simp_rw [if_neg ys] -- case where the common prefix to `x` and `s`, or `y` and `s`, is shorter than the -- common part to `x` and `y` -- then `f x = f y`. [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) ⊢ f y = Set.Nonempty.some Ay [PROOFSTEP] simp_rw [if_neg ys] -- case where the common prefix to `x` and `s`, or `y` and `s`, is shorter than the -- common part to `x` and `y` -- then `f x = f y`. [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] by_cases H : longestPrefix x s < firstDiff x y ∨ longestPrefix y s < firstDiff x y [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : longestPrefix x s < firstDiff x y ∨ longestPrefix y s < firstDiff x y ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have : cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) := by cases' H with H H · exact cylinder_longestPrefix_eq_of_longestPrefix_lt_firstDiff hs hne H xs ys · symm rw [firstDiff_comm] at H exact cylinder_longestPrefix_eq_of_longestPrefix_lt_firstDiff hs hne H ys xs [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : longestPrefix x s < firstDiff x y ∨ longestPrefix y s < firstDiff x y ⊢ cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) [PROOFSTEP] cases' H with H H [GOAL] case inl E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : longestPrefix x s < firstDiff x y ⊢ cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) [PROOFSTEP] exact cylinder_longestPrefix_eq_of_longestPrefix_lt_firstDiff hs hne H xs ys [GOAL] case inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : longestPrefix y s < firstDiff x y ⊢ cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) [PROOFSTEP] symm [GOAL] case inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : longestPrefix y s < firstDiff x y ⊢ cylinder y (longestPrefix y s) = cylinder x (longestPrefix x s) [PROOFSTEP] rw [firstDiff_comm] at H [GOAL] case inr E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : longestPrefix y s < firstDiff y x ⊢ cylinder y (longestPrefix y s) = cylinder x (longestPrefix x s) [PROOFSTEP] exact cylinder_longestPrefix_eq_of_longestPrefix_lt_firstDiff hs hne H ys xs [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : longestPrefix x s < firstDiff x y ∨ longestPrefix y s < firstDiff x y this : cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] rw [fx, fy] at hfxfy [GOAL] case pos E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) hfxfy : Set.Nonempty.some Ax ≠ Set.Nonempty.some Ay fy : f y = Set.Nonempty.some Ay H : longestPrefix x s < firstDiff x y ∨ longestPrefix y s < firstDiff x y this : cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] apply (hfxfy _).elim [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) hfxfy : Set.Nonempty.some Ax ≠ Set.Nonempty.some Ay fy : f y = Set.Nonempty.some Ay H : longestPrefix x s < firstDiff x y ∨ longestPrefix y s < firstDiff x y this : cylinder x (longestPrefix x s) = cylinder y (longestPrefix y s) ⊢ Set.Nonempty.some Ax = Set.Nonempty.some Ay [PROOFSTEP] congr -- case where the common prefix to `x` and `s` is long, as well as the common prefix to -- `y` and `s`. Then all points remain in the same cylinders. [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : ¬(longestPrefix x s < firstDiff x y ∨ longestPrefix y s < firstDiff x y) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] push_neg at H [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have I1 : cylinder Ax.some (firstDiff x y) = cylinder x (firstDiff x y) := by rw [← mem_cylinder_iff_eq] exact cylinder_anti x H.1 Ax.some_mem.2 [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s ⊢ cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder x (firstDiff x y) [PROOFSTEP] rw [← mem_cylinder_iff_eq] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s ⊢ Set.Nonempty.some Ax ∈ cylinder x (firstDiff x y) [PROOFSTEP] exact cylinder_anti x H.1 Ax.some_mem.2 [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s I1 : cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder x (firstDiff x y) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have I3 : cylinder y (firstDiff x y) = cylinder Ay.some (firstDiff x y) := by rw [eq_comm, ← mem_cylinder_iff_eq] exact cylinder_anti y H.2 Ay.some_mem.2 [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s I1 : cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder x (firstDiff x y) ⊢ cylinder y (firstDiff x y) = cylinder (Set.Nonempty.some Ay) (firstDiff x y) [PROOFSTEP] rw [eq_comm, ← mem_cylinder_iff_eq] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s I1 : cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder x (firstDiff x y) ⊢ Set.Nonempty.some Ay ∈ cylinder y (firstDiff x y) [PROOFSTEP] exact cylinder_anti y H.2 Ay.some_mem.2 [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s I1 : cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder x (firstDiff x y) I3 : cylinder y (firstDiff x y) = cylinder (Set.Nonempty.some Ay) (firstDiff x y) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] have : cylinder Ax.some (firstDiff x y) = cylinder Ay.some (firstDiff x y) := by rw [I1, I2, I3] [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s I1 : cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder x (firstDiff x y) I3 : cylinder y (firstDiff x y) = cylinder (Set.Nonempty.some Ay) (firstDiff x y) ⊢ cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder (Set.Nonempty.some Ay) (firstDiff x y) [PROOFSTEP] rw [I1, I2, I3] [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s I1 : cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder x (firstDiff x y) I3 : cylinder y (firstDiff x y) = cylinder (Set.Nonempty.some Ay) (firstDiff x y) this : cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder (Set.Nonempty.some Ay) (firstDiff x y) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] rw [← fx, ← fy, ← mem_cylinder_iff_eq, mem_cylinder_iff_le_firstDiff hfxfy] at this [GOAL] case neg E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n := fun x => if x ∈ s then x else Set.Nonempty.some (_ : Set.Nonempty (s ∩ cylinder x (longestPrefix x s))) fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x x y : (n : ℕ) → E n hxy : x ≠ y hfxfy : f x ≠ f y I2 : cylinder x (firstDiff x y) = cylinder y (firstDiff x y) xs : ¬x ∈ s ys : ¬y ∈ s Ax : Set.Nonempty (s ∩ cylinder x (longestPrefix x s)) fx : f x = Set.Nonempty.some Ax Ay : Set.Nonempty (s ∩ cylinder y (longestPrefix y s)) fy : f y = Set.Nonempty.some Ay H : firstDiff x y ≤ longestPrefix x s ∧ firstDiff x y ≤ longestPrefix y s I1 : cylinder (Set.Nonempty.some Ax) (firstDiff x y) = cylinder x (firstDiff x y) I3 : cylinder y (firstDiff x y) = cylinder (Set.Nonempty.some Ay) (firstDiff x y) this : firstDiff x y ≤ firstDiff (f x) (f y) ⊢ firstDiff x y ≤ firstDiff (f x) (f y) [PROOFSTEP] exact this [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s ⊢ ∃ f, (∀ (x : (n : ℕ) → E n), x ∈ s → f x = x) ∧ range f = s ∧ Continuous f [PROOFSTEP] rcases exists_lipschitz_retraction_of_isClosed hs hne with ⟨f, fs, frange, hf⟩ [GOAL] case intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s f : ((n : ℕ) → E n) → (n : ℕ) → E n fs : ∀ (x : (n : ℕ) → E n), x ∈ s → f x = x frange : range f = s hf : LipschitzWith 1 f ⊢ ∃ f, (∀ (x : (n : ℕ) → E n), x ∈ s → f x = x) ∧ range f = s ∧ Continuous f [PROOFSTEP] exact ⟨f, fs, frange, hf.continuous⟩ [GOAL] E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) s : Set ((n : ℕ) → E n) hs : IsClosed s hne : Set.Nonempty s ⊢ ∃ f, (∀ (x : ↑s), f ↑x = x) ∧ Surjective f ∧ Continuous f [PROOFSTEP] obtain ⟨f, fs, rfl, f_cont⟩ : ∃ f : (∀ n, E n) → ∀ n, E n, (∀ x ∈ s, f x = x) ∧ range f = s ∧ Continuous f := exists_retraction_of_isClosed hs hne [GOAL] case intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) f : ((n : ℕ) → E n) → (n : ℕ) → E n f_cont : Continuous f hs : IsClosed (range f) hne : Set.Nonempty (range f) fs : ∀ (x : (n : ℕ) → E n), x ∈ range f → f x = x ⊢ ∃ f_1, (∀ (x : ↑(range f)), f_1 ↑x = x) ∧ Surjective f_1 ∧ Continuous f_1 [PROOFSTEP] have A : ∀ x : range f, rangeFactorization f x = x := fun x ↦ Subtype.eq <| fs x x.2 [GOAL] case intro.intro.intro E : ℕ → Type u_1 inst✝¹ : (n : ℕ) → TopologicalSpace (E n) inst✝ : ∀ (n : ℕ), DiscreteTopology (E n) f : ((n : ℕ) → E n) → (n : ℕ) → E n f_cont : Continuous f hs : IsClosed (range f) hne : Set.Nonempty (range f) fs : ∀ (x : (n : ℕ) → E n), x ∈ range f → f x = x A : ∀ (x : ↑(range f)), rangeFactorization f ↑x = x ⊢ ∃ f_1, (∀ (x : ↑(range f)), f_1 ↑x = x) ∧ Surjective f_1 ∧ Continuous f_1 [PROOFSTEP] exact ⟨rangeFactorization f, A, fun x => ⟨x, A x⟩, f_cont.subtype_mk _⟩ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] letI : MetricSpace (ℕ → ℕ) := PiNat.metricSpaceNatNat [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] have I0 : (0 : ℝ) < 1 / 2 := by norm_num [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat ⊢ 0 < 1 / 2 [PROOFSTEP] norm_num [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] have I1 : (1 / 2 : ℝ) < 1 := by norm_num [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 ⊢ 1 / 2 < 1 [PROOFSTEP] norm_num [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] rcases exists_dense_seq α with ⟨u, hu⟩ [GOAL] case intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] let s : Set (ℕ → ℕ) := {x | (⋂ n : ℕ, closedBall (u (x n)) ((1 / 2) ^ n)).Nonempty} [GOAL] case intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] let g : s → α := fun x => x.2.some [GOAL] case intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] have A : ∀ (x : s) (n : ℕ), dist (g x) (u ((x : ℕ → ℕ) n)) ≤ (1 / 2) ^ n := fun x n => (mem_iInter.1 x.2.some_mem n : _) [GOAL] case intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] have g_cont : Continuous g := by refine continuous_iff_continuousAt.2 fun y => ?_ refine continuousAt_of_locally_lipschitz zero_lt_one 4 fun x hxy => ?_ rcases eq_or_ne x y with (rfl | hne) · simp have hne' : x.1 ≠ y.1 := Subtype.coe_injective.ne hne have dist' : dist x y = dist x.1 y.1 := rfl let n := firstDiff x.1 y.1 - 1 have diff_pos : 0 < firstDiff x.1 y.1 := by by_contra' h apply apply_firstDiff_ne hne' rw [le_zero_iff.1 h] apply apply_eq_of_dist_lt _ le_rfl rw [pow_zero] exact hxy have hn : firstDiff x.1 y.1 = n + 1 := (Nat.succ_pred_eq_of_pos diff_pos).symm rw [dist', dist_eq_of_ne hne', hn] have B : x.1 n = y.1 n := mem_cylinder_firstDiff x.1 y.1 n (Nat.pred_lt diff_pos.ne') calc dist (g x) (g y) ≤ dist (g x) (u (x.1 n)) + dist (g y) (u (x.1 n)) := dist_triangle_right _ _ _ _ = dist (g x) (u (x.1 n)) + dist (g y) (u (y.1 n)) := by rw [← B] _ ≤ (1 / 2) ^ n + (1 / 2) ^ n := (add_le_add (A x n) (A y n)) _ = 4 * (1 / 2) ^ (n + 1) := by ring [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n ⊢ Continuous g [PROOFSTEP] refine continuous_iff_continuousAt.2 fun y => ?_ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y : ↑s ⊢ ContinuousAt g y [PROOFSTEP] refine continuousAt_of_locally_lipschitz zero_lt_one 4 fun x hxy => ?_ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 ⊢ dist (g x) (g y) ≤ 4 * dist x y [PROOFSTEP] rcases eq_or_ne x y with (rfl | hne) [GOAL] case inl E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n x : ↑s hxy : dist x x < 1 ⊢ dist (g x) (g x) ≤ 4 * dist x x [PROOFSTEP] simp [GOAL] case inr E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y ⊢ dist (g x) (g y) ≤ 4 * dist x y [PROOFSTEP] have hne' : x.1 ≠ y.1 := Subtype.coe_injective.ne hne [GOAL] case inr E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y ⊢ dist (g x) (g y) ≤ 4 * dist x y [PROOFSTEP] have dist' : dist x y = dist x.1 y.1 := rfl [GOAL] case inr E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y ⊢ dist (g x) (g y) ≤ 4 * dist x y [PROOFSTEP] let n := firstDiff x.1 y.1 - 1 [GOAL] case inr E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 ⊢ dist (g x) (g y) ≤ 4 * dist x y [PROOFSTEP] have diff_pos : 0 < firstDiff x.1 y.1 := by by_contra' h apply apply_firstDiff_ne hne' rw [le_zero_iff.1 h] apply apply_eq_of_dist_lt _ le_rfl rw [pow_zero] exact hxy [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 ⊢ 0 < firstDiff ↑x ↑y [PROOFSTEP] by_contra' h [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 h : firstDiff ↑x ↑y ≤ 0 ⊢ False [PROOFSTEP] apply apply_firstDiff_ne hne' [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 h : firstDiff ↑x ↑y ≤ 0 ⊢ ↑x (firstDiff ↑x ↑y) = ↑y (firstDiff ↑x ↑y) [PROOFSTEP] rw [le_zero_iff.1 h] [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 h : firstDiff ↑x ↑y ≤ 0 ⊢ ↑x 0 = ↑y 0 [PROOFSTEP] apply apply_eq_of_dist_lt _ le_rfl [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 h : firstDiff ↑x ↑y ≤ 0 ⊢ dist ↑x ↑y < (1 / 2) ^ 0 [PROOFSTEP] rw [pow_zero] [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 h : firstDiff ↑x ↑y ≤ 0 ⊢ dist ↑x ↑y < 1 [PROOFSTEP] exact hxy [GOAL] case inr E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 diff_pos : 0 < firstDiff ↑x ↑y ⊢ dist (g x) (g y) ≤ 4 * dist x y [PROOFSTEP] have hn : firstDiff x.1 y.1 = n + 1 := (Nat.succ_pred_eq_of_pos diff_pos).symm [GOAL] case inr E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 diff_pos : 0 < firstDiff ↑x ↑y hn : firstDiff ↑x ↑y = n + 1 ⊢ dist (g x) (g y) ≤ 4 * dist x y [PROOFSTEP] rw [dist', dist_eq_of_ne hne', hn] [GOAL] case inr E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 diff_pos : 0 < firstDiff ↑x ↑y hn : firstDiff ↑x ↑y = n + 1 ⊢ dist (g x) (g y) ≤ 4 * (1 / 2) ^ (n + 1) [PROOFSTEP] have B : x.1 n = y.1 n := mem_cylinder_firstDiff x.1 y.1 n (Nat.pred_lt diff_pos.ne') [GOAL] case inr E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 diff_pos : 0 < firstDiff ↑x ↑y hn : firstDiff ↑x ↑y = n + 1 B : ↑x n = ↑y n ⊢ dist (g x) (g y) ≤ 4 * (1 / 2) ^ (n + 1) [PROOFSTEP] calc dist (g x) (g y) ≤ dist (g x) (u (x.1 n)) + dist (g y) (u (x.1 n)) := dist_triangle_right _ _ _ _ = dist (g x) (u (x.1 n)) + dist (g y) (u (y.1 n)) := by rw [← B] _ ≤ (1 / 2) ^ n + (1 / 2) ^ n := (add_le_add (A x n) (A y n)) _ = 4 * (1 / 2) ^ (n + 1) := by ring [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 diff_pos : 0 < firstDiff ↑x ↑y hn : firstDiff ↑x ↑y = n + 1 B : ↑x n = ↑y n ⊢ dist (g x) (u (↑x n)) + dist (g y) (u (↑x n)) = dist (g x) (u (↑x n)) + dist (g y) (u (↑y n)) [PROOFSTEP] rw [← B] [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n y x : ↑s hxy : dist x y < 1 hne : x ≠ y hne' : ↑x ≠ ↑y dist' : dist x y = dist ↑x ↑y n : ℕ := firstDiff ↑x ↑y - 1 diff_pos : 0 < firstDiff ↑x ↑y hn : firstDiff ↑x ↑y = n + 1 B : ↑x n = ↑y n ⊢ (1 / 2) ^ n + (1 / 2) ^ n = 4 * (1 / 2) ^ (n + 1) [PROOFSTEP] ring [GOAL] case intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] have g_surj : Surjective g := fun y ↦ by have : ∀ n : ℕ, ∃ j, y ∈ closedBall (u j) ((1 / 2) ^ n) := fun n ↦ by rcases hu.exists_dist_lt y (by simp : (0 : ℝ) < (1 / 2) ^ n) with ⟨j, hj⟩ exact ⟨j, hj.le⟩ choose x hx using this have I : (⋂ n : ℕ, closedBall (u (x n)) ((1 / 2) ^ n)).Nonempty := ⟨y, mem_iInter.2 hx⟩ refine' ⟨⟨x, I⟩, _⟩ refine' dist_le_zero.1 _ have J : ∀ n : ℕ, dist (g ⟨x, I⟩) y ≤ (1 / 2) ^ n + (1 / 2) ^ n := fun n => calc dist (g ⟨x, I⟩) y ≤ dist (g ⟨x, I⟩) (u (x n)) + dist y (u (x n)) := dist_triangle_right _ _ _ _ ≤ (1 / 2) ^ n + (1 / 2) ^ n := add_le_add (A ⟨x, I⟩ n) (hx n) have L : Tendsto (fun n : ℕ => (1 / 2 : ℝ) ^ n + (1 / 2) ^ n) atTop (𝓝 (0 + 0)) := (tendsto_pow_atTop_nhds_0_of_lt_1 I0.le I1).add (tendsto_pow_atTop_nhds_0_of_lt_1 I0.le I1) rw [add_zero] at L exact ge_of_tendsto' L J [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α ⊢ ∃ a, g a = y [PROOFSTEP] have : ∀ n : ℕ, ∃ j, y ∈ closedBall (u j) ((1 / 2) ^ n) := fun n ↦ by rcases hu.exists_dist_lt y (by simp : (0 : ℝ) < (1 / 2) ^ n) with ⟨j, hj⟩ exact ⟨j, hj.le⟩ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α n : ℕ ⊢ ∃ j, y ∈ closedBall (u j) ((1 / 2) ^ n) [PROOFSTEP] rcases hu.exists_dist_lt y (by simp : (0 : ℝ) < (1 / 2) ^ n) with ⟨j, hj⟩ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α n : ℕ ⊢ 0 < (1 / 2) ^ n [PROOFSTEP] simp [GOAL] case intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α n j : ℕ hj : dist y (u j) < (1 / 2) ^ n ⊢ ∃ j, y ∈ closedBall (u j) ((1 / 2) ^ n) [PROOFSTEP] exact ⟨j, hj.le⟩ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this✝ : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α this : ∀ (n : ℕ), ∃ j, y ∈ closedBall (u j) ((1 / 2) ^ n) ⊢ ∃ a, g a = y [PROOFSTEP] choose x hx using this [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α x : ℕ → ℕ hx : ∀ (n : ℕ), y ∈ closedBall (u (x n)) ((1 / 2) ^ n) ⊢ ∃ a, g a = y [PROOFSTEP] have I : (⋂ n : ℕ, closedBall (u (x n)) ((1 / 2) ^ n)).Nonempty := ⟨y, mem_iInter.2 hx⟩ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α x : ℕ → ℕ hx : ∀ (n : ℕ), y ∈ closedBall (u (x n)) ((1 / 2) ^ n) I : Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n)) ⊢ ∃ a, g a = y [PROOFSTEP] refine' ⟨⟨x, I⟩, _⟩ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α x : ℕ → ℕ hx : ∀ (n : ℕ), y ∈ closedBall (u (x n)) ((1 / 2) ^ n) I : Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n)) ⊢ g { val := x, property := I } = y [PROOFSTEP] refine' dist_le_zero.1 _ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α x : ℕ → ℕ hx : ∀ (n : ℕ), y ∈ closedBall (u (x n)) ((1 / 2) ^ n) I : Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n)) ⊢ dist (g { val := x, property := I }) y ≤ 0 [PROOFSTEP] have J : ∀ n : ℕ, dist (g ⟨x, I⟩) y ≤ (1 / 2) ^ n + (1 / 2) ^ n := fun n => calc dist (g ⟨x, I⟩) y ≤ dist (g ⟨x, I⟩) (u (x n)) + dist y (u (x n)) := dist_triangle_right _ _ _ _ ≤ (1 / 2) ^ n + (1 / 2) ^ n := add_le_add (A ⟨x, I⟩ n) (hx n) [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α x : ℕ → ℕ hx : ∀ (n : ℕ), y ∈ closedBall (u (x n)) ((1 / 2) ^ n) I : Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n)) J : ∀ (n : ℕ), dist (g { val := x, property := I }) y ≤ (1 / 2) ^ n + (1 / 2) ^ n ⊢ dist (g { val := x, property := I }) y ≤ 0 [PROOFSTEP] have L : Tendsto (fun n : ℕ => (1 / 2 : ℝ) ^ n + (1 / 2) ^ n) atTop (𝓝 (0 + 0)) := (tendsto_pow_atTop_nhds_0_of_lt_1 I0.le I1).add (tendsto_pow_atTop_nhds_0_of_lt_1 I0.le I1) [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α x : ℕ → ℕ hx : ∀ (n : ℕ), y ∈ closedBall (u (x n)) ((1 / 2) ^ n) I : Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n)) J : ∀ (n : ℕ), dist (g { val := x, property := I }) y ≤ (1 / 2) ^ n + (1 / 2) ^ n L : Tendsto (fun n => (1 / 2) ^ n + (1 / 2) ^ n) atTop (𝓝 (0 + 0)) ⊢ dist (g { val := x, property := I }) y ≤ 0 [PROOFSTEP] rw [add_zero] at L [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g y : α x : ℕ → ℕ hx : ∀ (n : ℕ), y ∈ closedBall (u (x n)) ((1 / 2) ^ n) I : Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n)) J : ∀ (n : ℕ), dist (g { val := x, property := I }) y ≤ (1 / 2) ^ n + (1 / 2) ^ n L : Tendsto (fun n => (1 / 2) ^ n + (1 / 2) ^ n) atTop (𝓝 0) ⊢ dist (g { val := x, property := I }) y ≤ 0 [PROOFSTEP] exact ge_of_tendsto' L J [GOAL] case intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] have s_closed : IsClosed s := by refine isClosed_iff_clusterPt.mpr fun x hx ↦ ?_ have L : Tendsto (fun n : ℕ => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) := by have : Tendsto (fun n : ℕ => (2 : ℝ) * (1 / 2) ^ n) atTop (𝓝 (2 * 0)) := (tendsto_pow_atTop_nhds_0_of_lt_1 I0.le I1).const_mul _ rw [mul_zero] at this exact squeeze_zero (fun n => diam_nonneg) (fun n => diam_closedBall (pow_nonneg I0.le _)) this refine nonempty_iInter_of_nonempty_biInter (fun n => isClosed_ball) (fun n => bounded_closedBall) (fun N ↦ ?_) L obtain ⟨y, hxy, ys⟩ : ∃ y, y ∈ ball x ((1 / 2) ^ N) ∩ s := clusterPt_principal_iff.1 hx _ (ball_mem_nhds x (pow_pos I0 N)) have E : ⋂ (n : ℕ) (H : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n) = ⋂ (n : ℕ) (H : n ≤ N), closedBall (u (y n)) ((1 / 2) ^ n) := by refine iInter_congr fun n ↦ iInter_congr fun hn ↦ ?_ have : x n = y n := apply_eq_of_dist_lt (mem_ball'.1 hxy) hn rw [this] rw [E] apply Nonempty.mono _ ys apply iInter_subset_iInter₂ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g ⊢ IsClosed s [PROOFSTEP] refine isClosed_iff_clusterPt.mpr fun x hx ↦ ?_ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) ⊢ x ∈ s [PROOFSTEP] have L : Tendsto (fun n : ℕ => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) := by have : Tendsto (fun n : ℕ => (2 : ℝ) * (1 / 2) ^ n) atTop (𝓝 (2 * 0)) := (tendsto_pow_atTop_nhds_0_of_lt_1 I0.le I1).const_mul _ rw [mul_zero] at this exact squeeze_zero (fun n => diam_nonneg) (fun n => diam_closedBall (pow_nonneg I0.le _)) this [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) ⊢ Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) [PROOFSTEP] have : Tendsto (fun n : ℕ => (2 : ℝ) * (1 / 2) ^ n) atTop (𝓝 (2 * 0)) := (tendsto_pow_atTop_nhds_0_of_lt_1 I0.le I1).const_mul _ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this✝ : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) this : Tendsto (fun n => 2 * (1 / 2) ^ n) atTop (𝓝 (2 * 0)) ⊢ Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) [PROOFSTEP] rw [mul_zero] at this [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this✝ : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) this : Tendsto (fun n => 2 * (1 / 2) ^ n) atTop (𝓝 0) ⊢ Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) [PROOFSTEP] exact squeeze_zero (fun n => diam_nonneg) (fun n => diam_closedBall (pow_nonneg I0.le _)) this [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) ⊢ x ∈ s [PROOFSTEP] refine nonempty_iInter_of_nonempty_biInter (fun n => isClosed_ball) (fun n => bounded_closedBall) (fun N ↦ ?_) L [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) N : ℕ ⊢ Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n)) [PROOFSTEP] obtain ⟨y, hxy, ys⟩ : ∃ y, y ∈ ball x ((1 / 2) ^ N) ∩ s := clusterPt_principal_iff.1 hx _ (ball_mem_nhds x (pow_pos I0 N)) [GOAL] case intro.intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) N : ℕ y : ℕ → ℕ hxy : y ∈ ball x ((1 / 2) ^ N) ys : y ∈ s ⊢ Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n)) [PROOFSTEP] have E : ⋂ (n : ℕ) (H : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n) = ⋂ (n : ℕ) (H : n ≤ N), closedBall (u (y n)) ((1 / 2) ^ n) := by refine iInter_congr fun n ↦ iInter_congr fun hn ↦ ?_ have : x n = y n := apply_eq_of_dist_lt (mem_ball'.1 hxy) hn rw [this] [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) N : ℕ y : ℕ → ℕ hxy : y ∈ ball x ((1 / 2) ^ N) ys : y ∈ s ⊢ ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n) = ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (y n)) ((1 / 2) ^ n) [PROOFSTEP] refine iInter_congr fun n ↦ iInter_congr fun hn ↦ ?_ [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) N : ℕ y : ℕ → ℕ hxy : y ∈ ball x ((1 / 2) ^ N) ys : y ∈ s n : ℕ hn : n ≤ N ⊢ closedBall (u (x n)) ((1 / 2) ^ n) = closedBall (u (y n)) ((1 / 2) ^ n) [PROOFSTEP] have : x n = y n := apply_eq_of_dist_lt (mem_ball'.1 hxy) hn [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this✝ : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) N : ℕ y : ℕ → ℕ hxy : y ∈ ball x ((1 / 2) ^ N) ys : y ∈ s n : ℕ hn : n ≤ N this : x n = y n ⊢ closedBall (u (x n)) ((1 / 2) ^ n) = closedBall (u (y n)) ((1 / 2) ^ n) [PROOFSTEP] rw [this] [GOAL] case intro.intro E✝ : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) N : ℕ y : ℕ → ℕ hxy : y ∈ ball x ((1 / 2) ^ N) ys : y ∈ s E : ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n) = ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (y n)) ((1 / 2) ^ n) ⊢ Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n)) [PROOFSTEP] rw [E] [GOAL] case intro.intro E✝ : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) N : ℕ y : ℕ → ℕ hxy : y ∈ ball x ((1 / 2) ^ N) ys : y ∈ s E : ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n) = ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (y n)) ((1 / 2) ^ n) ⊢ Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (y n)) ((1 / 2) ^ n)) [PROOFSTEP] apply Nonempty.mono _ ys [GOAL] E✝ : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g x : ℕ → ℕ hx : ClusterPt x (𝓟 s) L : Tendsto (fun n => diam (closedBall (u (x n)) ((1 / 2) ^ n))) atTop (𝓝 0) N : ℕ y : ℕ → ℕ hxy : y ∈ ball x ((1 / 2) ^ N) ys : y ∈ s E : ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (x n)) ((1 / 2) ^ n) = ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (y n)) ((1 / 2) ^ n) ⊢ ⋂ (n : ℕ), closedBall (u (y n)) ((1 / 2) ^ n) ⊆ ⋂ (n : ℕ) (_ : n ≤ N), closedBall (u (y n)) ((1 / 2) ^ n) [PROOFSTEP] apply iInter_subset_iInter₂ [GOAL] case intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g s_closed : IsClosed s ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] obtain ⟨f, -, f_surj, f_cont⟩ : ∃ f : (ℕ → ℕ) → s, (∀ x : s, f x = x) ∧ Surjective f ∧ Continuous f := by apply exists_retraction_subtype_of_isClosed s_closed simpa only [nonempty_coe_sort] using g_surj.nonempty [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g s_closed : IsClosed s ⊢ ∃ f, (∀ (x : ↑s), f ↑x = x) ∧ Surjective f ∧ Continuous f [PROOFSTEP] apply exists_retraction_subtype_of_isClosed s_closed [GOAL] E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g s_closed : IsClosed s ⊢ Set.Nonempty s [PROOFSTEP] simpa only [nonempty_coe_sort] using g_surj.nonempty [GOAL] case intro.intro.intro.intro E : ℕ → Type u_1 α : Type u_2 inst✝³ : MetricSpace α inst✝² : CompleteSpace α inst✝¹ : SecondCountableTopology α inst✝ : Nonempty α this : MetricSpace (ℕ → ℕ) := metricSpaceNatNat I0 : 0 < 1 / 2 I1 : 1 / 2 < 1 u : ℕ → α hu : DenseRange u s : Set (ℕ → ℕ) := {x | Set.Nonempty (⋂ (n : ℕ), closedBall (u (x n)) ((1 / 2) ^ n))} g : ↑s → α := fun x => Set.Nonempty.some (_ : ↑x ∈ s) A : ∀ (x : ↑s) (n : ℕ), dist (g x) (u (↑x n)) ≤ (1 / 2) ^ n g_cont : Continuous g g_surj : Surjective g s_closed : IsClosed s f : (ℕ → ℕ) → ↑s f_surj : Surjective f f_cont : Continuous f ⊢ ∃ f, Continuous f ∧ Surjective f [PROOFSTEP] exact ⟨g ∘ f, g_cont.comp f_cont, g_surj.comp f_surj⟩ [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x y : (i : ι) → F i ⊢ Summable fun i => min ((1 / 2) ^ encode i) (dist (x i) (y i)) [PROOFSTEP] refine summable_of_nonneg_of_le (fun i => ?_) (fun i => min_le_left _ _) summable_geometric_two_encode [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x y : (i : ι) → F i i : ι ⊢ 0 ≤ min ((1 / 2) ^ encode i) (dist (x i) (y i)) [PROOFSTEP] exact le_min (pow_nonneg (by norm_num) _) dist_nonneg [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x y : (i : ι) → F i i : ι ⊢ 0 ≤ 1 / 2 [PROOFSTEP] norm_num [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x y : (i : ι) → F i i j : ι x✝ : j ≠ i ⊢ 0 ≤ (1 / 2) ^ encode j [PROOFSTEP] simp [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x y : (i : ι) → F i i : ι h : dist x y < (1 / 2) ^ encode i ⊢ dist (x i) (y i) ≤ dist x y [PROOFSTEP] simpa only [not_le.2 h, false_or_iff] using min_le_iff.1 (min_dist_le_dist_pi x y i) [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x : (i : ι) → F i ⊢ dist x x = 0 [PROOFSTEP] simp [dist_eq_tsum] [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x y : (i : ι) → F i ⊢ dist x y = dist y x [PROOFSTEP] simp [dist_eq_tsum, dist_comm] [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x y z : (i : ι) → F i i : ι ⊢ min ((1 / 2) ^ encode i) (dist (x i) (y i) + dist (y i) (z i)) = min ((1 / 2) ^ encode i) (min ((1 / 2) ^ encode i) (dist (x i) (y i)) + min ((1 / 2) ^ encode i) (dist (y i) (z i))) [PROOFSTEP] convert congr_arg ((↑) : ℝ≥0 → ℝ) (min_add_distrib ((1 / 2 : ℝ≥0) ^ encode i) (nndist (x i) (y i)) (nndist (y i) (z i))) [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x✝¹ x✝ : (i : ι) → F i ⊢ (fun x y => ↑{ val := dist x y, property := (_ : 0 ≤ dist x y) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ⊢ uniformity ((i : ι) → F i) = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] simp only [Pi.uniformity, comap_iInf, gt_iff_lt, preimage_setOf_eq, comap_principal, PseudoMetricSpace.uniformity_dist] [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ⊢ ⨅ (i : ι) (i_1 : ℝ) (_ : 0 < i_1), 𝓟 {a | dist (Prod.fst a i) (Prod.snd a i) < i_1} = ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] apply le_antisymm [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ⊢ ⨅ (i : ι) (i_1 : ℝ) (_ : 0 < i_1), 𝓟 {a | dist (Prod.fst a i) (Prod.snd a i) < i_1} ≤ ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] simp only [le_iInf_iff, le_principal_iff] [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ⊢ ∀ (i : ℝ), 0 < i → {p | dist p.fst p.snd < i} ∈ ⨅ (i : ι) (i_2 : ℝ) (_ : 0 < i_2), 𝓟 {a | dist (Prod.fst a i) (Prod.snd a i) < i_2} [PROOFSTEP] intro ε εpos [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε ⊢ {p | dist p.fst p.snd < ε} ∈ ⨅ (i : ι) (i_1 : ℝ) (_ : 0 < i_1), 𝓟 {a | dist (Prod.fst a i) (Prod.snd a i) < i_1} [PROOFSTEP] obtain ⟨K, hK⟩ : ∃ K : Finset ι, (∑' i : { j // j ∉ K }, (1 / 2 : ℝ) ^ encode (i : ι)) < ε / 2 := ((tendsto_order.1 (tendsto_tsum_compl_atTop_zero fun i : ι => (1 / 2 : ℝ) ^ encode i)).2 _ (half_pos εpos)).exists [GOAL] case a.intro E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 ⊢ {p | dist p.fst p.snd < ε} ∈ ⨅ (i : ι) (i_1 : ℝ) (_ : 0 < i_1), 𝓟 {a | dist (Prod.fst a i) (Prod.snd a i) < i_1} [PROOFSTEP] obtain ⟨δ, δpos, hδ⟩ : ∃ δ : ℝ, 0 < δ ∧ (K.card : ℝ) * δ < ε / 2 := exists_pos_mul_lt (half_pos εpos) _ [GOAL] case a.intro.intro.intro E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 ⊢ {p | dist p.fst p.snd < ε} ∈ ⨅ (i : ι) (i_1 : ℝ) (_ : 0 < i_1), 𝓟 {a | dist (Prod.fst a i) (Prod.snd a i) < i_1} [PROOFSTEP] apply @mem_iInf_of_iInter _ _ _ _ _ K.finite_toSet fun i => {p : (∀ i : ι, F i) × ∀ i : ι, F i | dist (p.fst i) (p.snd i) < δ} [GOAL] case a.intro.intro.intro.hV E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 ⊢ ∀ (i : ↑↑K), {p | dist (Prod.fst p ↑i) (Prod.snd p ↑i) < δ} ∈ ⨅ (i_1 : ℝ) (_ : 0 < i_1), 𝓟 {a | dist (Prod.fst a ↑i) (Prod.snd a ↑i) < i_1} [PROOFSTEP] rintro ⟨i, hi⟩ [GOAL] case a.intro.intro.intro.hV.mk E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 i : ι hi : i ∈ ↑K ⊢ {p | dist (Prod.fst p ↑{ val := i, property := hi }) (Prod.snd p ↑{ val := i, property := hi }) < δ} ∈ ⨅ (i_1 : ℝ) (_ : 0 < i_1), 𝓟 {a | dist (Prod.fst a ↑{ val := i, property := hi }) (Prod.snd a ↑{ val := i, property := hi }) < i_1} [PROOFSTEP] refine' mem_iInf_of_mem δ (mem_iInf_of_mem δpos _) [GOAL] case a.intro.intro.intro.hV.mk E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 i : ι hi : i ∈ ↑K ⊢ {p | dist (Prod.fst p ↑{ val := i, property := hi }) (Prod.snd p ↑{ val := i, property := hi }) < δ} ∈ 𝓟 {a | dist (Prod.fst a ↑{ val := i, property := hi }) (Prod.snd a ↑{ val := i, property := hi }) < δ} [PROOFSTEP] simp only [Prod.forall, imp_self, mem_principal, Subset.rfl] [GOAL] case a.intro.intro.intro.hU E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 ⊢ ⋂ (i : ↑↑K), {p | dist (Prod.fst p ↑i) (Prod.snd p ↑i) < δ} ⊆ {p | dist p.fst p.snd < ε} [PROOFSTEP] rintro ⟨x, y⟩ hxy [GOAL] case a.intro.intro.intro.hU.mk E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : (x, y) ∈ ⋂ (i : ↑↑K), {p | dist (Prod.fst p ↑i) (Prod.snd p ↑i) < δ} ⊢ (x, y) ∈ {p | dist p.fst p.snd < ε} [PROOFSTEP] simp only [mem_iInter, mem_setOf_eq, SetCoe.forall, Finset.mem_range, Finset.mem_coe] at hxy [GOAL] case a.intro.intro.intro.hU.mk E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ ⊢ (x, y) ∈ {p | dist p.fst p.snd < ε} [PROOFSTEP] calc dist x y = ∑' i : ι, min ((1 / 2) ^ encode i : ℝ) (dist (x i) (y i)) := rfl _ = (∑ i in K, min ((1 / 2) ^ encode i : ℝ) (dist (x i) (y i))) + ∑' i : ↑(K : Set ι)ᶜ, min ((1 / 2) ^ encode (i : ι) : ℝ) (dist (x i) (y i)) := (sum_add_tsum_compl (dist_summable _ _)).symm _ ≤ (∑ i in K, dist (x i) (y i)) + ∑' i : ↑(K : Set ι)ᶜ, ((1 / 2) ^ encode (i : ι) : ℝ) := by refine' add_le_add (Finset.sum_le_sum fun i _ => min_le_right _ _) _ refine' tsum_le_tsum (fun i => min_le_left _ _) _ _ · apply Summable.subtype (dist_summable x y) (↑K : Set ι)ᶜ · apply Summable.subtype summable_geometric_two_encode (↑K : Set ι)ᶜ _ < (∑ _i in K, δ) + ε / 2 := by apply add_lt_add_of_le_of_lt _ hK refine Finset.sum_le_sum fun i hi => (hxy i ?_).le simpa using hi _ ≤ ε / 2 + ε / 2 := (add_le_add_right (by simpa only [Finset.sum_const, nsmul_eq_mul] using hδ.le) _) _ = ε := add_halves _ [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ ⊢ ∑ i in K, min ((1 / 2) ^ encode i) (dist (x i) (y i)) + ∑' (i : ↑(↑K)ᶜ), min ((1 / 2) ^ encode ↑i) (dist (x ↑i) (y ↑i)) ≤ ∑ i in K, dist (x i) (y i) + ∑' (i : ↑(↑K)ᶜ), (1 / 2) ^ encode ↑i [PROOFSTEP] refine' add_le_add (Finset.sum_le_sum fun i _ => min_le_right _ _) _ [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ ⊢ ∑' (i : ↑(↑K)ᶜ), min ((1 / 2) ^ encode ↑i) (dist (x ↑i) (y ↑i)) ≤ ∑' (i : ↑(↑K)ᶜ), (1 / 2) ^ encode ↑i [PROOFSTEP] refine' tsum_le_tsum (fun i => min_le_left _ _) _ _ [GOAL] case refine'_1 E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ ⊢ Summable fun i => min ((1 / 2) ^ encode ↑i) (dist (x ↑i) (y ↑i)) [PROOFSTEP] apply Summable.subtype (dist_summable x y) (↑K : Set ι)ᶜ [GOAL] case refine'_2 E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ ⊢ Summable fun i => (1 / 2) ^ encode ↑i [PROOFSTEP] apply Summable.subtype summable_geometric_two_encode (↑K : Set ι)ᶜ [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ ⊢ ∑ i in K, dist (x i) (y i) + ∑' (i : ↑(↑K)ᶜ), (1 / 2) ^ encode ↑i < ∑ _i in K, δ + ε / 2 [PROOFSTEP] apply add_lt_add_of_le_of_lt _ hK [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ ⊢ ∑ i in K, dist (x i) (y i) ≤ ∑ _i in K, δ [PROOFSTEP] refine Finset.sum_le_sum fun i hi => (hxy i ?_).le [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ i : ι hi : i ∈ K ⊢ i ∈ K [PROOFSTEP] simpa using hi [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ε : ℝ εpos : 0 < ε K : Finset ι hK : ∑' (i : { j // ¬j ∈ K }), (1 / 2) ^ encode ↑i < ε / 2 δ : ℝ δpos : 0 < δ hδ : ↑(Finset.card K) * δ < ε / 2 x y : (i : ι) → F i hxy : ∀ (x_1 : ι), x_1 ∈ K → dist (x x_1) (y x_1) < δ ⊢ ∑ _i in K, δ ≤ ε / 2 [PROOFSTEP] simpa only [Finset.sum_const, nsmul_eq_mul] using hδ.le [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ⊢ ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} ≤ ⨅ (i : ι) (i_1 : ℝ) (_ : 0 < i_1), 𝓟 {a | dist (Prod.fst a i) (Prod.snd a i) < i_1} [PROOFSTEP] simp only [le_iInf_iff, le_principal_iff] [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) ⊢ ∀ (i : ι) (i_1 : ℝ), 0 < i_1 → {a | dist (Prod.fst a i) (Prod.snd a i) < i_1} ∈ ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] intro i ε εpos [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) i : ι ε : ℝ εpos : 0 < ε ⊢ {a | dist (Prod.fst a i) (Prod.snd a i) < ε} ∈ ⨅ (ε : ℝ) (_ : 0 < ε), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] refine' mem_iInf_of_mem (min ((1 / 2) ^ encode i : ℝ) ε) _ [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) i : ι ε : ℝ εpos : 0 < ε ⊢ {a | dist (Prod.fst a i) (Prod.snd a i) < ε} ∈ ⨅ (_ : 0 < min ((1 / 2) ^ encode i) ε), 𝓟 {p | dist p.fst p.snd < min ((1 / 2) ^ encode i) ε} [PROOFSTEP] have : 0 < min ((1 / 2) ^ encode i : ℝ) ε := lt_min (by simp) εpos [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) i : ι ε : ℝ εpos : 0 < ε ⊢ 0 < (1 / 2) ^ encode i [PROOFSTEP] simp [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) i : ι ε : ℝ εpos : 0 < ε this : 0 < min ((1 / 2) ^ encode i) ε ⊢ {a | dist (Prod.fst a i) (Prod.snd a i) < ε} ∈ ⨅ (_ : 0 < min ((1 / 2) ^ encode i) ε), 𝓟 {p | dist p.fst p.snd < min ((1 / 2) ^ encode i) ε} [PROOFSTEP] refine' mem_iInf_of_mem this _ [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) i : ι ε : ℝ εpos : 0 < ε this : 0 < min ((1 / 2) ^ encode i) ε ⊢ {a | dist (Prod.fst a i) (Prod.snd a i) < ε} ∈ 𝓟 {p | dist p.fst p.snd < min ((1 / 2) ^ encode i) ε} [PROOFSTEP] simp only [and_imp, Prod.forall, setOf_subset_setOf, lt_min_iff, mem_principal] [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) i : ι ε : ℝ εpos : 0 < ε this : 0 < min ((1 / 2) ^ encode i) ε ⊢ ∀ (a b : (i : ι) → F i), dist a b < (1 / 2) ^ encode i → dist a b < ε → dist (a i) (b i) < ε [PROOFSTEP] intro x y hn hε [GOAL] case a E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) i : ι ε : ℝ εpos : 0 < ε this : 0 < min ((1 / 2) ^ encode i) ε x y : (i : ι) → F i hn : dist x y < (1 / 2) ^ encode i hε : dist x y < ε ⊢ dist (x i) (y i) < ε [PROOFSTEP] calc dist (x i) (y i) ≤ dist x y := dist_le_dist_pi_of_dist_lt hn _ < ε := hε [GOAL] E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x✝ y✝ : (i : ι) → F i hxy : dist x✝ y✝ = 0 ⊢ x✝ = y✝ [PROOFSTEP] ext1 n [GOAL] case h E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x✝ y✝ : (i : ι) → F i hxy : dist x✝ y✝ = 0 n : ι ⊢ x✝ n = y✝ n [PROOFSTEP] rw [← dist_le_zero, ← hxy] [GOAL] case h E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x✝ y✝ : (i : ι) → F i hxy : dist x✝ y✝ = 0 n : ι ⊢ dist (x✝ n) (y✝ n) ≤ dist x✝ y✝ [PROOFSTEP] apply dist_le_dist_pi_of_dist_lt [GOAL] case h.h E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x✝ y✝ : (i : ι) → F i hxy : dist x✝ y✝ = 0 n : ι ⊢ (dist x✝ fun n => y✝ n) < (1 / 2) ^ encode n [PROOFSTEP] rw [hxy] [GOAL] case h.h E : ℕ → Type u_1 ι : Type u_2 inst✝¹ : Encodable ι F : ι → Type u_3 inst✝ : (i : ι) → MetricSpace (F i) x✝ y✝ : (i : ι) → F i hxy : dist x✝ y✝ = 0 n : ι ⊢ 0 < (1 / 2) ^ encode n [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Topology.MetricSpace.PiNat", "llama_tokens": 92683}
[GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ e : α ≃ β h₁ : UniformContinuous e.toFun h₂ : UniformContinuous e.invFun e' : α ≃ β h₁' : UniformContinuous e'.toFun h₂' : UniformContinuous e'.invFun h : { toEquiv := e, uniformContinuous_toFun := h₁, uniformContinuous_invFun := h₂ }.toEquiv = { toEquiv := e', uniformContinuous_toFun := h₁', uniformContinuous_invFun := h₂' }.toEquiv ⊢ { toEquiv := e, uniformContinuous_toFun := h₁, uniformContinuous_invFun := h₂ } = { toEquiv := e', uniformContinuous_toFun := h₁', uniformContinuous_invFun := h₂' } [PROOFSTEP] simpa only [mk.injEq] [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ f : α ≃ᵤ β g : β → α hg : Function.RightInverse g ↑f x : β ⊢ ↑(UniformEquiv.symm f) (↑f (g x)) = ↑(UniformEquiv.symm f) x [PROOFSTEP] rw [hg x] [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ f : α ≃ᵤ β g : β → α hg : Function.RightInverse g ↑f this : g = ↑(UniformEquiv.symm f) ⊢ Function.LeftInverse g ↑f [PROOFSTEP] convert f.left_inv [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ f : α ≃ᵤ β g : β → α hg : Function.RightInverse g ↑f this : g = ↑(UniformEquiv.symm f) ⊢ Function.RightInverse g ↑f [PROOFSTEP] convert f.right_inv using 1 [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ f : α ≃ᵤ β g : β → α hg : Function.RightInverse g ↑f this : g = ↑(UniformEquiv.symm f) ⊢ UniformContinuous { toFun := ↑f, invFun := g, left_inv := (_ : Function.LeftInverse g ↑f), right_inv := (_ : Function.RightInverse g ↑f) }.invFun [PROOFSTEP] convert f.symm.uniformContinuous [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ h : α ≃ᵤ β ⊢ UniformInducing (↑(UniformEquiv.symm h) ∘ ↑h) [PROOFSTEP] simp only [symm_comp_self, uniformInducing_id] [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ h : α ≃ᵤ β ⊢ UniformSpace.comap (↑h) inst✝² = inst✝³ [PROOFSTEP] ext : 1 [GOAL] case a α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ h : α ≃ᵤ β ⊢ uniformity α = uniformity α [PROOFSTEP] exact h.uniformInducing.comap_uniformity [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ f : α → β hf : UniformEmbedding f ⊢ UniformContinuous (Equiv.ofInjective f (_ : Function.Injective f)).invFun [PROOFSTEP] rw [hf.toUniformInducing.uniformContinuous_iff, Equiv.invFun_as_coe, Equiv.self_comp_ofInjective_symm] [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ f : α → β hf : UniformEmbedding f ⊢ UniformContinuous Subtype.val [PROOFSTEP] exact uniformContinuous_subtype_val [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ ⊢ UniformContinuous (Equiv.prodAssoc α β γ).invFun [PROOFSTEP] rw [Equiv.invFun, Equiv.prodAssoc] [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ ⊢ UniformContinuous { toFun := fun p => (p.fst.fst, p.fst.snd, p.snd), invFun := fun p => ((p.fst, p.snd.fst), p.snd.snd), left_inv := (_ : ∀ (x : (α × β) × γ), (fun p => ((p.fst, p.snd.fst), p.snd.snd)) ((fun p => (p.fst.fst, p.fst.snd, p.snd)) x) = x), right_inv := (_ : ∀ (x : α × β × γ), (fun p => (p.fst.fst, p.fst.snd, p.snd)) ((fun p => ((p.fst, p.snd.fst), p.snd.snd)) x) = x) }.2 [PROOFSTEP] exact (uniformContinuous_fst.prod_mk (uniformContinuous_fst.comp uniformContinuous_snd)).prod_mk (uniformContinuous_snd.comp uniformContinuous_snd) [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ src✝ : ULift α ≃ α := Equiv.ulift ⊢ UniformContinuous { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.invFun [PROOFSTEP] have hf : UniformInducing (@Equiv.ulift.{v, u} α).toFun := ⟨rfl⟩ [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ src✝ : ULift α ≃ α := Equiv.ulift hf : UniformInducing Equiv.ulift.toFun ⊢ UniformContinuous { toFun := src✝.toFun, invFun := src✝.invFun, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun), right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }.invFun [PROOFSTEP] simp_rw [hf.uniformContinuous_iff] [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝³ : UniformSpace α inst✝² : UniformSpace β inst✝¹ : UniformSpace γ inst✝ : UniformSpace δ src✝ : ULift α ≃ α := Equiv.ulift hf : UniformInducing Equiv.ulift.toFun ⊢ UniformContinuous (Equiv.ulift.toFun ∘ Equiv.ulift.invFun) [PROOFSTEP] exact uniformContinuous_id [GOAL] α : Type u β : Type u_1 γ : Type u_2 δ : Type u_3 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α ≃ β hf : UniformInducing ↑f ⊢ UniformContinuous (↑f ∘ { toFun := f.toFun, invFun := f.invFun, left_inv := (_ : Function.LeftInverse f.invFun f.toFun), right_inv := (_ : Function.RightInverse f.invFun f.toFun) }.invFun) [PROOFSTEP] simpa using uniformContinuous_id
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Equiv", "llama_tokens": 2928}
[GOAL] K✝ : Type u_1 inst✝⁴ : DivisionRing K✝ inst✝³ : TopologicalSpace K✝ α : Type u_2 inst✝² : Field α inst✝¹ : TopologicalSpace α inst✝ : TopologicalDivisionRing α K : Subfield α src✝ : Subring α := Subring.topologicalClosure K.toSubring x : α hx : x ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := _root_.closure ↑K, mul_mem' := (_ : ∀ {a b : α}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }, one_mem' := (_ : 1 ∈ src✝.carrier) }, add_mem' := (_ : ∀ {a b : α}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier), zero_mem' := (_ : 0 ∈ src✝.carrier) }, neg_mem' := (_ : ∀ {x : α}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier ⊢ x⁻¹ ∈ { toSubsemiring := { toSubmonoid := { toSubsemigroup := { carrier := _root_.closure ↑K, mul_mem' := (_ : ∀ {a b : α}, a ∈ src✝.carrier → b ∈ src✝.carrier → a * b ∈ src✝.carrier) }, one_mem' := (_ : 1 ∈ src✝.carrier) }, add_mem' := (_ : ∀ {a b : α}, a ∈ src✝.carrier → b ∈ src✝.carrier → a + b ∈ src✝.carrier), zero_mem' := (_ : 0 ∈ src✝.carrier) }, neg_mem' := (_ : ∀ {x : α}, x ∈ src✝.carrier → -x ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier [PROOFSTEP] dsimp only at hx ⊢ [GOAL] K✝ : Type u_1 inst✝⁴ : DivisionRing K✝ inst✝³ : TopologicalSpace K✝ α : Type u_2 inst✝² : Field α inst✝¹ : TopologicalSpace α inst✝ : TopologicalDivisionRing α K : Subfield α src✝ : Subring α := Subring.topologicalClosure K.toSubring x : α hx : x ∈ _root_.closure ↑K ⊢ x⁻¹ ∈ _root_.closure ↑K [PROOFSTEP] rcases eq_or_ne x 0 with (rfl | h) [GOAL] case inl K✝ : Type u_1 inst✝⁴ : DivisionRing K✝ inst✝³ : TopologicalSpace K✝ α : Type u_2 inst✝² : Field α inst✝¹ : TopologicalSpace α inst✝ : TopologicalDivisionRing α K : Subfield α src✝ : Subring α := Subring.topologicalClosure K.toSubring hx : 0 ∈ _root_.closure ↑K ⊢ 0⁻¹ ∈ _root_.closure ↑K [PROOFSTEP] rwa [inv_zero] [GOAL] case inr K✝ : Type u_1 inst✝⁴ : DivisionRing K✝ inst✝³ : TopologicalSpace K✝ α : Type u_2 inst✝² : Field α inst✝¹ : TopologicalSpace α inst✝ : TopologicalDivisionRing α K : Subfield α src✝ : Subring α := Subring.topologicalClosure K.toSubring x : α hx : x ∈ _root_.closure ↑K h : x ≠ 0 ⊢ x⁻¹ ∈ _root_.closure ↑K [PROOFSTEP] rw [← @inv_coe_set α (Subfield α) _ _ SubfieldClass.toInvMemClass K, ← Set.image_inv] [GOAL] case inr K✝ : Type u_1 inst✝⁴ : DivisionRing K✝ inst✝³ : TopologicalSpace K✝ α : Type u_2 inst✝² : Field α inst✝¹ : TopologicalSpace α inst✝ : TopologicalDivisionRing α K : Subfield α src✝ : Subring α := Subring.topologicalClosure K.toSubring x : α hx : x ∈ _root_.closure ↑K h : x ≠ 0 ⊢ x⁻¹ ∈ _root_.closure (Inv.inv '' ↑K) [PROOFSTEP] exact mem_closure_image (continuousAt_inv₀ h) hx [GOAL] K : Type u_1 inst✝⁴ : DivisionRing K inst✝³ : TopologicalSpace K 𝕜 : Type u_2 inst✝² : Field 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : TopologicalRing 𝕜 a b : 𝕜 h : a ≠ 0 x : 𝕜 ⊢ (fun y => (y - b) / a) ((fun x => a * x + b) x) = x [PROOFSTEP] simp only [add_sub_cancel] [GOAL] K : Type u_1 inst✝⁴ : DivisionRing K inst✝³ : TopologicalSpace K 𝕜 : Type u_2 inst✝² : Field 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : TopologicalRing 𝕜 a b : 𝕜 h : a ≠ 0 x : 𝕜 ⊢ a * x / a = x [PROOFSTEP] exact mul_div_cancel_left x h [GOAL] K : Type u_1 inst✝⁴ : DivisionRing K inst✝³ : TopologicalSpace K 𝕜 : Type u_2 inst✝² : Field 𝕜 inst✝¹ : TopologicalSpace 𝕜 inst✝ : TopologicalRing 𝕜 a b : 𝕜 h : a ≠ 0 y : 𝕜 ⊢ (fun x => a * x + b) ((fun y => (y - b) / a) y) = y [PROOFSTEP] simp [mul_div_cancel' _ h] [GOAL] K : Type u_1 inst✝³ : DivisionRing K inst✝² : TopologicalSpace K α : Type u_2 β : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : LinearOrderedSemifield β a✝ : α f : α → β a : α h1 : IsLocalMin f a h2 : ∀ᶠ (z : α) in 𝓝 a, 0 < f z ⊢ IsLocalMax f⁻¹ a [PROOFSTEP] filter_upwards [h1, h2] with z h3 h4 using (inv_le_inv h4 h2.self_of_nhds).mpr h3 [GOAL] K : Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace 𝕜 inst✝² : T1Space 𝕜 inst✝¹ : Ring 𝕜 inst✝ : NoZeroDivisors 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hsq : EqOn (f ^ 2) 1 S ⊢ EqOn f 1 S ∨ EqOn f (-1) S [PROOFSTEP] have : DiscreteTopology ({1, -1} : Set 𝕜) := discrete_of_t1_of_finite [GOAL] K : Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace 𝕜 inst✝² : T1Space 𝕜 inst✝¹ : Ring 𝕜 inst✝ : NoZeroDivisors 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hsq : EqOn (f ^ 2) 1 S this : DiscreteTopology ↑{1, -1} ⊢ EqOn f 1 S ∨ EqOn f (-1) S [PROOFSTEP] have hmaps : MapsTo f S {1, -1} [GOAL] case hmaps K : Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace 𝕜 inst✝² : T1Space 𝕜 inst✝¹ : Ring 𝕜 inst✝ : NoZeroDivisors 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hsq : EqOn (f ^ 2) 1 S this : DiscreteTopology ↑{1, -1} ⊢ MapsTo f S {1, -1} [PROOFSTEP] simpa only [EqOn, Pi.one_apply, Pi.pow_apply, sq_eq_one_iff] using hsq [GOAL] K : Type u_1 inst✝⁶ : DivisionRing K inst✝⁵ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace 𝕜 inst✝² : T1Space 𝕜 inst✝¹ : Ring 𝕜 inst✝ : NoZeroDivisors 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hsq : EqOn (f ^ 2) 1 S this : DiscreteTopology ↑{1, -1} hmaps : MapsTo f S {1, -1} ⊢ EqOn f 1 S ∨ EqOn f (-1) S [PROOFSTEP] simpa using hS.eqOn_const_of_mapsTo hf hmaps [GOAL] K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 ⊢ EqOn f g S ∨ EqOn f (-g) S [PROOFSTEP] have hsq : EqOn ((f / g) ^ 2) 1 S := fun x hx => by simpa [div_eq_one_iff_eq (pow_ne_zero _ (hg_ne hx))] using hsq hx [GOAL] K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 x : α hx : x ∈ S ⊢ ((f / g) ^ 2) x = OfNat.ofNat 1 x [PROOFSTEP] simpa [div_eq_one_iff_eq (pow_ne_zero _ (hg_ne hx))] using hsq hx [GOAL] K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq✝ : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 hsq : EqOn ((f / g) ^ 2) 1 S ⊢ EqOn f g S ∨ EqOn f (-g) S [PROOFSTEP] simpa (config := { contextual := true }) [EqOn, div_eq_iff (hg_ne _)] using hS.eq_one_or_eq_neg_one_of_sq_eq (hf.div hg fun z => hg_ne) hsq [GOAL] K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 y : α hy : y ∈ S hy' : f y = g y x : α hx : x ∈ S ⊢ f x = g x [PROOFSTEP] rcases hS.eq_or_eq_neg_of_sq_eq hf hg @hsq @hg_ne with (h | h) [GOAL] case inl K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 y : α hy : y ∈ S hy' : f y = g y x : α hx : x ∈ S h : EqOn f g S ⊢ f x = g x [PROOFSTEP] exact h hx [GOAL] case inr K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 y : α hy : y ∈ S hy' : f y = g y x : α hx : x ∈ S h : EqOn f (-g) S ⊢ f x = g x [PROOFSTEP] rw [h _, Pi.neg_apply, neg_eq_iff_add_eq_zero, ← two_mul, mul_eq_zero, iff_false_iff.2 (hg_ne _)] at hy' ⊢ [GOAL] case inr K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 y : α hy : y ∈ S hy' : 2 = 0 ∨ False x : α hx : x ∈ S h : EqOn f (-g) S ⊢ 2 = 0 ∨ False [PROOFSTEP] assumption [GOAL] K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 y : α hy : y ∈ S hy' : 2 = 0 ∨ False x : α hx : x ∈ S h : EqOn f (-g) S ⊢ x ∈ S [PROOFSTEP] assumption [GOAL] K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 y : α hy : y ∈ S hy' : 2 = 0 ∨ g y = 0 x : α hx : x ∈ S h : EqOn f (-g) S ⊢ y ∈ S [PROOFSTEP] assumption [GOAL] K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 y : α hy : y ∈ S hy' : (-g) y = g y x : α hx : x ∈ S h : EqOn f (-g) S ⊢ x ∈ S [PROOFSTEP] assumption [GOAL] K : Type u_1 inst✝⁷ : DivisionRing K inst✝⁶ : TopologicalSpace K α : Type u_2 𝕜 : Type u_3 f g : α → 𝕜 S : Set α inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace 𝕜 inst✝³ : T1Space 𝕜 inst✝² : Field 𝕜 inst✝¹ : HasContinuousInv₀ 𝕜 inst✝ : ContinuousMul 𝕜 hS : IsPreconnected S hf : ContinuousOn f S hg : ContinuousOn g S hsq : EqOn (f ^ 2) (g ^ 2) S hg_ne : ∀ {x : α}, x ∈ S → g x ≠ 0 y : α hy : y ∈ S hy' : f y = g y x : α hx : x ∈ S h : EqOn f (-g) S ⊢ y ∈ S [PROOFSTEP] assumption
{"mathlib_filename": "Mathlib.Topology.Algebra.Field", "llama_tokens": 5935}
[GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 ⊢ ContinuousAt hatInv x [PROOFSTEP] haveI : T3Space (hat K) := Completion.t3Space K [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this : T3Space (hat K) ⊢ ContinuousAt hatInv x [PROOFSTEP] refine' denseInducing_coe.continuousAt_extend _ [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this : T3Space (hat K) ⊢ ∀ᶠ (x : hat K) in 𝓝 x, ∃ c, Tendsto (fun x => ↑K x⁻¹) (Filter.comap (↑K) (𝓝 x)) (𝓝 c) [PROOFSTEP] apply mem_of_superset (compl_singleton_mem_nhds h) [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this : T3Space (hat K) ⊢ {0}ᶜ ⊆ {x | (fun x => ∃ c, Tendsto (fun x => ↑K x⁻¹) (Filter.comap (↑K) (𝓝 x)) (𝓝 c)) x} [PROOFSTEP] intro y y_ne [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this : T3Space (hat K) y : hat K y_ne : y ∈ {0}ᶜ ⊢ y ∈ {x | (fun x => ∃ c, Tendsto (fun x => ↑K x⁻¹) (Filter.comap (↑K) (𝓝 x)) (𝓝 c)) x} [PROOFSTEP] rw [mem_compl_singleton_iff] at y_ne [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this : T3Space (hat K) y : hat K y_ne : y ≠ 0 ⊢ y ∈ {x | (fun x => ∃ c, Tendsto (fun x => ↑K x⁻¹) (Filter.comap (↑K) (𝓝 x)) (𝓝 c)) x} [PROOFSTEP] apply CompleteSpace.complete [GOAL] case a K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this : T3Space (hat K) y : hat K y_ne : y ≠ 0 ⊢ Cauchy (map (fun x => ↑K x⁻¹) (Filter.comap (↑K) (𝓝 y))) [PROOFSTEP] have : (fun (x : K) => (↑x⁻¹ : hat K)) = ((fun (y : K) => (↑y : hat K)) ∘ (fun (x : K) => (x⁻¹ : K))) := by unfold Function.comp simp [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this : T3Space (hat K) y : hat K y_ne : y ≠ 0 ⊢ (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ [PROOFSTEP] unfold Function.comp [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this : T3Space (hat K) y : hat K y_ne : y ≠ 0 ⊢ (fun x => ↑K x⁻¹) = fun x => (fun y => ↑K y) ((fun x => x⁻¹) x) [PROOFSTEP] simp [GOAL] case a K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ ⊢ Cauchy (map (fun x => ↑K x⁻¹) (Filter.comap (↑K) (𝓝 y))) [PROOFSTEP] rw [this, ← Filter.map_map] [GOAL] case a K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ ⊢ Cauchy (map (fun y => ↑K y) (map (fun x => x⁻¹) (Filter.comap (↑K) (𝓝 y)))) [PROOFSTEP] apply Cauchy.map _ (Completion.uniformContinuous_coe K) [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ ⊢ Cauchy (map (fun x => x⁻¹) (Filter.comap (↑K) (𝓝 y))) [PROOFSTEP] apply CompletableTopField.nice [GOAL] case a K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ ⊢ Cauchy (Filter.comap (↑K) (𝓝 y)) [PROOFSTEP] haveI := denseInducing_coe.comap_nhds_neBot y [GOAL] case a K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝¹ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this✝ : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ this : NeBot (Filter.comap (↑K) (𝓝 y)) ⊢ Cauchy (Filter.comap (↑K) (𝓝 y)) [PROOFSTEP] apply cauchy_nhds.comap [GOAL] case a.hm K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝¹ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this✝ : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ this : NeBot (Filter.comap (↑K) (𝓝 y)) ⊢ Filter.comap (fun p => (↑K p.fst, ↑K p.snd)) (uniformity (hat K)) ≤ uniformity K [PROOFSTEP] rw [Completion.comap_coe_eq_uniformity] [GOAL] case a K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ ⊢ 𝓝 0 ⊓ Filter.comap (↑K) (𝓝 y) = ⊥ [PROOFSTEP] have eq_bot : 𝓝 (0 : hat K) ⊓ 𝓝 y = ⊥ := by by_contra h exact y_ne (eq_of_nhds_neBot <| neBot_iff.mpr h).symm [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ ⊢ 𝓝 0 ⊓ 𝓝 y = ⊥ [PROOFSTEP] by_contra h [GOAL] K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h✝ : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ h : ¬𝓝 0 ⊓ 𝓝 y = ⊥ ⊢ False [PROOFSTEP] exact y_ne (eq_of_nhds_neBot <| neBot_iff.mpr h).symm [GOAL] case a K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ eq_bot : 𝓝 0 ⊓ 𝓝 y = ⊥ ⊢ 𝓝 0 ⊓ Filter.comap (↑K) (𝓝 y) = ⊥ [PROOFSTEP] erw [denseInducing_coe.nhds_eq_comap (0 : K), ← Filter.comap_inf, eq_bot] [GOAL] case a K : Type u_1 inst✝² : Field K inst✝¹ : UniformSpace K inst✝ : CompletableTopField K x : hat K h : x ≠ 0 this✝ : T3Space (hat K) y : hat K y_ne : y ≠ 0 this : (fun x => ↑K x⁻¹) = (fun y => ↑K y) ∘ fun x => x⁻¹ eq_bot : 𝓝 0 ⊓ 𝓝 y = ⊥ ⊢ Filter.comap ↑K ⊥ = ⊥ [PROOFSTEP] exact comap_bot [GOAL] K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K ⊢ (↑K x)⁻¹ = ↑K x⁻¹ [PROOFSTEP] by_cases h : x = 0 [GOAL] case pos K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : x = 0 ⊢ (↑K x)⁻¹ = ↑K x⁻¹ [PROOFSTEP] rw [h, inv_zero] [GOAL] case pos K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : x = 0 ⊢ (↑K 0)⁻¹ = ↑K 0 [PROOFSTEP] dsimp [Inv.inv] [GOAL] case pos K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : x = 0 ⊢ (if ↑K 0 = 0 then 0 else hatInv (↑K 0)) = ↑K 0 [PROOFSTEP] norm_cast [GOAL] case pos K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : x = 0 ⊢ (if 0 = 0 then 0 else hatInv 0) = 0 [PROOFSTEP] simp [GOAL] case neg K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : ¬x = 0 ⊢ (↑K x)⁻¹ = ↑K x⁻¹ [PROOFSTEP] conv_lhs => dsimp [Inv.inv] [GOAL] K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : ¬x = 0 | (↑K x)⁻¹ [PROOFSTEP] dsimp [Inv.inv] [GOAL] K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : ¬x = 0 | (↑K x)⁻¹ [PROOFSTEP] dsimp [Inv.inv] [GOAL] K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : ¬x = 0 | (↑K x)⁻¹ [PROOFSTEP] dsimp [Inv.inv] [GOAL] case neg K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : ¬x = 0 ⊢ (if ↑K x = 0 then 0 else hatInv (↑K x)) = ↑K x⁻¹ [PROOFSTEP] rw [if_neg] [GOAL] case neg K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : ¬x = 0 ⊢ hatInv (↑K x) = ↑K x⁻¹ [PROOFSTEP] exact hatInv_extends h [GOAL] case neg.hnc K : Type u_1 inst✝³ : Field K inst✝² : UniformSpace K inst✝¹ : TopologicalDivisionRing K inst✝ : CompletableTopField K x : K h : ¬x = 0 ⊢ ¬↑K x = 0 [PROOFSTEP] exact fun H => h (denseEmbedding_coe.inj H) [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 ⊢ x * hatInv x = 1 [PROOFSTEP] haveI : T1Space (hat K) := T2Space.t1Space [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) ⊢ x * hatInv x = 1 [PROOFSTEP] let f := fun x : hat K => x * hatInv x [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x ⊢ x * hatInv x = 1 [PROOFSTEP] let c := (fun (x : K) => (x : hat K)) [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x ⊢ x * hatInv x = 1 [PROOFSTEP] change f x = 1 [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x ⊢ f x = 1 [PROOFSTEP] have cont : ContinuousAt f x := by letI : TopologicalSpace (hat K × hat K) := instTopologicalSpaceProd have : ContinuousAt (fun y : hat K => ((y, hatInv y) : hat K × hat K)) x := continuous_id.continuousAt.prod (continuous_hatInv x_ne) exact (_root_.continuous_mul.continuousAt.comp this : _) [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x ⊢ ContinuousAt f x [PROOFSTEP] letI : TopologicalSpace (hat K × hat K) := instTopologicalSpaceProd [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this✝ : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x this : TopologicalSpace (hat K × hat K) := instTopologicalSpaceProd ⊢ ContinuousAt f x [PROOFSTEP] have : ContinuousAt (fun y : hat K => ((y, hatInv y) : hat K × hat K)) x := continuous_id.continuousAt.prod (continuous_hatInv x_ne) [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this✝¹ : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x this✝ : TopologicalSpace (hat K × hat K) := instTopologicalSpaceProd this : ContinuousAt (fun y => (y, hatInv y)) x ⊢ ContinuousAt f x [PROOFSTEP] exact (_root_.continuous_mul.continuousAt.comp this : _) [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x ⊢ f x = 1 [PROOFSTEP] have clo : x ∈ closure (c '' {0}ᶜ) := by have := denseInducing_coe.dense x rw [← image_univ, show (univ : Set K) = {0} ∪ {0}ᶜ from (union_compl_self _).symm, image_union] at this apply mem_closure_of_mem_closure_union this rw [image_singleton] exact compl_singleton_mem_nhds x_ne [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x ⊢ x ∈ closure (c '' {0}ᶜ) [PROOFSTEP] have := denseInducing_coe.dense x [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this✝ : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x this : x ∈ closure (range ↑K) ⊢ x ∈ closure (c '' {0}ᶜ) [PROOFSTEP] rw [← image_univ, show (univ : Set K) = {0} ∪ {0}ᶜ from (union_compl_self _).symm, image_union] at this [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this✝ : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x this : x ∈ closure (↑K '' {0} ∪ ↑K '' {0}ᶜ) ⊢ x ∈ closure (c '' {0}ᶜ) [PROOFSTEP] apply mem_closure_of_mem_closure_union this [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this✝ : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x this : x ∈ closure (↑K '' {0} ∪ ↑K '' {0}ᶜ) ⊢ (↑K '' {0})ᶜ ∈ 𝓝 x [PROOFSTEP] rw [image_singleton] [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this✝ : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x this : x ∈ closure (↑K '' {0} ∪ ↑K '' {0}ᶜ) ⊢ {↑K 0}ᶜ ∈ 𝓝 x [PROOFSTEP] exact compl_singleton_mem_nhds x_ne [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) ⊢ f x = 1 [PROOFSTEP] have fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) := mem_closure_image cont clo [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) ⊢ f x = 1 [PROOFSTEP] have : f '' (c '' {0}ᶜ) ⊆ {1} := by rw [image_image] rintro _ ⟨z, z_ne, rfl⟩ rw [mem_singleton_iff] rw [mem_compl_singleton_iff] at z_ne dsimp rw [hatInv_extends z_ne, ← coe_mul] rw [mul_inv_cancel z_ne, coe_one] [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) ⊢ f '' (c '' {0}ᶜ) ⊆ {1} [PROOFSTEP] rw [image_image] [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) ⊢ (fun x => f (c x)) '' {0}ᶜ ⊆ {1} [PROOFSTEP] rintro _ ⟨z, z_ne, rfl⟩ [GOAL] case intro.intro K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) z : K z_ne : z ∈ {0}ᶜ ⊢ (fun x => f (c x)) z ∈ {1} [PROOFSTEP] rw [mem_singleton_iff] [GOAL] case intro.intro K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) z : K z_ne : z ∈ {0}ᶜ ⊢ (fun x => f (c x)) z = 1 [PROOFSTEP] rw [mem_compl_singleton_iff] at z_ne [GOAL] case intro.intro K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) z : K z_ne : z ≠ 0 ⊢ (fun x => f (c x)) z = 1 [PROOFSTEP] dsimp [GOAL] case intro.intro K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) z : K z_ne : z ≠ 0 ⊢ ↑K z * hatInv (↑K z) = 1 [PROOFSTEP] rw [hatInv_extends z_ne, ← coe_mul] [GOAL] case intro.intro K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) z : K z_ne : z ≠ 0 ⊢ ↑K (z * z⁻¹) = 1 [PROOFSTEP] rw [mul_inv_cancel z_ne, coe_one] [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this✝ : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) fxclo : f x ∈ closure (f '' (c '' {0}ᶜ)) this : f '' (c '' {0}ᶜ) ⊆ {1} ⊢ f x = 1 [PROOFSTEP] replace fxclo := closure_mono this fxclo [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K x : hat K x_ne : x ≠ 0 this✝ : T1Space (hat K) f : hat K → hat K := fun x => x * hatInv x c : K → hat K := fun x => ↑K x cont : ContinuousAt f x clo : x ∈ closure (c '' {0}ᶜ) this : f '' (c '' {0}ᶜ) ⊆ {1} fxclo : f x ∈ closure {1} ⊢ f x = 1 [PROOFSTEP] rwa [closure_singleton, mem_singleton_iff] at fxclo [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝ : Inv (hat K) := instInvCompletion ⊢ CommRing (hat K) [PROOFSTEP] infer_instance [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝¹ : Inv (hat K) := instInvCompletion src✝ : CommRing (hat K) := inferInstance x : hat K x_ne : x ≠ 0 ⊢ x * x⁻¹ = 1 [PROOFSTEP] simp only [Inv.inv, if_neg x_ne, mul_hatInv_cancel x_ne] [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝¹ : Inv (hat K) := instInvCompletion src✝ : CommRing (hat K) := inferInstance ⊢ 0⁻¹ = 0 [PROOFSTEP] simp only [Inv.inv, ite_true] [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝ : TopologicalRing (hat K) := topologicalRing ⊢ ∀ ⦃x : hat K⦄, x ≠ 0 → ContinuousAt Inv.inv x [PROOFSTEP] intro x x_ne [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝ : TopologicalRing (hat K) := topologicalRing x : hat K x_ne : x ≠ 0 ⊢ ContinuousAt Inv.inv x [PROOFSTEP] have : {y | hatInv y = y⁻¹} ∈ 𝓝 x := haveI : {(0 : hat K)}ᶜ ⊆ {y : hat K | hatInv y = y⁻¹} := by intro y y_ne rw [mem_compl_singleton_iff] at y_ne dsimp [Inv.inv] rw [if_neg y_ne] mem_of_superset (compl_singleton_mem_nhds x_ne) this [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝ : TopologicalRing (hat K) := topologicalRing x : hat K x_ne : x ≠ 0 ⊢ {0}ᶜ ⊆ {y | hatInv y = y⁻¹} [PROOFSTEP] intro y y_ne [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝ : TopologicalRing (hat K) := topologicalRing x : hat K x_ne : x ≠ 0 y : hat K y_ne : y ∈ {0}ᶜ ⊢ y ∈ {y | hatInv y = y⁻¹} [PROOFSTEP] rw [mem_compl_singleton_iff] at y_ne [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝ : TopologicalRing (hat K) := topologicalRing x : hat K x_ne : x ≠ 0 y : hat K y_ne : y ≠ 0 ⊢ y ∈ {y | hatInv y = y⁻¹} [PROOFSTEP] dsimp [Inv.inv] [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝ : TopologicalRing (hat K) := topologicalRing x : hat K x_ne : x ≠ 0 y : hat K y_ne : y ≠ 0 ⊢ hatInv y = if y = 0 then 0 else hatInv y [PROOFSTEP] rw [if_neg y_ne] [GOAL] K : Type u_1 inst✝⁴ : Field K inst✝³ : UniformSpace K inst✝² : TopologicalDivisionRing K inst✝¹ : CompletableTopField K inst✝ : UniformAddGroup K src✝ : TopologicalRing (hat K) := topologicalRing x : hat K x_ne : x ≠ 0 this : {y | hatInv y = y⁻¹} ∈ 𝓝 x ⊢ ContinuousAt Inv.inv x [PROOFSTEP] exact ContinuousAt.congr (continuous_hatInv x_ne) this [GOAL] K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K ⊢ ∀ (F : Filter { x // x ∈ K }), Cauchy F → 𝓝 0 ⊓ F = ⊥ → Cauchy (Filter.map (fun x => x⁻¹) F) [PROOFSTEP] intro F F_cau inf_F [GOAL] K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K F : Filter { x // x ∈ K } F_cau : Cauchy F inf_F : 𝓝 0 ⊓ F = ⊥ ⊢ Cauchy (Filter.map (fun x => x⁻¹) F) [PROOFSTEP] let i : K →+* L := K.subtype [GOAL] K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K F : Filter { x // x ∈ K } F_cau : Cauchy F inf_F : 𝓝 0 ⊓ F = ⊥ i : { x // x ∈ K } →+* L := subtype K ⊢ Cauchy (Filter.map (fun x => x⁻¹) F) [PROOFSTEP] have hi : UniformInducing i := uniformEmbedding_subtype_val.toUniformInducing [GOAL] K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K F : Filter { x // x ∈ K } F_cau : Cauchy F inf_F : 𝓝 0 ⊓ F = ⊥ i : { x // x ∈ K } →+* L := subtype K hi : UniformInducing ↑i ⊢ Cauchy (Filter.map (fun x => x⁻¹) F) [PROOFSTEP] rw [← hi.cauchy_map_iff] at F_cau ⊢ [GOAL] K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K F : Filter { x // x ∈ K } inf_F : 𝓝 0 ⊓ F = ⊥ i : { x // x ∈ K } →+* L := subtype K F_cau : Cauchy (Filter.map (↑i) F) hi : UniformInducing ↑i ⊢ Cauchy (Filter.map (↑i) (Filter.map (fun x => x⁻¹) F)) [PROOFSTEP] rw [map_comm (show (i ∘ fun x => x⁻¹) = (fun x => x⁻¹) ∘ i by ext; rfl)] [GOAL] K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K F : Filter { x // x ∈ K } inf_F : 𝓝 0 ⊓ F = ⊥ i : { x // x ∈ K } →+* L := subtype K F_cau : Cauchy (Filter.map (↑i) F) hi : UniformInducing ↑i ⊢ (↑i ∘ fun x => x⁻¹) = (fun x => x⁻¹) ∘ ↑i [PROOFSTEP] ext [GOAL] case h K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K F : Filter { x // x ∈ K } inf_F : 𝓝 0 ⊓ F = ⊥ i : { x // x ∈ K } →+* L := subtype K F_cau : Cauchy (Filter.map (↑i) F) hi : UniformInducing ↑i x✝ : { x // x ∈ K } ⊢ (↑i ∘ fun x => x⁻¹) x✝ = ((fun x => x⁻¹) ∘ ↑i) x✝ [PROOFSTEP] rfl [GOAL] K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K F : Filter { x // x ∈ K } inf_F : 𝓝 0 ⊓ F = ⊥ i : { x // x ∈ K } →+* L := subtype K F_cau : Cauchy (Filter.map (↑i) F) hi : UniformInducing ↑i ⊢ Cauchy (Filter.map (fun x => x⁻¹) (Filter.map (↑i) F)) [PROOFSTEP] apply CompletableTopField.nice _ F_cau [GOAL] K✝ : Type u_1 inst✝⁴ : Field K✝ inst✝³ : UniformSpace K✝ L : Type u_2 inst✝² : Field L inst✝¹ : UniformSpace L inst✝ : CompletableTopField L K : Subfield L src✝ : SeparatedSpace ↑↑K := Subtype.separatedSpace ↑K F : Filter { x // x ∈ K } inf_F : 𝓝 0 ⊓ F = ⊥ i : { x // x ∈ K } →+* L := subtype K F_cau : Cauchy (Filter.map (↑i) F) hi : UniformInducing ↑i ⊢ 𝓝 0 ⊓ Filter.map (↑i) F = ⊥ [PROOFSTEP] rw [← Filter.push_pull', ← map_zero i, ← hi.inducing.nhds_eq_comap, inf_F, Filter.map_bot] [GOAL] K : Type u_1 inst✝⁹ : Field K inst✝⁸ : UniformSpace K L✝ : Type u_2 inst✝⁷ : Field L✝ inst✝⁶ : UniformSpace L✝ inst✝⁵ : CompletableTopField L✝ L : Type u_3 inst✝⁴ : Field L inst✝³ : UniformSpace L inst✝² : TopologicalDivisionRing L inst✝¹ : SeparatedSpace L inst✝ : CompleteSpace L src✝ : SeparatedSpace L := inst✝¹ F : Filter L cau_F : Cauchy F hF : 𝓝 0 ⊓ F = ⊥ ⊢ Cauchy (map (fun x => x⁻¹) F) [PROOFSTEP] haveI : NeBot F := cau_F.1 [GOAL] K : Type u_1 inst✝⁹ : Field K inst✝⁸ : UniformSpace K L✝ : Type u_2 inst✝⁷ : Field L✝ inst✝⁶ : UniformSpace L✝ inst✝⁵ : CompletableTopField L✝ L : Type u_3 inst✝⁴ : Field L inst✝³ : UniformSpace L inst✝² : TopologicalDivisionRing L inst✝¹ : SeparatedSpace L inst✝ : CompleteSpace L src✝ : SeparatedSpace L := inst✝¹ F : Filter L cau_F : Cauchy F hF : 𝓝 0 ⊓ F = ⊥ this : NeBot F ⊢ Cauchy (map (fun x => x⁻¹) F) [PROOFSTEP] rcases CompleteSpace.complete cau_F with ⟨x, hx⟩ [GOAL] case intro K : Type u_1 inst✝⁹ : Field K inst✝⁸ : UniformSpace K L✝ : Type u_2 inst✝⁷ : Field L✝ inst✝⁶ : UniformSpace L✝ inst✝⁵ : CompletableTopField L✝ L : Type u_3 inst✝⁴ : Field L inst✝³ : UniformSpace L inst✝² : TopologicalDivisionRing L inst✝¹ : SeparatedSpace L inst✝ : CompleteSpace L src✝ : SeparatedSpace L := inst✝¹ F : Filter L cau_F : Cauchy F hF : 𝓝 0 ⊓ F = ⊥ this : NeBot F x : L hx : F ≤ 𝓝 x ⊢ Cauchy (map (fun x => x⁻¹) F) [PROOFSTEP] have hx' : x ≠ 0 := by rintro rfl rw [inf_eq_right.mpr hx] at hF exact cau_F.1.ne hF [GOAL] K : Type u_1 inst✝⁹ : Field K inst✝⁸ : UniformSpace K L✝ : Type u_2 inst✝⁷ : Field L✝ inst✝⁶ : UniformSpace L✝ inst✝⁵ : CompletableTopField L✝ L : Type u_3 inst✝⁴ : Field L inst✝³ : UniformSpace L inst✝² : TopologicalDivisionRing L inst✝¹ : SeparatedSpace L inst✝ : CompleteSpace L src✝ : SeparatedSpace L := inst✝¹ F : Filter L cau_F : Cauchy F hF : 𝓝 0 ⊓ F = ⊥ this : NeBot F x : L hx : F ≤ 𝓝 x ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] K : Type u_1 inst✝⁹ : Field K inst✝⁸ : UniformSpace K L✝ : Type u_2 inst✝⁷ : Field L✝ inst✝⁶ : UniformSpace L✝ inst✝⁵ : CompletableTopField L✝ L : Type u_3 inst✝⁴ : Field L inst✝³ : UniformSpace L inst✝² : TopologicalDivisionRing L inst✝¹ : SeparatedSpace L inst✝ : CompleteSpace L src✝ : SeparatedSpace L := inst✝¹ F : Filter L cau_F : Cauchy F hF : 𝓝 0 ⊓ F = ⊥ this : NeBot F hx : F ≤ 𝓝 0 ⊢ False [PROOFSTEP] rw [inf_eq_right.mpr hx] at hF [GOAL] K : Type u_1 inst✝⁹ : Field K inst✝⁸ : UniformSpace K L✝ : Type u_2 inst✝⁷ : Field L✝ inst✝⁶ : UniformSpace L✝ inst✝⁵ : CompletableTopField L✝ L : Type u_3 inst✝⁴ : Field L inst✝³ : UniformSpace L inst✝² : TopologicalDivisionRing L inst✝¹ : SeparatedSpace L inst✝ : CompleteSpace L src✝ : SeparatedSpace L := inst✝¹ F : Filter L cau_F : Cauchy F hF : F = ⊥ this : NeBot F hx : F ≤ 𝓝 0 ⊢ False [PROOFSTEP] exact cau_F.1.ne hF [GOAL] case intro K : Type u_1 inst✝⁹ : Field K inst✝⁸ : UniformSpace K L✝ : Type u_2 inst✝⁷ : Field L✝ inst✝⁶ : UniformSpace L✝ inst✝⁵ : CompletableTopField L✝ L : Type u_3 inst✝⁴ : Field L inst✝³ : UniformSpace L inst✝² : TopologicalDivisionRing L inst✝¹ : SeparatedSpace L inst✝ : CompleteSpace L src✝ : SeparatedSpace L := inst✝¹ F : Filter L cau_F : Cauchy F hF : 𝓝 0 ⊓ F = ⊥ this : NeBot F x : L hx : F ≤ 𝓝 x hx' : x ≠ 0 ⊢ Cauchy (map (fun x => x⁻¹) F) [PROOFSTEP] exact Filter.Tendsto.cauchy_map (calc map (fun x => x⁻¹) F ≤ map (fun x => x⁻¹) (𝓝 x) := map_mono hx _ ≤ 𝓝 x⁻¹ := continuousAt_inv₀ hx')
{"mathlib_filename": "Mathlib.Topology.Algebra.UniformField", "llama_tokens": 14965}
[GOAL] M : Type u_1 X : Type u_2 inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : TopologicalSpace X ⊢ instTopologicalSpaceUnits = TopologicalSpace.induced val inst✝² ⊓ TopologicalSpace.induced (fun u => ↑u⁻¹) inst✝² [PROOFSTEP] simp only [inducing_embedProduct.1, instTopologicalSpaceProd, induced_inf, instTopologicalSpaceMulOpposite, induced_compose] [GOAL] M : Type u_1 X : Type u_2 inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : TopologicalSpace X ⊢ TopologicalSpace.induced (Prod.fst ∘ ↑(embedProduct M)) inst✝² ⊓ TopologicalSpace.induced ((unop ∘ Prod.snd) ∘ ↑(embedProduct M)) inst✝² = TopologicalSpace.induced val inst✝² ⊓ TopologicalSpace.induced (fun u => ↑u⁻¹) inst✝² [PROOFSTEP] rfl [GOAL] M✝ : Type u_1 X : Type u_2 inst✝⁴ : TopologicalSpace M✝ inst✝³ : Monoid M✝ inst✝² : TopologicalSpace X M : Type u_3 inst✝¹ : Monoid M inst✝ : TopologicalSpace M f : M → M hc : ContinuousOn f {x | IsUnit x} hf : ∀ (u : Mˣ), f ↑u = ↑u⁻¹ ⊢ Embedding val [PROOFSTEP] refine ⟨⟨?_⟩, ext⟩ [GOAL] M✝ : Type u_1 X : Type u_2 inst✝⁴ : TopologicalSpace M✝ inst✝³ : Monoid M✝ inst✝² : TopologicalSpace X M : Type u_3 inst✝¹ : Monoid M inst✝ : TopologicalSpace M f : M → M hc : ContinuousOn f {x | IsUnit x} hf : ∀ (u : Mˣ), f ↑u = ↑u⁻¹ ⊢ instTopologicalSpaceUnits = TopologicalSpace.induced val inst✝ [PROOFSTEP] rw [topology_eq_inf, inf_eq_left, ← continuous_iff_le_induced, @continuous_iff_continuousAt _ _ (.induced _ _)] [GOAL] M✝ : Type u_1 X : Type u_2 inst✝⁴ : TopologicalSpace M✝ inst✝³ : Monoid M✝ inst✝² : TopologicalSpace X M : Type u_3 inst✝¹ : Monoid M inst✝ : TopologicalSpace M f : M → M hc : ContinuousOn f {x | IsUnit x} hf : ∀ (u : Mˣ), f ↑u = ↑u⁻¹ ⊢ ∀ (x : Mˣ), ContinuousAt (fun u => ↑u⁻¹) x [PROOFSTEP] intros u s hs [GOAL] M✝ : Type u_1 X : Type u_2 inst✝⁴ : TopologicalSpace M✝ inst✝³ : Monoid M✝ inst✝² : TopologicalSpace X M : Type u_3 inst✝¹ : Monoid M inst✝ : TopologicalSpace M f : M → M hc : ContinuousOn f {x | IsUnit x} hf : ∀ (u : Mˣ), f ↑u = ↑u⁻¹ u : Mˣ s : Set M hs : s ∈ 𝓝 ((fun u => ↑u⁻¹) u) ⊢ s ∈ Filter.map (fun u => ↑u⁻¹) (𝓝 u) [PROOFSTEP] simp only [← hf, nhds_induced, Filter.mem_map] at hs ⊢ [GOAL] M✝ : Type u_1 X : Type u_2 inst✝⁴ : TopologicalSpace M✝ inst✝³ : Monoid M✝ inst✝² : TopologicalSpace X M : Type u_3 inst✝¹ : Monoid M inst✝ : TopologicalSpace M f : M → M hc : ContinuousOn f {x | IsUnit x} hf : ∀ (u : Mˣ), f ↑u = ↑u⁻¹ u : Mˣ s : Set M hs : s ∈ 𝓝 (f ↑u) ⊢ (fun u => f ↑u) ⁻¹' s ∈ comap val (𝓝 ↑u) [PROOFSTEP] exact ⟨_, mem_inf_principal.1 (hc u u.isUnit hs), fun u' hu' ↦ hu' u'.isUnit⟩ [GOAL] M : Type u_1 X : Type u_2 inst✝² : TopologicalSpace M inst✝¹ : Monoid M inst✝ : TopologicalSpace X f : X → Mˣ ⊢ Continuous f ↔ Continuous (val ∘ f) ∧ Continuous fun x => ↑(f x)⁻¹ [PROOFSTEP] simp only [inducing_embedProduct.continuous_iff, embedProduct_apply, (· ∘ ·), continuous_prod_mk, opHomeomorph.symm.inducing.continuous_iff, opHomeomorph_symm_apply, unop_op]
{"mathlib_filename": "Mathlib.Topology.Algebra.Constructions", "llama_tokens": 1454}
{"mathlib_filename": "Mathlib.Topology.Algebra.Star", "llama_tokens": 0}
[GOAL] M : Type u_1 X : Type u_2 Y : Type u_3 α : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : SMul M X inst✝² : ContinuousSMul M X f : Y → M g : Y → X b : Y s : Set Y inst✝¹ : SMul Mᵐᵒᵖ X inst✝ : IsCentralScalar M X ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] suffices Continuous fun p : M × X => MulOpposite.op p.fst • p.snd from this.comp (MulOpposite.continuous_unop.prod_map continuous_id) [GOAL] M : Type u_1 X : Type u_2 Y : Type u_3 α : Type u_4 inst✝⁶ : TopologicalSpace M inst✝⁵ : TopologicalSpace X inst✝⁴ : TopologicalSpace Y inst✝³ : SMul M X inst✝² : ContinuousSMul M X f : Y → M g : Y → X b : Y s : Set Y inst✝¹ : SMul Mᵐᵒᵖ X inst✝ : IsCentralScalar M X ⊢ Continuous fun p => MulOpposite.op p.fst • p.snd [PROOFSTEP] simpa only [op_smul_eq_smul] using (continuous_smul : Continuous fun p : M × X => _) [GOAL] ι : Sort u_1 M : Type u_2 X : Type u_3 inst✝¹ : TopologicalSpace M inst✝ : SMul M X ts : Set (TopologicalSpace X) h : ∀ (t : TopologicalSpace X), t ∈ ts → ContinuousSMul M X ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] rw [← (@sInf_singleton _ _ ‹TopologicalSpace M› :)] [GOAL] ι : Sort u_1 M : Type u_2 X : Type u_3 inst✝¹ : TopologicalSpace M inst✝ : SMul M X ts : Set (TopologicalSpace X) h : ∀ (t : TopologicalSpace X), t ∈ ts → ContinuousSMul M X ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] exact continuous_sInf_rng.2 fun t ht => continuous_sInf_dom₂ (Eq.refl _) ht (@ContinuousSMul.continuous_smul _ _ _ _ t (h t ht)) [GOAL] ι : Sort u_1 M : Type u_2 X : Type u_3 inst✝³ : TopologicalSpace M inst✝² : SMul M X t₁ t₂ : TopologicalSpace X inst✝¹ : ContinuousSMul M X inst✝ : ContinuousSMul M X ⊢ ContinuousSMul M X [PROOFSTEP] rw [inf_eq_iInf] [GOAL] ι : Sort u_1 M : Type u_2 X : Type u_3 inst✝³ : TopologicalSpace M inst✝² : SMul M X t₁ t₂ : TopologicalSpace X inst✝¹ : ContinuousSMul M X inst✝ : ContinuousSMul M X ⊢ ContinuousSMul M X [PROOFSTEP] refine' continuousSMul_iInf fun b => _ [GOAL] ι : Sort u_1 M : Type u_2 X : Type u_3 inst✝³ : TopologicalSpace M inst✝² : SMul M X t₁ t₂ : TopologicalSpace X inst✝¹ : ContinuousSMul M X inst✝ : ContinuousSMul M X b : Bool ⊢ ContinuousSMul M X [PROOFSTEP] cases b [GOAL] case false ι : Sort u_1 M : Type u_2 X : Type u_3 inst✝³ : TopologicalSpace M inst✝² : SMul M X t₁ t₂ : TopologicalSpace X inst✝¹ : ContinuousSMul M X inst✝ : ContinuousSMul M X ⊢ ContinuousSMul M X [PROOFSTEP] assumption [GOAL] case true ι : Sort u_1 M : Type u_2 X : Type u_3 inst✝³ : TopologicalSpace M inst✝² : SMul M X t₁ t₂ : TopologicalSpace X inst✝¹ : ContinuousSMul M X inst✝ : ContinuousSMul M X ⊢ ContinuousSMul M X [PROOFSTEP] assumption [GOAL] G : Type u_1 P : Type u_2 inst✝⁵ : AddGroup G inst✝⁴ : AddTorsor G P inst✝³ : TopologicalSpace G inst✝² : PreconnectedSpace G inst✝¹ : TopologicalSpace P inst✝ : ContinuousVAdd G P ⊢ IsPreconnected Set.univ [PROOFSTEP] convert isPreconnected_univ.image (Equiv.vaddConst (Classical.arbitrary P) : G → P) (continuous_id.vadd continuous_const).continuousOn [GOAL] case h.e'_3 G : Type u_1 P : Type u_2 inst✝⁵ : AddGroup G inst✝⁴ : AddTorsor G P inst✝³ : TopologicalSpace G inst✝² : PreconnectedSpace G inst✝¹ : TopologicalSpace P inst✝ : ContinuousVAdd G P ⊢ Set.univ = ↑(Equiv.vaddConst (Classical.arbitrary P)) '' Set.univ [PROOFSTEP] rw [Set.image_univ, Equiv.range_eq_univ]
{"mathlib_filename": "Mathlib.Topology.Algebra.MulAction", "llama_tokens": 1582}
[GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s : Set α hs : s ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} t : Set α ht : t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} ⊢ s ∪ t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} [PROOFSTEP] rcases s.eq_empty_or_nonempty with rfl | ⟨x, hx⟩ [GOAL] case inl α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z t : Set α ht : t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} hs : ∅ ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} ⊢ ∅ ∪ t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} [PROOFSTEP] rwa [empty_union] [GOAL] case inr.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s : Set α hs : s ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} t : Set α ht : t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} x : α hx : x ∈ s ⊢ s ∪ t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} [PROOFSTEP] rcases t.eq_empty_or_nonempty with rfl | ⟨y, hy⟩ [GOAL] case inr.intro.inl α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s : Set α hs : s ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} x : α hx : x ∈ s ht : ∅ ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} ⊢ s ∪ ∅ ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} [PROOFSTEP] rwa [union_empty] [GOAL] case inr.intro.inr.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s : Set α hs : s ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} t : Set α ht : t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} x : α hx : x ∈ s y : α hy : y ∈ t ⊢ s ∪ t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} [PROOFSTEP] rsuffices ⟨C, hC⟩ : ∃ C, ∀ z ∈ s ∪ t, dist x z ≤ C [GOAL] case inr.intro.inr.intro.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s : Set α hs : s ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} t : Set α ht : t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} x : α hx : x ∈ s y : α hy : y ∈ t C : ℝ hC : ∀ (z : α), z ∈ s ∪ t → dist x z ≤ C ⊢ s ∪ t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} [PROOFSTEP] refine ⟨C + C, fun a ha b hb => (dist_triangle a x b).trans ?_⟩ [GOAL] case inr.intro.inr.intro.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s : Set α hs : s ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} t : Set α ht : t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} x : α hx : x ∈ s y : α hy : y ∈ t C : ℝ hC : ∀ (z : α), z ∈ s ∪ t → dist x z ≤ C a : α ha : a ∈ s ∪ t b : α hb : b ∈ s ∪ t ⊢ dist a x + dist x b ≤ C + C [PROOFSTEP] simpa only [dist_comm] using add_le_add (hC _ ha) (hC _ hb) [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s : Set α hs : s ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} t : Set α ht : t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} x : α hx : x ∈ s y : α hy : y ∈ t ⊢ ∃ C, ∀ (z : α), z ∈ s ∪ t → dist x z ≤ C [PROOFSTEP] rcases hs with ⟨Cs, hs⟩ [GOAL] case intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s t : Set α ht : t ∈ {s | ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C} x : α hx : x ∈ s y : α hy : y ∈ t Cs : ℝ hs : ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ Cs ⊢ ∃ C, ∀ (z : α), z ∈ s ∪ t → dist x z ≤ C [PROOFSTEP] rcases ht with ⟨Ct, ht⟩ [GOAL] case intro.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 dist : α → α → ℝ dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z s t : Set α x : α hx : x ∈ s y : α hy : y ∈ t Cs : ℝ hs : ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ Cs Ct : ℝ ht : ∀ ⦃x : α⦄, x ∈ t → ∀ ⦃y : α⦄, y ∈ t → dist x y ≤ Ct ⊢ ∃ C, ∀ (z : α), z ∈ s ∪ t → dist x z ≤ C [PROOFSTEP] refine ⟨max Cs (dist x y + Ct), fun z hz => hz.elim (fun hz => (hs hx hz).trans (le_max_left _ _)) (fun hz => (dist_triangle x y z).trans <| (add_le_add le_rfl (ht hy hz)).trans (le_max_right _ _))⟩ [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Sort u_3 x y : α dist : α → α → ℝ dist_self : ∀ (x : α), dist x x = 0 dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ⊢ dist x y + dist y x = 2 * dist x y [PROOFSTEP] rw [two_mul, dist_comm] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 m m' : PseudoMetricSpace α h : toDist = toDist ⊢ m = m' [PROOFSTEP] cases' m with d _ _ _ ed hed U hU B hB [GOAL] case mk α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 m' : PseudoMetricSpace α d : Dist α dist_self✝ : ∀ (x : α), dist x x = 0 dist_comm✝ : ∀ (x y : α), dist x y = dist y x dist_triangle✝ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed : α → α → ℝ≥0∞ hed : ∀ (x y : α), ed x y = ENNReal.ofReal (dist x y) U : UniformSpace α hU : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B : Bornology α hB : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} h : toDist = toDist ⊢ mk dist_self✝ dist_comm✝ dist_triangle✝ ed hed U B = m' [PROOFSTEP] cases' m' with d' _ _ _ ed' hed' U' hU' B' hB' [GOAL] case mk.mk α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 d : Dist α dist_self✝¹ : ∀ (x : α), dist x x = 0 dist_comm✝¹ : ∀ (x y : α), dist x y = dist y x dist_triangle✝¹ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed : α → α → ℝ≥0∞ hed : ∀ (x y : α), ed x y = ENNReal.ofReal (dist x y) U : UniformSpace α hU : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B : Bornology α hB : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} d' : Dist α dist_self✝ : ∀ (x : α), dist x x = 0 dist_comm✝ : ∀ (x y : α), dist x y = dist y x dist_triangle✝ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed' : α → α → ℝ≥0∞ hed' : ∀ (x y : α), ed' x y = ENNReal.ofReal (dist x y) U' : UniformSpace α hU' : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B' : Bornology α hB' : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} h : toDist = toDist ⊢ mk dist_self✝¹ dist_comm✝¹ dist_triangle✝¹ ed hed U B = mk dist_self✝ dist_comm✝ dist_triangle✝ ed' hed' U' B' [PROOFSTEP] obtain rfl : d = d' := h [GOAL] case mk.mk α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 d : Dist α dist_self✝¹ : ∀ (x : α), dist x x = 0 dist_comm✝¹ : ∀ (x y : α), dist x y = dist y x dist_triangle✝¹ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed : α → α → ℝ≥0∞ hed : ∀ (x y : α), ed x y = ENNReal.ofReal (dist x y) U : UniformSpace α hU : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B : Bornology α hB : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ed' : α → α → ℝ≥0∞ U' : UniformSpace α B' : Bornology α dist_self✝ : ∀ (x : α), dist x x = 0 dist_comm✝ : ∀ (x y : α), dist x y = dist y x dist_triangle✝ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z hed' : ∀ (x y : α), ed' x y = ENNReal.ofReal (dist x y) hU' : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} hB' : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ⊢ mk dist_self✝¹ dist_comm✝¹ dist_triangle✝¹ ed hed U B = mk dist_self✝ dist_comm✝ dist_triangle✝ ed' hed' U' B' [PROOFSTEP] congr [GOAL] case mk.mk.e_edist α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 d : Dist α dist_self✝¹ : ∀ (x : α), dist x x = 0 dist_comm✝¹ : ∀ (x y : α), dist x y = dist y x dist_triangle✝¹ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed : α → α → ℝ≥0∞ hed : ∀ (x y : α), ed x y = ENNReal.ofReal (dist x y) U : UniformSpace α hU : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B : Bornology α hB : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ed' : α → α → ℝ≥0∞ U' : UniformSpace α B' : Bornology α dist_self✝ : ∀ (x : α), dist x x = 0 dist_comm✝ : ∀ (x y : α), dist x y = dist y x dist_triangle✝ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z hed' : ∀ (x y : α), ed' x y = ENNReal.ofReal (dist x y) hU' : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} hB' : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ⊢ ed = ed' [PROOFSTEP] ext x y : 2 [GOAL] case mk.mk.e_edist.h.h α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 d : Dist α dist_self✝¹ : ∀ (x : α), dist x x = 0 dist_comm✝¹ : ∀ (x y : α), dist x y = dist y x dist_triangle✝¹ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed : α → α → ℝ≥0∞ hed : ∀ (x y : α), ed x y = ENNReal.ofReal (dist x y) U : UniformSpace α hU : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B : Bornology α hB : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ed' : α → α → ℝ≥0∞ U' : UniformSpace α B' : Bornology α dist_self✝ : ∀ (x : α), dist x x = 0 dist_comm✝ : ∀ (x y : α), dist x y = dist y x dist_triangle✝ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z hed' : ∀ (x y : α), ed' x y = ENNReal.ofReal (dist x y) hU' : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} hB' : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} x y : α ⊢ ed x y = ed' x y [PROOFSTEP] rw [hed, hed'] [GOAL] case mk.mk.e_toUniformSpace α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 d : Dist α dist_self✝¹ : ∀ (x : α), dist x x = 0 dist_comm✝¹ : ∀ (x y : α), dist x y = dist y x dist_triangle✝¹ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed : α → α → ℝ≥0∞ hed : ∀ (x y : α), ed x y = ENNReal.ofReal (dist x y) U : UniformSpace α hU : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B : Bornology α hB : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ed' : α → α → ℝ≥0∞ U' : UniformSpace α B' : Bornology α dist_self✝ : ∀ (x : α), dist x x = 0 dist_comm✝ : ∀ (x y : α), dist x y = dist y x dist_triangle✝ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z hed' : ∀ (x y : α), ed' x y = ENNReal.ofReal (dist x y) hU' : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} hB' : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ⊢ U = U' [PROOFSTEP] exact uniformSpace_eq (hU.trans hU'.symm) [GOAL] case mk.mk.e_toBornology α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 d : Dist α dist_self✝¹ : ∀ (x : α), dist x x = 0 dist_comm✝¹ : ∀ (x y : α), dist x y = dist y x dist_triangle✝¹ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed : α → α → ℝ≥0∞ hed : ∀ (x y : α), ed x y = ENNReal.ofReal (dist x y) U : UniformSpace α hU : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B : Bornology α hB : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ed' : α → α → ℝ≥0∞ U' : UniformSpace α B' : Bornology α dist_self✝ : ∀ (x : α), dist x x = 0 dist_comm✝ : ∀ (x y : α), dist x y = dist y x dist_triangle✝ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z hed' : ∀ (x y : α), ed' x y = ENNReal.ofReal (dist x y) hU' : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} hB' : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ⊢ B = B' [PROOFSTEP] ext : 2 [GOAL] case mk.mk.e_toBornology.h_cobounded.a α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 α : Type u_3 d : Dist α dist_self✝¹ : ∀ (x : α), dist x x = 0 dist_comm✝¹ : ∀ (x y : α), dist x y = dist y x dist_triangle✝¹ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z ed : α → α → ℝ≥0∞ hed : ∀ (x y : α), ed x y = ENNReal.ofReal (dist x y) U : UniformSpace α hU : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} B : Bornology α hB : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} ed' : α → α → ℝ≥0∞ U' : UniformSpace α B' : Bornology α dist_self✝ : ∀ (x : α), dist x x = 0 dist_comm✝ : ∀ (x y : α), dist x y = dist y x dist_triangle✝ : ∀ (x y z : α), dist x z ≤ dist x y + dist y z hed' : ∀ (x y : α), ed' x y = ENNReal.ofReal (dist x y) hU' : 𝓤 α = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} hB' : (cobounded α).sets = {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} s✝ : Set α ⊢ s✝ ∈ cobounded α ↔ s✝ ∈ cobounded α [PROOFSTEP] rw [← Filter.mem_sets, ← Filter.mem_sets, hB, hB'] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α✝ α : Type u inst✝ : TopologicalSpace α dist : α → α → ℝ dist_self : ∀ (x : α), dist x x = 0 dist_comm : ∀ (x y : α), dist x y = dist y x dist_triangle : ∀ (x y z : α), dist x z ≤ dist x y + dist y z H : ∀ (s : Set α), IsOpen s ↔ ∀ (x : α), x ∈ s → ∃ ε, ε > 0 ∧ ∀ (y : α), dist x y < ε → y ∈ s x y : α ⊢ (fun x y => ↑{ val := dist x y, property := (_ : 0 ≤ dist x y) }) x y = ENNReal.ofReal (Dist.dist x y) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ⊢ dist x y ≤ dist z x + dist z y [PROOFSTEP] rw [dist_comm z] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ⊢ dist x y ≤ dist x z + dist z y [PROOFSTEP] apply dist_triangle [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ⊢ dist x y ≤ dist x z + dist y z [PROOFSTEP] rw [dist_comm y] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ⊢ dist x y ≤ dist x z + dist z y [PROOFSTEP] apply dist_triangle [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x₁ y₁ x₂ y₂ : α ⊢ dist x₂ y₂ ≤ dist x₁ y₁ + (dist x₁ x₂ + dist y₁ y₂) [PROOFSTEP] rw [add_left_comm, dist_comm x₁, ← add_assoc] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x₁ y₁ x₂ y₂ : α ⊢ dist x₂ y₂ ≤ dist x₂ x₁ + dist x₁ y₁ + dist y₁ y₂ [PROOFSTEP] apply dist_triangle4 [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x₁ y₁ x₂ y₂ : α ⊢ dist x₁ y₁ ≤ dist x₁ x₂ + dist y₁ y₂ + dist x₂ y₂ [PROOFSTEP] rw [add_right_comm, dist_comm y₁] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x₁ y₁ x₂ y₂ : α ⊢ dist x₁ y₁ ≤ dist x₁ x₂ + dist x₂ y₂ + dist y₂ y₁ [PROOFSTEP] apply dist_triangle4 [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n : ℕ h : m ≤ n ⊢ dist (f m) (f n) ≤ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) [PROOFSTEP] induction n, h using Nat.le_induction with | base => rw [Finset.Ico_self, Finset.sum_empty, dist_self] | succ n hle ihn => calc dist (f m) (f (n + 1)) ≤ dist (f m) (f n) + dist (f n) (f (n + 1)) := dist_triangle _ _ _ _ ≤ (∑ i in Finset.Ico m n, _) + _ := (add_le_add ihn le_rfl) _ = ∑ i in Finset.Ico m (n + 1), _ := by {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n : ℕ h : m ≤ n ⊢ dist (f m) (f n) ≤ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) [PROOFSTEP] induction n, h using Nat.le_induction with | base => rw [Finset.Ico_self, Finset.sum_empty, dist_self] | succ n hle ihn => calc dist (f m) (f (n + 1)) ≤ dist (f m) (f n) + dist (f n) (f (n + 1)) := dist_triangle _ _ _ _ ≤ (∑ i in Finset.Ico m n, _) + _ := (add_le_add ihn le_rfl) _ = ∑ i in Finset.Ico m (n + 1), _ := by {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] case base α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n : ℕ ⊢ dist (f m) (f m) ≤ ∑ i in Finset.Ico m m, dist (f i) (f (i + 1)) [PROOFSTEP] | base => rw [Finset.Ico_self, Finset.sum_empty, dist_self] [GOAL] case base α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n : ℕ ⊢ dist (f m) (f m) ≤ ∑ i in Finset.Ico m m, dist (f i) (f (i + 1)) [PROOFSTEP] rw [Finset.Ico_self, Finset.sum_empty, dist_self] [GOAL] case succ α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : dist (f m) (f n) ≤ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) ⊢ dist (f m) (f (n + 1)) ≤ ∑ i in Finset.Ico m (n + 1), dist (f i) (f (i + 1)) [PROOFSTEP] | succ n hle ihn => calc dist (f m) (f (n + 1)) ≤ dist (f m) (f n) + dist (f n) (f (n + 1)) := dist_triangle _ _ _ _ ≤ (∑ i in Finset.Ico m n, _) + _ := (add_le_add ihn le_rfl) _ = ∑ i in Finset.Ico m (n + 1), _ := by {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] case succ α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : dist (f m) (f n) ≤ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) ⊢ dist (f m) (f (n + 1)) ≤ ∑ i in Finset.Ico m (n + 1), dist (f i) (f (i + 1)) [PROOFSTEP] calc dist (f m) (f (n + 1)) ≤ dist (f m) (f n) + dist (f n) (f (n + 1)) := dist_triangle _ _ _ _ ≤ (∑ i in Finset.Ico m n, _) + _ := (add_le_add ihn le_rfl) _ = ∑ i in Finset.Ico m (n + 1), _ := by {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : dist (f m) (f n) ≤ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) ⊢ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) + dist (f n) (f (n + 1)) = ∑ i in Finset.Ico m (n + 1), dist (f i) (f (i + 1)) [PROOFSTEP] {rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm]; simp } [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : dist (f m) (f n) ≤ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) ⊢ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) + dist (f n) (f (n + 1)) = ∑ i in Finset.Ico m (n + 1), dist (f i) (f (i + 1)) [PROOFSTEP] rw [Nat.Ico_succ_right_eq_insert_Ico hle, Finset.sum_insert, add_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : ℕ → α m n✝ n : ℕ hle : m ≤ n ihn : dist (f m) (f n) ≤ ∑ i in Finset.Ico m n, dist (f i) (f (i + 1)) ⊢ ¬n ∈ Finset.Ico m n [PROOFSTEP] simp [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α ⊢ Function.swap dist = dist [PROOFSTEP] funext x y [GOAL] case h.h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α ⊢ Function.swap dist x y = dist x y [PROOFSTEP] exact dist_comm _ _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α ⊢ 0 ≤ dist x y [PROOFSTEP] positivity [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α ⊢ edist x y = ↑(nndist x y) [PROOFSTEP] rw [edist_dist, dist_nndist, ENNReal.ofReal_coe_nnreal] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α ⊢ nndist x y = ENNReal.toNNReal (edist x y) [PROOFSTEP] simp [edist_nndist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α c : ℝ≥0 ⊢ edist x y < ↑c ↔ nndist x y < c [PROOFSTEP] rw [edist_nndist, ENNReal.coe_lt_coe] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α c : ℝ≥0 ⊢ edist x y ≤ ↑c ↔ nndist x y ≤ c [PROOFSTEP] rw [edist_nndist, ENNReal.coe_le_coe] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α r : ℝ ⊢ edist x y < ENNReal.ofReal r ↔ dist x y < r [PROOFSTEP] rw [edist_dist, ENNReal.ofReal_lt_ofReal_iff_of_nonneg dist_nonneg] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α r : ℝ hr : 0 ≤ r ⊢ edist x y ≤ ENNReal.ofReal r ↔ dist x y ≤ r [PROOFSTEP] rw [edist_dist, ENNReal.ofReal_le_ofReal_iff hr] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α ⊢ nndist x y = Real.toNNReal (dist x y) [PROOFSTEP] rw [dist_nndist, Real.toNNReal_coe] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α ⊢ dist x y = ENNReal.toReal (edist x y) [PROOFSTEP] rw [edist_dist, ENNReal.toReal_ofReal dist_nonneg] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ y ∈ ball x ε ↔ dist x y < ε [PROOFSTEP] rw [dist_comm, mem_ball] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : 0 < ε ⊢ x ∈ ball x ε [PROOFSTEP] rwa [mem_ball, dist_self] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ ball x ε = ∅ ↔ ε ≤ 0 [PROOFSTEP] rw [← not_nonempty_iff_eq_empty, nonempty_ball, not_lt] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ ball x 0 = ∅ [PROOFSTEP] rw [ball_eq_empty] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : x ∈ ball y ε ⊢ ∃ ε', ε' < ε ∧ x ∈ ball y ε' [PROOFSTEP] simp only [mem_ball] at h ⊢ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : dist x y < ε ⊢ ∃ ε', ε' < ε ∧ dist x y < ε' [PROOFSTEP] exact ⟨(dist x y + ε) / 2, by linarith, by linarith⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : dist x y < ε ⊢ (dist x y + ε) / 2 < ε [PROOFSTEP] linarith [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : dist x y < ε ⊢ dist x y < (dist x y + ε) / 2 [PROOFSTEP] linarith [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s : Set α ε : ℝ x : α ⊢ UniformSpace.ball x {p | dist p.fst p.snd < ε} = ball x ε [PROOFSTEP] ext [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝¹ y z : α δ ε✝ ε₁ ε₂ : ℝ s : Set α ε : ℝ x x✝ : α ⊢ x✝ ∈ UniformSpace.ball x {p | dist p.fst p.snd < ε} ↔ x✝ ∈ ball x ε [PROOFSTEP] simp [dist_comm, UniformSpace.ball] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ y ∈ closedBall x ε ↔ dist x y ≤ ε [PROOFSTEP] rw [dist_comm, mem_closedBall] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ y ∈ sphere x ε ↔ dist x y = ε [PROOFSTEP] rw [dist_comm, mem_sphere] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : y ∈ sphere x ε hε : ε ≠ 0 ⊢ ¬x ∈ sphere x ε [PROOFSTEP] simpa using hε.symm [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : Subsingleton α hε : ε ≠ 0 ⊢ IsEmpty ↑(sphere x ε) [PROOFSTEP] rw [sphere_eq_empty_of_subsingleton hε] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : Subsingleton α hε : ε ≠ 0 ⊢ IsEmpty ↑∅ [PROOFSTEP] infer_instance [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : 0 ≤ ε ⊢ x ∈ closedBall x ε [PROOFSTEP] rwa [mem_closedBall, dist_self] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ closedBall x ε = ∅ ↔ ε < 0 [PROOFSTEP] rw [← not_nonempty_iff_eq_empty, nonempty_closedBall, not_le] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : δ + ε ≤ dist x y ⊢ ε + δ ≤ dist y x [PROOFSTEP] rwa [add_comm, dist_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ sphere x ε ∪ ball x ε = closedBall x ε [PROOFSTEP] rw [union_comm, ball_union_sphere] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ closedBall x ε \ sphere x ε = ball x ε [PROOFSTEP] rw [← ball_union_sphere, Set.union_diff_cancel_right sphere_disjoint_ball.symm.le_bot] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ closedBall x ε \ ball x ε = sphere x ε [PROOFSTEP] rw [← ball_union_sphere, Set.union_diff_cancel_left sphere_disjoint_ball.symm.le_bot] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ x ∈ ball y ε ↔ y ∈ ball x ε [PROOFSTEP] rw [mem_ball', mem_ball] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ x ∈ closedBall y ε ↔ y ∈ closedBall x ε [PROOFSTEP] rw [mem_closedBall', mem_closedBall] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ x ∈ sphere y ε ↔ y ∈ sphere x ε [PROOFSTEP] rw [mem_sphere', mem_sphere] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ closedBall x ε = ⋂ (δ : ℝ) (_ : δ > ε), ball x δ [PROOFSTEP] ext y [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y✝ z : α δ ε ε₁ ε₂ : ℝ s : Set α y : α ⊢ y ∈ closedBall x ε ↔ y ∈ ⋂ (δ : ℝ) (_ : δ > ε), ball x δ [PROOFSTEP] rw [mem_closedBall, ← forall_lt_iff_le', mem_iInter₂] [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y✝ z : α δ ε ε₁ ε₂ : ℝ s : Set α y : α ⊢ (∀ ⦃c : ℝ⦄, ε < c → dist y x < c) ↔ ∀ (i : ℝ), i > ε → y ∈ ball x i [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : Set.Nonempty (ball x ε₁ ∩ closedBall y ε₂) ⊢ dist x y < ε₁ + ε₂ [PROOFSTEP] rw [inter_comm] at h [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : Set.Nonempty (closedBall y ε₂ ∩ ball x ε₁) ⊢ dist x y < ε₁ + ε₂ [PROOFSTEP] rw [add_comm, dist_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : Set.Nonempty (closedBall y ε₂ ∩ ball x ε₁) ⊢ dist y x < ε₂ + ε₁ [PROOFSTEP] exact dist_lt_add_of_nonempty_closedBall_inter_ball h [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α x : α ⊢ ⋃ (n : ℕ), s ∩ closedBall x ↑n = s [PROOFSTEP] rw [← inter_iUnion, iUnion_closedBall_nat, inter_univ] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z✝ : α δ ε ε₁ ε₂ : ℝ s : Set α h : dist x y ≤ ε₂ - ε₁ z : α zx : z ∈ ball x ε₁ ⊢ z ∈ ball y ε₂ [PROOFSTEP] rw [← add_sub_cancel'_right ε₁ ε₂] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z✝ : α δ ε ε₁ ε₂ : ℝ s : Set α h : dist x y ≤ ε₂ - ε₁ z : α zx : z ∈ ball x ε₁ ⊢ z ∈ ball y (ε₁ + (ε₂ - ε₁)) [PROOFSTEP] exact lt_of_le_of_lt (dist_triangle z x y) (add_lt_add_of_lt_of_le zx h) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y✝ z : α δ ε ε₁ ε₂ : ℝ s : Set α y : α h : y ∈ ball x (ε / 2) ⊢ dist y x ≤ ε - ε / 2 [PROOFSTEP] rw [sub_self_div_two] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y✝ z : α δ ε ε₁ ε₂ : ℝ s : Set α y : α h : y ∈ ball x (ε / 2) ⊢ dist y x ≤ ε / 2 [PROOFSTEP] exact le_of_lt h [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α h : y ∈ ball x ε ⊢ dist y x ≤ ε - (ε - dist y x) [PROOFSTEP] rw [sub_sub_self] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α δ ε ε₁ ε₂ : ℝ s : Set α p : α → Prop x : α H : ∃ᶠ (R : ℝ) in atTop, ∀ (y : α), y ∈ closedBall x R → p y y : α ⊢ p y [PROOFSTEP] obtain ⟨R, hR, h⟩ : ∃ R ≥ dist y x, ∀ z : α, z ∈ closedBall x R → p z := frequently_iff.1 H (Ici_mem_atTop (dist y x)) [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α δ ε ε₁ ε₂ : ℝ s : Set α p : α → Prop x : α H : ∃ᶠ (R : ℝ) in atTop, ∀ (y : α), y ∈ closedBall x R → p y y : α R : ℝ hR : R ≥ dist y x h : ∀ (z : α), z ∈ closedBall x R → p z ⊢ p y [PROOFSTEP] exact h _ hR [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α δ ε ε₁ ε₂ : ℝ s : Set α p : α → Prop x : α H : ∃ᶠ (R : ℝ) in atTop, ∀ (y : α), y ∈ ball x R → p y y : α ⊢ p y [PROOFSTEP] obtain ⟨R, hR, h⟩ : ∃ R > dist y x, ∀ z : α, z ∈ ball x R → p z := frequently_iff.1 H (Ioi_mem_atTop (dist y x)) [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y✝ z : α δ ε ε₁ ε₂ : ℝ s : Set α p : α → Prop x : α H : ∃ᶠ (R : ℝ) in atTop, ∀ (y : α), y ∈ ball x R → p y y : α R : ℝ hR : R > dist y x h : ∀ (z : α), z ∈ ball x R → p z ⊢ p y [PROOFSTEP] exact h _ hR [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α ⊢ IsBounded s ↔ ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → dist x y ≤ C [PROOFSTEP] rw [isBounded_def, ← Filter.mem_sets, @PseudoMetricSpace.cobounded_sets α, mem_setOf_eq, compl_compl] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α ⊢ IsBounded s ↔ ∃ C, ∀ ⦃x : α⦄, x ∈ s → ∀ ⦃y : α⦄, y ∈ s → nndist x y ≤ C [PROOFSTEP] simp only [isBounded_iff_exists_ge 0, NNReal.exists, ← NNReal.coe_le_coe, ← dist_nndist, NNReal.coe_mk, exists_prop] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ HasBasis (𝓤 α) (fun ε => 0 < ε) fun ε => {p | dist p.fst p.snd < ε} [PROOFSTEP] rw [toUniformSpace_eq] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ HasBasis (𝓤 α) (fun ε => 0 < ε) fun ε => {p | dist p.fst p.snd < ε} [PROOFSTEP] exact UniformSpace.hasBasis_ofFun (exists_gt _) _ _ _ _ _ [GOAL] α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (i : β), p i → 0 < f i hf : ∀ ⦃ε : ℝ⦄, 0 < ε → ∃ i, p i ∧ f i ≤ ε ⊢ HasBasis (𝓤 α) p fun i => {p | dist p.fst p.snd < f i} [PROOFSTEP] refine' ⟨fun s => uniformity_basis_dist.mem_iff.trans _⟩ [GOAL] α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (i : β), p i → 0 < f i hf : ∀ ⦃ε : ℝ⦄, 0 < ε → ∃ i, p i ∧ f i ≤ ε s : Set (α × α) ⊢ (∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s) ↔ ∃ i, p i ∧ {p | dist p.fst p.snd < f i} ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (i : β), p i → 0 < f i hf : ∀ ⦃ε : ℝ⦄, 0 < ε → ∃ i, p i ∧ f i ≤ ε s : Set (α × α) ⊢ (∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s) → ∃ i, p i ∧ {p | dist p.fst p.snd < f i} ⊆ s [PROOFSTEP] rintro ⟨ε, ε₀, hε⟩ [GOAL] case mp.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (i : β), p i → 0 < f i hf : ∀ ⦃ε : ℝ⦄, 0 < ε → ∃ i, p i ∧ f i ≤ ε s : Set (α × α) ε : ℝ ε₀ : 0 < ε hε : {p | dist p.fst p.snd < ε} ⊆ s ⊢ ∃ i, p i ∧ {p | dist p.fst p.snd < f i} ⊆ s [PROOFSTEP] rcases hf ε₀ with ⟨i, hi, H⟩ [GOAL] case mp.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (i : β), p i → 0 < f i hf : ∀ ⦃ε : ℝ⦄, 0 < ε → ∃ i, p i ∧ f i ≤ ε s : Set (α × α) ε : ℝ ε₀ : 0 < ε hε : {p | dist p.fst p.snd < ε} ⊆ s i : β hi : p i H : f i ≤ ε ⊢ ∃ i, p i ∧ {p | dist p.fst p.snd < f i} ⊆ s [PROOFSTEP] exact ⟨i, hi, fun x (hx : _ < _) => hε <| lt_of_lt_of_le hx H⟩ [GOAL] case mpr α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (i : β), p i → 0 < f i hf : ∀ ⦃ε : ℝ⦄, 0 < ε → ∃ i, p i ∧ f i ≤ ε s : Set (α × α) ⊢ (∃ i, p i ∧ {p | dist p.fst p.snd < f i} ⊆ s) → ∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s [PROOFSTEP] exact fun ⟨i, hi, H⟩ => ⟨f i, hf₀ i hi, H⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s : Set α ε : ℝ ε0 : 0 < ε n : ℕ hn : 1 / (↑n + 1) < ε ⊢ 1 / ↑(n + 1) ≤ ε [PROOFSTEP] exact_mod_cast hn.le [GOAL] α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε ⊢ HasBasis (𝓤 α) p fun x => {p | dist p.fst p.snd ≤ f x} [PROOFSTEP] refine' ⟨fun s => uniformity_basis_dist.mem_iff.trans _⟩ [GOAL] α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s) ↔ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s) → ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] rintro ⟨ε, ε₀, hε⟩ [GOAL] case mp.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ε : ℝ ε₀ : 0 < ε hε : {p | dist p.fst p.snd < ε} ⊆ s ⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] rcases exists_between ε₀ with ⟨ε', hε'⟩ [GOAL] case mp.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ε : ℝ ε₀ : 0 < ε hε : {p | dist p.fst p.snd < ε} ⊆ s ε' : ℝ hε' : 0 < ε' ∧ ε' < ε ⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] rcases hf ε' hε'.1 with ⟨i, hi, H⟩ [GOAL] case mp.intro.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ε : ℝ ε₀ : 0 < ε hε : {p | dist p.fst p.snd < ε} ⊆ s ε' : ℝ hε' : 0 < ε' ∧ ε' < ε i : β hi : p i H : f i ≤ ε' ⊢ ∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s [PROOFSTEP] exact ⟨i, hi, fun x (hx : _ ≤ _) => hε <| lt_of_le_of_lt (le_trans hx H) hε'.2⟩ [GOAL] case mpr α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α β : Type u_3 p : β → Prop f : β → ℝ hf₀ : ∀ (x : β), p x → 0 < f x hf : ∀ (ε : ℝ), 0 < ε → ∃ x, p x ∧ f x ≤ ε s : Set (α × α) ⊢ (∃ i, p i ∧ {p | dist p.fst p.snd ≤ f i} ⊆ s) → ∃ i, 0 < i ∧ {p | dist p.fst p.snd < i} ⊆ s [PROOFSTEP] exact fun ⟨i, hi, H⟩ => ⟨f i, hf₀ i hi, fun x (hx : _ < _) => H (mem_setOf.2 hx.le)⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : PseudoMetricSpace β f : α → β ⊢ (∀ (i' : ℝ), 0 < i' → ∃ i, 0 < i ∧ Prod.map f f ⁻¹' {p | dist p.fst p.snd < i} ⊆ {p | dist p.fst p.snd < i'}) ↔ ∀ (δ : ℝ), δ > 0 → ∃ ε, ε > 0 ∧ ∀ {a b : α}, dist (f a) (f b) < ε → dist a b < δ [PROOFSTEP] simp only [subset_def, Prod.forall, gt_iff_lt, preimage_setOf_eq, Prod_map, mem_setOf] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : PseudoMetricSpace β f : α → β ⊢ UniformEmbedding f ↔ Function.Injective f ∧ UniformContinuous f ∧ ∀ (δ : ℝ), δ > 0 → ∃ ε, ε > 0 ∧ ∀ {a b : α}, dist (f a) (f b) < ε → dist a b < δ [PROOFSTEP] rw [uniformEmbedding_iff, and_comm, uniformInducing_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε ⊢ TotallyBounded s [PROOFSTEP] cases' s.eq_empty_or_nonempty with hs hs [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε hs : s = ∅ ⊢ TotallyBounded s [PROOFSTEP] rw [hs] [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε hs : s = ∅ ⊢ TotallyBounded ∅ [PROOFSTEP] exact totallyBounded_empty [GOAL] case inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε hs : Set.Nonempty s ⊢ TotallyBounded s [PROOFSTEP] rcases hs with ⟨x0, hx0⟩ [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s ⊢ TotallyBounded s [PROOFSTEP] haveI : Inhabited s := ⟨⟨x0, hx0⟩⟩ [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s this : Inhabited ↑s ⊢ TotallyBounded s [PROOFSTEP] refine' totallyBounded_iff.2 fun ε ε0 => _ [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s this : Inhabited ↑s ε : ℝ ε0 : ε > 0 ⊢ ∃ t, Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] rcases H ε ε0 with ⟨β, fβ, F, hF⟩ [GOAL] case inr.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s this : Inhabited ↑s ε : ℝ ε0 : ε > 0 β : Type u fβ : Fintype β F : ↑s → β hF : ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε ⊢ ∃ t, Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] let Finv := Function.invFun F [GOAL] case inr.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s this : Inhabited ↑s ε : ℝ ε0 : ε > 0 β : Type u fβ : Fintype β F : ↑s → β hF : ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε Finv : β → ↑s := Function.invFun F ⊢ ∃ t, Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] refine' ⟨range (Subtype.val ∘ Finv), finite_range _, fun x xs => _⟩ [GOAL] case inr.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s this : Inhabited ↑s ε : ℝ ε0 : ε > 0 β : Type u fβ : Fintype β F : ↑s → β hF : ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε Finv : β → ↑s := Function.invFun F x : α xs : x ∈ s ⊢ x ∈ ⋃ (y : α) (_ : y ∈ range (Subtype.val ∘ Finv)), ball y ε [PROOFSTEP] let x' := Finv (F ⟨x, xs⟩) [GOAL] case inr.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s this : Inhabited ↑s ε : ℝ ε0 : ε > 0 β : Type u fβ : Fintype β F : ↑s → β hF : ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε Finv : β → ↑s := Function.invFun F x : α xs : x ∈ s x' : ↑s := Finv (F { val := x, property := xs }) ⊢ x ∈ ⋃ (y : α) (_ : y ∈ range (Subtype.val ∘ Finv)), ball y ε [PROOFSTEP] have : F x' = F ⟨x, xs⟩ := Function.invFun_eq ⟨⟨x, xs⟩, rfl⟩ [GOAL] case inr.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s this✝ : Inhabited ↑s ε : ℝ ε0 : ε > 0 β : Type u fβ : Fintype β F : ↑s → β hF : ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε Finv : β → ↑s := Function.invFun F x : α xs : x ∈ s x' : ↑s := Finv (F { val := x, property := xs }) this : F x' = F { val := x, property := xs } ⊢ x ∈ ⋃ (y : α) (_ : y ∈ range (Subtype.val ∘ Finv)), ball y ε [PROOFSTEP] simp only [Set.mem_iUnion, Set.mem_range] [GOAL] case inr.intro.intro.intro.intro α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε x0 : α hx0 : x0 ∈ s this✝ : Inhabited ↑s ε : ℝ ε0 : ε > 0 β : Type u fβ : Fintype β F : ↑s → β hF : ∀ (x y : ↑s), F x = F y → dist ↑x ↑y < ε Finv : β → ↑s := Function.invFun F x : α xs : x ∈ s x' : ↑s := Finv (F { val := x, property := xs }) this : F x' = F { val := x, property := xs } ⊢ ∃ i i_1, x ∈ ball i ε [PROOFSTEP] exact ⟨_, ⟨F ⟨x, xs⟩, rfl⟩, hF _ _ this.symm⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ s : Set α hs : TotallyBounded s ⊢ ∀ (ε : ℝ), ε > 0 → ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] intro ε ε_pos [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α hs : TotallyBounded s ε : ℝ ε_pos : ε > 0 ⊢ ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] rw [totallyBounded_iff_subset] at hs [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α hs : ∀ (d : Set (α × α)), d ∈ 𝓤 α → ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), {x | (x, y) ∈ d} ε : ℝ ε_pos : ε > 0 ⊢ ∃ t, t ⊆ s ∧ Set.Finite t ∧ s ⊆ ⋃ (y : α) (_ : y ∈ t), ball y ε [PROOFSTEP] exact hs _ (dist_mem_uniformity ε_pos) [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ι : Type u_3 F : ι → β → α f : β → α p : Filter ι p' : Filter β ⊢ TendstoUniformlyOnFilter F f p p' ↔ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × β) in p ×ˢ p', dist (f n.snd) (F n.fst n.snd) < ε [PROOFSTEP] refine' ⟨fun H ε hε => H _ (dist_mem_uniformity hε), fun H u hu => _⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ι : Type u_3 F : ι → β → α f : β → α p : Filter ι p' : Filter β H : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × β) in p ×ˢ p', dist (f n.snd) (F n.fst n.snd) < ε u : Set (α × α) hu : u ∈ 𝓤 α ⊢ ∀ᶠ (n : ι × β) in p ×ˢ p', (f n.snd, F n.fst n.snd) ∈ u [PROOFSTEP] rcases mem_uniformity_dist.1 hu with ⟨ε, εpos, hε⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s : Set α ι : Type u_3 F : ι → β → α f : β → α p : Filter ι p' : Filter β H : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι × β) in p ×ˢ p', dist (f n.snd) (F n.fst n.snd) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u ⊢ ∀ᶠ (n : ι × β) in p ×ˢ p', (f n.snd, F n.fst n.snd) ∈ u [PROOFSTEP] refine' (H ε εpos).mono fun n hn => hε hn [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α ι : Type u_3 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι s : Set β ⊢ TendstoLocallyUniformlyOn F f p s ↔ ∀ (ε : ℝ), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → dist (f y) (F n y) < ε [PROOFSTEP] refine' ⟨fun H ε hε => H _ (dist_mem_uniformity hε), fun H u hu x hx => _⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α ι : Type u_3 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → dist (f y) (F n y) < ε u : Set (α × α) hu : u ∈ 𝓤 α x : β hx : x ∈ s ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] rcases mem_uniformity_dist.1 hu with ⟨ε, εpos, hε⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ : Set α ι : Type u_3 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → dist (f y) (F n y) < ε u : Set (α × α) hu : u ∈ 𝓤 α x : β hx : x ∈ s ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] rcases H ε εpos x hx with ⟨t, ht, Ht⟩ [GOAL] case intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ : Set α ι : Type u_3 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ), ε > 0 → ∀ (x : β), x ∈ s → ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → dist (f y) (F n y) < ε u : Set (α × α) hu : u ∈ 𝓤 α x : β hx : x ∈ s ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u t : Set β ht : t ∈ 𝓝[s] x Ht : ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → dist (f y) (F n y) < ε ⊢ ∃ t, t ∈ 𝓝[s] x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → (f y, F n y) ∈ u [PROOFSTEP] exact ⟨t, ht, Ht.mono fun n hs x hx => hε (hs x hx)⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α ι : Type u_3 F : ι → β → α f : β → α p : Filter ι s : Set β ⊢ TendstoUniformlyOn F f p s ↔ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → dist (f x) (F n x) < ε [PROOFSTEP] refine' ⟨fun H ε hε => H _ (dist_mem_uniformity hε), fun H u hu => _⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α ι : Type u_3 F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → dist (f x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ⊢ ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → (f x, F n x) ∈ u [PROOFSTEP] rcases mem_uniformity_dist.1 hu with ⟨ε, εpos, hε⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ : Set α ι : Type u_3 F : ι → β → α f : β → α p : Filter ι s : Set β H : ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → dist (f x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ εpos : ε > 0 hε : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u ⊢ ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ s → (f x, F n x) ∈ u [PROOFSTEP] exact (H ε εpos).mono fun n hs x hx => hε (hs x hx) [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ι : Type u_3 inst✝ : TopologicalSpace β F : ι → β → α f : β → α p : Filter ι ⊢ TendstoLocallyUniformly F f p ↔ ∀ (ε : ℝ), ε > 0 → ∀ (x : β), ∃ t, t ∈ 𝓝 x ∧ ∀ᶠ (n : ι) in p, ∀ (y : β), y ∈ t → dist (f y) (F n y) < ε [PROOFSTEP] simp only [← tendstoLocallyUniformlyOn_univ, tendstoLocallyUniformlyOn_iff, nhdsWithin_univ, mem_univ, forall_const, exists_prop] [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ι : Type u_3 F : ι → β → α f : β → α p : Filter ι ⊢ TendstoUniformly F f p ↔ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), dist (f x) (F n x) < ε [PROOFSTEP] rw [← tendstoUniformlyOn_univ, tendstoUniformlyOn_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ι : Type u_3 F : ι → β → α f : β → α p : Filter ι ⊢ (∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), x ∈ univ → dist (f x) (F n x) < ε) ↔ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (n : ι) in p, ∀ (x : β), dist (f x) (F n x) < ε [PROOFSTEP] simp [GOAL] α✝ : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝¹ : PseudoMetricSpace α✝ x y z : α✝ δ ε ε₁ ε₂ : ℝ s : Set α✝ ι : Type u_3 α : Type u_4 inst✝ : PseudoMetricSpace α f : Filter ι x₀ : α p : α × ι → Prop ⊢ (∀ᶠ (x : α × ι) in 𝓝 x₀ ×ˢ f, p x) ↔ ∃ ε, ε > 0 ∧ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∀ {x : α}, dist x x₀ < ε → ∀ {i : ι}, pa i → p (x, i) [PROOFSTEP] refine (nhds_basis_ball.prod f.basis_sets).eventually_iff.trans ?_ [GOAL] α✝ : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝¹ : PseudoMetricSpace α✝ x y z : α✝ δ ε ε₁ ε₂ : ℝ s : Set α✝ ι : Type u_3 α : Type u_4 inst✝ : PseudoMetricSpace α f : Filter ι x₀ : α p : α × ι → Prop ⊢ (∃ i, (0 < i.fst ∧ i.snd ∈ f) ∧ ∀ ⦃x : α × ι⦄, x ∈ ball x₀ i.fst ×ˢ id i.snd → p x) ↔ ∃ ε, ε > 0 ∧ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∀ {x : α}, dist x x₀ < ε → ∀ {i : ι}, pa i → p (x, i) [PROOFSTEP] simp only [Prod.exists, forall_prod_set, id, mem_ball, and_assoc, exists_and_left, and_imp] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝¹ : PseudoMetricSpace α✝ x y z : α✝ δ ε ε₁ ε₂ : ℝ s : Set α✝ ι : Type u_3 α : Type u_4 inst✝ : PseudoMetricSpace α f : Filter ι x₀ : α p : α × ι → Prop ⊢ (∃ a, 0 < a ∧ ∃ x, x ∈ f ∧ ∀ (x_1 : α), dist x_1 x₀ < a → ∀ (y : ι), y ∈ x → p (x_1, y)) ↔ ∃ ε, ε > 0 ∧ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∀ {x : α}, dist x x₀ < ε → ∀ {i : ι}, pa i → p (x, i) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α f : Filter ι x₀ : α p : ι × α → Prop ⊢ (∀ᶠ (x : ι × α) in f ×ˢ 𝓝 x₀, p x) ↔ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∃ ε, ε > 0 ∧ ∀ {i : ι}, pa i → ∀ {x : α}, dist x x₀ < ε → p (i, x) [PROOFSTEP] rw [eventually_swap_iff, Metric.eventually_nhds_prod_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α f : Filter ι x₀ : α p : ι × α → Prop ⊢ (∃ ε, ε > 0 ∧ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∀ {x : α}, dist x x₀ < ε → ∀ {i : ι}, pa i → p (Prod.swap (x, i))) ↔ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∃ ε, ε > 0 ∧ ∀ {i : ι}, pa i → ∀ {x : α}, dist x x₀ < ε → p (i, x) [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α f : Filter ι x₀ : α p : ι × α → Prop ⊢ (∃ ε, ε > 0 ∧ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∀ {x : α}, dist x x₀ < ε → ∀ {i : ι}, pa i → p (Prod.swap (x, i))) → ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∃ ε, ε > 0 ∧ ∀ {i : ι}, pa i → ∀ {x : α}, dist x x₀ < ε → p (i, x) [PROOFSTEP] rintro ⟨a1, a2, a3, a4, a5⟩ [GOAL] case mp.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α f : Filter ι x₀ : α p : ι × α → Prop a1 : ℝ a2 : a1 > 0 a3 : ι → Prop a4 : ∀ᶠ (i : ι) in f, a3 i a5 : ∀ {x : α}, dist x x₀ < a1 → ∀ {i : ι}, a3 i → p (Prod.swap (x, i)) ⊢ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∃ ε, ε > 0 ∧ ∀ {i : ι}, pa i → ∀ {x : α}, dist x x₀ < ε → p (i, x) [PROOFSTEP] exact ⟨a3, a4, a1, a2, fun b1 b2 b3 => a5 b3 b1⟩ [GOAL] case mpr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α f : Filter ι x₀ : α p : ι × α → Prop ⊢ (∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∃ ε, ε > 0 ∧ ∀ {i : ι}, pa i → ∀ {x : α}, dist x x₀ < ε → p (i, x)) → ∃ ε, ε > 0 ∧ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∀ {x : α}, dist x x₀ < ε → ∀ {i : ι}, pa i → p (Prod.swap (x, i)) [PROOFSTEP] rintro ⟨a1, a2, a3, a4, a5⟩ [GOAL] case mpr.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α f : Filter ι x₀ : α p : ι × α → Prop a1 : ι → Prop a2 : ∀ᶠ (i : ι) in f, a1 i a3 : ℝ a4 : a3 > 0 a5 : ∀ {i : ι}, a1 i → ∀ {x : α}, dist x x₀ < a3 → p (i, x) ⊢ ∃ ε, ε > 0 ∧ ∃ pa, (∀ᶠ (i : ι) in f, pa i) ∧ ∀ {x : α}, dist x x₀ < ε → ∀ {i : ι}, pa i → p (Prod.swap (x, i)) [PROOFSTEP] exact ⟨a3, a4, a1, a2, fun b1 b2 b3 => a5 b3 b1⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α ⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → ∃ ε, ε > 0 ∧ ball x ε ⊆ s [PROOFSTEP] simp only [isOpen_iff_mem_nhds, mem_nhds_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : PseudoMetricSpace β t : Set β f : α → β a : α b : β ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, 0 < ia ∧ ∀ (x : α), x ∈ ball a ia ∩ s → f x ∈ ball b ib ∩ t) ↔ ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → f x ∈ t ∧ dist (f x) b < ε [PROOFSTEP] simp only [inter_comm _ s, inter_comm _ t, mem_inter_iff, and_imp] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : PseudoMetricSpace β t : Set β f : α → β a : α b : β ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, 0 < ia ∧ ∀ (x : α), x ∈ s → x ∈ ball a ia → f x ∈ t ∧ f x ∈ ball b ib) ↔ ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → f x ∈ t ∧ dist (f x) b < ε [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : PseudoMetricSpace β f : α → β a : α b : β ⊢ Tendsto f (𝓝[s] a) (𝓝 b) ↔ ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → dist (f x) b < ε [PROOFSTEP] rw [← nhdsWithin_univ b, tendsto_nhdsWithin_nhdsWithin] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : PseudoMetricSpace β f : α → β a : α b : β ⊢ (∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → f x ∈ univ ∧ dist (f x) b < ε) ↔ ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → dist (f x) b < ε [PROOFSTEP] simp only [mem_univ, true_and_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : PseudoMetricSpace β f : α → β a : α ⊢ ContinuousAt f a ↔ ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, dist x a < δ → dist (f x) (f a) < ε [PROOFSTEP] rw [ContinuousAt, tendsto_nhds_nhds] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α inst✝ : PseudoMetricSpace β f : α → β a : α s : Set α ⊢ ContinuousWithinAt f s a ↔ ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {x : α}, x ∈ s → dist x a < δ → dist (f x) (f a) < ε [PROOFSTEP] rw [ContinuousWithinAt, tendsto_nhdsWithin_nhds] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α inst✝ : PseudoMetricSpace β f : α → β s : Set α ⊢ ContinuousOn f s ↔ ∀ (b : α), b ∈ s → ∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (a : α), a ∈ s → dist a b < δ → dist (f a) (f b) < ε [PROOFSTEP] simp [ContinuousOn, continuousWithinAt_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝ : TopologicalSpace β f : β → α b : β ⊢ ContinuousAt f b ↔ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : β) in 𝓝 b, dist (f x) (f b) < ε [PROOFSTEP] rw [ContinuousAt, tendsto_nhds] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α inst✝ : TopologicalSpace β f : β → α b : β s : Set β ⊢ ContinuousWithinAt f s b ↔ ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : β) in 𝓝[s] b, dist (f x) (f b) < ε [PROOFSTEP] rw [ContinuousWithinAt, tendsto_nhds] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s✝ : Set α inst✝ : TopologicalSpace β f : β → α s : Set β ⊢ ContinuousOn f s ↔ ∀ (b : β), b ∈ s → ∀ (ε : ℝ), ε > 0 → ∀ᶠ (x : β) in 𝓝[s] b, dist (f x) (f b) < ε [PROOFSTEP] simp [ContinuousOn, continuousWithinAt_iff'] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α a : α ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, True ∧ ∀ (x : β), x ∈ Ici ia → u x ∈ ball a ib) ↔ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : β), n ≥ N → dist (u n) a < ε [PROOFSTEP] simp only [true_and] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α a : α ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, ∀ (x : β), x ∈ Ici ia → u x ∈ ball a ib) ↔ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : β), n ≥ N → dist (u n) a < ε [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α x y z : α δ ε ε₁ ε₂ : ℝ s : Set α inst✝² : Nonempty β inst✝¹ : SemilatticeSup β inst✝ : NoMaxOrder β u : β → α a : α ⊢ (∀ (ib : ℝ), 0 < ib → ∃ ia, True ∧ ∀ (x : β), x ∈ Ioi ia → u x ∈ ball a ib) ↔ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (n : β), n > N → dist (u n) a < ε [PROOFSTEP] simp only [true_and, gt_iff_lt, mem_Ioi, mem_ball] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α✝ x✝ y z : α✝ δ ε ε₁ ε₂ : ℝ s : Set α✝ α : Type u_3 inst✝ : PseudoMetricSpace α x : α ⊢ IsOpen {x} ↔ ∃ ε, ε > 0 ∧ ∀ (y : α), dist y x < ε → y = x [PROOFSTEP] simp [isOpen_iff, subset_singleton_iff, mem_ball] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α hs : Dense s x : α ε : ℝ hε : 0 < ε ⊢ ∃ y, y ∈ s ∧ dist x y < ε [PROOFSTEP] have : (ball x ε).Nonempty := by simp [hε] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α hs : Dense s x : α ε : ℝ hε : 0 < ε ⊢ Set.Nonempty (ball x ε) [PROOFSTEP] simp [hε] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α δ ε✝ ε₁ ε₂ : ℝ s✝ s : Set α hs : Dense s x : α ε : ℝ hε : 0 < ε this : Set.Nonempty (ball x ε) ⊢ ∃ y, y ∈ s ∧ dist x y < ε [PROOFSTEP] simpa only [mem_ball'] using hs.exists_mem_open isOpen_ball this [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 d : α → α → ℝ≥0 ⊢ ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | ↑(d p.fst p.snd) < ε} = ⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 {p | ↑(d p.fst p.snd) < ε} [PROOFSTEP] simp only [le_antisymm_iff, le_iInf_iff, le_principal_iff] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 d : α → α → ℝ≥0 ⊢ (∀ (i : ℝ≥0∞), i > 0 → {p | ↑(d p.fst p.snd) < i} ∈ ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | ↑(d p.fst p.snd) < ε}) ∧ ∀ (i : ℝ), i > 0 → {p | ↑(d p.fst p.snd) < i} ∈ ⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 {p | ↑(d p.fst p.snd) < ε} [PROOFSTEP] refine ⟨fun ε hε => ?_, fun ε hε => ?_⟩ [GOAL] case refine_1 α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 d : α → α → ℝ≥0 ε : ℝ≥0∞ hε : ε > 0 ⊢ {p | ↑(d p.fst p.snd) < ε} ∈ ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | ↑(d p.fst p.snd) < ε} [PROOFSTEP] rcases ENNReal.lt_iff_exists_nnreal_btwn.1 hε with ⟨ε', ε'0, ε'ε⟩ [GOAL] case refine_1.intro.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 d : α → α → ℝ≥0 ε : ℝ≥0∞ hε : ε > 0 ε' : ℝ≥0 ε'0 : 0 < ↑ε' ε'ε : ↑ε' < ε ⊢ {p | ↑(d p.fst p.snd) < ε} ∈ ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | ↑(d p.fst p.snd) < ε} [PROOFSTEP] refine mem_iInf_of_mem (ε' : ℝ) (mem_iInf_of_mem (ENNReal.coe_pos.1 ε'0) ?_) [GOAL] case refine_1.intro.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 d : α → α → ℝ≥0 ε : ℝ≥0∞ hε : ε > 0 ε' : ℝ≥0 ε'0 : 0 < ↑ε' ε'ε : ↑ε' < ε ⊢ {p | ↑(d p.fst p.snd) < ε} ∈ 𝓟 {p | ↑(d p.fst p.snd) < ↑ε'} [PROOFSTEP] exact fun x hx => lt_trans (ENNReal.coe_lt_coe.2 hx) ε'ε [GOAL] case refine_2 α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 d : α → α → ℝ≥0 ε : ℝ hε : ε > 0 ⊢ {p | ↑(d p.fst p.snd) < ε} ∈ ⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 {p | ↑(d p.fst p.snd) < ε} [PROOFSTEP] lift ε to ℝ≥0 using le_of_lt hε [GOAL] case refine_2.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 d : α → α → ℝ≥0 ε : ℝ≥0 hε : ↑ε > 0 ⊢ {p | ↑(d p.fst p.snd) < ↑ε} ∈ ⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 {p | ↑(d p.fst p.snd) < ε} [PROOFSTEP] refine mem_iInf_of_mem (ε : ℝ≥0∞) (mem_iInf_of_mem (ENNReal.coe_pos.2 hε) ?_) [GOAL] case refine_2.intro α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 d : α → α → ℝ≥0 ε : ℝ≥0 hε : ↑ε > 0 ⊢ {p | ↑(d p.fst p.snd) < ↑ε} ∈ 𝓟 {p | ↑(d p.fst p.snd) < ↑ε} [PROOFSTEP] exact fun _ => ENNReal.coe_lt_coe.1 [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α ⊢ 𝓤 α = ⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 {p | edist p.fst p.snd < ε} [PROOFSTEP] simp only [PseudoMetricSpace.uniformity_dist, dist_nndist, edist_nndist, Metric.uniformity_edist_aux] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α src✝ : PseudoMetricSpace α := inst✝ ⊢ ∀ (x : α), EDist.edist x x = 0 [PROOFSTEP] simp [edist_dist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α src✝ : PseudoMetricSpace α := inst✝ x✝¹ x✝ : α ⊢ EDist.edist x✝¹ x✝ = EDist.edist x✝ x✝¹ [PROOFSTEP] simp only [edist_dist, dist_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α src✝ : PseudoMetricSpace α := inst✝ x y z : α ⊢ EDist.edist x z ≤ EDist.edist x y + EDist.edist y z [PROOFSTEP] simp only [edist_dist, ← ENNReal.ofReal_add, dist_nonneg] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α src✝ : PseudoMetricSpace α := inst✝ x y z : α ⊢ ENNReal.ofReal (dist x z) ≤ ENNReal.ofReal (dist x y + dist y z) [PROOFSTEP] rw [ENNReal.ofReal_le_ofReal_iff _] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α src✝ : PseudoMetricSpace α := inst✝ x y z : α ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] exact dist_triangle _ _ _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α src✝ : PseudoMetricSpace α := inst✝ x y z : α ⊢ 0 ≤ dist x y + dist y z [PROOFSTEP] simpa using add_le_add (dist_nonneg : 0 ≤ dist x y) dist_nonneg [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ε : ℝ ⊢ EMetric.ball x (ENNReal.ofReal ε) = ball x ε [PROOFSTEP] ext y [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ε : ℝ y : α ⊢ y ∈ EMetric.ball x (ENNReal.ofReal ε) ↔ y ∈ ball x ε [PROOFSTEP] simp only [EMetric.mem_ball, mem_ball, edist_dist] [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ε : ℝ y : α ⊢ ENNReal.ofReal (dist y x) < ENNReal.ofReal ε ↔ dist y x < ε [PROOFSTEP] exact ENNReal.ofReal_lt_ofReal_iff_of_nonneg dist_nonneg [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ε : ℝ≥0 ⊢ EMetric.ball x ↑ε = ball x ↑ε [PROOFSTEP] rw [← Metric.emetric_ball] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ε : ℝ≥0 ⊢ EMetric.ball x ↑ε = EMetric.ball x (ENNReal.ofReal ↑ε) [PROOFSTEP] simp [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ε : ℝ h : 0 ≤ ε ⊢ EMetric.closedBall x (ENNReal.ofReal ε) = closedBall x ε [PROOFSTEP] ext y [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ε : ℝ h : 0 ≤ ε y : α ⊢ y ∈ EMetric.closedBall x (ENNReal.ofReal ε) ↔ y ∈ closedBall x ε [PROOFSTEP] simp [edist_le_ofReal h] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ε : ℝ≥0 ⊢ EMetric.closedBall x ↑ε = closedBall x ↑ε [PROOFSTEP] rw [← Metric.emetric_closedBall ε.coe_nonneg, ENNReal.ofReal_coe_nnreal] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : α ⊢ Inseparable x y ↔ dist x y = 0 [PROOFSTEP] rw [EMetric.inseparable_iff, edist_nndist, dist_nndist, ENNReal.coe_eq_zero, NNReal.coe_eq_zero] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 U : UniformSpace α m : PseudoMetricSpace α H : 𝓤 α = 𝓤 α ⊢ replaceUniformity m H = m [PROOFSTEP] ext [GOAL] case h.dist.h.h α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 U : UniformSpace α m : PseudoMetricSpace α H : 𝓤 α = 𝓤 α x✝¹ x✝ : α ⊢ dist x✝¹ x✝ = dist x✝¹ x✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α γ : Type u_3 U : TopologicalSpace γ m : PseudoMetricSpace γ H : U = UniformSpace.toTopologicalSpace ⊢ replaceTopology m H = m [PROOFSTEP] ext [GOAL] case h.dist.h.h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α γ : Type u_3 U : TopologicalSpace γ m : PseudoMetricSpace γ H : U = UniformSpace.toTopologicalSpace x✝¹ x✝ : γ ⊢ dist x✝¹ x✝ = dist x✝¹ x✝ [PROOFSTEP] rfl [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u e : PseudoEMetricSpace α dist : α → α → ℝ edist_ne_top : ∀ (x y : α), edist x y ≠ ⊤ h : ∀ (x y : α), dist x y = ENNReal.toReal (edist x y) x : α ⊢ Dist.dist x x = 0 [PROOFSTEP] simp [h] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u e : PseudoEMetricSpace α dist : α → α → ℝ edist_ne_top : ∀ (x y : α), edist x y ≠ ⊤ h : ∀ (x y : α), dist x y = ENNReal.toReal (edist x y) x y : α ⊢ Dist.dist x y = Dist.dist y x [PROOFSTEP] simp [h, edist_comm] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u e : PseudoEMetricSpace α dist : α → α → ℝ edist_ne_top : ∀ (x y : α), edist x y ≠ ⊤ h : ∀ (x y : α), dist x y = ENNReal.toReal (edist x y) x y z : α ⊢ Dist.dist x z ≤ Dist.dist x y + Dist.dist y z [PROOFSTEP] simp only [h] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u e : PseudoEMetricSpace α dist : α → α → ℝ edist_ne_top : ∀ (x y : α), edist x y ≠ ⊤ h : ∀ (x y : α), dist x y = ENNReal.toReal (edist x y) x y z : α ⊢ ENNReal.toReal (edist x z) ≤ ENNReal.toReal (edist x y) + ENNReal.toReal (edist y z) [PROOFSTEP] exact ENNReal.toReal_le_add (edist_triangle _ _ _) (edist_ne_top _ _) (edist_ne_top _ _) [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u e : PseudoEMetricSpace α dist : α → α → ℝ edist_ne_top : ∀ (x y : α), edist x y ≠ ⊤ h : ∀ (x y : α), dist x y = ENNReal.toReal (edist x y) x✝¹ x✝ : α ⊢ edist x✝¹ x✝ = ENNReal.ofReal (Dist.dist x✝¹ x✝) [PROOFSTEP] simp only [h, ENNReal.ofReal_toReal (edist_ne_top _ _)] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u e : PseudoEMetricSpace α dist : α → α → ℝ edist_ne_top : ∀ (x y : α), edist x y ≠ ⊤ h : ∀ (x y : α), dist x y = ENNReal.toReal (edist x y) ⊢ ⨅ (ε : ℝ≥0∞) (_ : ε > 0), 𝓟 {p | edist p.fst p.snd < ε} = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | Dist.dist p.fst p.snd < ε} [PROOFSTEP] simpa only [ENNReal.coe_toNNReal (edist_ne_top _ _), h] using (Metric.uniformity_edist_aux fun x y : α => (edist x y).toNNReal).symm [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type ?u.169779 B : Bornology α m : PseudoMetricSpace α H : ∀ (s : Set α), IsBounded s ↔ IsBounded s s : Set α ⊢ IsBounded s ↔ sᶜ ∈ {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} [PROOFSTEP] rw [isBounded_iff, mem_setOf_eq, compl_compl] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 m : PseudoMetricSpace α B : Bornology α H : ∀ (s : Set α), IsBounded s ↔ IsBounded s ⊢ replaceBornology m H = m [PROOFSTEP] ext [GOAL] case h.dist.h.h α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 m : PseudoMetricSpace α B : Bornology α H : ∀ (s : Set α), IsBounded s ↔ IsBounded s x✝¹ x✝ : α ⊢ dist x✝¹ x✝ = dist x✝¹ x✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α ⊢ ∀ (x : ℝ), dist x x = 0 [PROOFSTEP] simp [abs_zero] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : ℝ ⊢ (fun x y => ↑{ val := |x - y|, property := (_ : 0 ≤ |x - y|) }) x y = ENNReal.ofReal (dist x y) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : ℝ ⊢ dist x 0 = |x| [PROOFSTEP] simp [Real.dist_eq] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : ℝ h : y ∈ uIcc x z ⊢ dist x y ≤ dist x z [PROOFSTEP] simpa only [dist_comm x] using abs_sub_left_of_mem_uIcc h [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : ℝ h : y ∈ uIcc x z ⊢ dist y z ≤ dist x z [PROOFSTEP] simpa only [dist_comm _ z] using abs_sub_right_of_mem_uIcc h [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y x' y' : ℝ hx : x ∈ uIcc x' y' hy : y ∈ uIcc x' y' ⊢ y ∈ uIcc y' x' [PROOFSTEP] rwa [uIcc_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y x' y' : ℝ hx : x ∈ uIcc x' y' hy : y ∈ uIcc x' y' ⊢ x ∈ uIcc y' x' [PROOFSTEP] rwa [uIcc_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y x' y' : ℝ hx : x ∈ Icc x' y' hy : y ∈ Icc x' y' ⊢ dist x y ≤ y' - x' [PROOFSTEP] simpa only [Real.dist_eq, abs_of_nonpos (sub_nonpos.2 <| hx.1.trans hx.2), neg_sub] using Real.dist_le_of_mem_uIcc (Icc_subset_uIcc hx) (Icc_subset_uIcc hy) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : ℝ hx : x ∈ Icc 0 1 hy : y ∈ Icc 0 1 ⊢ dist x y ≤ 1 [PROOFSTEP] simpa only [sub_zero] using Real.dist_le_of_mem_Icc hx hy [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : ℝ ⊢ 𝓝 x = ⨅ (r : ℝ) (_ : r > 0), 𝓟 {b | |x - b| < r} [PROOFSTEP] simp only [nhds_basis_ball.eq_biInf, ball, Real.dist_eq, abs_sub_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x r y : ℝ ⊢ y ∈ ball x r ↔ y ∈ Ioo (x - r) (x + r) [PROOFSTEP] rw [mem_ball, dist_comm, Real.dist_eq, abs_sub_lt_iff, mem_Ioo, ← sub_lt_iff_lt_add', sub_lt_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x r : ℝ ⊢ closedBall x r = Icc (x - r) (x + r) [PROOFSTEP] ext y [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x r y : ℝ ⊢ y ∈ closedBall x r ↔ y ∈ Icc (x - r) (x + r) [PROOFSTEP] rw [mem_closedBall, dist_comm, Real.dist_eq, abs_sub_le_iff, mem_Icc, ← sub_le_iff_le_add', sub_le_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : ℝ ⊢ Ioo x y = ball ((x + y) / 2) ((y - x) / 2) [PROOFSTEP] rw [Real.ball_eq_Ioo, ← sub_div, add_comm, ← sub_add, add_sub_cancel', add_self_div_two, ← add_div, add_assoc, add_sub_cancel'_right, add_self_div_two] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y : ℝ ⊢ Icc x y = closedBall ((x + y) / 2) ((y - x) / 2) [PROOFSTEP] rw [Real.closedBall_eq_Icc, ← sub_div, add_comm, ← sub_add, add_sub_cancel', add_self_div_two, ← add_div, add_assoc, add_sub_cancel'_right, add_self_div_two] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α ⊢ 𝓤 α = comap (fun p => dist p.fst p.snd) (𝓝 0) [PROOFSTEP] ext s [GOAL] case a α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set (α × α) ⊢ s ∈ 𝓤 α ↔ s ∈ comap (fun p => dist p.fst p.snd) (𝓝 0) [PROOFSTEP] simp only [mem_uniformity_dist, (nhds_basis_ball.comap _).mem_iff] [GOAL] case a α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set (α × α) ⊢ (∃ ε, ε > 0 ∧ ∀ {a b : α}, dist a b < ε → (a, b) ∈ s) ↔ ∃ i, 0 < i ∧ (fun p => dist p.fst p.snd) ⁻¹' ball 0 i ⊆ s [PROOFSTEP] simp [subset_def, Real.dist_0_eq_abs] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α ⊢ CauchySeq u ↔ Tendsto (fun n => dist (u n.fst) (u n.snd)) atTop (𝓝 0) [PROOFSTEP] rw [cauchySeq_iff_tendsto, Metric.uniformity_eq_comap_nhds_zero, tendsto_comap_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : β → α ⊢ Tendsto ((fun p => dist p.fst p.snd) ∘ Prod.map u u) atTop (𝓝 0) ↔ Tendsto (fun n => dist (u n.fst) (u n.snd)) atTop (𝓝 0) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α ι : Type u_3 f : ι → α × α p : Filter ι ⊢ Tendsto f p (𝓤 α) ↔ Tendsto (fun x => dist (f x).fst (f x).snd) p (𝓝 0) [PROOFSTEP] rw [Metric.uniformity_eq_comap_nhds_zero, tendsto_comap_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι✝ : Type u_2 inst✝ : PseudoMetricSpace α ι : Type u_3 f : ι → α × α p : Filter ι ⊢ Tendsto ((fun p => dist p.fst p.snd) ∘ f) p (𝓝 0) ↔ Tendsto (fun x => dist (f x).fst (f x).snd) p (𝓝 0) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α u : Set α hu : u ∈ 𝓝 x ⊢ ∀ᶠ (r : ℝ) in 𝓝 0, closedBall x r ⊆ u [PROOFSTEP] obtain ⟨ε, εpos, hε⟩ : ∃ ε, 0 < ε ∧ closedBall x ε ⊆ u := nhds_basis_closedBall.mem_iff.1 hu [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α u : Set α hu : u ∈ 𝓝 x ε : ℝ εpos : 0 < ε hε : closedBall x ε ⊆ u ⊢ ∀ᶠ (r : ℝ) in 𝓝 0, closedBall x r ⊆ u [PROOFSTEP] have : Iic ε ∈ 𝓝 (0 : ℝ) := Iic_mem_nhds εpos [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α u : Set α hu : u ∈ 𝓝 x ε : ℝ εpos : 0 < ε hε : closedBall x ε ⊆ u this : Iic ε ∈ 𝓝 0 ⊢ ∀ᶠ (r : ℝ) in 𝓝 0, closedBall x r ⊆ u [PROOFSTEP] filter_upwards [this] with _ hr using Subset.trans (closedBall_subset_closedBall hr) hε [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ ⊢ UniformCauchySeqOn F atTop s ↔ ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ ⊢ UniformCauchySeqOn F atTop s → ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε [PROOFSTEP] intro h ε hε [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : UniformCauchySeqOn F atTop s ε : ℝ hε : ε > 0 ⊢ ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε [PROOFSTEP] let u := {a : α × α | dist a.fst a.snd < ε} [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : UniformCauchySeqOn F atTop s ε : ℝ hε : ε > 0 u : Set (α × α) := {a | dist a.fst a.snd < ε} ⊢ ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε [PROOFSTEP] have hu : u ∈ 𝓤 α := Metric.mem_uniformity_dist.mpr ⟨ε, hε, by simp⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : UniformCauchySeqOn F atTop s ε : ℝ hε : ε > 0 u : Set (α × α) := {a | dist a.fst a.snd < ε} ⊢ ∀ {a b : α}, dist a b < ε → (a, b) ∈ u [PROOFSTEP] simp [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : UniformCauchySeqOn F atTop s ε : ℝ hε : ε > 0 u : Set (α × α) := {a | dist a.fst a.snd < ε} hu : u ∈ 𝓤 α ⊢ ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε [PROOFSTEP] rw [← @Filter.eventually_atTop_prod_self' _ _ _ fun m => ∀ x ∈ s, dist (F m.fst x) (F m.snd x) < ε] [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : UniformCauchySeqOn F atTop s ε : ℝ hε : ε > 0 u : Set (α × α) := {a | dist a.fst a.snd < ε} hu : u ∈ 𝓤 α ⊢ ∀ᶠ (x : β × β) in atTop, ∀ (x_1 : γ), x_1 ∈ s → dist (F x.fst x_1) (F x.snd x_1) < ε [PROOFSTEP] specialize h u hu [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ ε : ℝ hε : ε > 0 u : Set (α × α) := {a | dist a.fst a.snd < ε} hu : u ∈ 𝓤 α h : ∀ᶠ (m : β × β) in atTop ×ˢ atTop, ∀ (x : γ), x ∈ s → (F m.fst x, F m.snd x) ∈ u ⊢ ∀ᶠ (x : β × β) in atTop, ∀ (x_1 : γ), x_1 ∈ s → dist (F x.fst x_1) (F x.snd x_1) < ε [PROOFSTEP] rw [prod_atTop_atTop_eq] at h [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ ε : ℝ hε : ε > 0 u : Set (α × α) := {a | dist a.fst a.snd < ε} hu : u ∈ 𝓤 α h : ∀ᶠ (m : β × β) in atTop, ∀ (x : γ), x ∈ s → (F m.fst x, F m.snd x) ∈ u ⊢ ∀ᶠ (x : β × β) in atTop, ∀ (x_1 : γ), x_1 ∈ s → dist (F x.fst x_1) (F x.snd x_1) < ε [PROOFSTEP] exact h.mono fun n h x hx => h x hx [GOAL] case mpr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ ⊢ (∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε) → UniformCauchySeqOn F atTop s [PROOFSTEP] intro h u hu [GOAL] case mpr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ⊢ ∀ᶠ (m : β × β) in atTop ×ˢ atTop, ∀ (x : γ), x ∈ s → (F m.fst x, F m.snd x) ∈ u [PROOFSTEP] rcases Metric.mem_uniformity_dist.mp hu with ⟨ε, hε, hab⟩ [GOAL] case mpr.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ hε : ε > 0 hab : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u ⊢ ∀ᶠ (m : β × β) in atTop ×ˢ atTop, ∀ (x : γ), x ∈ s → (F m.fst x, F m.snd x) ∈ u [PROOFSTEP] rcases h ε hε with ⟨N, hN⟩ [GOAL] case mpr.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ hε : ε > 0 hab : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u N : β hN : ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε ⊢ ∀ᶠ (m : β × β) in atTop ×ˢ atTop, ∀ (x : γ), x ∈ s → (F m.fst x, F m.snd x) ∈ u [PROOFSTEP] rw [prod_atTop_atTop_eq, eventually_atTop] [GOAL] case mpr.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ hε : ε > 0 hab : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u N : β hN : ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε ⊢ ∃ a, ∀ (b : β × β), b ≥ a → ∀ (x : γ), x ∈ s → (F b.fst x, F b.snd x) ∈ u [PROOFSTEP] use(N, N) [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ hε : ε > 0 hab : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u N : β hN : ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε ⊢ ∀ (b : β × β), b ≥ (N, N) → ∀ (x : γ), x ∈ s → (F b.fst x, F b.snd x) ∈ u [PROOFSTEP] intro b hb x hx [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ hε : ε > 0 hab : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u N : β hN : ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε b : β × β hb : b ≥ (N, N) x : γ hx : x ∈ s ⊢ (F b.fst x, F b.snd x) ∈ u [PROOFSTEP] rcases hb with ⟨hbl, hbr⟩ [GOAL] case h.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β γ : Type u_3 F : β → γ → α s : Set γ h : ∀ (ε : ℝ), ε > 0 → ∃ N, ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε u : Set (α × α) hu : u ∈ 𝓤 α ε : ℝ hε : ε > 0 hab : ∀ {a b : α}, dist a b < ε → (a, b) ∈ u N : β hN : ∀ (m : β), m ≥ N → ∀ (n : β), n ≥ N → ∀ (x : γ), x ∈ s → dist (F m x) (F n x) < ε b : β × β x : γ hx : x ∈ s hbl : (N, N).fst ≤ b.fst hbr : (N, N).snd ≤ b.snd ⊢ (F b.fst x, F b.snd x) ∈ u [PROOFSTEP] exact hab (hN b.fst hbl.ge b.snd hbr.ge x hx) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u ⊢ ∃ R, R > 0 ∧ ∀ (m n : ℕ), dist (u m) (u n) < R [PROOFSTEP] rcases Metric.cauchySeq_iff'.1 hu 1 zero_lt_one with ⟨N, hN⟩ [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 ⊢ ∃ R, R > 0 ∧ ∀ (m n : ℕ), dist (u m) (u n) < R [PROOFSTEP] suffices : ∃ R > 0, ∀ n, dist (u n) (u N) < R [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 this : ∃ R, R > 0 ∧ ∀ (n : ℕ), dist (u n) (u N) < R ⊢ ∃ R, R > 0 ∧ ∀ (m n : ℕ), dist (u m) (u n) < R [PROOFSTEP] rcases this with ⟨R, R0, H⟩ [GOAL] case intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 R : ℝ R0 : R > 0 H : ∀ (n : ℕ), dist (u n) (u N) < R ⊢ ∃ R, R > 0 ∧ ∀ (m n : ℕ), dist (u m) (u n) < R [PROOFSTEP] exact ⟨_, add_pos R0 R0, fun m n => lt_of_le_of_lt (dist_triangle_right _ _ _) (add_lt_add (H m) (H n))⟩ [GOAL] case this α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 ⊢ ∃ R, R > 0 ∧ ∀ (n : ℕ), dist (u n) (u N) < R [PROOFSTEP] let R := Finset.sup (Finset.range N) fun n => nndist (u n) (u N) [GOAL] case this α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 R : ℝ≥0 := Finset.sup (Finset.range N) fun n => nndist (u n) (u N) ⊢ ∃ R, R > 0 ∧ ∀ (n : ℕ), dist (u n) (u N) < R [PROOFSTEP] refine' ⟨↑R + 1, add_pos_of_nonneg_of_pos R.2 zero_lt_one, fun n => _⟩ [GOAL] case this α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 R : ℝ≥0 := Finset.sup (Finset.range N) fun n => nndist (u n) (u N) n : ℕ ⊢ dist (u n) (u N) < ↑R + 1 [PROOFSTEP] cases' le_or_lt N n with h h [GOAL] case this.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 R : ℝ≥0 := Finset.sup (Finset.range N) fun n => nndist (u n) (u N) n : ℕ h : N ≤ n ⊢ dist (u n) (u N) < ↑R + 1 [PROOFSTEP] exact lt_of_lt_of_le (hN _ h) (le_add_of_nonneg_left R.2) [GOAL] case this.inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 R : ℝ≥0 := Finset.sup (Finset.range N) fun n => nndist (u n) (u N) n : ℕ h : n < N ⊢ dist (u n) (u N) < ↑R + 1 [PROOFSTEP] have : _ ≤ R := Finset.le_sup (Finset.mem_range.2 h) [GOAL] case this.inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β u : ℕ → α hu : CauchySeq u N : ℕ hN : ∀ (n : ℕ), n ≥ N → dist (u n) (u N) < 1 R : ℝ≥0 := Finset.sup (Finset.range N) fun n => nndist (u n) (u N) n : ℕ h : n < N this : nndist (u n) (u N) ≤ R ⊢ dist (u n) (u N) < ↑R + 1 [PROOFSTEP] exact lt_of_le_of_lt this (lt_add_of_pos_right _ zero_lt_one) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s ⊢ ∃ b, (∀ (n : ℕ), 0 ≤ b n) ∧ (∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] let S N := (fun p : ℕ × ℕ => dist (s p.1) (s p.2)) '' {p | p.1 ≥ N ∧ p.2 ≥ N} [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} ⊢ ∃ b, (∀ (n : ℕ), 0 ≤ b n) ∧ (∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] have hS : ∀ N, ∃ x, ∀ y ∈ S N, y ≤ x := by rcases cauchySeq_bdd hs with ⟨R, -, hR⟩ refine' fun N => ⟨R, _⟩ rintro _ ⟨⟨m, n⟩, _, rfl⟩ exact le_of_lt (hR m n) -- Prove that it bounds the distances of points in the Cauchy sequence [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} ⊢ ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x [PROOFSTEP] rcases cauchySeq_bdd hs with ⟨R, -, hR⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} R : ℝ hR : ∀ (m n : ℕ), dist (s m) (s n) < R ⊢ ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x [PROOFSTEP] refine' fun N => ⟨R, _⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} R : ℝ hR : ∀ (m n : ℕ), dist (s m) (s n) < R N : ℕ ⊢ ∀ (y : ℝ), y ∈ S N → y ≤ R [PROOFSTEP] rintro _ ⟨⟨m, n⟩, _, rfl⟩ [GOAL] case intro.intro.intro.mk.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} R : ℝ hR : ∀ (m n : ℕ), dist (s m) (s n) < R N m n : ℕ left✝ : (m, n) ∈ {p | p.fst ≥ N ∧ p.snd ≥ N} ⊢ (fun p => dist (s p.fst) (s p.snd)) (m, n) ≤ R [PROOFSTEP] exact le_of_lt (hR m n) -- Prove that it bounds the distances of points in the Cauchy sequence [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ⊢ ∃ b, (∀ (n : ℕ), 0 ≤ b n) ∧ (∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] have ub : ∀ m n N, N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) := fun m n N hm hn => le_csSup (hS N) ⟨⟨_, _⟩, ⟨hm, hn⟩, rfl⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ub : ∀ (m n N : ℕ), N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) ⊢ ∃ b, (∀ (n : ℕ), 0 ≤ b n) ∧ (∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] have S0m : ∀ n, (0 : ℝ) ∈ S n := fun n => ⟨⟨n, n⟩, ⟨le_rfl, le_rfl⟩, dist_self _⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ub : ∀ (m n N : ℕ), N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) S0m : ∀ (n : ℕ), 0 ∈ S n ⊢ ∃ b, (∀ (n : ℕ), 0 ≤ b n) ∧ (∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] have S0 := fun n => le_csSup (hS n) (S0m n) -- Prove that it tends to `0`, by using the Cauchy property of `s` [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ub : ∀ (m n N : ℕ), N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) S0m : ∀ (n : ℕ), 0 ∈ S n S0 : ∀ (n : ℕ), 0 ≤ sSup (S n) ⊢ ∃ b, (∀ (n : ℕ), 0 ≤ b n) ∧ (∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (s n) (s m) ≤ b N) ∧ Tendsto b atTop (𝓝 0) [PROOFSTEP] refine' ⟨fun N => sSup (S N), S0, ub, Metric.tendsto_atTop.2 fun ε ε0 => _⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ub : ∀ (m n N : ℕ), N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) S0m : ∀ (n : ℕ), 0 ∈ S n S0 : ∀ (n : ℕ), 0 ≤ sSup (S n) ε : ℝ ε0 : ε > 0 ⊢ ∃ N, ∀ (n : ℕ), n ≥ N → dist (sSup (S n)) 0 < ε [PROOFSTEP] refine' (Metric.cauchySeq_iff.1 hs (ε / 2) (half_pos ε0)).imp fun N hN n hn => _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ub : ∀ (m n N : ℕ), N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) S0m : ∀ (n : ℕ), 0 ∈ S n S0 : ∀ (n : ℕ), 0 ≤ sSup (S n) ε : ℝ ε0 : ε > 0 N : ℕ hN : ∀ (m : ℕ), m ≥ N → ∀ (n : ℕ), n ≥ N → dist (s m) (s n) < ε / 2 n : ℕ hn : n ≥ N ⊢ dist (sSup (S n)) 0 < ε [PROOFSTEP] rw [Real.dist_0_eq_abs, abs_of_nonneg (S0 n)] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ub : ∀ (m n N : ℕ), N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) S0m : ∀ (n : ℕ), 0 ∈ S n S0 : ∀ (n : ℕ), 0 ≤ sSup (S n) ε : ℝ ε0 : ε > 0 N : ℕ hN : ∀ (m : ℕ), m ≥ N → ∀ (n : ℕ), n ≥ N → dist (s m) (s n) < ε / 2 n : ℕ hn : n ≥ N ⊢ sSup (S n) < ε [PROOFSTEP] refine' lt_of_le_of_lt (csSup_le ⟨_, S0m _⟩ _) (half_lt_self ε0) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ub : ∀ (m n N : ℕ), N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) S0m : ∀ (n : ℕ), 0 ∈ S n S0 : ∀ (n : ℕ), 0 ≤ sSup (S n) ε : ℝ ε0 : ε > 0 N : ℕ hN : ∀ (m : ℕ), m ≥ N → ∀ (n : ℕ), n ≥ N → dist (s m) (s n) < ε / 2 n : ℕ hn : n ≥ N ⊢ ∀ (b : ℝ), b ∈ S n → b ≤ ε / 2 [PROOFSTEP] rintro _ ⟨⟨m', n'⟩, ⟨hm', hn'⟩, rfl⟩ [GOAL] case intro.mk.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α inst✝¹ : Nonempty β inst✝ : SemilatticeSup β s : ℕ → α hs : CauchySeq s S : ℕ → Set ℝ := fun N => (fun p => dist (s p.fst) (s p.snd)) '' {p | p.fst ≥ N ∧ p.snd ≥ N} hS : ∀ (N : ℕ), ∃ x, ∀ (y : ℝ), y ∈ S N → y ≤ x ub : ∀ (m n N : ℕ), N ≤ m → N ≤ n → dist (s m) (s n) ≤ sSup (S N) S0m : ∀ (n : ℕ), 0 ∈ S n S0 : ∀ (n : ℕ), 0 ≤ sSup (S n) ε : ℝ ε0 : ε > 0 N : ℕ hN : ∀ (m : ℕ), m ≥ N → ∀ (n : ℕ), n ≥ N → dist (s m) (s n) < ε / 2 n : ℕ hn : n ≥ N m' n' : ℕ hm' : (m', n').fst ≥ n hn' : (m', n').snd ≥ n ⊢ (fun p => dist (s p.fst) (s p.snd)) (m', n') ≤ ε / 2 [PROOFSTEP] exact le_of_lt (hN _ (le_trans hn hm') _ (le_trans hn hn')) [GOAL] α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type ?u.236042 β : Type ?u.236039 f : α → β m : PseudoMetricSpace β s : Set α ⊢ (f '' sᶜ)ᶜ ∈ cobounded β ↔ s ∈ {s | ∃ C, ∀ (x : α), x ∈ sᶜ → ∀ (y : α), y ∈ sᶜ → dist x y ≤ C} [PROOFSTEP] simp only [← isBounded_def, isBounded_iff, ball_image_iff, mem_setOf] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α a b x✝ : ℝ≥0 ⊢ nndist a b ≤ x✝ ↔ max (a - b) (b - a) ≤ x✝ [PROOFSTEP] simp only [← NNReal.coe_le_coe, coe_nndist, dist_eq, max_le_iff, abs_sub_le_iff, tsub_le_iff_right, NNReal.coe_add] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α z : ℝ≥0 ⊢ nndist 0 z = z [PROOFSTEP] simp only [NNReal.nndist_eq, max_eq_right, tsub_zero, zero_tsub, zero_le'] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α z : ℝ≥0 ⊢ nndist z 0 = z [PROOFSTEP] rw [nndist_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α z : ℝ≥0 ⊢ nndist 0 z = z [PROOFSTEP] exact NNReal.nndist_zero_eq_val z [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α a b : ℝ≥0 ⊢ a ≤ b + nndist a b [PROOFSTEP] suffices (a : ℝ) ≤ (b : ℝ) + dist a b by rwa [← NNReal.coe_le_coe, NNReal.coe_add, coe_nndist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α a b : ℝ≥0 this : ↑a ≤ ↑b + dist a b ⊢ a ≤ b + nndist a b [PROOFSTEP] rwa [← NNReal.coe_le_coe, NNReal.coe_add, coe_nndist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α a b : ℝ≥0 ⊢ ↑a ≤ ↑b + dist a b [PROOFSTEP] rw [← sub_le_iff_le_add'] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α a b : ℝ≥0 ⊢ ↑a - ↑b ≤ dist a b [PROOFSTEP] exact le_of_abs_le (dist_eq a b).ge [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x y : α × β ⊢ (fun x y => dist x.fst y.fst ⊔ dist x.snd y.snd) x y = ENNReal.toReal (edist x y) [PROOFSTEP] simp only [sup_eq_max, dist_edist, ← ENNReal.toReal_max (edist_ne_top _ _) (edist_ne_top _ _), Prod.edist_eq] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β i : PseudoMetricSpace (α × β) := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun x y => dist x.fst y.fst ⊔ dist x.snd y.snd) (_ : ∀ (x y : α × β), max (edist x.fst y.fst) (edist x.snd y.snd) ≠ ⊤) (_ : ∀ (x y : α × β), dist x.fst y.fst ⊔ dist x.snd y.snd = ENNReal.toReal (max (edist x.fst y.fst) (edist x.snd y.snd))) s : Set (α × β) ⊢ IsBounded s ↔ IsBounded s [PROOFSTEP] simp only [← isBounded_image_fst_and_snd, isBounded_iff_eventually, ball_image_iff, ← eventually_and, ← forall_and, ← max_le_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β i : PseudoMetricSpace (α × β) := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun x y => dist x.fst y.fst ⊔ dist x.snd y.snd) (_ : ∀ (x y : α × β), max (edist x.fst y.fst) (edist x.snd y.snd) ≠ ⊤) (_ : ∀ (x y : α × β), dist x.fst y.fst ⊔ dist x.snd y.snd = ENNReal.toReal (max (edist x.fst y.fst) (edist x.snd y.snd))) s : Set (α × β) ⊢ (∀ᶠ (x : ℝ) in atTop, ∀ (x_1 : α × β), x_1 ∈ s → ∀ (x_3 : α × β), x_3 ∈ s → max (dist x_1.fst x_3.fst) (dist x_1.snd x_3.snd) ≤ x) ↔ ∀ᶠ (C : ℝ) in atTop, ∀ ⦃x : α × β⦄, x ∈ s → ∀ ⦃y : α × β⦄, y ∈ s → dist x y ≤ C [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α y₁ y₂ : β ⊢ dist (x, y₁) (x, y₂) = dist y₁ y₂ [PROOFSTEP] simp [Prod.dist_eq, dist_nonneg] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x₁ x₂ : α y : β ⊢ dist (x₁, y) (x₂, y) = dist x₁ x₂ [PROOFSTEP] simp [Prod.dist_eq, dist_nonneg] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α y : β r : ℝ z : α × β ⊢ z ∈ ball x r ×ˢ ball y r ↔ z ∈ ball (x, y) r [PROOFSTEP] simp [Prod.dist_eq] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α y : β r : ℝ z : α × β ⊢ z ∈ closedBall x r ×ˢ closedBall y r ↔ z ∈ closedBall (x, y) r [PROOFSTEP] simp [Prod.dist_eq] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ ⊢ sphere x r = sphere x.fst r ×ˢ closedBall x.snd r ∪ closedBall x.fst r ×ˢ sphere x.snd r [PROOFSTEP] obtain hr | rfl | hr := lt_trichotomy r 0 [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : r < 0 ⊢ sphere x r = sphere x.fst r ×ˢ closedBall x.snd r ∪ closedBall x.fst r ×ˢ sphere x.snd r [PROOFSTEP] simp [hr] [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β ⊢ sphere x 0 = sphere x.fst 0 ×ˢ closedBall x.snd 0 ∪ closedBall x.fst 0 ×ˢ sphere x.snd 0 [PROOFSTEP] cases x [GOAL] case inr.inl.mk α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β fst✝ : α snd✝ : β ⊢ sphere (fst✝, snd✝) 0 = sphere (fst✝, snd✝).fst 0 ×ˢ closedBall (fst✝, snd✝).snd 0 ∪ closedBall (fst✝, snd✝).fst 0 ×ˢ sphere (fst✝, snd✝).snd 0 [PROOFSTEP] simp_rw [← closedBall_eq_sphere_of_nonpos le_rfl, union_self, closedBall_prod_same] [GOAL] case inr.inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r ⊢ sphere x r = sphere x.fst r ×ˢ closedBall x.snd r ∪ closedBall x.fst r ×ˢ sphere x.snd r [PROOFSTEP] ext ⟨x', y'⟩ [GOAL] case inr.inr.h.mk α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r x' : α y' : β ⊢ (x', y') ∈ sphere x r ↔ (x', y') ∈ sphere x.fst r ×ˢ closedBall x.snd r ∪ closedBall x.fst r ×ˢ sphere x.snd r [PROOFSTEP] simp_rw [Set.mem_union, Set.mem_prod, Metric.mem_closedBall, Metric.mem_sphere, Prod.dist_eq, max_eq_iff] [GOAL] case inr.inr.h.mk α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r x' : α y' : β ⊢ dist x' x.fst = r ∧ dist y' x.snd ≤ dist x' x.fst ∨ dist y' x.snd = r ∧ dist x' x.fst ≤ dist y' x.snd ↔ dist x' x.fst = r ∧ dist y' x.snd ≤ r ∨ dist x' x.fst ≤ r ∧ dist y' x.snd = r [PROOFSTEP] refine' or_congr (and_congr_right _) (and_comm.trans (and_congr_left _)) [GOAL] case inr.inr.h.mk.refine'_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r x' : α y' : β ⊢ dist x' x.fst = r → (dist y' x.snd ≤ dist x' x.fst ↔ dist y' x.snd ≤ r) case inr.inr.h.mk.refine'_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r x' : α y' : β ⊢ dist y' x.snd = r → (dist x' x.fst ≤ dist y' x.snd ↔ dist x' x.fst ≤ r) [PROOFSTEP] all_goals rintro rfl; rfl [GOAL] case inr.inr.h.mk.refine'_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r x' : α y' : β ⊢ dist x' x.fst = r → (dist y' x.snd ≤ dist x' x.fst ↔ dist y' x.snd ≤ r) [PROOFSTEP] rintro rfl [GOAL] case inr.inr.h.mk.refine'_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β x' : α y' : β hr : 0 < dist x' x.fst ⊢ dist y' x.snd ≤ dist x' x.fst ↔ dist y' x.snd ≤ dist x' x.fst [PROOFSTEP] rfl [GOAL] case inr.inr.h.mk.refine'_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β r : ℝ hr : 0 < r x' : α y' : β ⊢ dist y' x.snd = r → (dist x' x.fst ≤ dist y' x.snd ↔ dist x' x.fst ≤ r) [PROOFSTEP] rintro rfl [GOAL] case inr.inr.h.mk.refine'_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : PseudoMetricSpace β x : α × β x' : α y' : β hr : 0 < dist y' x.snd ⊢ dist x' x.fst ≤ dist y' x.snd ↔ dist x' x.fst ≤ dist y' x.snd [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ⊢ dist (dist x y) (dist x z) ≤ dist y z [PROOFSTEP] simpa only [dist_comm x] using dist_dist_dist_le_left y z x [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α a : α ⊢ comap (fun x => dist x a) (𝓝 0) = 𝓝 a [PROOFSTEP] simp only [@nhds_eq_comap_uniformity α, Metric.uniformity_eq_comap_nhds_zero, comap_comap, (· ∘ ·), dist_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : β → α x : Filter β a : α ⊢ Tendsto f x (𝓝 a) ↔ Tendsto (fun b => dist (f b) a) x (𝓝 0) [PROOFSTEP] rw [← nhds_comap_dist a, tendsto_comap_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : β → α x : Filter β a : α ⊢ Tendsto ((fun x => dist x a) ∘ f) x (𝓝 0) ↔ Tendsto (fun b => dist (f b) a) x (𝓝 0) [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ s : Set α a : α ⊢ (∀ (i : ℝ), 0 < i → ∃ y, y ∈ s ∧ y ∈ ball a i) ↔ ∀ (ε : ℝ), ε > 0 → ∃ b, b ∈ s ∧ dist a b < ε [PROOFSTEP] simp only [mem_ball, dist_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s : Set α e : β → α a : α ⊢ a ∈ closure (range e) ↔ ∀ (ε : ℝ), ε > 0 → ∃ k, dist a (e k) < ε [PROOFSTEP] simp only [mem_closure_iff, exists_range_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s : Set α e : β → α a : α ⊢ (∀ (i : ℕ), True → ∃ y, y ∈ range e ∧ y ∈ ball a (1 / (↑i + 1))) ↔ ∀ (n : ℕ), ∃ k, dist a (e k) < 1 / (↑n + 1) [PROOFSTEP] simp only [mem_ball, dist_comm, exists_range_iff, forall_const] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ s : Set α hs : IsClosed s a : α ⊢ a ∈ s ↔ ∀ (ε : ℝ), ε > 0 → ∃ b, b ∈ s ∧ dist a b < ε [PROOFSTEP] simpa only [hs.closure_eq] using @mem_closure_iff _ _ s a [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ s✝ s : Set α x : α ⊢ x ∈ closure s ↔ ∀ (r : ℝ), r > 0 → Set.Nonempty (ball x r ∩ s) [PROOFSTEP] simp only [mem_closure_iff, Set.Nonempty, exists_prop, mem_inter_iff, mem_ball', and_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ y z : α ε ε₁ ε₂ : ℝ s : Set α f : β → α x : α ⊢ x ∈ closure (range f) ↔ ∀ (r : ℝ), r > 0 → ∃ y, dist x (f y) < r [PROOFSTEP] simp only [mem_closure_iff, exists_range_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ : Set α f : β → α inst✝ : TopologicalSpace β hf : Inducing f s : Set α hs : IsSeparable s ⊢ IsSeparable (f ⁻¹' s) [PROOFSTEP] have : SeparableSpace s := hs.separableSpace [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ : Set α f : β → α inst✝ : TopologicalSpace β hf : Inducing f s : Set α hs : IsSeparable s this : SeparableSpace ↑s ⊢ IsSeparable (f ⁻¹' s) [PROOFSTEP] have : SecondCountableTopology s := UniformSpace.secondCountable_of_separable _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ : Set α f : β → α inst✝ : TopologicalSpace β hf : Inducing f s : Set α hs : IsSeparable s this✝ : SeparableSpace ↑s this : SecondCountableTopology ↑s ⊢ IsSeparable (f ⁻¹' s) [PROOFSTEP] have : Inducing ((mapsTo_preimage f s).restrict _ _ _) := (hf.comp inducing_subtype_val).codRestrict _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ : Set α f : β → α inst✝ : TopologicalSpace β hf : Inducing f s : Set α hs : IsSeparable s this✝¹ : SeparableSpace ↑s this✝ : SecondCountableTopology ↑s this : Inducing (MapsTo.restrict f (f ⁻¹' s) s (_ : MapsTo f (f ⁻¹' s) s)) ⊢ IsSeparable (f ⁻¹' s) [PROOFSTEP] have := this.secondCountableTopology [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ : Set α f : β → α inst✝ : TopologicalSpace β hf : Inducing f s : Set α hs : IsSeparable s this✝² : SeparableSpace ↑s this✝¹ : SecondCountableTopology ↑s this✝ : Inducing (MapsTo.restrict f (f ⁻¹' s) s (_ : MapsTo f (f ⁻¹' s) s)) this : SecondCountableTopology ↑(f ⁻¹' s) ⊢ IsSeparable (f ⁻¹' s) [PROOFSTEP] exact isSeparable_of_separableSpace_subtype _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ : Set α inst✝ : TopologicalSpace β f : α → β s : Set α hf : ContinuousOn f s hs : IsSeparable s ⊢ IsSeparable (f '' s) [PROOFSTEP] rw [image_eq_range, ← image_univ] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x y z : α ε ε₁ ε₂ : ℝ s✝ : Set α inst✝ : TopologicalSpace β f : α → β s : Set α hf : ContinuousOn f s hs : IsSeparable s ⊢ IsSeparable ((fun x => f ↑x) '' univ) [PROOFSTEP] exact (isSeparable_univ_iff.2 hs.separableSpace).image hf.restrict [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) ⊢ PseudoMetricSpace ((b : β) → π b) [PROOFSTEP] let i := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun f g : ∀ b, π b => ((sup univ fun b => nndist (f b) (g b) : ℝ≥0) : ℝ)) (fun f g => ((Finset.sup_lt_iff bot_lt_top).2 fun b _ => edist_lt_top _ _).ne) (fun f g => by simp only [edist_pi_def, edist_nndist, ← ENNReal.coe_finset_sup, ENNReal.coe_toReal]) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b ⊢ (fun f g => ↑(sup Finset.univ fun b => nndist (f b) (g b))) f g = ENNReal.toReal (edist f g) [PROOFSTEP] simp only [edist_pi_def, edist_nndist, ← ENNReal.coe_finset_sup, ENNReal.coe_toReal] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) i : PseudoMetricSpace ((b : β) → π b) := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun f g => ↑(sup Finset.univ fun b => nndist (f b) (g b))) (_ : ∀ (f g : (b : β) → π b), (sup Finset.univ fun b => edist (f b) (g b)) ≠ ⊤) (_ : ∀ (f g : (b : β) → π b), ↑(sup Finset.univ fun b => nndist (f b) (g b)) = ENNReal.toReal (sup Finset.univ fun x => edist (f x) (g x))) ⊢ PseudoMetricSpace ((b : β) → π b) [PROOFSTEP] refine i.replaceBornology fun s => ?_ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) i : PseudoMetricSpace ((b : β) → π b) := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun f g => ↑(sup Finset.univ fun b => nndist (f b) (g b))) (_ : ∀ (f g : (b : β) → π b), (sup Finset.univ fun b => edist (f b) (g b)) ≠ ⊤) (_ : ∀ (f g : (b : β) → π b), ↑(sup Finset.univ fun b => nndist (f b) (g b)) = ENNReal.toReal (sup Finset.univ fun x => edist (f x) (g x))) s : Set ((b : β) → π b) ⊢ IsBounded s ↔ IsBounded s [PROOFSTEP] simp only [← isBounded_def, isBounded_iff_eventually, ← forall_isBounded_image_eval_iff, ball_image_iff, ← Filter.eventually_all, Function.eval_apply, @dist_nndist (π _)] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) i : PseudoMetricSpace ((b : β) → π b) := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun f g => ↑(sup Finset.univ fun b => nndist (f b) (g b))) (_ : ∀ (f g : (b : β) → π b), (sup Finset.univ fun b => edist (f b) (g b)) ≠ ⊤) (_ : ∀ (f g : (b : β) → π b), ↑(sup Finset.univ fun b => nndist (f b) (g b)) = ENNReal.toReal (sup Finset.univ fun x => edist (f x) (g x))) s : Set ((b : β) → π b) ⊢ (∀ᶠ (x : ℝ) in atTop, ∀ (i : β) (x_1 : (x : β) → π x), x_1 ∈ s → ∀ (x_2 : (x : β) → π x), x_2 ∈ s → ↑(nndist (Function.eval i x_1) (Function.eval i x_2)) ≤ x) ↔ ∀ᶠ (C : ℝ) in atTop, ∀ ⦃x : (b : β) → π b⦄, x ∈ s → ∀ ⦃y : (b : β) → π b⦄, y ∈ s → dist x y ≤ C [PROOFSTEP] refine' eventually_congr ((eventually_ge_atTop 0).mono fun C hC => _) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) i : PseudoMetricSpace ((b : β) → π b) := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun f g => ↑(sup Finset.univ fun b => nndist (f b) (g b))) (_ : ∀ (f g : (b : β) → π b), (sup Finset.univ fun b => edist (f b) (g b)) ≠ ⊤) (_ : ∀ (f g : (b : β) → π b), ↑(sup Finset.univ fun b => nndist (f b) (g b)) = ENNReal.toReal (sup Finset.univ fun x => edist (f x) (g x))) s : Set ((b : β) → π b) C : ℝ hC : 0 ≤ C ⊢ (∀ (i : β) (x : (x : β) → π x), x ∈ s → ∀ (x_1 : (x : β) → π x), x_1 ∈ s → ↑(nndist (Function.eval i x) (Function.eval i x_1)) ≤ C) ↔ ∀ ⦃x : (b : β) → π b⦄, x ∈ s → ∀ ⦃y : (b : β) → π b⦄, y ∈ s → dist x y ≤ C [PROOFSTEP] lift C to ℝ≥0 using hC [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) i : PseudoMetricSpace ((b : β) → π b) := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun f g => ↑(sup Finset.univ fun b => nndist (f b) (g b))) (_ : ∀ (f g : (b : β) → π b), (sup Finset.univ fun b => edist (f b) (g b)) ≠ ⊤) (_ : ∀ (f g : (b : β) → π b), ↑(sup Finset.univ fun b => nndist (f b) (g b)) = ENNReal.toReal (sup Finset.univ fun x => edist (f x) (g x))) s : Set ((b : β) → π b) C : ℝ≥0 ⊢ (∀ (i : β) (x : (x : β) → π x), x ∈ s → ∀ (x_1 : (x : β) → π x), x_1 ∈ s → ↑(nndist (Function.eval i x) (Function.eval i x_1)) ≤ ↑C) ↔ ∀ ⦃x : (b : β) → π b⦄, x ∈ s → ∀ ⦃y : (b : β) → π b⦄, y ∈ s → dist x y ≤ ↑C [PROOFSTEP] refine' ⟨fun H x hx y hy => NNReal.coe_le_coe.2 <| Finset.sup_le fun b _ => H b x hx y hy, fun H b x hx y hy => NNReal.coe_le_coe.2 _⟩ [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) i : PseudoMetricSpace ((b : β) → π b) := PseudoEMetricSpace.toPseudoMetricSpaceOfDist (fun f g => ↑(sup Finset.univ fun b => nndist (f b) (g b))) (_ : ∀ (f g : (b : β) → π b), (sup Finset.univ fun b => edist (f b) (g b)) ≠ ⊤) (_ : ∀ (f g : (b : β) → π b), ↑(sup Finset.univ fun b => nndist (f b) (g b)) = ENNReal.toReal (sup Finset.univ fun x => edist (f x) (g x))) s : Set ((b : β) → π b) C : ℝ≥0 H : ∀ ⦃x : (b : β) → π b⦄, x ∈ s → ∀ ⦃y : (b : β) → π b⦄, y ∈ s → dist x y ≤ ↑C b : β x : (x : β) → π x hx : x ∈ s y : (x : β) → π x hy : y ∈ s ⊢ nndist (Function.eval b x) (Function.eval b y) ≤ C [PROOFSTEP] simpa only using Finset.sup_le_iff.1 (NNReal.coe_le_coe.1 <| H hx hy) b (Finset.mem_univ b) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 ⊢ nndist f g ≤ r ↔ ∀ (b : β), nndist (f b) (g b) ≤ r [PROOFSTEP] simp [nndist_pi_def] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 hr : 0 < r ⊢ nndist f g < r ↔ ∀ (b : β), nndist (f b) (g b) < r [PROOFSTEP] simp [nndist_pi_def, Finset.sup_lt_iff (show ⊥ < r from hr)] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 hr : 0 < r ⊢ nndist f g = r ↔ (∃ i, nndist (f i) (g i) = r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r [PROOFSTEP] rw [eq_iff_le_not_lt, nndist_pi_lt_iff hr, nndist_pi_le_iff, not_forall, and_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 hr : 0 < r ⊢ ((∃ x, ¬nndist (f x) (g x) < r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r) ↔ (∃ i, nndist (f i) (g i) = r) ∧ ∀ (b : β), nndist (f b) (g b) ≤ r [PROOFSTEP] simp_rw [not_lt, and_congr_left_iff, le_antisymm_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 hr : 0 < r ⊢ (∀ (b : β), nndist (f b) (g b) ≤ r) → ((∃ x, r ≤ nndist (f x) (g x)) ↔ ∃ i, nndist (f i) (g i) ≤ r ∧ r ≤ nndist (f i) (g i)) [PROOFSTEP] intro h [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 hr : 0 < r h : ∀ (b : β), nndist (f b) (g b) ≤ r ⊢ (∃ x, r ≤ nndist (f x) (g x)) ↔ ∃ i, nndist (f i) (g i) ≤ r ∧ r ≤ nndist (f i) (g i) [PROOFSTEP] refine' exists_congr fun b => _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 hr : 0 < r h : ∀ (b : β), nndist (f b) (g b) ≤ r b : β ⊢ r ≤ nndist (f b) (g b) ↔ nndist (f b) (g b) ≤ r ∧ r ≤ nndist (f b) (g b) [PROOFSTEP] apply (and_iff_right <| h _).symm [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ hr : 0 < r ⊢ dist f g < r ↔ ∀ (b : β), dist (f b) (g b) < r [PROOFSTEP] lift r to ℝ≥0 using hr.le [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 hr : 0 < ↑r ⊢ dist f g < ↑r ↔ ∀ (b : β), dist (f b) (g b) < ↑r [PROOFSTEP] exact nndist_pi_lt_iff hr [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ hr : 0 ≤ r ⊢ dist f g ≤ r ↔ ∀ (b : β), dist (f b) (g b) ≤ r [PROOFSTEP] lift r to ℝ≥0 using hr [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 ⊢ dist f g ≤ ↑r ↔ ∀ (b : β), dist (f b) (g b) ≤ ↑r [PROOFSTEP] exact nndist_pi_le_iff [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ hr : 0 < r ⊢ dist f g = r ↔ (∃ i, dist (f i) (g i) = r) ∧ ∀ (b : β), dist (f b) (g b) ≤ r [PROOFSTEP] lift r to ℝ≥0 using hr.le [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b r : ℝ≥0 hr : 0 < ↑r ⊢ dist f g = ↑r ↔ (∃ i, dist (f i) (g i) = ↑r) ∧ ∀ (b : β), dist (f b) (g b) ≤ ↑r [PROOFSTEP] simp_rw [← coe_nndist, NNReal.coe_eq, nndist_pi_eq_iff hr, NNReal.coe_le_coe] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α π : β → Type u_3 inst✝² : Fintype β inst✝¹ : (b : β) → PseudoMetricSpace (π b) inst✝ : Nonempty β f g : (b : β) → π b r : ℝ ⊢ dist f g ≤ r ↔ ∀ (b : β), dist (f b) (g b) ≤ r [PROOFSTEP] by_cases hr : 0 ≤ r [GOAL] case pos α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α π : β → Type u_3 inst✝² : Fintype β inst✝¹ : (b : β) → PseudoMetricSpace (π b) inst✝ : Nonempty β f g : (b : β) → π b r : ℝ hr : 0 ≤ r ⊢ dist f g ≤ r ↔ ∀ (b : β), dist (f b) (g b) ≤ r [PROOFSTEP] exact dist_pi_le_iff hr [GOAL] case neg α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α π : β → Type u_3 inst✝² : Fintype β inst✝¹ : (b : β) → PseudoMetricSpace (π b) inst✝ : Nonempty β f g : (b : β) → π b r : ℝ hr : ¬0 ≤ r ⊢ dist f g ≤ r ↔ ∀ (b : β), dist (f b) (g b) ≤ r [PROOFSTEP] exact iff_of_false (fun h => hr <| dist_nonneg.trans h) fun h => hr <| dist_nonneg.trans <| h <| Classical.arbitrary _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α π : β → Type u_3 inst✝² : Fintype β inst✝¹ : (b : β) → PseudoMetricSpace (π b) inst✝ : Nonempty β a b : α ⊢ (dist (fun x => a) fun x => b) = dist a b [PROOFSTEP] simpa only [dist_edist] using congr_arg ENNReal.toReal (edist_pi_const a b) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b b : β ⊢ nndist (f b) (g b) ≤ nndist f g [PROOFSTEP] rw [← ENNReal.coe_le_coe, ← edist_nndist, ← edist_nndist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b b : β ⊢ edist (f b) (g b) ≤ edist f g [PROOFSTEP] exact edist_le_pi_edist f g b [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) f g : (b : β) → π b b : β ⊢ dist (f b) (g b) ≤ dist f g [PROOFSTEP] simp only [dist_nndist, NNReal.coe_le_coe, nndist_le_pi_nndist f g b] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b r : ℝ hr : 0 < r ⊢ ball x r = Set.pi Set.univ fun b => ball (x b) r [PROOFSTEP] ext p [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b r : ℝ hr : 0 < r p : (b : β) → π b ⊢ p ∈ ball x r ↔ p ∈ Set.pi Set.univ fun b => ball (x b) r [PROOFSTEP] simp [dist_pi_lt_iff hr] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α π : β → Type u_3 inst✝² : Fintype β inst✝¹ : (b : β) → PseudoMetricSpace (π b) inst✝ : Nonempty β x : (b : β) → π b r : ℝ hr : r ≤ 0 ⊢ ball x r = Set.pi Set.univ fun b => ball (x b) r [PROOFSTEP] simp [ball_eq_empty.2 hr] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b r : ℝ hr : 0 ≤ r ⊢ closedBall x r = Set.pi Set.univ fun b => closedBall (x b) r [PROOFSTEP] ext p [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b r : ℝ hr : 0 ≤ r p : (b : β) → π b ⊢ p ∈ closedBall x r ↔ p ∈ Set.pi Set.univ fun b => closedBall (x b) r [PROOFSTEP] simp [dist_pi_le_iff hr] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α π : β → Type u_3 inst✝² : Fintype β inst✝¹ : (b : β) → PseudoMetricSpace (π b) inst✝ : Nonempty β x : (b : β) → π b r : ℝ hr : r < 0 ⊢ closedBall x r = Set.pi Set.univ fun b => closedBall (x b) r [PROOFSTEP] simp [closedBall_eq_empty.2 hr] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b r : ℝ h : 0 < r ∨ Nonempty β ⊢ sphere x r = (⋃ (i : β), Function.eval i ⁻¹' sphere (x i) r) ∩ closedBall x r [PROOFSTEP] obtain hr | rfl | hr := lt_trichotomy r 0 [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b r : ℝ h : 0 < r ∨ Nonempty β hr : r < 0 ⊢ sphere x r = (⋃ (i : β), Function.eval i ⁻¹' sphere (x i) r) ∩ closedBall x r [PROOFSTEP] simp [hr] [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b h : 0 < 0 ∨ Nonempty β ⊢ sphere x 0 = (⋃ (i : β), Function.eval i ⁻¹' sphere (x i) 0) ∩ closedBall x 0 [PROOFSTEP] rw [closedBall_eq_sphere_of_nonpos le_rfl, eq_comm, Set.inter_eq_right_iff_subset] [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b h : 0 < 0 ∨ Nonempty β ⊢ sphere x 0 ⊆ ⋃ (i : β), Function.eval i ⁻¹' sphere (x i) 0 [PROOFSTEP] letI := h.resolve_left (lt_irrefl _) [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b h : 0 < 0 ∨ Nonempty β this : Nonempty β := Or.resolve_left h (lt_irrefl 0) ⊢ sphere x 0 ⊆ ⋃ (i : β), Function.eval i ⁻¹' sphere (x i) 0 [PROOFSTEP] inhabit β [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b h : 0 < 0 ∨ Nonempty β this : Nonempty β := Or.resolve_left h (lt_irrefl 0) inhabited_h : Inhabited β ⊢ sphere x 0 ⊆ ⋃ (i : β), Function.eval i ⁻¹' sphere (x i) 0 [PROOFSTEP] refine' subset_iUnion_of_subset default _ [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b h : 0 < 0 ∨ Nonempty β this : Nonempty β := Or.resolve_left h (lt_irrefl 0) inhabited_h : Inhabited β ⊢ sphere x 0 ⊆ Function.eval default ⁻¹' sphere (x default) 0 [PROOFSTEP] intro x hx [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x✝ : (b : β) → π b h : 0 < 0 ∨ Nonempty β this : Nonempty β := Or.resolve_left h (lt_irrefl 0) inhabited_h : Inhabited β x : (x : β) → π x hx : x ∈ sphere x✝ 0 ⊢ x ∈ Function.eval default ⁻¹' sphere (x✝ default) 0 [PROOFSTEP] replace hx := hx.le [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x✝ : (b : β) → π b h : 0 < 0 ∨ Nonempty β this : Nonempty β := Or.resolve_left h (lt_irrefl 0) inhabited_h : Inhabited β x : (x : β) → π x hx : dist x x✝ ≤ 0 ⊢ x ∈ Function.eval default ⁻¹' sphere (x✝ default) 0 [PROOFSTEP] rw [dist_pi_le_iff le_rfl] at hx [GOAL] case inr.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x✝ : (b : β) → π b h : 0 < 0 ∨ Nonempty β this : Nonempty β := Or.resolve_left h (lt_irrefl 0) inhabited_h : Inhabited β x : (x : β) → π x hx : ∀ (b : β), dist (x b) (x✝ b) ≤ 0 ⊢ x ∈ Function.eval default ⁻¹' sphere (x✝ default) 0 [PROOFSTEP] exact le_antisymm (hx default) dist_nonneg [GOAL] case inr.inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b r : ℝ h : 0 < r ∨ Nonempty β hr : 0 < r ⊢ sphere x r = (⋃ (i : β), Function.eval i ⁻¹' sphere (x i) r) ∩ closedBall x r [PROOFSTEP] ext [GOAL] case inr.inr.h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x : (b : β) → π b r : ℝ h : 0 < r ∨ Nonempty β hr : 0 < r x✝ : (b : β) → π b ⊢ x✝ ∈ sphere x r ↔ x✝ ∈ (⋃ (i : β), Function.eval i ⁻¹' sphere (x i) r) ∩ closedBall x r [PROOFSTEP] simp [dist_pi_eq_iff hr, dist_pi_le_iff hr.le] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α✝ π : β → Type u_3 inst✝² : Fintype β inst✝¹ : (b : β) → PseudoMetricSpace (π b) n : ℕ α : Fin (n + 1) → Type u_4 inst✝ : (i : Fin (n + 1)) → PseudoMetricSpace (α i) i : Fin (n + 1) x y : α i f g : (j : Fin n) → α (succAbove i j) c : ℝ≥0 ⊢ nndist (insertNth i x f) (insertNth i y g) ≤ c ↔ max (nndist x y) (nndist f g) ≤ c [PROOFSTEP] simp [nndist_pi_le_iff, i.forall_iff_succAbove] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α✝ π : β → Type u_3 inst✝² : Fintype β inst✝¹ : (b : β) → PseudoMetricSpace (π b) n : ℕ α : Fin (n + 1) → Type u_4 inst✝ : (i : Fin (n + 1)) → PseudoMetricSpace (α i) i : Fin (n + 1) x y : α i f g : (j : Fin n) → α (succAbove i j) ⊢ dist (insertNth i x f) (insertNth i y g) = max (dist x y) (dist f g) [PROOFSTEP] simp only [dist_nndist, Fin.nndist_insertNth_insertNth, NNReal.coe_max] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x y x' y' : β → ℝ hx : x ∈ Set.Icc x' y' hy : y ∈ Set.Icc x' y' ⊢ dist x y ≤ dist x' y' [PROOFSTEP] refine' (dist_pi_le_iff dist_nonneg).2 fun b => (Real.dist_le_of_mem_uIcc _ _).trans (dist_le_pi_dist x' y' b) [GOAL] case refine'_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x y x' y' : β → ℝ hx : x ∈ Set.Icc x' y' hy : y ∈ Set.Icc x' y' b : β ⊢ x b ∈ Set.uIcc (x' b) (y' b) [PROOFSTEP] refine' Icc_subset_uIcc _ [GOAL] case refine'_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x y x' y' : β → ℝ hx : x ∈ Set.Icc x' y' hy : y ∈ Set.Icc x' y' b : β ⊢ y b ∈ Set.uIcc (x' b) (y' b) [PROOFSTEP] refine' Icc_subset_uIcc _ [GOAL] case refine'_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x y x' y' : β → ℝ hx : x ∈ Set.Icc x' y' hy : y ∈ Set.Icc x' y' b : β ⊢ x b ∈ Set.Icc (x' b) (y' b) case refine'_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) x y x' y' : β → ℝ hx : x ∈ Set.Icc x' y' hy : y ∈ Set.Icc x' y' b : β ⊢ y b ∈ Set.Icc (x' b) (y' b) [PROOFSTEP] exacts [⟨hx.1 _, hx.2 _⟩, ⟨hy.1 _, hy.2 _⟩] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α ⊢ SecondCountableTopology α [PROOFSTEP] suffices SigmaCompactSpace α by exact EMetric.secondCountable_of_sigmaCompact α [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α this : SigmaCompactSpace α ⊢ SecondCountableTopology α [PROOFSTEP] exact EMetric.secondCountable_of_sigmaCompact α [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α ⊢ SigmaCompactSpace α [PROOFSTEP] rcases em (Nonempty α) with (⟨⟨x⟩⟩ | hn) [GOAL] case inl.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α ⊢ SigmaCompactSpace α [PROOFSTEP] exact ⟨⟨fun n => closedBall x n, fun n => isCompact_closedBall _ _, iUnion_closedBall_nat _⟩⟩ [GOAL] case inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α hn : ¬Nonempty α ⊢ SigmaCompactSpace α [PROOFSTEP] exact ⟨⟨fun _ => ∅, fun _ => isCompact_empty, iUnion_eq_univ_iff.2 fun x => (hn ⟨x⟩).elim⟩⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α ⊢ Tendsto (dist x) (cocompact α) atTop [PROOFSTEP] simpa only [dist_comm] using tendsto_dist_right_cocompact_atTop x [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α f : Filter α hf : Cauchy f ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] obtain ⟨t, t_fset, ht⟩ : ∃ t ∈ f, ∀ x ∈ t, ∀ y ∈ t, dist x y < 1 := (Metric.cauchy_iff.1 hf).2 1 zero_lt_one [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α f : Filter α hf : Cauchy f t : Set α t_fset : t ∈ f ht : ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → dist x y < 1 ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] rcases hf.1.nonempty_of_mem t_fset with ⟨x, xt⟩ [GOAL] case intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α f : Filter α hf : Cauchy f t : Set α t_fset : t ∈ f ht : ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → dist x y < 1 x : α xt : x ∈ t ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] have : closedBall x 1 ∈ f := mem_of_superset t_fset fun y yt => (ht y yt x xt).le [GOAL] case intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α f : Filter α hf : Cauchy f t : Set α t_fset : t ∈ f ht : ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → dist x y < 1 x : α xt : x ∈ t this : closedBall x 1 ∈ f ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] rcases(isCompact_iff_totallyBounded_isComplete.1 (isCompact_closedBall x 1)).2 f hf (le_principal_iff.2 this) with ⟨y, -, hy⟩ [GOAL] case intro.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α f : Filter α hf : Cauchy f t : Set α t_fset : t ∈ f ht : ∀ (x : α), x ∈ t → ∀ (y : α), y ∈ t → dist x y < 1 x : α xt : x ∈ t this : closedBall x 1 ∈ f y : α hy : f ≤ 𝓝 y ⊢ ∃ x, f ≤ 𝓝 x [PROOFSTEP] exact ⟨y, hy⟩ [GOAL] α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α✝ α : Type u_3 β : Type u_4 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : ProperSpace α inst✝ : ProperSpace β ⊢ ∀ (x : α × β) (r : ℝ), IsCompact (closedBall x r) [PROOFSTEP] rintro ⟨x, y⟩ r [GOAL] case mk α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α✝ α : Type u_3 β : Type u_4 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : ProperSpace α inst✝ : ProperSpace β x : α y : β r : ℝ ⊢ IsCompact (closedBall (x, y) r) [PROOFSTEP] rw [← closedBall_prod_same x y] [GOAL] case mk α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α✝ α : Type u_3 β : Type u_4 inst✝³ : PseudoMetricSpace α inst✝² : PseudoMetricSpace β inst✝¹ : ProperSpace α inst✝ : ProperSpace β x : α y : β r : ℝ ⊢ IsCompact (closedBall x r ×ˢ closedBall y r) [PROOFSTEP] exact (isCompact_closedBall x r).prod (isCompact_closedBall y r) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) h : ∀ (b : β), ProperSpace (π b) ⊢ ProperSpace ((b : β) → π b) [PROOFSTEP] refine' properSpace_of_compact_closedBall_of_le 0 fun x r hr => _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) h : ∀ (b : β), ProperSpace (π b) x : (b : β) → π b r : ℝ hr : 0 ≤ r ⊢ IsCompact (closedBall x r) [PROOFSTEP] rw [closedBall_pi _ hr] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α π : β → Type u_3 inst✝¹ : Fintype β inst✝ : (b : β) → PseudoMetricSpace (π b) h : ∀ (b : β), ProperSpace (π b) x : (b : β) → π b r : ℝ hr : 0 ≤ r ⊢ IsCompact (Set.pi univ fun b => closedBall (x b) r) [PROOFSTEP] exact isCompact_univ_pi fun _ => isCompact_closedBall _ _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hr : 0 < r hs : IsClosed s h : s ⊆ ball x r ⊢ ∃ r', r' ∈ Ioo 0 r ∧ s ⊆ ball x r' [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | hne) [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ hr : 0 < r hs : IsClosed ∅ h : ∅ ⊆ ball x r ⊢ ∃ r', r' ∈ Ioo 0 r ∧ ∅ ⊆ ball x r' [PROOFSTEP] exact ⟨r / 2, ⟨half_pos hr, half_lt_self hr⟩, empty_subset _⟩ [GOAL] case inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hr : 0 < r hs : IsClosed s h : s ⊆ ball x r hne : Set.Nonempty s ⊢ ∃ r', r' ∈ Ioo 0 r ∧ s ⊆ ball x r' [PROOFSTEP] have : IsCompact s := isCompact_of_isClosed_subset (isCompact_closedBall x r) hs (h.trans ball_subset_closedBall) [GOAL] case inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hr : 0 < r hs : IsClosed s h : s ⊆ ball x r hne : Set.Nonempty s this : IsCompact s ⊢ ∃ r', r' ∈ Ioo 0 r ∧ s ⊆ ball x r' [PROOFSTEP] obtain ⟨y, hys, hy⟩ : ∃ y ∈ s, s ⊆ closedBall x (dist y x) := this.exists_forall_ge hne (continuous_id.dist continuous_const).continuousOn [GOAL] case inr.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hr : 0 < r hs : IsClosed s h : s ⊆ ball x r hne : Set.Nonempty s this : IsCompact s y : α hys : y ∈ s hy : s ⊆ closedBall x (dist y x) ⊢ ∃ r', r' ∈ Ioo 0 r ∧ s ⊆ ball x r' [PROOFSTEP] have hyr : dist y x < r := h hys [GOAL] case inr.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hr : 0 < r hs : IsClosed s h : s ⊆ ball x r hne : Set.Nonempty s this : IsCompact s y : α hys : y ∈ s hy : s ⊆ closedBall x (dist y x) hyr : dist y x < r ⊢ ∃ r', r' ∈ Ioo 0 r ∧ s ⊆ ball x r' [PROOFSTEP] rcases exists_between hyr with ⟨r', hyr', hrr'⟩ [GOAL] case inr.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hr : 0 < r hs : IsClosed s h : s ⊆ ball x r hne : Set.Nonempty s this : IsCompact s y : α hys : y ∈ s hy : s ⊆ closedBall x (dist y x) hyr : dist y x < r r' : ℝ hyr' : dist y x < r' hrr' : r' < r ⊢ ∃ r', r' ∈ Ioo 0 r ∧ s ⊆ ball x r' [PROOFSTEP] exact ⟨r', ⟨dist_nonneg.trans_lt hyr', hrr'⟩, hy.trans <| closedBall_subset_ball hyr'⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hs : IsClosed s h : s ⊆ ball x r ⊢ ∃ r', r' < r ∧ s ⊆ ball x r' [PROOFSTEP] cases' le_or_lt r 0 with hr hr [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hs : IsClosed s h : s ⊆ ball x r hr : r ≤ 0 ⊢ ∃ r', r' < r ∧ s ⊆ ball x r' [PROOFSTEP] rw [ball_eq_empty.2 hr, subset_empty_iff] at h [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hs : IsClosed s h : s = ∅ hr : r ≤ 0 ⊢ ∃ r', r' < r ∧ s ⊆ ball x r' [PROOFSTEP] subst s [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ hr : r ≤ 0 hs : IsClosed ∅ ⊢ ∃ r', r' < r ∧ ∅ ⊆ ball x r' [PROOFSTEP] exact (exists_lt r).imp fun r' hr' => ⟨hr', empty_subset _⟩ [GOAL] case inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α inst✝ : ProperSpace α x : α r : ℝ s : Set α hs : IsClosed s h : s ⊆ ball x r hr : 0 < r ⊢ ∃ r', r' < r ∧ s ⊆ ball x r' [PROOFSTEP] exact (exists_pos_lt_subset_ball hr hs h).imp fun r' hr' => ⟨hr'.1.2, hr'.2⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε ⊢ SecondCountableTopology α [PROOFSTEP] refine' EMetric.secondCountable_of_almost_dense_set fun ε ε0 => _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε ε : ℝ≥0∞ ε0 : ε > 0 ⊢ ∃ t, Set.Countable t ∧ ⋃ (x : α) (_ : x ∈ t), EMetric.closedBall x ε = univ [PROOFSTEP] rcases ENNReal.lt_iff_exists_nnreal_btwn.1 ε0 with ⟨ε', ε'0, ε'ε⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε ε : ℝ≥0∞ ε0 : ε > 0 ε' : ℝ≥0 ε'0 : 0 < ↑ε' ε'ε : ↑ε' < ε ⊢ ∃ t, Set.Countable t ∧ ⋃ (x : α) (_ : x ∈ t), EMetric.closedBall x ε = univ [PROOFSTEP] choose s hsc y hys hyx using H ε' (by exact_mod_cast ε'0) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε ε : ℝ≥0∞ ε0 : ε > 0 ε' : ℝ≥0 ε'0 : 0 < ↑ε' ε'ε : ↑ε' < ε ⊢ ↑ε' > 0 [PROOFSTEP] exact_mod_cast ε'0 [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε ε : ℝ≥0∞ ε0 : ε > 0 ε' : ℝ≥0 ε'0 : 0 < ↑ε' ε'ε : ↑ε' < ε s : Set α hsc : Set.Countable s y : α → α hys : ∀ (x : α), y x ∈ s hyx : ∀ (x : α), dist x (y x) ≤ ↑ε' ⊢ ∃ t, Set.Countable t ∧ ⋃ (x : α) (_ : x ∈ t), EMetric.closedBall x ε = univ [PROOFSTEP] refine' ⟨s, hsc, iUnion₂_eq_univ_iff.2 fun x => ⟨y x, hys _, le_trans _ ε'ε.le⟩⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε ε : ℝ≥0∞ ε0 : ε > 0 ε' : ℝ≥0 ε'0 : 0 < ↑ε' ε'ε : ↑ε' < ε s : Set α hsc : Set.Countable s y : α → α hys : ∀ (x : α), y x ∈ s hyx : ∀ (x : α), dist x (y x) ≤ ↑ε' x : α ⊢ edist x (y x) ≤ ↑ε' [PROOFSTEP] exact_mod_cast hyx x [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α c : Set (Set α) hs : IsCompact s hc₁ : ∀ (t : Set α), t ∈ c → IsOpen t hc₂ : s ⊆ ⋃₀ c ⊢ ∃ δ, δ > 0 ∧ ∀ (x : α), x ∈ s → ∃ t, t ∈ c ∧ ball x δ ⊆ t [PROOFSTEP] rw [sUnion_eq_iUnion] at hc₂ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α c : Set (Set α) hs : IsCompact s hc₁ : ∀ (t : Set α), t ∈ c → IsOpen t hc₂ : s ⊆ ⋃ (i : ↑c), ↑i ⊢ ∃ δ, δ > 0 ∧ ∀ (x : α), x ∈ s → ∃ t, t ∈ c ∧ ball x δ ⊆ t [PROOFSTEP] simpa using lebesgue_number_lemma_of_metric hs (by simpa) hc₂ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α c : Set (Set α) hs : IsCompact s hc₁ : ∀ (t : Set α), t ∈ c → IsOpen t hc₂ : s ⊆ ⋃ (i : ↑c), ↑i ⊢ ∀ (i : ↑c), IsOpen ↑i [PROOFSTEP] simpa [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ s : Set α ⊢ Bounded s ↔ IsBounded s [PROOFSTEP] change Bounded s ↔ sᶜ ∈ (cobounded α).sets [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ s : Set α ⊢ Bounded s ↔ sᶜ ∈ (cobounded α).sets [PROOFSTEP] simp [PseudoMetricSpace.cobounded_sets, Metric.Bounded] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ ⊢ ∀ (x : α), x ∈ ∅ → ∀ (y : α), y ∈ ∅ → dist x y ≤ 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ c : α ⊢ Bounded s ↔ ∃ r, s ⊆ closedBall c r [PROOFSTEP] constructor [GOAL] case mp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ c : α ⊢ Bounded s → ∃ r, s ⊆ closedBall c r [PROOFSTEP] rintro ⟨C, hC⟩ [GOAL] case mpr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ c : α ⊢ (∃ r, s ⊆ closedBall c r) → Bounded s [PROOFSTEP] rintro ⟨C, hC⟩ [GOAL] case mp.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ c : α C : ℝ hC : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → dist x y ≤ C ⊢ ∃ r, s ⊆ closedBall c r [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | ⟨x, hx⟩) [GOAL] case mp.intro.inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α t : Set α r : ℝ c : α C : ℝ hC : ∀ (x : α), x ∈ ∅ → ∀ (y : α), y ∈ ∅ → dist x y ≤ C ⊢ ∃ r, ∅ ⊆ closedBall c r [PROOFSTEP] exact ⟨0, by simp⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α t : Set α r : ℝ c : α C : ℝ hC : ∀ (x : α), x ∈ ∅ → ∀ (y : α), y ∈ ∅ → dist x y ≤ C ⊢ ∅ ⊆ closedBall c 0 [PROOFSTEP] simp [GOAL] case mp.intro.inr.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ : α s t : Set α r : ℝ c : α C : ℝ hC : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → dist x y ≤ C x : α hx : x ∈ s ⊢ ∃ r, s ⊆ closedBall c r [PROOFSTEP] exact ⟨C + dist x c, fun y hy => calc dist y c ≤ dist y x + dist x c := dist_triangle _ _ _ _ ≤ C + dist x c := add_le_add_right (hC y hy x hx) _⟩ [GOAL] case mpr.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ c : α C : ℝ hC : s ⊆ closedBall c C ⊢ Bounded s [PROOFSTEP] exact bounded_closedBall.mono hC [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ h : Bounded s a : ℝ c : α ⊢ ∃ r, a < r ∧ s ⊆ closedBall c r [PROOFSTEP] rcases h.subset_ball c with ⟨r, hr⟩ [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r✝ : ℝ h : Bounded s a : ℝ c : α r : ℝ hr : s ⊆ closedBall c r ⊢ ∃ r, a < r ∧ s ⊆ closedBall c r [PROOFSTEP] refine' ⟨max r (a + 1), lt_of_lt_of_le (by linarith) (le_max_right _ _), _⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r✝ : ℝ h : Bounded s a : ℝ c : α r : ℝ hr : s ⊆ closedBall c r ⊢ a < a + 1 [PROOFSTEP] linarith [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r✝ : ℝ h : Bounded s a : ℝ c : α r : ℝ hr : s ⊆ closedBall c r ⊢ s ⊆ closedBall c (max r (a + 1)) [PROOFSTEP] exact hr.trans (closedBall_subset_closedBall (le_max_left _ _)) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ ⊢ Bounded (s ∪ t) ↔ Bounded s ∧ Bounded t [PROOFSTEP] simp only [bounded_iff_isBounded, isBounded_union] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ I : Set β s : β → Set α H : Set.Finite I ⊢ Bounded (⋃ (i : β) (_ : i ∈ I), s i) ↔ ∀ (i : β), i ∈ I → Bounded (s i) [PROOFSTEP] simp only [bounded_iff_isBounded, isBounded_biUnion H] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝ t✝ : Set α r : ℝ inst✝ : PseudoMetricSpace β s : Set α t : Set β hs : Bounded s ht : Bounded t ⊢ Bounded (s ×ˢ t) [PROOFSTEP] rw [bounded_iff_isBounded] at * [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝ t✝ : Set α r : ℝ inst✝ : PseudoMetricSpace β s : Set α t : Set β hs : IsBounded s ht : IsBounded t ⊢ IsBounded (s ×ˢ t) [PROOFSTEP] exact hs.prod ht [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ f : β → α hf : Tendsto (Prod.map f f) (Filter.cofinite ×ˢ Filter.cofinite) (𝓤 α) ⊢ Bounded (range f) [PROOFSTEP] rcases(hasBasis_cofinite.prod_self.tendsto_iff uniformity_basis_dist).1 hf 1 zero_lt_one with ⟨s, hsf, hs1⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ f : β → α hf : Tendsto (Prod.map f f) (Filter.cofinite ×ˢ Filter.cofinite) (𝓤 α) s : Set β hsf : Set.Finite s hs1 : ∀ (x : β × β), x ∈ sᶜ ×ˢ sᶜ → Prod.map f f x ∈ {p | dist p.fst p.snd < 1} ⊢ Bounded (range f) [PROOFSTEP] rw [← image_univ, ← union_compl_self s, image_union, bounded_union] [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ f : β → α hf : Tendsto (Prod.map f f) (Filter.cofinite ×ˢ Filter.cofinite) (𝓤 α) s : Set β hsf : Set.Finite s hs1 : ∀ (x : β × β), x ∈ sᶜ ×ˢ sᶜ → Prod.map f f x ∈ {p | dist p.fst p.snd < 1} ⊢ Bounded (f '' s) ∧ Bounded (f '' sᶜ) [PROOFSTEP] use(hsf.image f).bounded, 1 [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ f : β → α hf : Tendsto (Prod.map f f) (Filter.cofinite ×ˢ Filter.cofinite) (𝓤 α) s : Set β hsf : Set.Finite s hs1 : ∀ (x : β × β), x ∈ sᶜ ×ˢ sᶜ → Prod.map f f x ∈ {p | dist p.fst p.snd < 1} ⊢ ∀ (x : α), x ∈ f '' sᶜ → ∀ (y : α), y ∈ f '' sᶜ → dist x y ≤ 1 [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ [GOAL] case h.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ f : β → α hf : Tendsto (Prod.map f f) (Filter.cofinite ×ˢ Filter.cofinite) (𝓤 α) s : Set β hsf : Set.Finite s hs1 : ∀ (x : β × β), x ∈ sᶜ ×ˢ sᶜ → Prod.map f f x ∈ {p | dist p.fst p.snd < 1} x : β hx : x ∈ sᶜ y : β hy : y ∈ sᶜ ⊢ dist (f x) (f y) ≤ 1 [PROOFSTEP] exact le_of_lt (hs1 (x, y) ⟨hx, hy⟩) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s t : Set α r : ℝ f : ℕ → α hf : CauchySeq f ⊢ Cauchy (map f Filter.cofinite) [PROOFSTEP] rwa [Nat.cofinite_eq_atTop] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x ⊢ ∃ t, k ⊆ t ∧ IsOpen t ∧ Bounded (f '' (t ∩ s)) [PROOFSTEP] refine hk.induction_on ?_ ?_ ?_ ?_ [GOAL] case refine_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x ⊢ ∃ t, ∅ ⊆ t ∧ IsOpen t ∧ Bounded (f '' (t ∩ s)) [PROOFSTEP] exact ⟨∅, Subset.rfl, isOpen_empty, by simp only [image_empty, bounded_empty, empty_inter]⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x ⊢ Bounded (f '' (∅ ∩ s)) [PROOFSTEP] simp only [image_empty, bounded_empty, empty_inter] [GOAL] case refine_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x ⊢ ∀ ⦃s_1 t : Set β⦄, s_1 ⊆ t → (∃ t_1, t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s))) → ∃ t, s_1 ⊆ t ∧ IsOpen t ∧ Bounded (f '' (t ∩ s)) [PROOFSTEP] rintro s s' hss' ⟨t, s't, t_open, t_bounded⟩ [GOAL] case refine_2.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝¹ t✝ : Set α r : ℝ inst✝ : TopologicalSpace β k s✝ : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s✝ x s s' : Set β hss' : s ⊆ s' t : Set β s't : s' ⊆ t t_open : IsOpen t t_bounded : Bounded (f '' (t ∩ s✝)) ⊢ ∃ t, s ⊆ t ∧ IsOpen t ∧ Bounded (f '' (t ∩ s✝)) [PROOFSTEP] exact ⟨t, hss'.trans s't, t_open, t_bounded⟩ [GOAL] case refine_3 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x ⊢ ∀ ⦃s_1 t : Set β⦄, (∃ t, s_1 ⊆ t ∧ IsOpen t ∧ Bounded (f '' (t ∩ s))) → (∃ t_1, t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s))) → ∃ t_1, s_1 ∪ t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s)) [PROOFSTEP] rintro s s' ⟨t, st, t_open, t_bounded⟩ ⟨t', s't', t'_open, t'_bounded⟩ [GOAL] case refine_3.intro.intro.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝¹ t✝ : Set α r : ℝ inst✝ : TopologicalSpace β k s✝ : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s✝ x s s' t : Set β st : s ⊆ t t_open : IsOpen t t_bounded : Bounded (f '' (t ∩ s✝)) t' : Set β s't' : s' ⊆ t' t'_open : IsOpen t' t'_bounded : Bounded (f '' (t' ∩ s✝)) ⊢ ∃ t, s ∪ s' ⊆ t ∧ IsOpen t ∧ Bounded (f '' (t ∩ s✝)) [PROOFSTEP] refine' ⟨t ∪ t', union_subset_union st s't', t_open.union t'_open, _⟩ [GOAL] case refine_3.intro.intro.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝¹ t✝ : Set α r : ℝ inst✝ : TopologicalSpace β k s✝ : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s✝ x s s' t : Set β st : s ⊆ t t_open : IsOpen t t_bounded : Bounded (f '' (t ∩ s✝)) t' : Set β s't' : s' ⊆ t' t'_open : IsOpen t' t'_bounded : Bounded (f '' (t' ∩ s✝)) ⊢ Bounded (f '' ((t ∪ t') ∩ s✝)) [PROOFSTEP] rw [union_inter_distrib_right, image_union] [GOAL] case refine_3.intro.intro.intro.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝¹ t✝ : Set α r : ℝ inst✝ : TopologicalSpace β k s✝ : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s✝ x s s' t : Set β st : s ⊆ t t_open : IsOpen t t_bounded : Bounded (f '' (t ∩ s✝)) t' : Set β s't' : s' ⊆ t' t'_open : IsOpen t' t'_bounded : Bounded (f '' (t' ∩ s✝)) ⊢ Bounded (f '' (t ∩ s✝) ∪ f '' (t' ∩ s✝)) [PROOFSTEP] exact t_bounded.union t'_bounded [GOAL] case refine_4 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x ⊢ ∀ (x : β), x ∈ k → ∃ t, t ∈ 𝓝[k] x ∧ ∃ t_1, t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s)) [PROOFSTEP] intro x hx [GOAL] case refine_4 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k ⊢ ∃ t, t ∈ 𝓝[k] x ∧ ∃ t_1, t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s)) [PROOFSTEP] have A : ball (f x) 1 ∈ 𝓝 (f x) := ball_mem_nhds _ zero_lt_one [GOAL] case refine_4 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) ⊢ ∃ t, t ∈ 𝓝[k] x ∧ ∃ t_1, t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s)) [PROOFSTEP] have B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x := hf x hx A [GOAL] case refine_4 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x ⊢ ∃ t, t ∈ 𝓝[k] x ∧ ∃ t_1, t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s)) [PROOFSTEP] obtain ⟨u, u_open, xu, uf⟩ : ∃ u : Set β, IsOpen u ∧ x ∈ u ∧ u ∩ s ⊆ f ⁻¹' ball (f x) 1 [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x ⊢ ∃ u, IsOpen u ∧ x ∈ u ∧ u ∩ s ⊆ f ⁻¹' ball (f x) 1 case refine_4.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x u : Set β u_open : IsOpen u xu : x ∈ u uf : u ∩ s ⊆ f ⁻¹' ball (f x) 1 ⊢ ∃ t, t ∈ 𝓝[k] x ∧ ∃ t_1, t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s)) [PROOFSTEP] exact _root_.mem_nhdsWithin.1 B [GOAL] case refine_4.intro.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x u : Set β u_open : IsOpen u xu : x ∈ u uf : u ∩ s ⊆ f ⁻¹' ball (f x) 1 ⊢ ∃ t, t ∈ 𝓝[k] x ∧ ∃ t_1, t ⊆ t_1 ∧ IsOpen t_1 ∧ Bounded (f '' (t_1 ∩ s)) [PROOFSTEP] refine' ⟨u, _, u, Subset.rfl, u_open, _⟩ [GOAL] case refine_4.intro.intro.intro.refine'_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x u : Set β u_open : IsOpen u xu : x ∈ u uf : u ∩ s ⊆ f ⁻¹' ball (f x) 1 ⊢ u ∈ 𝓝[k] x [PROOFSTEP] apply nhdsWithin_le_nhds [GOAL] case refine_4.intro.intro.intro.refine'_1.a α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x u : Set β u_open : IsOpen u xu : x ∈ u uf : u ∩ s ⊆ f ⁻¹' ball (f x) 1 ⊢ u ∈ 𝓝 x [PROOFSTEP] exact u_open.mem_nhds xu [GOAL] case refine_4.intro.intro.intro.refine'_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x u : Set β u_open : IsOpen u xu : x ∈ u uf : u ∩ s ⊆ f ⁻¹' ball (f x) 1 ⊢ Bounded (f '' (u ∩ s)) [PROOFSTEP] apply Bounded.mono (image_subset _ uf) [GOAL] case refine_4.intro.intro.intro.refine'_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s✝ t : Set α r : ℝ inst✝ : TopologicalSpace β k s : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f s x x : β hx : x ∈ k A : ball (f x) 1 ∈ 𝓝 (f x) B : f ⁻¹' ball (f x) 1 ∈ 𝓝[s] x u : Set β u_open : IsOpen u xu : x ∈ u uf : u ∩ s ⊆ f ⁻¹' ball (f x) 1 ⊢ Bounded (f '' (f ⁻¹' ball (f x) 1)) [PROOFSTEP] exact bounded_ball.mono (image_preimage_subset _ _) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s t : Set α r : ℝ inst✝ : TopologicalSpace β k : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousAt f x ⊢ ∃ t, k ⊆ t ∧ IsOpen t ∧ Bounded (f '' t) [PROOFSTEP] simp_rw [← continuousWithinAt_univ] at hf [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s t : Set α r : ℝ inst✝ : TopologicalSpace β k : Set β f : β → α hk : IsCompact k hf : ∀ (x : β), x ∈ k → ContinuousWithinAt f univ x ⊢ ∃ t, k ⊆ t ∧ IsOpen t ∧ Bounded (f '' t) [PROOFSTEP] simpa only [inter_univ] using exists_isOpen_bounded_image_inter_of_isCompact_of_forall_continuousWithinAt hk hf [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α s t : Set α r : ℝ inst✝ : ProperSpace α hc : IsClosed s hb : Bounded s ⊢ IsCompact s [PROOFSTEP] rcases eq_empty_or_nonempty s with (rfl | ⟨x, -⟩) [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x : α t : Set α r : ℝ inst✝ : ProperSpace α hc : IsClosed ∅ hb : Bounded ∅ ⊢ IsCompact ∅ [PROOFSTEP] exact isCompact_empty [GOAL] case inr.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s t : Set α r : ℝ inst✝ : ProperSpace α hc : IsClosed s hb : Bounded s x : α ⊢ IsCompact s [PROOFSTEP] rcases hb.subset_ball x with ⟨r, hr⟩ [GOAL] case inr.intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α x✝ : α s t : Set α r✝ : ℝ inst✝ : ProperSpace α hc : IsClosed s hb : Bounded s x : α r : ℝ hr : s ⊆ closedBall x r ⊢ IsCompact s [PROOFSTEP] exact isCompact_of_isClosed_subset (isCompact_closedBall x r) hc hr [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α hs : Set.Subsingleton s ⊢ diam s = 0 [PROOFSTEP] simp only [diam, EMetric.diam_subsingleton hs, ENNReal.zero_toReal] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α ⊢ diam {x, y} = dist x y [PROOFSTEP] simp only [diam, EMetric.diam_pair, dist_edist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α ⊢ diam {x, y, z} = max (max (dist x y) (dist x z)) (dist y z) [PROOFSTEP] simp only [Metric.diam, EMetric.diam_triple, dist_edist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α ⊢ ENNReal.toReal (max (max (edist x y) (edist x z)) (edist y z)) = max (max (ENNReal.toReal (edist x y)) (ENNReal.toReal (edist x z))) (ENNReal.toReal (edist y z)) [PROOFSTEP] rw [ENNReal.toReal_max, ENNReal.toReal_max] [GOAL] case hr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α ⊢ edist x y ≠ ⊤ [PROOFSTEP] apply_rules [ne_of_lt, edist_lt_top, max_lt] [GOAL] case hp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α ⊢ edist x z ≠ ⊤ [PROOFSTEP] apply_rules [ne_of_lt, edist_lt_top, max_lt] [GOAL] case hr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α ⊢ max (edist x y) (edist x z) ≠ ⊤ [PROOFSTEP] apply_rules [ne_of_lt, edist_lt_top, max_lt] [GOAL] case hp α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α ⊢ edist y z ≠ ⊤ [PROOFSTEP] apply_rules [ne_of_lt, edist_lt_top, max_lt] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α h : EMetric.diam s ≠ ⊤ hx : x ∈ s hy : y ∈ s ⊢ dist x y ≤ diam s [PROOFSTEP] rw [diam, dist_edist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α h : EMetric.diam s ≠ ⊤ hx : x ∈ s hy : y ∈ s ⊢ ENNReal.toReal (edist x y) ≤ ENNReal.toReal (EMetric.diam s) [PROOFSTEP] rw [ENNReal.toReal_le_toReal (edist_ne_top _ _) h] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α h : EMetric.diam s ≠ ⊤ hx : x ∈ s hy : y ∈ s ⊢ edist x y ≤ EMetric.diam s [PROOFSTEP] exact EMetric.edist_le_diam_of_mem hx hy [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α s : Set α x y z : α inst✝ : ProperSpace α ⊢ EMetric.diam univ = ⊤ ↔ NoncompactSpace α [PROOFSTEP] rw [← not_compactSpace_iff, compactSpace_iff_bounded_univ, bounded_iff_ediam_ne_top, Classical.not_not] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α s : Set α x y z : α inst✝¹ : ProperSpace α inst✝ : NoncompactSpace α ⊢ diam univ = 0 [PROOFSTEP] simp [diam] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α h : ¬Bounded s ⊢ diam s = 0 [PROOFSTEP] rw [diam, ediam_of_unbounded h, ENNReal.top_toReal] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α t : Set α xs : x ∈ s yt : y ∈ t ⊢ diam (s ∪ t) ≤ diam s + dist x y + diam t [PROOFSTEP] simp only [diam, dist_edist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α t : Set α xs : x ∈ s yt : y ∈ t ⊢ ENNReal.toReal (EMetric.diam (s ∪ t)) ≤ ENNReal.toReal (EMetric.diam s) + ENNReal.toReal (edist x y) + ENNReal.toReal (EMetric.diam t) [PROOFSTEP] refine (ENNReal.toReal_le_add' (EMetric.diam_union xs yt) ?_ ?_).trans (add_le_add_right ENNReal.toReal_add_le _) [GOAL] case refine_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α t : Set α xs : x ∈ s yt : y ∈ t ⊢ EMetric.diam s + edist x y = ⊤ → EMetric.diam (s ∪ t) = ⊤ [PROOFSTEP] simp only [ENNReal.add_eq_top, edist_ne_top, or_false] [GOAL] case refine_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α t : Set α xs : x ∈ s yt : y ∈ t ⊢ EMetric.diam s = ⊤ → EMetric.diam (s ∪ t) = ⊤ [PROOFSTEP] exact fun h ↦ top_unique <| h ▸ EMetric.diam_mono (subset_union_left _ _) [GOAL] case refine_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α t : Set α xs : x ∈ s yt : y ∈ t ⊢ EMetric.diam t = ⊤ → EMetric.diam (s ∪ t) = ⊤ [PROOFSTEP] exact fun h ↦ top_unique <| h ▸ EMetric.diam_mono (subset_union_right _ _) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α t : Set α h : Set.Nonempty (s ∩ t) ⊢ diam (s ∪ t) ≤ diam s + diam t [PROOFSTEP] rcases h with ⟨x, ⟨xs, xt⟩⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x✝ y z : α t : Set α x : α xs : x ∈ s xt : x ∈ t ⊢ diam (s ∪ t) ≤ diam s + diam t [PROOFSTEP] simpa using diam_union xs xt [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s : Set α x y z : α r : ℝ hr : 0 ≤ r h : s ⊆ closedBall x r a : α ha : a ∈ s b : α hb : b ∈ s ⊢ r + r = 2 * r [PROOFSTEP] simp [mul_two, mul_comm] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) ⊢ Set.Nonempty (⋂ (n : ℕ), s n) [PROOFSTEP] let u N := (h N).some [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) ⊢ Set.Nonempty (⋂ (n : ℕ), s n) [PROOFSTEP] have I : ∀ n N, n ≤ N → u N ∈ s n := by intro n N hn apply mem_of_subset_of_mem _ (h N).choose_spec intro x hx simp only [mem_iInter] at hx exact hx n hn [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) ⊢ ∀ (n N : ℕ), n ≤ N → u N ∈ s n [PROOFSTEP] intro n N hn [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) n N : ℕ hn : n ≤ N ⊢ u N ∈ s n [PROOFSTEP] apply mem_of_subset_of_mem _ (h N).choose_spec [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) n N : ℕ hn : n ≤ N ⊢ ⋂ (n : ℕ) (_ : n ≤ N), s n ⊆ s n [PROOFSTEP] intro x hx [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x✝ y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) n N : ℕ hn : n ≤ N x : α hx : x ∈ ⋂ (n : ℕ) (_ : n ≤ N), s n ⊢ x ∈ s n [PROOFSTEP] simp only [mem_iInter] at hx [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x✝ y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) n N : ℕ hn : n ≤ N x : α hx : ∀ (i : ℕ), i ≤ N → x ∈ s i ⊢ x ∈ s n [PROOFSTEP] exact hx n hn [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n ⊢ Set.Nonempty (⋂ (n : ℕ), s n) [PROOFSTEP] have : CauchySeq u := by apply cauchySeq_of_le_tendsto_0 _ _ h' intro m n N hm hn exact dist_le_diam_of_mem (h's N) (I _ _ hm) (I _ _ hn) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n ⊢ CauchySeq u [PROOFSTEP] apply cauchySeq_of_le_tendsto_0 _ _ h' [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n ⊢ ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) ≤ diam (s N) [PROOFSTEP] intro m n N hm hn [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n m n N : ℕ hm : N ≤ m hn : N ≤ n ⊢ dist (u m) (u n) ≤ diam (s N) [PROOFSTEP] exact dist_le_diam_of_mem (h's N) (I _ _ hm) (I _ _ hn) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n this : CauchySeq u ⊢ Set.Nonempty (⋂ (n : ℕ), s n) [PROOFSTEP] obtain ⟨x, -, xlim⟩ : ∃ x ∈ s 0, Tendsto (fun n : ℕ => u n) atTop (𝓝 x) := cauchySeq_tendsto_of_isComplete h0 (fun n => I 0 n (zero_le _)) this [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x✝ y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n this : CauchySeq u x : α xlim : Tendsto (fun n => u n) atTop (𝓝 x) ⊢ Set.Nonempty (⋂ (n : ℕ), s n) [PROOFSTEP] refine' ⟨x, mem_iInter.2 fun n => _⟩ [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x✝ y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n this : CauchySeq u x : α xlim : Tendsto (fun n => u n) atTop (𝓝 x) n : ℕ ⊢ x ∈ s n [PROOFSTEP] apply (hs n).mem_of_tendsto xlim [GOAL] case intro.intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x✝ y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n this : CauchySeq u x : α xlim : Tendsto (fun n => u n) atTop (𝓝 x) n : ℕ ⊢ ∀ᶠ (x : ℕ) in atTop, u x ∈ s n [PROOFSTEP] filter_upwards [Ici_mem_atTop n] with p hp [GOAL] case h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α s✝ : Set α x✝ y z : α s : ℕ → Set α h0 : IsComplete (s 0) hs : ∀ (n : ℕ), IsClosed (s n) h's : ∀ (n : ℕ), Bounded (s n) h : ∀ (N : ℕ), Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n) h' : Tendsto (fun n => diam (s n)) atTop (𝓝 0) u : ℕ → α := fun N => Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ N), s n)) I : ∀ (n N : ℕ), n ≤ N → u N ∈ s n this : CauchySeq u x : α xlim : Tendsto (fun n => u n) atTop (𝓝 x) n p : ℕ hp : p ∈ Ici n ⊢ Set.Nonempty.some (_ : Set.Nonempty (⋂ (n : ℕ) (_ : n ≤ p), s n)) ∈ s n [PROOFSTEP] exact I n p hp [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : ProperSpace α inst✝² : TopologicalSpace β inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a z : α r : ℝ hf : ContinuousOn f (closedBall a r) hz : z ∈ closedBall a r hf1 : ∀ (z' : α), z' ∈ sphere a r → f z < f z' ⊢ ∃ z, z ∈ ball a r ∧ IsLocalMin f z [PROOFSTEP] simp_rw [← closedBall_diff_ball] at hf1 [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝⁴ : PseudoMetricSpace α inst✝³ : ProperSpace α inst✝² : TopologicalSpace β inst✝¹ : ConditionallyCompleteLinearOrder β inst✝ : OrderTopology β f : α → β a z : α r : ℝ hf : ContinuousOn f (closedBall a r) hz : z ∈ closedBall a r hf1 : ∀ (z' : α), z' ∈ closedBall a r \ ball a r → f z < f z' ⊢ ∃ z, z ∈ ball a r ∧ IsLocalMin f z [PROOFSTEP] exact (isCompact_closedBall a r).exists_isLocalMin_mem_open ball_subset_closedBall hf hz hf1 isOpen_ball [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ⊢ comap (fun y => dist y x) atTop ≤ cocompact α [PROOFSTEP] refine' Filter.hasBasis_cocompact.ge_iff.2 fun s hs => mem_comap.2 _ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s : Set α hs : IsCompact s ⊢ ∃ t, t ∈ atTop ∧ (fun y => dist y x) ⁻¹' t ⊆ sᶜ [PROOFSTEP] rcases hs.bounded.subset_ball x with ⟨r, hr⟩ [GOAL] case intro α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α s : Set α hs : IsCompact s r : ℝ hr : s ⊆ closedBall x r ⊢ ∃ t, t ∈ atTop ∧ (fun y => dist y x) ⁻¹' t ⊆ sᶜ [PROOFSTEP] exact ⟨Ioi r, Ioi_mem_atTop r, fun y hy hys => (mem_closedBall.1 <| hr hys).not_lt hy⟩ [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α x : α ⊢ comap (dist x) atTop ≤ cocompact α [PROOFSTEP] simpa only [dist_comm _ x] using comap_dist_right_atTop_le_cocompact x [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : β → α l : Filter β x : α h : Tendsto (fun y => dist (f y) x) l atTop ⊢ Tendsto f l (cocompact α) [PROOFSTEP] refine' Tendsto.mono_right _ (comap_dist_right_atTop_le_cocompact x) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α f : β → α l : Filter β x : α h : Tendsto (fun y => dist (f y) x) l atTop ⊢ Tendsto f l (comap (fun y => dist y x) atTop) [PROOFSTEP] rwa [tendsto_comap_iff] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 m m' : MetricSpace α h : PseudoMetricSpace.toDist = PseudoMetricSpace.toDist ⊢ m = m' [PROOFSTEP] cases m [GOAL] case mk α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 m' : MetricSpace α toPseudoMetricSpace✝ : PseudoMetricSpace α eq_of_dist_eq_zero✝ : ∀ {x y : α}, dist x y = 0 → x = y h : PseudoMetricSpace.toDist = PseudoMetricSpace.toDist ⊢ mk eq_of_dist_eq_zero✝ = m' [PROOFSTEP] cases m' [GOAL] case mk.mk α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 toPseudoMetricSpace✝¹ : PseudoMetricSpace α eq_of_dist_eq_zero✝¹ : ∀ {x y : α}, dist x y = 0 → x = y toPseudoMetricSpace✝ : PseudoMetricSpace α eq_of_dist_eq_zero✝ : ∀ {x y : α}, dist x y = 0 → x = y h : PseudoMetricSpace.toDist = PseudoMetricSpace.toDist ⊢ mk eq_of_dist_eq_zero✝¹ = mk eq_of_dist_eq_zero✝ [PROOFSTEP] congr [GOAL] case mk.mk.e_toPseudoMetricSpace α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 toPseudoMetricSpace✝¹ : PseudoMetricSpace α eq_of_dist_eq_zero✝¹ : ∀ {x y : α}, dist x y = 0 → x = y toPseudoMetricSpace✝ : PseudoMetricSpace α eq_of_dist_eq_zero✝ : ∀ {x y : α}, dist x y = 0 → x = y h : PseudoMetricSpace.toDist = PseudoMetricSpace.toDist ⊢ toPseudoMetricSpace✝¹ = toPseudoMetricSpace✝ [PROOFSTEP] ext1 [GOAL] case mk.mk.e_toPseudoMetricSpace.h α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝ : PseudoMetricSpace α✝ α : Type u_3 toPseudoMetricSpace✝¹ : PseudoMetricSpace α eq_of_dist_eq_zero✝¹ : ∀ {x y : α}, dist x y = 0 → x = y toPseudoMetricSpace✝ : PseudoMetricSpace α eq_of_dist_eq_zero✝ : ∀ {x y : α}, dist x y = 0 → x = y h : PseudoMetricSpace.toDist = PseudoMetricSpace.toDist ⊢ PseudoMetricSpace.toDist = PseudoMetricSpace.toDist [PROOFSTEP] assumption [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x y : γ ⊢ 0 = dist x y ↔ x = y [PROOFSTEP] rw [eq_comm, dist_eq_zero] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x y : γ ⊢ dist x y ≠ 0 ↔ x ≠ y [PROOFSTEP] simpa only [not_iff_not] using dist_eq_zero [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x y : γ ⊢ dist x y ≤ 0 ↔ x = y [PROOFSTEP] simpa [le_antisymm_iff, dist_nonneg] using @dist_eq_zero _ _ x y [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x y : γ ⊢ 0 < dist x y ↔ x ≠ y [PROOFSTEP] simpa only [not_le] using not_congr dist_le_zero [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x y : γ ⊢ nndist x y = 0 → x = y [PROOFSTEP] simp only [← NNReal.eq_iff, ← dist_nndist, imp_self, NNReal.coe_zero, dist_eq_zero] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x y : γ ⊢ nndist x y = 0 ↔ x = y [PROOFSTEP] simp only [← NNReal.eq_iff, ← dist_nndist, imp_self, NNReal.coe_zero, dist_eq_zero] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x y : γ ⊢ 0 = nndist x y ↔ x = y [PROOFSTEP] simp only [← NNReal.eq_iff, ← dist_nndist, imp_self, NNReal.coe_zero, zero_eq_dist] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x✝ : γ s : Set γ x : γ r : ℝ hr : r ≤ 0 ⊢ Set.Subsingleton (closedBall x r) [PROOFSTEP] rcases hr.lt_or_eq with (hr | rfl) [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x✝ : γ s : Set γ x : γ r : ℝ hr✝ : r ≤ 0 hr : r < 0 ⊢ Set.Subsingleton (closedBall x r) [PROOFSTEP] rw [closedBall_eq_empty.2 hr] [GOAL] case inl α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x✝ : γ s : Set γ x : γ r : ℝ hr✝ : r ≤ 0 hr : r < 0 ⊢ Set.Subsingleton ∅ [PROOFSTEP] exact subsingleton_empty [GOAL] case inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x✝ : γ s : Set γ x : γ hr : 0 ≤ 0 ⊢ Set.Subsingleton (closedBall x 0) [PROOFSTEP] rw [closedBall_zero] [GOAL] case inr α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x✝ : γ s : Set γ x : γ hr : 0 ≤ 0 ⊢ Set.Subsingleton {x} [PROOFSTEP] exact subsingleton_singleton [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α γ : Type w inst✝¹ : MetricSpace γ x : γ s : Set γ inst✝ : MetricSpace β f : γ → β ⊢ UniformEmbedding f ↔ (∀ (ε : ℝ), ε > 0 → ∃ δ, δ > 0 ∧ ∀ {a b : γ}, dist a b < δ → dist (f a) (f b) < ε) ∧ ∀ (δ : ℝ), δ > 0 → ∃ ε, ε > 0 ∧ ∀ {a b : γ}, dist (f a) (f b) < ε → dist a b < δ [PROOFSTEP] rw [uniformEmbedding_iff_uniformInducing, uniformInducing_iff, uniformContinuous_iff] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x : γ s✝ s : Set γ ε : ℝ hε : 0 < ε hs : Set.Pairwise s fun x y => ε ≤ dist x y ⊢ Set.Pairwise s fun x y => ¬(x, y) ∈ {p | dist p.fst p.snd < ε} [PROOFSTEP] simpa using hs [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α✝ γ : Type w inst✝² : MetricSpace γ x : γ s : Set γ α : Type u_3 inst✝¹ : TopologicalSpace α inst✝ : DiscreteTopology α ε : ℝ hε : 0 < ε f : α → γ hf : Pairwise fun x y => ε ≤ dist (f x) (f y) ⊢ Pairwise fun x y => ¬(f x, f y) ∈ {p | dist p.fst p.snd < ε} [PROOFSTEP] simpa using hf [GOAL] α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x : γ s : Set γ β : Type u_3 ε : ℝ hε : 0 < ε f : β → α hf : Pairwise fun x y => ε ≤ dist (f x) (f y) ⊢ UniformSpace α [PROOFSTEP] infer_instance [GOAL] α : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x : γ s : Set γ β : Type u_3 ε : ℝ hε : 0 < ε f : β → α hf : Pairwise fun x y => ε ≤ dist (f x) (f y) ⊢ Pairwise fun x y => ¬(f x, f y) ∈ {p | dist p.fst p.snd < ε} [PROOFSTEP] simpa using hf [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α γ : Type w inst✝² : MetricSpace γ x : γ s✝ : Set γ inst✝¹ : ProperSpace α K s : Set α inst✝ : DiscreteTopology ↑s hK : Bounded K hs : IsClosed s ⊢ Set.Finite (K ∩ s) [PROOFSTEP] refine Set.Finite.subset (IsCompact.finite ?_ ?_) (Set.inter_subset_inter_left s subset_closure) [GOAL] case refine_1 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α γ : Type w inst✝² : MetricSpace γ x : γ s✝ : Set γ inst✝¹ : ProperSpace α K s : Set α inst✝ : DiscreteTopology ↑s hK : Bounded K hs : IsClosed s ⊢ IsCompact (closure K ∩ s) [PROOFSTEP] exact IsCompact.inter_right (Metric.Bounded.isCompact_closure hK) hs [GOAL] case refine_2 α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝³ : PseudoMetricSpace α γ : Type w inst✝² : MetricSpace γ x : γ s✝ : Set γ inst✝¹ : ProperSpace α K s : Set α inst✝ : DiscreteTopology ↑s hK : Bounded K hs : IsClosed s ⊢ DiscreteTopology ↑(closure K ∩ s) [PROOFSTEP] exact DiscreteTopology.of_subset inferInstance (Set.inter_subset_right _ s) [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ✝ : Type w inst✝ : MetricSpace γ✝ γ : Type u_3 U : UniformSpace γ m : MetricSpace γ H : 𝓤 γ = 𝓤 γ ⊢ replaceUniformity m H = m [PROOFSTEP] ext [GOAL] case h.dist.h.h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ✝ : Type w inst✝ : MetricSpace γ✝ γ : Type u_3 U : UniformSpace γ m : MetricSpace γ H : 𝓤 γ = 𝓤 γ x✝¹ x✝ : γ ⊢ dist x✝¹ x✝ = dist x✝¹ x✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ✝ : Type w inst✝ : MetricSpace γ✝ γ : Type u_3 U : TopologicalSpace γ m : MetricSpace γ H : U = UniformSpace.toTopologicalSpace ⊢ replaceTopology m H = m [PROOFSTEP] ext [GOAL] case h.dist.h.h α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ✝ : Type w inst✝ : MetricSpace γ✝ γ : Type u_3 U : TopologicalSpace γ m : MetricSpace γ H : U = UniformSpace.toTopologicalSpace x✝¹ x✝ : γ ⊢ dist x✝¹ x✝ = dist x✝¹ x✝ [PROOFSTEP] rfl [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α✝ γ : Type w inst✝ : MetricSpace γ α : Type u_3 m : MetricSpace α B : Bornology α H : ∀ (s : Set α), IsBounded s ↔ IsBounded s ⊢ replaceBornology m H = m [PROOFSTEP] ext [GOAL] case h.dist.h.h α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α✝ γ : Type w inst✝ : MetricSpace γ α : Type u_3 m : MetricSpace α B : Bornology α H : ∀ (s : Set α), IsBounded s ↔ IsBounded s x✝¹ x✝ : α ⊢ dist x✝¹ x✝ = dist x✝¹ x✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x✝² x✝¹ x✝ : Empty ⊢ 0 ≤ 0 + 0 [PROOFSTEP] rw [add_zero] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ x✝² x✝¹ x✝ : PUnit ⊢ 0 ≤ 0 + 0 [PROOFSTEP] rw [add_zero] [GOAL] α : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝¹ : PseudoMetricSpace α γ : Type w inst✝ : MetricSpace γ ⊢ 𝓤 PUnit = ⨅ (ε : ℝ) (_ : ε > 0), 𝓟 {p | dist p.fst p.snd < ε} [PROOFSTEP] simp (config := { contextual := true }) [principal_univ, eq_top_of_neBot (𝓤 PUnit)] [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α✝ γ : Type w inst✝¹ : MetricSpace γ α : Type u inst✝ : MetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : α), F x = F y → dist x y ≤ ε ⊢ SecondCountableTopology α [PROOFSTEP] refine secondCountable_of_almost_dense_set fun ε ε0 => ?_ [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α✝ γ : Type w inst✝¹ : MetricSpace γ α : Type u inst✝ : MetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : α), F x = F y → dist x y ≤ ε ε : ℝ ε0 : ε > 0 ⊢ ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε [PROOFSTEP] rcases H ε ε0 with ⟨β, fβ, F, hF⟩ [GOAL] case intro.intro.intro α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α✝ γ : Type w inst✝¹ : MetricSpace γ α : Type u inst✝ : MetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : α), F x = F y → dist x y ≤ ε ε : ℝ ε0 : ε > 0 β : Type u_3 fβ : Encodable β F : α → β hF : ∀ (x y : α), F x = F y → dist x y ≤ ε ⊢ ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε [PROOFSTEP] let Finv := rangeSplitting F [GOAL] case intro.intro.intro α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α✝ γ : Type w inst✝¹ : MetricSpace γ α : Type u inst✝ : MetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : α), F x = F y → dist x y ≤ ε ε : ℝ ε0 : ε > 0 β : Type u_3 fβ : Encodable β F : α → β hF : ∀ (x y : α), F x = F y → dist x y ≤ ε Finv : ↑(range F) → α := rangeSplitting F ⊢ ∃ s, Set.Countable s ∧ ∀ (x : α), ∃ y, y ∈ s ∧ dist x y ≤ ε [PROOFSTEP] refine ⟨range Finv, ⟨countable_range _, fun x => ?_⟩⟩ [GOAL] case intro.intro.intro α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α✝ γ : Type w inst✝¹ : MetricSpace γ α : Type u inst✝ : MetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : α), F x = F y → dist x y ≤ ε ε : ℝ ε0 : ε > 0 β : Type u_3 fβ : Encodable β F : α → β hF : ∀ (x y : α), F x = F y → dist x y ≤ ε Finv : ↑(range F) → α := rangeSplitting F x : α ⊢ ∃ y, y ∈ range Finv ∧ dist x y ≤ ε [PROOFSTEP] let x' := Finv ⟨F x, mem_range_self _⟩ [GOAL] case intro.intro.intro α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α✝ γ : Type w inst✝¹ : MetricSpace γ α : Type u inst✝ : MetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : α), F x = F y → dist x y ≤ ε ε : ℝ ε0 : ε > 0 β : Type u_3 fβ : Encodable β F : α → β hF : ∀ (x y : α), F x = F y → dist x y ≤ ε Finv : ↑(range F) → α := rangeSplitting F x : α x' : α := Finv { val := F x, property := (_ : F x ∈ range F) } ⊢ ∃ y, y ∈ range Finv ∧ dist x y ≤ ε [PROOFSTEP] have : F x' = F x := apply_rangeSplitting F _ [GOAL] case intro.intro.intro α✝ : Type u β✝ : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α✝ γ : Type w inst✝¹ : MetricSpace γ α : Type u inst✝ : MetricSpace α H : ∀ (ε : ℝ), ε > 0 → ∃ β x F, ∀ (x y : α), F x = F y → dist x y ≤ ε ε : ℝ ε0 : ε > 0 β : Type u_3 fβ : Encodable β F : α → β hF : ∀ (x y : α), F x = F y → dist x y ≤ ε Finv : ↑(range F) → α := rangeSplitting F x : α x' : α := Finv { val := F x, property := (_ : F x ∈ range F) } this : F x' = F x ⊢ ∃ y, y ∈ range Finv ∧ dist x y ≤ ε [PROOFSTEP] exact ⟨x', mem_range_self _, hF _ _ this.symm⟩ [GOAL] α✝ : Type u β : Type v X : Type u_1 ι : Type u_2 inst✝² : PseudoMetricSpace α✝ γ : Type w inst✝¹ : MetricSpace γ α : Type u inst✝ : PseudoMetricSpace α p q : UniformSpace.SeparationQuotient α x y x' y' : α hx : Setoid.r x x' hy : Setoid.r y y' ⊢ dist x y = dist x' y' [PROOFSTEP] rw [dist_edist, dist_edist, ← UniformSpace.SeparationQuotient.edist_mk x, ← UniformSpace.SeparationQuotient.edist_mk x', Quot.sound hx, Quot.sound hy]
{"mathlib_filename": "Mathlib.Topology.MetricSpace.Basic", "llama_tokens": 104597}
[GOAL] R : Type u_1 A : Type u inst✝⁵ : CommSemiring R inst✝⁴ : Semiring A inst✝³ : Algebra R A inst✝² : TopologicalSpace R inst✝¹ : TopologicalSpace A inst✝ : TopologicalSemiring A ⊢ Continuous ↑(algebraMap R A) ↔ Continuous fun p => p.fst • p.snd [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 R : Type u_1 A : Type u inst✝⁵ : CommSemiring R inst✝⁴ : Semiring A inst✝³ : Algebra R A inst✝² : TopologicalSpace R inst✝¹ : TopologicalSpace A inst✝ : TopologicalSemiring A h : Continuous ↑(algebraMap R A) ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] simp only [Algebra.smul_def] [GOAL] case refine'_1 R : Type u_1 A : Type u inst✝⁵ : CommSemiring R inst✝⁴ : Semiring A inst✝³ : Algebra R A inst✝² : TopologicalSpace R inst✝¹ : TopologicalSpace A inst✝ : TopologicalSemiring A h : Continuous ↑(algebraMap R A) ⊢ Continuous fun p => ↑(algebraMap R A) p.fst * p.snd [PROOFSTEP] exact (h.comp continuous_fst).mul continuous_snd [GOAL] case refine'_2 R : Type u_1 A : Type u inst✝⁵ : CommSemiring R inst✝⁴ : Semiring A inst✝³ : Algebra R A inst✝² : TopologicalSpace R inst✝¹ : TopologicalSpace A inst✝ : TopologicalSemiring A h : Continuous fun p => p.fst • p.snd ⊢ Continuous ↑(algebraMap R A) [PROOFSTEP] rw [algebraMap_eq_smul_one'] [GOAL] case refine'_2 R : Type u_1 A : Type u inst✝⁵ : CommSemiring R inst✝⁴ : Semiring A inst✝³ : Algebra R A inst✝² : TopologicalSpace R inst✝¹ : TopologicalSpace A inst✝ : TopologicalSemiring A h : Continuous fun p => p.fst • p.snd ⊢ Continuous fun r => r • 1 [PROOFSTEP] exact h.comp (continuous_id.prod_mk continuous_const) [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R A : Type u inst✝³ : TopologicalSpace A inst✝² : Semiring A inst✝¹ : Algebra R A inst✝ : TopologicalSemiring A s : Subalgebra R A ⊢ IsClosed ↑(topologicalClosure s) [PROOFSTEP] convert @isClosed_closure A _ s [GOAL] R : Type u_1 inst✝⁸ : CommSemiring R A : Type u inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A s : Subalgebra R A B : Type u_2 inst✝³ : TopologicalSpace B inst✝² : Ring B inst✝¹ : TopologicalRing B inst✝ : Algebra R B f : B →ₐ[R] A f' : B ≃ₜ A w : ↑f = ↑f' ⊢ comap f (topologicalClosure s) = topologicalClosure (comap f s) [PROOFSTEP] apply SetLike.ext' [GOAL] case h R : Type u_1 inst✝⁸ : CommSemiring R A : Type u inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A s : Subalgebra R A B : Type u_2 inst✝³ : TopologicalSpace B inst✝² : Ring B inst✝¹ : TopologicalRing B inst✝ : Algebra R B f : B →ₐ[R] A f' : B ≃ₜ A w : ↑f = ↑f' ⊢ ↑(comap f (topologicalClosure s)) = ↑(topologicalClosure (comap f s)) [PROOFSTEP] simp only [Subalgebra.topologicalClosure_coe] [GOAL] case h R : Type u_1 inst✝⁸ : CommSemiring R A : Type u inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A s : Subalgebra R A B : Type u_2 inst✝³ : TopologicalSpace B inst✝² : Ring B inst✝¹ : TopologicalRing B inst✝ : Algebra R B f : B →ₐ[R] A f' : B ≃ₜ A w : ↑f = ↑f' ⊢ ↑(comap f (topologicalClosure s)) = closure ↑(comap f s) [PROOFSTEP] simp only [Subalgebra.coe_comap, Subsemiring.coe_comap, AlgHom.coe_toRingHom] [GOAL] case h R : Type u_1 inst✝⁸ : CommSemiring R A : Type u inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A s : Subalgebra R A B : Type u_2 inst✝³ : TopologicalSpace B inst✝² : Ring B inst✝¹ : TopologicalRing B inst✝ : Algebra R B f : B →ₐ[R] A f' : B ≃ₜ A w : ↑f = ↑f' ⊢ ↑f ⁻¹' ↑(topologicalClosure s) = closure (↑f ⁻¹' ↑s) [PROOFSTEP] rw [w] [GOAL] case h R : Type u_1 inst✝⁸ : CommSemiring R A : Type u inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A s : Subalgebra R A B : Type u_2 inst✝³ : TopologicalSpace B inst✝² : Ring B inst✝¹ : TopologicalRing B inst✝ : Algebra R B f : B →ₐ[R] A f' : B ≃ₜ A w : ↑f = ↑f' ⊢ ↑f' ⁻¹' ↑(topologicalClosure s) = closure (↑f' ⁻¹' ↑s) [PROOFSTEP] exact f'.preimage_closure _ [GOAL] R : Type u_1 inst✝⁵ : CommRing R A : Type u inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : Algebra R A inst✝¹ : TopologicalRing A inst✝ : T2Space A x y : A hy : y ∈ {x} z : A hz : z ∈ {x} ⊢ y * z = z * y [PROOFSTEP] rw [mem_singleton_iff] at hy hz [GOAL] R : Type u_1 inst✝⁵ : CommRing R A : Type u inst✝⁴ : TopologicalSpace A inst✝³ : Ring A inst✝² : Algebra R A inst✝¹ : TopologicalRing A inst✝ : T2Space A x y : A hy : y = x z : A hz : z = x ⊢ y * z = z * y [PROOFSTEP] rw [hy, hz] [GOAL] A : Type ?u.199010 inst✝³ : DivisionRing A inst✝² : TopologicalSpace A inst✝¹ : ContinuousMul A inst✝ : CharZero A r : ℚ ⊢ Continuous fun x => r • x [PROOFSTEP] simpa only [Algebra.smul_def] using continuous_const.mul continuous_id
{"mathlib_filename": "Mathlib.Topology.Algebra.Algebra", "llama_tokens": 2267}
{"mathlib_filename": "Mathlib.Topology.Algebra.Localization", "llama_tokens": 0}
[GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s : Set (α × α) ⊢ idRel ⊆ s ↔ ∀ (a : α), (a, a) ∈ s [PROOFSTEP] simp [subset_def] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 x✝ : α × α a b : α ⊢ (a, b) ∈ Prod.swap '' idRel ↔ (a, b) ∈ idRel [PROOFSTEP] simpa [image_swap_eq_preimage_swap] using eq_comm [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 r : Set (α × α) x✝ : α × α a b : α ⊢ (a, b) ∈ idRel ○ r ↔ (a, b) ∈ r [PROOFSTEP] simp [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 r s t : Set (α × α) ⊢ r ○ s ○ t = r ○ (s ○ t) [PROOFSTEP] ext ⟨a, b⟩ [GOAL] case h.mk α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 r s t : Set (α × α) a b : α ⊢ (a, b) ∈ r ○ s ○ t ↔ (a, b) ∈ r ○ (s ○ t) [PROOFSTEP] simp only [mem_compRel] [GOAL] case h.mk α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 r s t : Set (α × α) a b : α ⊢ (∃ z, (∃ z_1, (a, z_1) ∈ r ∧ (z_1, z) ∈ s) ∧ (z, b) ∈ t) ↔ ∃ z, (a, z) ∈ r ∧ ∃ z_1, (z, z_1) ∈ s ∧ (z_1, b) ∈ t [PROOFSTEP] tauto [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s t : Set (α × α) h : idRel ⊆ s n : ℕ ⊢ t ⊆ (fun x => s ○ x)^[n] t [PROOFSTEP] induction' n with n ihn generalizing t [GOAL] case zero α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s t✝ : Set (α × α) h : idRel ⊆ s t : Set (α × α) ⊢ t ⊆ (fun x => s ○ x)^[Nat.zero] t case succ α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s t✝ : Set (α × α) h : idRel ⊆ s n : ℕ ihn : ∀ {t : Set (α × α)}, t ⊆ (fun x => s ○ x)^[n] t t : Set (α × α) ⊢ t ⊆ (fun x => s ○ x)^[Nat.succ n] t [PROOFSTEP] exacts [Subset.rfl, (right_subset_compRel h).trans ihn] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 V : Set (α × α) ⊢ SymmetricRel (symmetrizeRel V) [PROOFSTEP] simp [SymmetricRel, symmetrizeRel, preimage_inter, inter_comm, ← preimage_comp] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 U V : Set (α × α) hU : SymmetricRel U hV : SymmetricRel V ⊢ SymmetricRel (U ∩ V) [PROOFSTEP] rw [SymmetricRel, preimage_inter, hU.eq, hV.eq] [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u u : Core α ⊢ (fun s => ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u.uniformity) univ [PROOFSTEP] simp [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u u : Core α s t : Set α hs : (fun s => ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u.uniformity) s ht : (fun s => ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u.uniformity) t x : α x✝ : x ∈ s ∩ t xs : x ∈ s xt : x ∈ t ⊢ {p | p.fst = x → p.snd ∈ s ∩ t} ∈ u.uniformity [PROOFSTEP] filter_upwards [hs x xs, ht x xt] with x hxs hxt hx using ⟨hxs hx, hxt hx⟩ [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u u : Core α s : Set (Set α) hs : ∀ (t : Set α), t ∈ s → (fun s => ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u.uniformity) t x : α x✝ : x ∈ ⋃₀ s t : Set α ts : t ∈ s xt : x ∈ t ⊢ {p | p.fst = x → p.snd ∈ ⋃₀ s} ∈ u.uniformity [PROOFSTEP] filter_upwards [hs t ts x xt] with p ph h using ⟨t, ts, ph h⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 u✝ : Core α t : TopologicalSpace α h : ∀ (x : α), 𝓝 x = comap (Prod.mk x) u✝.uniformity u : Set α ⊢ IsOpen u ↔ ∀ (x : α), x ∈ u → {p | p.fst = x → p.snd ∈ u} ∈ u✝.uniformity [PROOFSTEP] simp only [isOpen_iff_mem_nhds, h, mem_comap_prod_mk] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 t₁ : TopologicalSpace α u₁ : UniformSpace.Core α o₁ : ∀ (s : Set α), IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u₁.uniformity t₂ : TopologicalSpace α u₂ : UniformSpace.Core α o₂ : ∀ (s : Set α), IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u₂.uniformity h : uniformity α = uniformity α ⊢ UniformSpace.mk' t₁ u₁ o₁ = UniformSpace.mk' t₂ u₂ o₂ [PROOFSTEP] obtain rfl : u₁ = u₂ := UniformSpace.core_eq h [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 t₁ : TopologicalSpace α u₁ : UniformSpace.Core α o₁ : ∀ (s : Set α), IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u₁.uniformity t₂ : TopologicalSpace α o₂ : ∀ (s : Set α), IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u₁.uniformity h : uniformity α = uniformity α ⊢ UniformSpace.mk' t₁ u₁ o₁ = UniformSpace.mk' t₂ u₁ o₂ [PROOFSTEP] obtain rfl : t₁ = t₂ := topologicalSpace_eq <| funext fun s => by rw [o₁, o₂] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 t₁ : TopologicalSpace α u₁ : UniformSpace.Core α o₁ : ∀ (s : Set α), IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u₁.uniformity t₂ : TopologicalSpace α o₂ : ∀ (s : Set α), IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u₁.uniformity h : uniformity α = uniformity α s : Set α ⊢ IsOpen s = IsOpen s [PROOFSTEP] rw [o₁, o₂] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 t₁ : TopologicalSpace α u₁ : UniformSpace.Core α o₁ o₂ : ∀ (s : Set α), IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ u₁.uniformity h : uniformity α = uniformity α ⊢ UniformSpace.mk' t₁ u₁ o₁ = UniformSpace.mk' t₁ u₁ o₂ [PROOFSTEP] rfl [GOAL] α✝ : Type ua β✝ : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u β : Type v inst✝ : OrderedAddCommMonoid β d : α → α → β refl : ∀ (x : α), d x x = 0 symm : ∀ (x y : α), d x y = d y x triangle : ∀ (x y z : α), d x z ≤ d x y + d y z half : ∀ (ε : β), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : β), x < δ → ∀ (y : β), y < δ → x + y < ε r : β hr : r > 0 x : α ⊢ (x, x) ∈ {x | d x.fst x.snd < r} [PROOFSTEP] simpa [refl] [GOAL] α✝ : Type ua β✝ : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u β : Type v inst✝ : OrderedAddCommMonoid β d : α → α → β refl : ∀ (x : α), d x x = 0 symm : ∀ (x y : α), d x y = d y x triangle : ∀ (x y z : α), d x z ≤ d x y + d y z half : ∀ (ε : β), ε > 0 → ∃ δ, δ > 0 ∧ ∀ (x : β), x < δ → ∀ (y : β), y < δ → x + y < ε r : β x✝ : r > 0 x : α × α hx : x ∈ {x | d x.fst x.snd < r} ⊢ Prod.swap x ∈ {x | d x.fst x.snd < r} [PROOFSTEP] rwa [mem_setOf, symm] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α n : ℕ ⊢ ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), (fun x => t ○ x)^[n] t ⊆ s [PROOFSTEP] suffices ∀ᶠ t in (𝓤 α).smallSets, t ⊆ s ∧ (t ○ ·)^[n] t ⊆ s from (eventually_and.1 this).2 [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α n : ℕ ⊢ ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), t ⊆ s ∧ (fun x => t ○ x)^[n] t ⊆ s [PROOFSTEP] induction' n with n ihn generalizing s [GOAL] case zero α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s✝ : Set (α × α) hs✝ : s✝ ∈ 𝓤 α s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), t ⊆ s ∧ (fun x => t ○ x)^[Nat.zero] t ⊆ s [PROOFSTEP] simpa [GOAL] case succ α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s✝ : Set (α × α) hs✝ : s✝ ∈ 𝓤 α n : ℕ ihn : ∀ {s : Set (α × α)}, s ∈ 𝓤 α → ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), t ⊆ s ∧ (fun x => t ○ x)^[n] t ⊆ s s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), t ⊆ s ∧ (fun x => t ○ x)^[Nat.succ n] t ⊆ s [PROOFSTEP] rcases comp_mem_uniformity_sets hs with ⟨t, htU, hts⟩ [GOAL] case succ.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s✝ : Set (α × α) hs✝ : s✝ ∈ 𝓤 α n : ℕ ihn : ∀ {s : Set (α × α)}, s ∈ 𝓤 α → ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), t ⊆ s ∧ (fun x => t ○ x)^[n] t ⊆ s s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) htU : t ∈ 𝓤 α hts : t ○ t ⊆ s ⊢ ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), t ⊆ s ∧ (fun x => t ○ x)^[Nat.succ n] t ⊆ s [PROOFSTEP] refine' (ihn htU).mono fun U hU => _ [GOAL] case succ.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s✝ : Set (α × α) hs✝ : s✝ ∈ 𝓤 α n : ℕ ihn : ∀ {s : Set (α × α)}, s ∈ 𝓤 α → ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), t ⊆ s ∧ (fun x => t ○ x)^[n] t ⊆ s s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) htU : t ∈ 𝓤 α hts : t ○ t ⊆ s U : Set (α × α) hU : U ⊆ t ∧ (fun x => U ○ x)^[n] U ⊆ t ⊢ U ⊆ s ∧ (fun x => U ○ x)^[Nat.succ n] U ⊆ s [PROOFSTEP] rw [Function.iterate_succ_apply'] [GOAL] case succ.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s✝ : Set (α × α) hs✝ : s✝ ∈ 𝓤 α n : ℕ ihn : ∀ {s : Set (α × α)}, s ∈ 𝓤 α → ∀ᶠ (t : Set (α × α)) in smallSets (𝓤 α), t ⊆ s ∧ (fun x => t ○ x)^[n] t ⊆ s s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) htU : t ∈ 𝓤 α hts : t ○ t ⊆ s U : Set (α × α) hU : U ⊆ t ∧ (fun x => U ○ x)^[n] U ⊆ t ⊢ U ⊆ s ∧ U ○ (fun x => U ○ x)^[n] U ⊆ s [PROOFSTEP] exact ⟨hU.1.trans <| (subset_comp_self <| refl_le_uniformity htU).trans hts, (compRel_mono hU.1 hU.2).trans hts⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α l : Filter β f₁ f₂ f₃ : β → α h₁₂ : Tendsto (fun x => (f₁ x, f₂ x)) l (𝓤 α) h₂₃ : Tendsto (fun x => (f₂ x, f₃ x)) l (𝓤 α) ⊢ Tendsto (fun x => (f₁ x, f₃ x)) l (𝓤 α) [PROOFSTEP] refine' le_trans (le_lift'.2 fun s hs => mem_map.2 _) comp_le_uniformity [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α l : Filter β f₁ f₂ f₃ : β → α h₁₂ : Tendsto (fun x => (f₁ x, f₂ x)) l (𝓤 α) h₂₃ : Tendsto (fun x => (f₂ x, f₃ x)) l (𝓤 α) s : Set (α × α) hs : s ∈ 𝓤 α ⊢ (fun x => (f₁ x, f₃ x)) ⁻¹' (s ○ s) ∈ l [PROOFSTEP] filter_upwards [mem_map.1 (h₁₂ hs), mem_map.1 (h₂₃ hs)] with x hx₁₂ hx₂₃ using ⟨_, hx₁₂, hx₂₃⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α ⊢ 𝓤 α ≤ Prod.swap <$> 𝓤 α [PROOFSTEP] rw [map_swap_eq_comap_swap] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α ⊢ 𝓤 α ≤ comap Prod.swap (𝓤 α) [PROOFSTEP] exact tendsto_swap_uniformity.le_comap [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V : Set (α × α) h : V ∈ 𝓤 α ⊢ symmetrizeRel V ∈ 𝓤 α [PROOFSTEP] apply (𝓤 α).inter_sets h [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V : Set (α × α) h : V ∈ 𝓤 α ⊢ Prod.swap ⁻¹' V ∈ (𝓤 α).sets [PROOFSTEP] rw [← image_swap_eq_preimage_swap, uniformity_eq_symm] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V : Set (α × α) h : V ∈ 𝓤 α ⊢ Prod.swap '' V ∈ (Prod.swap <$> 𝓤 α).sets [PROOFSTEP] exact image_mem_map h [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α g : Set (α × α) → Filter β f : Filter β hg : Monotone g h : (Filter.lift (𝓤 α) fun s => g (Prod.swap ⁻¹' s)) ≤ f ⊢ Filter.lift (map Prod.swap (𝓤 α)) g ≤ f [PROOFSTEP] rw [map_lift_eq2 hg, image_swap_eq_preimage_swap] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α g : Set (α × α) → Filter β f : Filter β hg : Monotone g h : (Filter.lift (𝓤 α) fun s => g (Prod.swap ⁻¹' s)) ≤ f ⊢ Filter.lift (𝓤 α) (g ∘ preimage Prod.swap) ≤ f [PROOFSTEP] exact h [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α f : Set (α × α) → Filter β h : Monotone f ⊢ (Filter.lift (𝓤 α) fun s => f (s ○ s)) = Filter.lift (Filter.lift' (𝓤 α) fun s => s ○ s) f [PROOFSTEP] rw [lift_lift'_assoc] [GOAL] case hg α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α f : Set (α × α) → Filter β h : Monotone f ⊢ Monotone fun s => s ○ s case hh α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α f : Set (α × α) → Filter β h : Monotone f ⊢ Monotone f [PROOFSTEP] exact monotone_id.compRel monotone_id [GOAL] case hh α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α f : Set (α × α) → Filter β h : Monotone f ⊢ Monotone f [PROOFSTEP] exact h [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ⊆ s [PROOFSTEP] obtain ⟨w, w_in, w_sub⟩ : ∃ w ∈ 𝓤 α, w ○ w ⊆ s := comp_mem_uniformity_sets hs [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_sub : w ○ w ⊆ s ⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ⊆ s [PROOFSTEP] use symmetrizeRel w, symmetrize_mem_uniformity w_in, symmetric_symmetrizeRel w [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_sub : w ○ w ⊆ s ⊢ symmetrizeRel w ○ symmetrizeRel w ⊆ s [PROOFSTEP] have : symmetrizeRel w ⊆ w := symmetrizeRel_subset_self w [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_sub : w ○ w ⊆ s this : symmetrizeRel w ⊆ w ⊢ symmetrizeRel w ○ symmetrizeRel w ⊆ s [PROOFSTEP] calc symmetrizeRel w ○ symmetrizeRel w _ ⊆ w ○ w := by mono _ ⊆ s := w_sub [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_sub : w ○ w ⊆ s this : symmetrizeRel w ⊆ w ⊢ symmetrizeRel w ○ symmetrizeRel w ⊆ w ○ w [PROOFSTEP] mono [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ○ t ⊆ s [PROOFSTEP] rcases comp_symm_mem_uniformity_sets hs with ⟨w, w_in, _, w_sub⟩ [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s ⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ○ t ⊆ s [PROOFSTEP] rcases comp_symm_mem_uniformity_sets w_in with ⟨t, t_in, t_symm, t_sub⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s t : Set (α × α) t_in : t ∈ 𝓤 α t_symm : SymmetricRel t t_sub : t ○ t ⊆ w ⊢ ∃ t, t ∈ 𝓤 α ∧ SymmetricRel t ∧ t ○ t ○ t ⊆ s [PROOFSTEP] use t, t_in, t_symm [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s t : Set (α × α) t_in : t ∈ 𝓤 α t_symm : SymmetricRel t t_sub : t ○ t ⊆ w ⊢ t ○ t ○ t ⊆ s [PROOFSTEP] have : t ⊆ t ○ t := subset_comp_self_of_mem_uniformity t_in [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s t : Set (α × α) t_in : t ∈ 𝓤 α t_symm : SymmetricRel t t_sub : t ○ t ⊆ w this : t ⊆ t ○ t ⊢ t ○ t ○ t ⊆ s [PROOFSTEP] have ht := Subset.refl t [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s t : Set (α × α) t_in : t ∈ 𝓤 α t_symm : SymmetricRel t t_sub : t ○ t ⊆ w this : t ⊆ t ○ t ht : t ⊆ t ⊢ t ○ t ○ t ⊆ s [PROOFSTEP] have hw := Subset.refl w [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s t : Set (α × α) t_in : t ∈ 𝓤 α t_symm : SymmetricRel t t_sub : t ○ t ⊆ w this : t ⊆ t ○ t ht : t ⊆ t hw : w ⊆ w ⊢ t ○ t ○ t ⊆ s [PROOFSTEP] calc t ○ t ○ t ⊆ w ○ t := by mono _ ⊆ w ○ (t ○ t) := by mono _ ⊆ w ○ w := by mono _ ⊆ s := w_sub [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s t : Set (α × α) t_in : t ∈ 𝓤 α t_symm : SymmetricRel t t_sub : t ○ t ⊆ w this : t ⊆ t ○ t ht : t ⊆ t hw : w ⊆ w ⊢ t ○ t ○ t ⊆ w ○ t [PROOFSTEP] mono [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s t : Set (α × α) t_in : t ∈ 𝓤 α t_symm : SymmetricRel t t_sub : t ○ t ⊆ w this : t ⊆ t ○ t ht : t ⊆ t hw : w ⊆ w ⊢ w ○ t ⊆ w ○ (t ○ t) [PROOFSTEP] mono [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α left✝ : SymmetricRel w w_sub : w ○ w ⊆ s t : Set (α × α) t_in : t ∈ 𝓤 α t_symm : SymmetricRel t t_sub : t ○ t ⊆ w this : t ⊆ t ○ t ht : t ⊆ t hw : w ⊆ w ⊢ w ○ (t ○ t) ⊆ w ○ w [PROOFSTEP] mono [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V : Set (β × β) hV : SymmetricRel V x y : β ⊢ (x, y) ∈ Prod.swap ⁻¹' V ↔ (x, y) ∈ V [PROOFSTEP] unfold SymmetricRel at hV [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V : Set (β × β) hV : Prod.swap ⁻¹' V = V x y : β ⊢ (x, y) ∈ Prod.swap ⁻¹' V ↔ (x, y) ∈ V [PROOFSTEP] rw [hV] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V : Set (β × β) hV : SymmetricRel V x : β ⊢ ball x V = {y | (y, x) ∈ V} [PROOFSTEP] ext y [GOAL] case h α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V : Set (β × β) hV : SymmetricRel V x y : β ⊢ y ∈ ball x V ↔ y ∈ {y | (y, x) ∈ V} [PROOFSTEP] rw [mem_ball_symmetry hV] [GOAL] case h α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V : Set (β × β) hV : SymmetricRel V x y : β ⊢ x ∈ ball y V ↔ y ∈ {y | (y, x) ∈ V} [PROOFSTEP] exact Iff.rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W : Set (β × β) x y z : β hV : SymmetricRel V hx : x ∈ ball z V hy : y ∈ ball z W ⊢ (x, y) ∈ V ○ W [PROOFSTEP] rw [mem_ball_symmetry hV] at hx [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W : Set (β × β) x y z : β hV : SymmetricRel V hx : z ∈ ball x V hy : y ∈ ball z W ⊢ (x, y) ∈ V ○ W [PROOFSTEP] exact ⟨z, hx, hy⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W M : Set (β × β) hW' : SymmetricRel W p : β × β ⊢ p ∈ V ○ M ○ W ↔ Set.Nonempty (ball p.fst V ×ˢ ball p.snd W ∩ M) [PROOFSTEP] cases' p with x y [GOAL] case mk α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W M : Set (β × β) hW' : SymmetricRel W x y : β ⊢ (x, y) ∈ V ○ M ○ W ↔ Set.Nonempty (ball (x, y).fst V ×ˢ ball (x, y).snd W ∩ M) [PROOFSTEP] constructor [GOAL] case mk.mp α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W M : Set (β × β) hW' : SymmetricRel W x y : β ⊢ (x, y) ∈ V ○ M ○ W → Set.Nonempty (ball (x, y).fst V ×ˢ ball (x, y).snd W ∩ M) [PROOFSTEP] rintro ⟨z, ⟨w, hpw, hwz⟩, hzy⟩ [GOAL] case mk.mp.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W M : Set (β × β) hW' : SymmetricRel W x y z : β hzy : (z, (x, y).snd) ∈ W w : β hpw : (((x, y).fst, z).fst, w) ∈ V hwz : (w, ((x, y).fst, z).snd) ∈ M ⊢ Set.Nonempty (ball (x, y).fst V ×ˢ ball (x, y).snd W ∩ M) [PROOFSTEP] exact ⟨(w, z), ⟨hpw, by rwa [mem_ball_symmetry hW']⟩, hwz⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W M : Set (β × β) hW' : SymmetricRel W x y z : β hzy : (z, (x, y).snd) ∈ W w : β hpw : (((x, y).fst, z).fst, w) ∈ V hwz : (w, ((x, y).fst, z).snd) ∈ M ⊢ (w, z).snd ∈ ball (x, y).snd W [PROOFSTEP] rwa [mem_ball_symmetry hW'] [GOAL] case mk.mpr α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W M : Set (β × β) hW' : SymmetricRel W x y : β ⊢ Set.Nonempty (ball (x, y).fst V ×ˢ ball (x, y).snd W ∩ M) → (x, y) ∈ V ○ M ○ W [PROOFSTEP] rintro ⟨⟨w, z⟩, ⟨w_in, z_in⟩, hwz⟩ [GOAL] case mk.mpr.intro.mk.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W M : Set (β × β) hW' : SymmetricRel W x y w z : β hwz : (w, z) ∈ M w_in : (w, z).fst ∈ ball (x, y).fst V z_in : (w, z).snd ∈ ball (x, y).snd W ⊢ (x, y) ∈ V ○ M ○ W [PROOFSTEP] rw [mem_ball_symmetry hW'] at z_in [GOAL] case mk.mpr.intro.mk.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α V W M : Set (β × β) hW' : SymmetricRel W x y w z : β hwz : (w, z) ∈ M w_in : (w, z).fst ∈ ball (x, y).fst V z_in : (x, y).snd ∈ ball (w, z).snd W ⊢ (x, y) ∈ V ○ M ○ W [PROOFSTEP] exact ⟨z, ⟨w, w_in, hwz⟩, z_in⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ s ∈ 𝓝 x ↔ {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] refine' ⟨_, fun hs => _⟩ [GOAL] case refine'_1 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ s ∈ 𝓝 x → {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] simp only [mem_nhds_iff, isOpen_uniformity, and_imp, exists_imp] [GOAL] case refine'_1 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ ∀ (x_1 : Set α), x_1 ⊆ s → (∀ (x : α), x ∈ x_1 → {p | p.fst = x → p.snd ∈ x_1} ∈ 𝓤 α) → x ∈ x_1 → {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] intro t ts ht xt [GOAL] case refine'_1 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s t : Set α ts : t ⊆ s ht : ∀ (x : α), x ∈ t → {p | p.fst = x → p.snd ∈ t} ∈ 𝓤 α xt : x ∈ t ⊢ {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] filter_upwards [ht x xt] using fun y h eq => ts (h eq) [GOAL] case refine'_2 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α ⊢ s ∈ 𝓝 x [PROOFSTEP] refine' mem_nhds_iff.mpr ⟨{x | {p : α × α | p.1 = x → p.2 ∈ s} ∈ 𝓤 α}, _, _, hs⟩ [GOAL] case refine'_2.refine'_1 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α ⊢ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α} ⊆ s [PROOFSTEP] exact fun y hy => refl_mem_uniformity hy rfl [GOAL] case refine'_2.refine'_2 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α ⊢ IsOpen {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α} [PROOFSTEP] refine' isOpen_uniformity.mpr fun y hy => _ [GOAL] case refine'_2.refine'_2 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α y : α hy : y ∈ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α} ⊢ {p | p.fst = y → p.snd ∈ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α}} ∈ 𝓤 α [PROOFSTEP] rcases comp_mem_uniformity_sets hy with ⟨t, ht, tr⟩ [GOAL] case refine'_2.refine'_2.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α y : α hy : y ∈ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α} t : Set (α × α) ht : t ∈ 𝓤 α tr : t ○ t ⊆ {p | p.fst = y → p.snd ∈ s} ⊢ {p | p.fst = y → p.snd ∈ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α}} ∈ 𝓤 α [PROOFSTEP] filter_upwards [ht] [GOAL] case h α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α y : α hy : y ∈ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α} t : Set (α × α) ht : t ∈ 𝓤 α tr : t ○ t ⊆ {p | p.fst = y → p.snd ∈ s} ⊢ ∀ (a : α × α), a ∈ t → a.fst = y → {p | p.fst = a.snd → p.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] rintro ⟨a, b⟩ hp' rfl [GOAL] case h.mk α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α a b : α hp' : (a, b) ∈ t hy : (a, b).fst ∈ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α} tr : t ○ t ⊆ {p | p.fst = (a, b).fst → p.snd ∈ s} ⊢ {p | p.fst = (a, b).snd → p.snd ∈ s} ∈ 𝓤 α [PROOFSTEP] filter_upwards [ht] [GOAL] case h α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α a b : α hp' : (a, b) ∈ t hy : (a, b).fst ∈ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α} tr : t ○ t ⊆ {p | p.fst = (a, b).fst → p.snd ∈ s} ⊢ ∀ (a : α × α), a ∈ t → a.fst = b → a.snd ∈ s [PROOFSTEP] rintro ⟨a', b'⟩ hp'' rfl [GOAL] case h.mk α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α hs : {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α t : Set (α × α) ht : t ∈ 𝓤 α a a' b' : α hp'' : (a', b') ∈ t hp' : (a, (a', b').fst) ∈ t hy : (a, (a', b').fst).fst ∈ {x | {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α} tr : t ○ t ⊆ {p | p.fst = (a, (a', b').fst).fst → p.snd ∈ s} ⊢ (a', b').snd ∈ s [PROOFSTEP] exact @tr (a, b') ⟨a', hp', hp''⟩ rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ s ∈ 𝓝 x ↔ {p | p.snd = x → p.fst ∈ s} ∈ 𝓤 α [PROOFSTEP] rw [uniformity_eq_symm, mem_nhds_uniformity_iff_right] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ {p | p.fst = x → p.snd ∈ s} ∈ 𝓤 α ↔ {p | p.snd = x → p.fst ∈ s} ∈ Prod.swap <$> 𝓤 α [PROOFSTEP] simp only [map_def, mem_map, preimage_setOf_eq, Prod.snd_swap, Prod.fst_swap] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α ⊢ 𝓝 x = comap (Prod.mk x) (𝓤 α) [PROOFSTEP] ext s [GOAL] case a α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ s ∈ 𝓝 x ↔ s ∈ comap (Prod.mk x) (𝓤 α) [PROOFSTEP] rw [mem_nhds_uniformity_iff_right, mem_comap_prod_mk] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α ⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s [PROOFSTEP] simp_rw [isOpen_iff_mem_nhds, nhds_eq_comap_uniformity, mem_comap, ball] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) h : HasBasis (𝓤 α) p s x : α ⊢ HasBasis (𝓝 x) p fun i => ball x (s i) [PROOFSTEP] rw [nhds_eq_comap_uniformity] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) h : HasBasis (𝓤 α) p s x : α ⊢ HasBasis (comap (Prod.mk x) (𝓤 α)) p fun i => ball x (s i) [PROOFSTEP] exact h.comap (Prod.mk x) [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) h : HasBasis (𝓤 α) p s x : α ⊢ HasBasis (𝓝 x) p fun i => {y | (y, x) ∈ s i} [PROOFSTEP] replace h := h.comap Prod.swap [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) x : α h : HasBasis (comap Prod.swap (𝓤 α)) p fun i => Prod.swap ⁻¹' s i ⊢ HasBasis (𝓝 x) p fun i => {y | (y, x) ∈ s i} [PROOFSTEP] rw [← map_swap_eq_comap_swap, ← uniformity_eq_symm] at h [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) x : α h : HasBasis (𝓤 α) p fun i => Prod.swap ⁻¹' s i ⊢ HasBasis (𝓝 x) p fun i => {y | (y, x) ∈ s i} [PROOFSTEP] exact nhds_basis_uniformity' h [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ s ∈ 𝓝 x ↔ ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s [PROOFSTEP] rw [nhds_eq_comap_uniformity, mem_comap] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ (∃ t, t ∈ 𝓤 α ∧ Prod.mk x ⁻¹' t ⊆ s) ↔ ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s [PROOFSTEP] simp_rw [ball] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α ⊢ ball x V ∈ 𝓝 x [PROOFSTEP] rw [UniformSpace.mem_nhds_iff] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α ⊢ ∃ V_1, V_1 ∈ 𝓤 α ∧ ball x V_1 ⊆ ball x V [PROOFSTEP] exact ⟨V, V_in, Subset.rfl⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ s ∈ 𝓝 x ↔ ∃ V, V ∈ 𝓤 α ∧ SymmetricRel V ∧ ball x V ⊆ s [PROOFSTEP] rw [UniformSpace.mem_nhds_iff] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ (∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s) ↔ ∃ V, V ∈ 𝓤 α ∧ SymmetricRel V ∧ ball x V ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ (∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s) → ∃ V, V ∈ 𝓤 α ∧ SymmetricRel V ∧ ball x V ⊆ s [PROOFSTEP] rintro ⟨V, V_in, V_sub⟩ [GOAL] case mp.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α V : Set (α × α) V_in : V ∈ 𝓤 α V_sub : ball x V ⊆ s ⊢ ∃ V, V ∈ 𝓤 α ∧ SymmetricRel V ∧ ball x V ⊆ s [PROOFSTEP] use symmetrizeRel V, symmetrize_mem_uniformity V_in, symmetric_symmetrizeRel V [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α V : Set (α × α) V_in : V ∈ 𝓤 α V_sub : ball x V ⊆ s ⊢ ball x (symmetrizeRel V) ⊆ s [PROOFSTEP] exact Subset.trans (ball_mono (symmetrizeRel_subset_self V) x) V_sub [GOAL] case mpr α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α ⊢ (∃ V, V ∈ 𝓤 α ∧ SymmetricRel V ∧ ball x V ⊆ s) → ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s [PROOFSTEP] rintro ⟨V, V_in, _, V_sub⟩ [GOAL] case mpr.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α s : Set α V : Set (α × α) V_in : V ∈ 𝓤 α left✝ : SymmetricRel V V_sub : ball x V ⊆ s ⊢ ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s [PROOFSTEP] exact ⟨V, V_in, V_sub⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α t : Set α ⊢ t ∈ 𝓝 x ↔ ∃ i, (i ∈ 𝓤 α ∧ SymmetricRel i) ∧ ball x i ⊆ t [PROOFSTEP] simp [UniformSpace.mem_nhds_iff_symm, and_assoc] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α x : α ⊢ x ∈ closure s ↔ ∀ {V : Set (α × α)}, V ∈ 𝓤 α → SymmetricRel V → Set.Nonempty (s ∩ ball x V) [PROOFSTEP] simp [mem_closure_iff_nhds_basis (hasBasis_nhds x), Set.Nonempty] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α x : α ⊢ x ∈ closure s ↔ ∀ {V : Set (α × α)}, V ∈ 𝓤 α → Set.Nonempty (ball x V ∩ s) [PROOFSTEP] simp [mem_closure_iff_nhds_basis' (nhds_basis_uniformity' (𝓤 α).basis_sets)] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x y : α ⊢ HasBasis (𝓝 (x, y)) (fun s => s ∈ 𝓤 α ∧ SymmetricRel s) fun s => ball x s ×ˢ ball y s [PROOFSTEP] rw [nhds_prod_eq] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x y : α ⊢ HasBasis (𝓝 x ×ˢ 𝓝 y) (fun s => s ∈ 𝓤 α ∧ SymmetricRel s) fun s => ball x s ×ˢ ball y s [PROOFSTEP] apply (hasBasis_nhds x).prod_same_index (hasBasis_nhds y) [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x y : α ⊢ ∀ {i j : Set (α × α)}, i ∈ 𝓤 α ∧ SymmetricRel i → j ∈ 𝓤 α ∧ SymmetricRel j → ∃ k, (k ∈ 𝓤 α ∧ SymmetricRel k) ∧ ball x k ⊆ ball x i ∧ ball y k ⊆ ball y j [PROOFSTEP] rintro U V ⟨U_in, U_symm⟩ ⟨V_in, V_symm⟩ [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x y : α U V : Set (α × α) U_in : U ∈ 𝓤 α U_symm : SymmetricRel U V_in : V ∈ 𝓤 α V_symm : SymmetricRel V ⊢ ∃ k, (k ∈ 𝓤 α ∧ SymmetricRel k) ∧ ball x k ⊆ ball x U ∧ ball y k ⊆ ball y V [PROOFSTEP] exact ⟨U ∩ V, ⟨(𝓤 α).inter_sets U_in V_in, U_symm.inter V_symm⟩, ball_inter_left x U V, ball_inter_right y U V⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K ⊢ HasBasis (𝓝ˢ K) p fun i => ⋃ (x : α) (_ : x ∈ K), ball x (s i) [PROOFSTEP] refine' ⟨fun U => _⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α ⊢ U ∈ 𝓝ˢ K ↔ ∃ i, p i ∧ ⋃ (x : α) (_ : x ∈ K), ball x (s i) ⊆ U [PROOFSTEP] simp only [mem_nhdsSet_iff_forall, (nhds_basis_uniformity' hU).mem_iff, iUnion₂_subset_iff] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α ⊢ (∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U) ↔ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] refine' ⟨fun H => _, fun ⟨i, hpi, hi⟩ x hx => ⟨i, hpi, hi x hx⟩⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α H : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U ⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] replace H : ∀ x ∈ K, ∃ i : { i // p i }, ball x (s i ○ s i) ⊆ U [GOAL] case H α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α H : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U ⊢ ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U [PROOFSTEP] intro x hx [GOAL] case H α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α H : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U x : α hx : x ∈ K ⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U [PROOFSTEP] rcases H x hx with ⟨i, hpi, hi⟩ [GOAL] case H.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α H : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U x : α hx : x ∈ K i : ι hpi : p i hi : ball x (s i) ⊆ U ⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U [PROOFSTEP] rcases comp_mem_uniformity_sets (hU.mem_of_mem hpi) with ⟨t, ht_mem, ht⟩ [GOAL] case H.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α H : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U x : α hx : x ∈ K i : ι hpi : p i hi : ball x (s i) ⊆ U t : Set (α × α) ht_mem : t ∈ 𝓤 α ht : t ○ t ⊆ s i ⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U [PROOFSTEP] rcases hU.mem_iff.1 ht_mem with ⟨j, hpj, hj⟩ [GOAL] case H.intro.intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α H : ∀ (x : α), x ∈ K → ∃ i, p i ∧ ball x (s i) ⊆ U x : α hx : x ∈ K i : ι hpi : p i hi : ball x (s i) ⊆ U t : Set (α × α) ht_mem : t ∈ 𝓤 α ht : t ○ t ⊆ s i j : ι hpj : p j hj : s j ⊆ t ⊢ ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U [PROOFSTEP] exact ⟨⟨j, hpj⟩, Subset.trans (ball_mono ((compRel_mono hj hj).trans ht) _) hi⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α H : ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U ⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] have : Nonempty { a // p a } := nonempty_subtype.2 hU.ex_mem [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α H : ∀ (x : α), x ∈ K → ∃ i, ball x (s ↑i ○ s ↑i) ⊆ U this : Nonempty { a // p a } ⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] choose! I hI using H [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α this : Nonempty { a // p a } I : α → { i // p i } hI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U ⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] rcases hK.elim_nhds_subcover (fun x => ball x <| s (I x)) fun x _ => ball_mem_nhds _ <| hU.mem_of_mem (I x).2 with ⟨t, htK, ht⟩ [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α this : Nonempty { a // p a } I : α → { i // p i } hI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U t : Finset α htK : ∀ (x : α), x ∈ t → x ∈ K ht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x)) ⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] obtain ⟨i, hpi, hi⟩ : ∃ i, p i ∧ s i ⊆ ⋂ x ∈ t, s (I x) [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α this : Nonempty { a // p a } I : α → { i // p i } hI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U t : Finset α htK : ∀ (x : α), x ∈ t → x ∈ K ht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x)) ⊢ ∃ i, p i ∧ s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x) case intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α this : Nonempty { a // p a } I : α → { i // p i } hI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U t : Finset α htK : ∀ (x : α), x ∈ t → x ∈ K ht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x)) i : ι hpi : p i hi : s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x) ⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] exact hU.mem_iff.1 ((biInter_finset_mem t).2 fun x _ => hU.mem_of_mem (I x).2) [GOAL] case intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α this : Nonempty { a // p a } I : α → { i // p i } hI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U t : Finset α htK : ∀ (x : α), x ∈ t → x ∈ K ht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x)) i : ι hpi : p i hi : s i ⊆ ⋂ (x : α) (_ : x ∈ t), s ↑(I x) ⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] rw [subset_iInter₂_iff] at hi [GOAL] case intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α this : Nonempty { a // p a } I : α → { i // p i } hI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U t : Finset α htK : ∀ (x : α), x ∈ t → x ∈ K ht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x)) i : ι hpi : p i hi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1) ⊢ ∃ i, p i ∧ ∀ (i_1 : α), i_1 ∈ K → ball i_1 (s i) ⊆ U [PROOFSTEP] refine' ⟨i, hpi, fun x hx => _⟩ [GOAL] case intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α this : Nonempty { a // p a } I : α → { i // p i } hI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U t : Finset α htK : ∀ (x : α), x ∈ t → x ∈ K ht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x)) i : ι hpi : p i hi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1) x : α hx : x ∈ K ⊢ ball x (s i) ⊆ U [PROOFSTEP] rcases mem_iUnion₂.1 (ht hx) with ⟨z, hzt : z ∈ t, hzx : x ∈ ball z (s (I z))⟩ [GOAL] case intro.intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s K : Set α hK : IsCompact K U : Set α this : Nonempty { a // p a } I : α → { i // p i } hI : ∀ (x : α), x ∈ K → ball x (s ↑(I x) ○ s ↑(I x)) ⊆ U t : Finset α htK : ∀ (x : α), x ∈ t → x ∈ K ht : K ⊆ ⋃ (x : α) (_ : x ∈ t), ball x (s ↑(I x)) i : ι hpi : p i hi : ∀ (i_1 : α), i_1 ∈ t → s i ⊆ s ↑(I i_1) x : α hx : x ∈ K z : α hzt : z ∈ t hzx : x ∈ ball z (s ↑(I z)) ⊢ ball x (s i) ⊆ U [PROOFSTEP] calc ball x (s i) ⊆ ball z (s (I z) ○ s (I z)) := fun y hy => ⟨x, hzx, hi z hzt hy⟩ _ ⊆ U := hI z (htK z hzt) [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B ⊢ ∃ V, V ∈ 𝓤 α ∧ Disjoint (⋃ (x : α) (_ : x ∈ A), ball x V) (⋃ (x : α) (_ : x ∈ B), ball x V) [PROOFSTEP] have : Bᶜ ∈ 𝓝ˢ A := hB.isOpen_compl.mem_nhdsSet.mpr h.le_compl_right [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B this : Bᶜ ∈ 𝓝ˢ A ⊢ ∃ V, V ∈ 𝓤 α ∧ Disjoint (⋃ (x : α) (_ : x ∈ A), ball x V) (⋃ (x : α) (_ : x ∈ B), ball x V) [PROOFSTEP] rw [(hA.nhdsSet_basis_uniformity (Filter.basis_sets _)).mem_iff] at this [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B this : ∃ i, i ∈ 𝓤 α ∧ ⋃ (x : α) (_ : x ∈ A), ball x (id i) ⊆ Bᶜ ⊢ ∃ V, V ∈ 𝓤 α ∧ Disjoint (⋃ (x : α) (_ : x ∈ A), ball x V) (⋃ (x : α) (_ : x ∈ B), ball x V) [PROOFSTEP] rcases this with ⟨U, hU, hUAB⟩ [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B U : Set (α × α) hU : U ∈ 𝓤 α hUAB : ⋃ (x : α) (_ : x ∈ A), ball x (id U) ⊆ Bᶜ ⊢ ∃ V, V ∈ 𝓤 α ∧ Disjoint (⋃ (x : α) (_ : x ∈ A), ball x V) (⋃ (x : α) (_ : x ∈ B), ball x V) [PROOFSTEP] rcases comp_symm_mem_uniformity_sets hU with ⟨V, hV, hVsymm, hVU⟩ [GOAL] case intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B U : Set (α × α) hU : U ∈ 𝓤 α hUAB : ⋃ (x : α) (_ : x ∈ A), ball x (id U) ⊆ Bᶜ V : Set (α × α) hV : V ∈ 𝓤 α hVsymm : SymmetricRel V hVU : V ○ V ⊆ U ⊢ ∃ V, V ∈ 𝓤 α ∧ Disjoint (⋃ (x : α) (_ : x ∈ A), ball x V) (⋃ (x : α) (_ : x ∈ B), ball x V) [PROOFSTEP] refine' ⟨V, hV, Set.disjoint_left.mpr fun x => _⟩ [GOAL] case intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B U : Set (α × α) hU : U ∈ 𝓤 α hUAB : ⋃ (x : α) (_ : x ∈ A), ball x (id U) ⊆ Bᶜ V : Set (α × α) hV : V ∈ 𝓤 α hVsymm : SymmetricRel V hVU : V ○ V ⊆ U x : α ⊢ x ∈ ⋃ (x : α) (_ : x ∈ A), ball x V → ¬x ∈ ⋃ (x : α) (_ : x ∈ B), ball x V [PROOFSTEP] simp only [mem_iUnion₂] [GOAL] case intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B U : Set (α × α) hU : U ∈ 𝓤 α hUAB : ⋃ (x : α) (_ : x ∈ A), ball x (id U) ⊆ Bᶜ V : Set (α × α) hV : V ∈ 𝓤 α hVsymm : SymmetricRel V hVU : V ○ V ⊆ U x : α ⊢ (∃ i j, x ∈ ball i V) → ¬∃ i j, x ∈ ball i V [PROOFSTEP] rintro ⟨a, ha, hxa⟩ ⟨b, hb, hxb⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B U : Set (α × α) hU : U ∈ 𝓤 α hUAB : ⋃ (x : α) (_ : x ∈ A), ball x (id U) ⊆ Bᶜ V : Set (α × α) hV : V ∈ 𝓤 α hVsymm : SymmetricRel V hVU : V ○ V ⊆ U x a : α ha : a ∈ A hxa : x ∈ ball a V b : α hb : b ∈ B hxb : x ∈ ball b V ⊢ False [PROOFSTEP] rw [mem_ball_symmetry hVsymm] at hxa hxb [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B U : Set (α × α) hU : U ∈ 𝓤 α hUAB : ⋃ (x : α) (_ : x ∈ A), ball x (id U) ⊆ Bᶜ V : Set (α × α) hV : V ∈ 𝓤 α hVsymm : SymmetricRel V hVU : V ○ V ⊆ U x a : α ha : a ∈ A hxa : a ∈ ball x V b : α hb : b ∈ B hxb : b ∈ ball x V ⊢ False [PROOFSTEP] exact hUAB (mem_iUnion₂_of_mem ha <| hVU <| mem_comp_of_mem_ball hVsymm hxa hxb) hb [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B ⊢ ∃ i, p i ∧ Disjoint (⋃ (x : α) (_ : x ∈ A), ball x (s i)) (⋃ (x : α) (_ : x ∈ B), ball x (s i)) [PROOFSTEP] rcases h.exists_uniform_thickening hA hB with ⟨V, hV, hVAB⟩ [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B V : Set (α × α) hV : V ∈ 𝓤 α hVAB : Disjoint (⋃ (x : α) (_ : x ∈ A), ball x V) (⋃ (x : α) (_ : x ∈ B), ball x V) ⊢ ∃ i, p i ∧ Disjoint (⋃ (x : α) (_ : x ∈ A), ball x (s i)) (⋃ (x : α) (_ : x ∈ B), ball x (s i)) [PROOFSTEP] rcases hU.mem_iff.1 hV with ⟨i, hi, hiV⟩ [GOAL] case intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop s : ι → Set (α × α) hU : HasBasis (𝓤 α) p s A B : Set α hA : IsCompact A hB : IsClosed B h : Disjoint A B V : Set (α × α) hV : V ∈ 𝓤 α hVAB : Disjoint (⋃ (x : α) (_ : x ∈ A), ball x V) (⋃ (x : α) (_ : x ∈ B), ball x V) i : ι hi : p i hiV : s i ⊆ V ⊢ ∃ i, p i ∧ Disjoint (⋃ (x : α) (_ : x ∈ A), ball x (s i)) (⋃ (x : α) (_ : x ∈ B), ball x (s i)) [PROOFSTEP] exact ⟨i, hi, hVAB.mono (iUnion₂_mono fun a _ => ball_mono hiV a) (iUnion₂_mono fun b _ => ball_mono hiV b)⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α g : Set α → Filter β hg : Monotone g ⊢ Filter.lift (𝓝 x) g = Filter.lift (𝓤 α) fun s => g (ball x s) [PROOFSTEP] rw [nhds_eq_comap_uniformity, comap_lift_eq2 hg] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α g : Set α → Filter β hg : Monotone g ⊢ Filter.lift (𝓤 α) (g ∘ preimage (Prod.mk x)) = Filter.lift (𝓤 α) fun s => g (ball x s) [PROOFSTEP] simp_rw [ball, Function.comp] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α g : Set α → Filter β hg : Monotone g ⊢ Filter.lift (𝓝 x) g = Filter.lift (𝓤 α) fun s => g {y | (y, x) ∈ s} [PROOFSTEP] rw [nhds_eq_comap_uniformity', comap_lift_eq2 hg] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α g : Set α → Filter β hg : Monotone g ⊢ Filter.lift (𝓤 α) (g ∘ preimage fun y => (y, x)) = Filter.lift (𝓤 α) fun s => g {y | (y, x) ∈ s} [PROOFSTEP] simp_rw [Function.comp, preimage] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α a b : α ⊢ 𝓝 a ×ˢ 𝓝 b = Filter.lift (𝓤 α) fun s => Filter.lift' (𝓤 α) fun t => {y | (y, a) ∈ s} ×ˢ {y | (b, y) ∈ t} [PROOFSTEP] rw [nhds_eq_uniformity', nhds_eq_uniformity, prod_lift'_lift'] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α a b : α ⊢ (Filter.lift (𝓤 α) fun s => Filter.lift' (𝓤 α) fun t => {y | (y, a) ∈ s} ×ˢ ball b t) = Filter.lift (𝓤 α) fun s => Filter.lift' (𝓤 α) fun t => {y | (y, a) ∈ s} ×ˢ {y | (b, y) ∈ t} case hg₁ α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α a b : α ⊢ Monotone fun s => {y | (y, a) ∈ s} case hg₂ α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α a b : α ⊢ Monotone (ball b) [PROOFSTEP] exacts [rfl, monotone_preimage, monotone_preimage] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α a b : α ⊢ 𝓝 (a, b) = Filter.lift' (𝓤 α) fun s => {y | (y, a) ∈ s} ×ˢ {y | (b, y) ∈ s} [PROOFSTEP] rw [nhds_prod_eq, nhds_nhds_eq_uniformity_uniformity_prod, lift_lift'_same_eq_lift'] [GOAL] case hg₁ α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α a b : α ⊢ ∀ (s : Set (α × α)), Monotone fun t => {y | (y, a) ∈ s} ×ˢ {y | (b, y) ∈ t} [PROOFSTEP] exact fun s => monotone_const.set_prod monotone_preimage [GOAL] case hg₂ α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α a b : α ⊢ ∀ (t : Set (α × α)), Monotone fun s => {y | (y, a) ∈ s} ×ˢ {y | (b, y) ∈ t} [PROOFSTEP] refine fun t => Monotone.set_prod ?_ monotone_const [GOAL] case hg₂ α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α a b : α t : Set (α × α) ⊢ Monotone fun s => {y | (y, a) ∈ s} [PROOFSTEP] exact monotone_preimage (f := fun y => (y, a)) [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α ⊢ ∃ t, IsOpen t ∧ s ⊆ t ∧ t ⊆ {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} [PROOFSTEP] let cl_d := {p : α × α | ∃ x y, (p.1, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.2) ∈ d} [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} ⊢ ∃ t, IsOpen t ∧ s ⊆ t ∧ t ⊆ {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} [PROOFSTEP] have : ∀ p ∈ s, ∃ t, t ⊆ cl_d ∧ IsOpen t ∧ p ∈ t := fun ⟨x, y⟩ hp => mem_nhds_iff.mp <| show cl_d ∈ 𝓝 (x, y) by rw [nhds_eq_uniformity_prod, mem_lift'_sets] · exact ⟨d, hd, fun ⟨a, b⟩ ⟨ha, hb⟩ => ⟨x, y, ha, hp, hb⟩⟩ · exact fun _ _ h _ h' => ⟨h h'.1, h h'.2⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} x✝ : α × α x y : α hp : (x, y) ∈ s ⊢ cl_d ∈ 𝓝 (x, y) [PROOFSTEP] rw [nhds_eq_uniformity_prod, mem_lift'_sets] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} x✝ : α × α x y : α hp : (x, y) ∈ s ⊢ ∃ t, t ∈ 𝓤 α ∧ {y | (y, x) ∈ t} ×ˢ {y_1 | (y, y_1) ∈ t} ⊆ cl_d [PROOFSTEP] exact ⟨d, hd, fun ⟨a, b⟩ ⟨ha, hb⟩ => ⟨x, y, ha, hp, hb⟩⟩ [GOAL] case hh α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} x✝ : α × α x y : α hp : (x, y) ∈ s ⊢ Monotone fun s => {y | (y, x) ∈ s} ×ˢ {y_1 | (y, y_1) ∈ s} [PROOFSTEP] exact fun _ _ h _ h' => ⟨h h'.1, h h'.2⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} this : ∀ (p : α × α), p ∈ s → ∃ t, t ⊆ cl_d ∧ IsOpen t ∧ p ∈ t ⊢ ∃ t, IsOpen t ∧ s ⊆ t ∧ t ⊆ {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} [PROOFSTEP] choose t ht using this [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} t : (p : α × α) → p ∈ s → Set (α × α) ht : ∀ (p : α × α) (a : p ∈ s), t p a ⊆ cl_d ∧ IsOpen (t p a) ∧ p ∈ t p a ⊢ ∃ t, IsOpen t ∧ s ⊆ t ∧ t ⊆ {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} [PROOFSTEP] exact ⟨(⋃ p : α × α, ⋃ h : p ∈ s, t p h : Set (α × α)), isOpen_iUnion fun p : α × α => isOpen_iUnion fun hp => (ht p hp).right.left, fun ⟨a, b⟩ hp => by simp only [mem_iUnion, Prod.exists]; exact ⟨a, b, hp, (ht (a, b) hp).right.right⟩, iUnion_subset fun p => iUnion_subset fun hp => (ht p hp).left⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} t : (p : α × α) → p ∈ s → Set (α × α) ht : ∀ (p : α × α) (a : p ∈ s), t p a ⊆ cl_d ∧ IsOpen (t p a) ∧ p ∈ t p a x✝ : α × α a b : α hp : (a, b) ∈ s ⊢ (a, b) ∈ ⋃ (p : α × α) (h : p ∈ s), t p h [PROOFSTEP] simp only [mem_iUnion, Prod.exists] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d s : Set (α × α) hd : d ∈ 𝓤 α cl_d : Set (α × α) := {p | ∃ x y, (p.fst, x) ∈ d ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ d} t : (p : α × α) → p ∈ s → Set (α × α) ht : ∀ (p : α × α) (a : p ∈ s), t p a ⊆ cl_d ∧ IsOpen (t p a) ∧ p ∈ t p a x✝ : α × α a b : α hp : (a, b) ∈ s ⊢ ∃ a_1 b_1 i, (a, b) ∈ t (a_1, b_1) i [PROOFSTEP] exact ⟨a, b, hp, (ht (a, b) hp).right.right⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α ⊢ 𝓝 (x, x) ≤ 𝓤 α [PROOFSTEP] intro V V_in [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α ⊢ V ∈ 𝓝 (x, x) [PROOFSTEP] rcases comp_symm_mem_uniformity_sets V_in with ⟨w, w_in, w_symm, w_sub⟩ [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w w_sub : w ○ w ⊆ V ⊢ V ∈ 𝓝 (x, x) [PROOFSTEP] have : ball x w ×ˢ ball x w ∈ 𝓝 (x, x) [GOAL] case this α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w w_sub : w ○ w ⊆ V ⊢ ball x w ×ˢ ball x w ∈ 𝓝 (x, x) [PROOFSTEP] rw [nhds_prod_eq] [GOAL] case this α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w w_sub : w ○ w ⊆ V ⊢ ball x w ×ˢ ball x w ∈ 𝓝 x ×ˢ 𝓝 x [PROOFSTEP] exact prod_mem_prod (ball_mem_nhds x w_in) (ball_mem_nhds x w_in) [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w w_sub : w ○ w ⊆ V this : ball x w ×ˢ ball x w ∈ 𝓝 (x, x) ⊢ V ∈ 𝓝 (x, x) [PROOFSTEP] apply mem_of_superset this [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w w_sub : w ○ w ⊆ V this : ball x w ×ˢ ball x w ∈ 𝓝 (x, x) ⊢ ball x w ×ˢ ball x w ⊆ V [PROOFSTEP] rintro ⟨u, v⟩ ⟨u_in, v_in⟩ [GOAL] case intro.intro.intro.mk.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α x : α V : Set (α × α) V_in : V ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w w_sub : w ○ w ⊆ V this : ball x w ×ˢ ball x w ∈ 𝓝 (x, x) u v : α u_in : (u, v).fst ∈ ball x w v_in : (u, v).snd ∈ ball x w ⊢ (u, v) ∈ V [PROOFSTEP] exact w_sub (mem_comp_of_mem_ball w_symm u_in v_in) [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) ⊢ closure s = ⋂ (V : Set (α × α)) (_ : V ∈ {V | V ∈ 𝓤 α ∧ SymmetricRel V}), V ○ s ○ V [PROOFSTEP] ext ⟨x, y⟩ [GOAL] case h.mk α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) x y : α ⊢ (x, y) ∈ closure s ↔ (x, y) ∈ ⋂ (V : Set (α × α)) (_ : V ∈ {V | V ∈ 𝓤 α ∧ SymmetricRel V}), V ○ s ○ V [PROOFSTEP] simp (config := { contextual := true }) only [mem_closure_iff_nhds_basis (UniformSpace.hasBasis_nhds_prod x y), mem_iInter, mem_setOf_eq, and_imp, mem_comp_comp, exists_prop, ← mem_inter_iff, inter_comm, Set.Nonempty] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α ⊢ HasBasis (𝓤 α) (fun V => V ∈ 𝓤 α ∧ IsClosed V) id [PROOFSTEP] refine' Filter.hasBasis_self.2 fun t h => _ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) h : t ∈ 𝓤 α ⊢ ∃ r, r ∈ 𝓤 α ∧ IsClosed r ∧ r ⊆ t [PROOFSTEP] rcases comp_comp_symm_mem_uniformity_sets h with ⟨w, w_in, w_symm, r⟩ [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) h : t ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w r : w ○ w ○ w ⊆ t ⊢ ∃ r, r ∈ 𝓤 α ∧ IsClosed r ∧ r ⊆ t [PROOFSTEP] refine' ⟨closure w, mem_of_superset w_in subset_closure, isClosed_closure, _⟩ [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) h : t ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w r : w ○ w ○ w ⊆ t ⊢ closure w ⊆ t [PROOFSTEP] refine' Subset.trans _ r [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) h : t ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w r : w ○ w ○ w ⊆ t ⊢ closure w ⊆ w ○ w ○ w [PROOFSTEP] rw [closure_eq_uniformity] [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) h : t ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w r : w ○ w ○ w ⊆ t ⊢ ⋂ (V : Set (α × α)) (_ : V ∈ {V | V ∈ 𝓤 α ∧ SymmetricRel V}), V ○ w ○ V ⊆ w ○ w ○ w [PROOFSTEP] apply iInter_subset_of_subset [GOAL] case intro.intro.intro.h α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) h : t ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w r : w ○ w ○ w ⊆ t ⊢ ⋂ (_ : ?intro.intro.intro.i ∈ {V | V ∈ 𝓤 α ∧ SymmetricRel V}), ?intro.intro.intro.i ○ w ○ ?intro.intro.intro.i ⊆ w ○ w ○ w case intro.intro.intro.i α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) h : t ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w r : w ○ w ○ w ⊆ t ⊢ Set (α × α) [PROOFSTEP] apply iInter_subset [GOAL] case intro.intro.intro.h.i α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) h : t ∈ 𝓤 α w : Set (α × α) w_in : w ∈ 𝓤 α w_symm : SymmetricRel w r : w ○ w ○ w ⊆ t ⊢ w ∈ {V | V ∈ 𝓤 α ∧ SymmetricRel V} [PROOFSTEP] exact ⟨w_in, w_symm⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α t : Set (α × α) ⊢ ⋂ (V : Set (α × α)) (_ : V ∈ 𝓤 α), V ○ t ○ V = ⋂ (V : Set (α × α)) (_ : V ∈ 𝓤 α), V ○ (t ○ V) [PROOFSTEP] simp only [compRel_assoc] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d : Set (α × α) hd : d ∈ 𝓤 α ⊢ 𝓤 α ≤ (𝓟 ∘ interior) d [PROOFSTEP] let ⟨s, hs, hs_comp⟩ := comp3_mem_uniformity hd [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d : Set (α × α) hd : d ∈ 𝓤 α s : Set (α × α) hs : s ∈ 𝓤 α hs_comp : s ○ (s ○ s) ⊆ d ⊢ 𝓤 α ≤ (𝓟 ∘ interior) d [PROOFSTEP] let ⟨t, ht, hst, ht_comp⟩ := nhdset_of_mem_uniformity s hs [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d : Set (α × α) hd : d ∈ 𝓤 α s : Set (α × α) hs : s ∈ 𝓤 α hs_comp : s ○ (s ○ s) ⊆ d t : Set (α × α) ht : IsOpen t hst : s ⊆ t ht_comp : t ⊆ {p | ∃ x y, (p.fst, x) ∈ s ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ s} ⊢ 𝓤 α ≤ (𝓟 ∘ interior) d [PROOFSTEP] have : s ⊆ interior d := calc s ⊆ t := hst _ ⊆ interior d := ht.subset_interior_iff.mpr fun x (hx : x ∈ t) => let ⟨x, y, h₁, h₂, h₃⟩ := ht_comp hx hs_comp ⟨x, h₁, y, h₂, h₃⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d : Set (α × α) hd : d ∈ 𝓤 α s : Set (α × α) hs : s ∈ 𝓤 α hs_comp : s ○ (s ○ s) ⊆ d t : Set (α × α) ht : IsOpen t hst : s ⊆ t ht_comp : t ⊆ {p | ∃ x y, (p.fst, x) ∈ s ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ s} this : s ⊆ interior d ⊢ 𝓤 α ≤ (𝓟 ∘ interior) d [PROOFSTEP] have : interior d ∈ 𝓤 α := by filter_upwards [hs] using this [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d : Set (α × α) hd : d ∈ 𝓤 α s : Set (α × α) hs : s ∈ 𝓤 α hs_comp : s ○ (s ○ s) ⊆ d t : Set (α × α) ht : IsOpen t hst : s ⊆ t ht_comp : t ⊆ {p | ∃ x y, (p.fst, x) ∈ s ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ s} this : s ⊆ interior d ⊢ interior d ∈ 𝓤 α [PROOFSTEP] filter_upwards [hs] using this [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α d : Set (α × α) hd : d ∈ 𝓤 α s : Set (α × α) hs : s ∈ 𝓤 α hs_comp : s ○ (s ○ s) ⊆ d t : Set (α × α) ht : IsOpen t hst : s ⊆ t ht_comp : t ⊆ {p | ∃ x y, (p.fst, x) ∈ s ∧ (x, y) ∈ s ∧ (y, p.snd) ∈ s} this✝ : s ⊆ interior d this : interior d ∈ 𝓤 α ⊢ 𝓤 α ≤ (𝓟 ∘ interior) d [PROOFSTEP] simp [this] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α ⊢ interior s ∈ 𝓤 α [PROOFSTEP] rw [uniformity_eq_uniformity_interior] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α ⊢ interior s ∈ Filter.lift' (𝓤 α) interior [PROOFSTEP] exact mem_lift' hs [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α ⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ball x V ⊆ s [PROOFSTEP] rw [isOpen_iff_ball_subset] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α ⊢ (∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s) ↔ ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ball x V ⊆ s [PROOFSTEP] constructor [GOAL] case mp α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α ⊢ (∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s) → ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ball x V ⊆ s [PROOFSTEP] intro h x hx [GOAL] case mpr α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α ⊢ (∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ball x V ⊆ s) → ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s [PROOFSTEP] intro h x hx [GOAL] case mp α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α h : ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s x : α hx : x ∈ s ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ball x V ⊆ s [PROOFSTEP] obtain ⟨V, hV, hV'⟩ := h x hx [GOAL] case mp.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α h : ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s x : α hx : x ∈ s V : Set (α × α) hV : V ∈ 𝓤 α hV' : ball x V ⊆ s ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ball x V ⊆ s [PROOFSTEP] exact ⟨interior V, interior_mem_uniformity hV, isOpen_interior, (ball_mono interior_subset x).trans hV'⟩ [GOAL] case mpr α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α h : ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ball x V ⊆ s x : α hx : x ∈ s ⊢ ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s [PROOFSTEP] obtain ⟨V, hV, -, hV'⟩ := h x hx [GOAL] case mpr.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α h : ∀ (x : α), x ∈ s → ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ball x V ⊆ s x : α hx : x ∈ s V : Set (α × α) hV : V ∈ 𝓤 α hV' : ball x V ⊆ s ⊢ ∃ V, V ∈ 𝓤 α ∧ ball x V ⊆ s [PROOFSTEP] exact ⟨V, hV, hV'⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α U : Set (α × α) hs : Dense s hU : U ∈ 𝓤 α ⊢ ⋃ (x : α) (_ : x ∈ s), ball x U = univ [PROOFSTEP] refine' iUnion₂_eq_univ_iff.2 fun y => _ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α U : Set (α × α) hs : Dense s hU : U ∈ 𝓤 α y : α ⊢ ∃ i j, y ∈ ball i U [PROOFSTEP] rcases hs.inter_nhds_nonempty (mem_nhds_right y hU) with ⟨x, hxs, hxy : (x, y) ∈ U⟩ [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set α U : Set (α × α) hs : Dense s hU : U ∈ 𝓤 α y x : α hxs : x ∈ s hxy : (x, y) ∈ U ⊢ ∃ i j, y ∈ ball i U [PROOFSTEP] exact ⟨x, hxs, hxy⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : β → Prop s : β → Set (α × α) h : HasBasis (𝓤 α) p s t : Set (α × α) ⊢ (∃ i, p i ∧ s i ⊆ t) ↔ ∃ i, p i ∧ ∀ (a b : α), (a, b) ∈ s i → (a, b) ∈ t [PROOFSTEP] simp only [Prod.forall, subset_def] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α ⊢ HasBasis (𝓤 α) (fun V => V ∈ 𝓤 α ∧ IsOpen V ∧ SymmetricRel V) id [PROOFSTEP] simp only [← and_assoc] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α ⊢ HasBasis (𝓤 α) (fun V => (V ∈ 𝓤 α ∧ IsOpen V) ∧ SymmetricRel V) id [PROOFSTEP] refine' uniformity_hasBasis_open.restrict fun s hs => ⟨symmetrizeRel s, _⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α ∧ IsOpen s ⊢ (symmetrizeRel s ∈ 𝓤 α ∧ IsOpen (symmetrizeRel s)) ∧ SymmetricRel (symmetrizeRel s) ∧ id (symmetrizeRel s) ⊆ id s [PROOFSTEP] exact ⟨⟨symmetrize_mem_uniformity hs.1, IsOpen.inter hs.2 (hs.2.preimage continuous_swap)⟩, symmetric_symmetrizeRel s, symmetrizeRel_subset_self s⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α ⊢ ∃ t, t ∈ 𝓤 α ∧ IsOpen t ∧ SymmetricRel t ∧ t ○ t ⊆ s [PROOFSTEP] obtain ⟨t, ht₁, ht₂⟩ := comp_mem_uniformity_sets hs [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) ht₁ : t ∈ 𝓤 α ht₂ : t ○ t ⊆ s ⊢ ∃ t, t ∈ 𝓤 α ∧ IsOpen t ∧ SymmetricRel t ∧ t ○ t ⊆ s [PROOFSTEP] obtain ⟨u, ⟨hu₁, hu₂, hu₃⟩, hu₄ : u ⊆ t⟩ := uniformity_hasBasis_open_symmetric.mem_iff.mp ht₁ [GOAL] case intro.intro.intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α s : Set (α × α) hs : s ∈ 𝓤 α t : Set (α × α) ht₁ : t ∈ 𝓤 α ht₂ : t ○ t ⊆ s u : Set (α × α) hu₄ : u ⊆ t hu₁ : u ∈ 𝓤 α hu₂ : IsOpen u hu₃ : SymmetricRel u ⊢ ∃ t, t ∈ 𝓤 α ∧ IsOpen t ∧ SymmetricRel t ∧ t ○ t ⊆ s [PROOFSTEP] exact ⟨u, hu₁, hu₂, hu₃, (compRel_mono hu₄ hu₄).trans ht₂⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop U : ι → Set (α × α) h : HasBasis (𝓤 α) p U s : Set α ⊢ ⋂ (i : ι) (_ : p i), ⋃ (x : α) (_ : x ∈ s), ball x (U i) = closure s [PROOFSTEP] ext x [GOAL] case h α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α p : ι → Prop U : ι → Set (α × α) h : HasBasis (𝓤 α) p U s : Set α x : α ⊢ x ∈ ⋂ (i : ι) (_ : p i), ⋃ (x : α) (_ : x ∈ s), ball x (U i) ↔ x ∈ closure s [PROOFSTEP] simp [mem_closure_iff_nhds_basis (nhds_basis_uniformity h), ball] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β ⊢ UniformContinuousOn f univ ↔ UniformContinuous f [PROOFSTEP] rw [UniformContinuousOn, UniformContinuous, univ_prod_univ, principal_univ, inf_top_eq] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β c : α → β h : ∀ (a b : α), c a = c b this : (fun x => (c x.fst, c x.snd)) ⁻¹' idRel = univ ⊢ 𝓤 α ≤ comap (fun x => (c x.fst, c x.snd)) (𝓟 idRel) [PROOFSTEP] simp [comap_principal, this, univ_mem] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α ι' : Sort u_2 inst✝ : UniformSpace β p : ι → Prop s : ι → Set (α × α) ha : HasBasis (𝓤 α) p s q : ι' → Prop t : ι' → Set (β × β) hb : HasBasis (𝓤 β) q t f : α → β ⊢ (∀ (ib : ι'), q ib → ∃ ia, p ia ∧ ∀ (x : α × α), x ∈ s ia → (f x.fst, f x.snd) ∈ t ib) ↔ ∀ (i : ι'), q i → ∃ j, p j ∧ ∀ (x y : α), (x, y) ∈ s j → (f x, f y) ∈ t i [PROOFSTEP] simp only [Prod.forall] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α ι' : Sort u_2 inst✝ : UniformSpace β p : ι → Prop s : ι → Set (α × α) ha : HasBasis (𝓤 α) p s q : ι' → Prop t : ι' → Set (β × β) hb : HasBasis (𝓤 β) q t f : α → β S : Set α ⊢ (∀ (ib : ι'), q ib → ∃ ia, p ia ∧ ∀ (x : α × α), x ∈ s ia ∩ S ×ˢ S → (f x.fst, f x.snd) ∈ t ib) ↔ ∀ (i : ι'), q i → ∃ j, p j ∧ ∀ (x : α), x ∈ S → ∀ (y : α), y ∈ S → (x, y) ∈ s j → (f x, f y) ∈ t i [PROOFSTEP] simp_rw [Prod.forall, Set.inter_comm (s _), ball_mem_comm, mem_inter_iff, mem_prod, and_imp] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 ⊢ Tendsto Prod.swap (𝓟 idRel) (𝓟 idRel) [PROOFSTEP] simp [Tendsto] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s : Set α ⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := 𝓟 idRel, refl := (_ : 𝓟 idRel ≤ 𝓟 idRel), symm := (_ : map Prod.swap (𝓟 idRel) ≤ 𝓟 idRel), comp := (_ : (Filter.lift' (𝓟 idRel) fun s => s ○ s) ≤ 𝓟 idRel) }.uniformity [PROOFSTEP] let _ : TopologicalSpace α := ⊥ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s : Set α x✝ : TopologicalSpace α := ⊥ ⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := 𝓟 idRel, refl := (_ : 𝓟 idRel ≤ 𝓟 idRel), symm := (_ : map Prod.swap (𝓟 idRel) ≤ 𝓟 idRel), comp := (_ : (Filter.lift' (𝓟 idRel) fun s => s ○ s) ≤ 𝓟 idRel) }.uniformity [PROOFSTEP] have := discreteTopology_bot α [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s : Set α x✝ : TopologicalSpace α := ⊥ this : DiscreteTopology α ⊢ IsOpen s ↔ ∀ (x : α), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ { uniformity := 𝓟 idRel, refl := (_ : 𝓟 idRel ≤ 𝓟 idRel), symm := (_ : map Prod.swap (𝓟 idRel) ≤ 𝓟 idRel), comp := (_ : (Filter.lift' (𝓟 idRel) fun s => s ○ s) ≤ 𝓟 idRel) }.uniformity [PROOFSTEP] simp [subset_def, idRel] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 u₁ u₂ : UniformSpace α x✝ : α ⊢ 𝓝 x✝ = comap (Prod.mk x✝) { uniformity := u₁.uniformity ⊓ u₂.uniformity, refl := (_ : 𝓟 idRel ≤ u₁.uniformity ⊓ u₂.uniformity), symm := (_ : Tendsto Prod.swap (u₁.uniformity ⊓ u₂.uniformity) (u₁.uniformity ⊓ u₂.uniformity)), comp := (_ : (Filter.lift' (u₁.uniformity ⊓ u₂.uniformity) fun s => s ○ s) ≤ u₁.uniformity ⊓ u₂.uniformity) }.uniformity [PROOFSTEP] rw [@nhds_inf _ u₁.toTopologicalSpace u₂.toTopologicalSpace, @nhds_eq_comap_uniformity _ u₁, @nhds_eq_comap_uniformity _ u₂, comap_inf] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 u₁ u₂ : UniformSpace α x✝ : α ⊢ comap (Prod.mk x✝) (𝓤 α) ⊓ comap (Prod.mk x✝) (𝓤 α) = comap (Prod.mk x✝) u₁.uniformity ⊓ comap (Prod.mk x✝) u₂.uniformity [PROOFSTEP] rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u : UniformSpace β ⊢ 𝓟 idRel ≤ Filter.comap (fun p => (f p.fst, f p.snd)) (𝓟 idRel) [PROOFSTEP] simp [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u : UniformSpace β ⊢ Tendsto Prod.swap (Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) (Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) [PROOFSTEP] simp only [tendsto_comap_iff, Prod.swap, (· ∘ ·)] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u : UniformSpace β ⊢ Tendsto (fun x => (f x.snd, f x.fst)) (Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) (𝓤 β) [PROOFSTEP] exact tendsto_swap_uniformity.comp tendsto_comap [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u : UniformSpace β ⊢ (Filter.lift' (Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) fun s => s ○ s) ≤ Filter.comap (fun p => (f p.fst, f p.snd)) (Filter.lift' u.uniformity fun s => s ○ s) [PROOFSTEP] rw [comap_lift'_eq, comap_lift'_eq2] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u : UniformSpace β ⊢ Filter.lift' (𝓤 β) ((fun s => s ○ s) ∘ preimage fun p => (f p.fst, f p.snd)) ≤ Filter.lift' u.uniformity ((preimage fun p => (f p.fst, f p.snd)) ∘ fun s => s ○ s) α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u : UniformSpace β ⊢ Monotone fun s => s ○ s [PROOFSTEP] exact lift'_mono' fun s _ ⟨a₁, a₂⟩ ⟨x, h₁, h₂⟩ => ⟨f x, h₁, h₂⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u : UniformSpace β ⊢ Monotone fun s => s ○ s [PROOFSTEP] exact monotone_id.compRel monotone_id [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u : UniformSpace β x : α ⊢ 𝓝 x = Filter.comap (Prod.mk x) { uniformity := Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β), refl := (_ : 𝓟 idRel ≤ Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β)), symm := (_ : Tendsto Prod.swap (Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) (Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β))), comp := (_ : (Filter.lift' (Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) fun s => s ○ s) ≤ Filter.comap (fun p => (f p.fst, f p.snd)) (𝓤 β)) }.uniformity [PROOFSTEP] simp only [nhds_induced, nhds_eq_comap_uniformity, comap_comap, Function.comp] [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u_2 ⊢ UniformSpace.comap id = id [PROOFSTEP] ext : 2 [GOAL] case h.a α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u_2 x✝ : UniformSpace α ⊢ 𝓤 α = 𝓤 α [PROOFSTEP] rw [uniformity_comap, Prod.map_id, comap_id] [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 uγ : UniformSpace γ f : α → β g : β → γ ⊢ comap (g ∘ f) uγ = comap f (comap g uγ) [PROOFSTEP] ext1 [GOAL] case a α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 uγ : UniformSpace γ f : α → β g : β → γ ⊢ 𝓤 α = 𝓤 α [PROOFSTEP] simp only [uniformity_comap, Filter.comap_comap, Prod.map_comp_map] [GOAL] α✝ : Type ua β : Type ub γ✝ : Type uc δ : Type ud ι✝ : Sort u_1 ι : Sort u_2 α : Type u_3 γ : Type u_4 u : ι → UniformSpace γ f : α → γ ⊢ comap f (⨅ (i : ι), u i) = ⨅ (i : ι), comap f (u i) [PROOFSTEP] ext : 1 [GOAL] case a α✝ : Type ua β : Type ub γ✝ : Type uc δ : Type ud ι✝ : Sort u_1 ι : Sort u_2 α : Type u_3 γ : Type u_4 u : ι → UniformSpace γ f : α → γ ⊢ 𝓤 α = 𝓤 α [PROOFSTEP] simp [uniformity_comap, iInf_uniformity] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 u v : UniformSpace α ⊢ u ≤ v ↔ UniformContinuous id [PROOFSTEP] rw [uniformContinuous_iff, uniformSpace_comap_id, id] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 u₁ u₂ : UniformSpace α h : u₁ ≤ u₂ a : α ⊢ 𝓝 a ≤ 𝓝 a [PROOFSTEP] rw [@nhds_eq_uniformity α u₁ a, @nhds_eq_uniformity α u₂ a] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 u₁ u₂ : UniformSpace α h : u₁ ≤ u₂ a : α ⊢ Filter.lift' (𝓤 α) (UniformSpace.ball a) ≤ Filter.lift' (𝓤 α) (UniformSpace.ball a) [PROOFSTEP] exact lift'_mono h le_rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 ι : Sort u_2 u : ι → UniformSpace α a : α ⊢ 𝓝 a = 𝓝 a [PROOFSTEP] simp only [@nhds_eq_comap_uniformity _ (iInf u), nhds_iInf, iInf_uniformity, @nhds_eq_comap_uniformity _ (u _), comap_iInf] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s : Set (UniformSpace α) ⊢ UniformSpace.toTopologicalSpace = ⨅ (i : UniformSpace α) (_ : i ∈ s), UniformSpace.toTopologicalSpace [PROOFSTEP] rw [sInf_eq_iInf] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s : Set (UniformSpace α) ⊢ UniformSpace.toTopologicalSpace = ⨅ (i : UniformSpace α) (_ : i ∈ s), UniformSpace.toTopologicalSpace [PROOFSTEP] simp only [← toTopologicalSpace_iInf] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : Set (UniformSpace α) u₂ : UniformSpace β u : UniformSpace α h₁ : u ∈ u₁ hf : UniformContinuous f ⊢ UniformContinuous f [PROOFSTEP] delta UniformContinuous [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : Set (UniformSpace α) u₂ : UniformSpace β u : UniformSpace α h₁ : u ∈ u₁ hf : UniformContinuous f ⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α) (𝓤 β) [PROOFSTEP] rw [sInf_eq_iInf', iInf_uniformity] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : Set (UniformSpace α) u₂ : UniformSpace β u : UniformSpace α h₁ : u ∈ u₁ hf : UniformContinuous f ⊢ Tendsto (fun x => (f x.fst, f x.snd)) (⨅ (i : ↑u₁), 𝓤 α) (𝓤 β) [PROOFSTEP] exact tendsto_iInf' ⟨u, h₁⟩ hf [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : UniformSpace α u₂ : Set (UniformSpace β) ⊢ UniformContinuous f ↔ ∀ (u : UniformSpace β), u ∈ u₂ → UniformContinuous f [PROOFSTEP] delta UniformContinuous [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : UniformSpace α u₂ : Set (UniformSpace β) ⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α) (𝓤 β) ↔ ∀ (u : UniformSpace β), u ∈ u₂ → Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α) (𝓤 β) [PROOFSTEP] rw [sInf_eq_iInf', iInf_uniformity, tendsto_iInf, SetCoe.forall] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : ι → UniformSpace α u₂ : UniformSpace β i : ι hf : UniformContinuous f ⊢ UniformContinuous f [PROOFSTEP] delta UniformContinuous [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : ι → UniformSpace α u₂ : UniformSpace β i : ι hf : UniformContinuous f ⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α) (𝓤 β) [PROOFSTEP] rw [iInf_uniformity] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : ι → UniformSpace α u₂ : UniformSpace β i : ι hf : UniformContinuous f ⊢ Tendsto (fun x => (f x.fst, f x.snd)) (⨅ (i : ι), 𝓤 α) (𝓤 β) [PROOFSTEP] exact tendsto_iInf' i hf [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : UniformSpace α u₂ : ι → UniformSpace β ⊢ UniformContinuous f ↔ ∀ (i : ι), UniformContinuous f [PROOFSTEP] delta UniformContinuous [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 f : α → β u₁ : UniformSpace α u₂ : ι → UniformSpace β ⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α) (𝓤 β) ↔ ∀ (i : ι), Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α) (𝓤 β) [PROOFSTEP] rw [iInf_uniformity, tendsto_iInf] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 s : Set α inst✝ : UniformSpace α ⊢ map (Prod.map Subtype.val Subtype.val) (𝓤 ↑s) = 𝓤 α ⊓ 𝓟 (s ×ˢ s) [PROOFSTEP] rw [uniformity_setCoe, map_comap, range_prod_map, Subtype.range_val] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α ⊢ UniformContinuousOn f s ↔ UniformContinuous (restrict s f) [PROOFSTEP] delta UniformContinuousOn UniformContinuous [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α ⊢ Tendsto (fun x => (f x.fst, f x.snd)) (𝓤 α ⊓ 𝓟 (s ×ˢ s)) (𝓤 β) ↔ Tendsto (fun x => (restrict s f x.fst, restrict s f x.snd)) (𝓤 ↑s) (𝓤 β) [PROOFSTEP] rw [← map_uniformity_set_coe, tendsto_map'_iff] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α ⊢ Tendsto ((fun x => (f x.fst, f x.snd)) ∘ Prod.map Subtype.val Subtype.val) (𝓤 ↑s) (𝓤 β) ↔ Tendsto (fun x => (restrict s f x.fst, restrict s f x.snd)) (𝓤 ↑s) (𝓤 β) [PROOFSTEP] rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α a : α hf : UniformContinuous fun x => f ↑x ha : s ∈ 𝓝 a ⊢ Tendsto f (𝓝 a) (𝓝 (f a)) [PROOFSTEP] rw [(@map_nhds_subtype_coe_eq_nhds α _ s a (mem_of_mem_nhds ha) ha).symm] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α a : α hf : UniformContinuous fun x => f ↑x ha : s ∈ 𝓝 a ⊢ Tendsto f (map Subtype.val (𝓝 { val := a, property := (_ : a ∈ s) })) (𝓝 (f a)) [PROOFSTEP] exact tendsto_map' hf.continuous.continuousAt [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α h : UniformContinuousOn f s ⊢ ContinuousOn f s [PROOFSTEP] rw [uniformContinuousOn_iff_restrict] at h [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α h : UniformContinuous (restrict s f) ⊢ ContinuousOn f s [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β f : α → β s : Set α h : UniformContinuous (restrict s f) ⊢ Continuous (restrict s f) [PROOFSTEP] exact h.continuous [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α ⊢ comap (fun p => (MulOpposite.op p.fst, MulOpposite.op p.snd)) (𝓤 αᵐᵒᵖ) = 𝓤 α [PROOFSTEP] simpa [uniformity_mulOpposite, comap_comap, (· ∘ ·)] using comap_id [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β ⊢ 𝓤 (α × β) = comap (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (𝓤 α ×ˢ 𝓤 β) [PROOFSTEP] dsimp [SProd.sprod] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β ⊢ 𝓤 (α × β) = comap (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (Filter.prod (𝓤 α) (𝓤 β)) [PROOFSTEP] rw [uniformity_prod, Filter.prod, comap_inf, comap_comap, comap_comap] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β ⊢ comap (fun p => (p.fst.fst, p.snd.fst)) (𝓤 α) ⊓ comap (fun p => (p.fst.snd, p.snd.snd)) (𝓤 β) = comap (Prod.fst ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (𝓤 α) ⊓ comap (Prod.snd ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (𝓤 β) [PROOFSTEP] rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β ⊢ 𝓤 (α × β) = map (fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (𝓤 α ×ˢ 𝓤 β) [PROOFSTEP] rw [map_swap4_eq_comap, uniformity_prod_eq_comap_prod] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (β × β) f : α → α → β hf : UniformContinuous fun p => f p.fst p.snd hs : s ∈ 𝓤 β ⊢ ∃ u, u ∈ 𝓤 α ∧ ∀ (a b c : α), (a, b) ∈ u → (f a c, f b c) ∈ s [PROOFSTEP] rw [UniformContinuous, uniformity_prod_eq_prod, tendsto_map'_iff] at hf [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (β × β) f : α → α → β hf : Tendsto ((fun x => (f x.fst.fst x.fst.snd, f x.snd.fst x.snd.snd)) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (𝓤 α ×ˢ 𝓤 α) (𝓤 β) hs : s ∈ 𝓤 β ⊢ ∃ u, u ∈ 𝓤 α ∧ ∀ (a b c : α), (a, b) ∈ u → (f a c, f b c) ∈ s [PROOFSTEP] rcases mem_prod_iff.1 (mem_map.1 <| hf hs) with ⟨u, hu, v, hv, huvt⟩ [GOAL] case intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (β × β) f : α → α → β hf : Tendsto ((fun x => (f x.fst.fst x.fst.snd, f x.snd.fst x.snd.snd)) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) (𝓤 α ×ˢ 𝓤 α) (𝓤 β) hs : s ∈ 𝓤 β u : Set (α × α) hu : u ∈ 𝓤 α v : Set (α × α) hv : v ∈ 𝓤 α huvt : u ×ˢ v ⊆ ((fun x => (f x.fst.fst x.fst.snd, f x.snd.fst x.snd.snd)) ∘ fun p => ((p.fst.fst, p.snd.fst), p.fst.snd, p.snd.snd)) ⁻¹' s ⊢ ∃ u, u ∈ 𝓤 α ∧ ∀ (a b c : α), (a, b) ∈ u → (f a c, f b c) ∈ s [PROOFSTEP] exact ⟨u, hu, fun a b c hab => @huvt ((_, _), (_, _)) ⟨hab, refl_mem_uniformity hv⟩⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 t₁ : UniformSpace α t₂ : UniformSpace β a : Set (α × α) b : Set (β × β) ha : a ∈ 𝓤 α hb : b ∈ 𝓤 β ⊢ {p | (p.fst.fst, p.snd.fst) ∈ a ∧ (p.fst.snd, p.snd.snd) ∈ b} ∈ 𝓤 (α × β) [PROOFSTEP] rw [uniformity_prod] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 t₁ : UniformSpace α t₂ : UniformSpace β a : Set (α × α) b : Set (β × β) ha : a ∈ 𝓤 α hb : b ∈ 𝓤 β ⊢ {p | (p.fst.fst, p.snd.fst) ∈ a ∧ (p.fst.snd, p.snd.snd) ∈ b} ∈ comap (fun p => (p.fst.fst, p.snd.fst)) (𝓤 α) ⊓ comap (fun p => (p.fst.snd, p.snd.snd)) (𝓤 β) [PROOFSTEP] exact inter_mem_inf (preimage_mem_comap ha) (preimage_mem_comap hb) [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f₁ : α → β f₂ : α → γ h₁ : UniformContinuous f₁ h₂ : UniformContinuous f₂ ⊢ UniformContinuous fun a => (f₁ a, f₂ a) [PROOFSTEP] rw [UniformContinuous, uniformity_prod] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α inst✝¹ : UniformSpace β inst✝ : UniformSpace γ f₁ : α → β f₂ : α → γ h₁ : UniformContinuous f₁ h₂ : UniformContinuous f₂ ⊢ Tendsto (fun x => ((f₁ x.fst, f₂ x.fst), f₁ x.snd, f₂ x.snd)) (𝓤 α) (comap (fun p => (p.fst.fst, p.snd.fst)) (𝓤 β) ⊓ comap (fun p => (p.fst.snd, p.snd.snd)) (𝓤 γ)) [PROOFSTEP] exact tendsto_inf.2 ⟨tendsto_comap_iff.2 h₁, tendsto_comap_iff.2 h₂⟩ [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.174697 β : Type ?u.174703 γ : Type ?u.174709 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ ⊢ Sort ?u.174711 [PROOFSTEP] haveI := ua1 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.174697 β : Type ?u.174703 γ : Type ?u.174709 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ this : UniformSpace α ⊢ Sort ?u.174711 [PROOFSTEP] haveI := ub1 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.174697 β : Type ?u.174703 γ : Type ?u.174709 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ this✝ : UniformSpace α this : UniformSpace β ⊢ Sort ?u.174711 [PROOFSTEP] exact UniformContinuous fun p : α × β => f p.1 p.2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.174697 β : Type ?u.174703 γ : Type ?u.174709 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ⊢ Sort ?u.174714 [PROOFSTEP] haveI := ua1 ⊓ ua2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.174697 β : Type ?u.174703 γ : Type ?u.174709 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd this : UniformSpace α ⊢ Sort ?u.174714 [PROOFSTEP] haveI := ub1 ⊓ ub2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.174697 β : Type ?u.174703 γ : Type ?u.174709 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd this✝ : UniformSpace α this : UniformSpace β ⊢ Sort ?u.174714 [PROOFSTEP] exact UniformContinuous fun p : α × β => f p.1 p.2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have ha := @UniformContinuous.inf_dom_left _ _ id ua1 ua2 ua1 (@uniformContinuous_id _ (id _)) [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ha : UniformContinuous id ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have hb := @UniformContinuous.inf_dom_left _ _ id ub1 ub2 ub1 (@uniformContinuous_id _ (id _)) [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ha : UniformContinuous id hb : UniformContinuous id ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have h_unif_cont_id := @UniformContinuous.prod_map _ _ _ _ (ua1 ⊓ ua2) (ub1 ⊓ ub2) ua1 ub1 _ _ ha hb [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ha : UniformContinuous id hb : UniformContinuous id h_unif_cont_id : UniformContinuous (Prod.map id id) ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] exact @UniformContinuous.comp _ _ _ (id _) (id _) _ _ _ h h_unif_cont_id [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.176203 β : Type ?u.176209 γ : Type ?u.176215 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ ⊢ Sort ?u.176217 [PROOFSTEP] haveI := ua2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.176203 β : Type ?u.176209 γ : Type ?u.176215 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ this : UniformSpace α ⊢ Sort ?u.176217 [PROOFSTEP] haveI := ub2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.176203 β : Type ?u.176209 γ : Type ?u.176215 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ this✝ : UniformSpace α this : UniformSpace β ⊢ Sort ?u.176217 [PROOFSTEP] exact UniformContinuous fun p : α × β => f p.1 p.2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.176203 β : Type ?u.176209 γ : Type ?u.176215 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ⊢ Sort ?u.176220 [PROOFSTEP] haveI := ua1 ⊓ ua2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.176203 β : Type ?u.176209 γ : Type ?u.176215 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd this : UniformSpace α ⊢ Sort ?u.176220 [PROOFSTEP] haveI := ub1 ⊓ ub2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.176203 β : Type ?u.176209 γ : Type ?u.176215 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd this✝ : UniformSpace α this : UniformSpace β ⊢ Sort ?u.176220 [PROOFSTEP] exact UniformContinuous fun p : α × β => f p.1 p.2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have ha := @UniformContinuous.inf_dom_right _ _ id ua1 ua2 ua2 (@uniformContinuous_id _ (id _)) [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ha : UniformContinuous id ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have hb := @UniformContinuous.inf_dom_right _ _ id ub1 ub2 ub2 (@uniformContinuous_id _ (id _)) [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ha : UniformContinuous id hb : UniformContinuous id ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have h_unif_cont_id := @UniformContinuous.prod_map _ _ _ _ (ua1 ⊓ ua2) (ub1 ⊓ ub2) ua2 ub2 _ _ ha hb [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ ua1 ua2 : UniformSpace α ub1 ub2 : UniformSpace β uc1 : UniformSpace γ h : UniformContinuous fun p => f p.fst p.snd ha : UniformContinuous id hb : UniformContinuous id h_unif_cont_id : UniformContinuous (Prod.map id id) ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] exact @UniformContinuous.comp _ _ _ (id _) (id _) _ _ _ h h_unif_cont_id [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.177710 β : Type ?u.177714 γ : Type ?u.177723 f : α → β → γ uas : Set (UniformSpace α) ubs : Set (UniformSpace β) ua : UniformSpace α ub : UniformSpace β uc : UniformSpace γ ha : ua ∈ uas hb : ub ∈ ubs hf : UniformContinuous fun p => f p.fst p.snd ⊢ Sort ?u.177870 [PROOFSTEP] haveI := sInf uas [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.177710 β : Type ?u.177714 γ : Type ?u.177723 f : α → β → γ uas : Set (UniformSpace α) ubs : Set (UniformSpace β) ua : UniformSpace α ub : UniformSpace β uc : UniformSpace γ ha : ua ∈ uas hb : ub ∈ ubs hf : UniformContinuous fun p => f p.fst p.snd this : UniformSpace α ⊢ Sort ?u.177870 [PROOFSTEP] haveI := sInf ubs [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type ?u.177710 β : Type ?u.177714 γ : Type ?u.177723 f : α → β → γ uas : Set (UniformSpace α) ubs : Set (UniformSpace β) ua : UniformSpace α ub : UniformSpace β uc : UniformSpace γ ha : ua ∈ uas hb : ub ∈ ubs hf : UniformContinuous fun p => f p.fst p.snd this✝ : UniformSpace α this : UniformSpace β ⊢ Sort ?u.177870 [PROOFSTEP] exact @UniformContinuous _ _ _ uc fun p : α × β => f p.1 p.2 [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ uas : Set (UniformSpace α) ubs : Set (UniformSpace β) ua : UniformSpace α ub : UniformSpace β uc : UniformSpace γ ha : ua ∈ uas hb : ub ∈ ubs hf : UniformContinuous fun p => f p.fst p.snd ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] let _ : UniformSpace (α × β) := instUniformSpaceProd [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ uas : Set (UniformSpace α) ubs : Set (UniformSpace β) ua : UniformSpace α ub : UniformSpace β uc : UniformSpace γ ha : ua ∈ uas hb : ub ∈ ubs hf : UniformContinuous fun p => f p.fst p.snd x✝ : UniformSpace (α × β) := instUniformSpaceProd ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have ha := uniformContinuous_sInf_dom ha uniformContinuous_id [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ uas : Set (UniformSpace α) ubs : Set (UniformSpace β) ua : UniformSpace α ub : UniformSpace β uc : UniformSpace γ ha✝ : ua ∈ uas hb : ub ∈ ubs hf : UniformContinuous fun p => f p.fst p.snd x✝ : UniformSpace (α × β) := instUniformSpaceProd ha : UniformContinuous id ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have hb := uniformContinuous_sInf_dom hb uniformContinuous_id [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ uas : Set (UniformSpace α) ubs : Set (UniformSpace β) ua : UniformSpace α ub : UniformSpace β uc : UniformSpace γ ha✝ : ua ∈ uas hb✝ : ub ∈ ubs hf : UniformContinuous fun p => f p.fst p.snd x✝ : UniformSpace (α × β) := instUniformSpaceProd ha : UniformContinuous id hb : UniformContinuous id ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] have h_unif_cont_id := @UniformContinuous.prod_map _ _ _ _ (sInf uas) (sInf ubs) ua ub _ _ ha hb [GOAL] α✝ : Type ua β✝ : Type ub γ✝ : Type uc δ : Type ud ι : Sort u_1 inst✝² : UniformSpace α✝ inst✝¹ : UniformSpace β✝ inst✝ : UniformSpace γ✝ α : Type u_2 β : Type u_3 γ : Type u_4 f : α → β → γ uas : Set (UniformSpace α) ubs : Set (UniformSpace β) ua : UniformSpace α ub : UniformSpace β uc : UniformSpace γ ha✝ : ua ∈ uas hb✝ : ub ∈ ubs hf : UniformContinuous fun p => f p.fst p.snd x✝ : UniformSpace (α × β) := instUniformSpaceProd ha : UniformContinuous id hb : UniformContinuous id h_unif_cont_id : UniformContinuous (Prod.map id id) ⊢ UniformContinuous fun p => f p.fst p.snd [PROOFSTEP] exact @UniformContinuous.comp _ _ _ (id _) (id _) _ _ _ hf h_unif_cont_id [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 δ' : Type u_2 inst✝⁴ : UniformSpace α inst✝³ : UniformSpace β inst✝² : UniformSpace γ inst✝¹ : UniformSpace δ inst✝ : UniformSpace δ' f : α × β → γ ⊢ UniformContinuous₂ (curry f) ↔ UniformContinuous f [PROOFSTEP] rw [UniformContinuous₂, uncurry_curry] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) x : α ⊕ β H₁ : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets H₂ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets ⊢ (x, x) ∈ r [PROOFSTEP] cases x <;> [apply refl_mem_uniformity H₁; apply refl_mem_uniformity H₂] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) x : α ⊕ β H₁ : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets H₂ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets ⊢ (x, x) ∈ r [PROOFSTEP] cases x [GOAL] case inl α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) H₁ : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets H₂ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets val✝ : α ⊢ (inl val✝, inl val✝) ∈ r [PROOFSTEP] apply refl_mem_uniformity H₁ [GOAL] case inr α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) H₁ : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets H₂ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets val✝ : β ⊢ (inr val✝, inr val✝) ∈ r [PROOFSTEP] apply refl_mem_uniformity H₂ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) Hrα : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets Hrβ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets ⊢ ∃ t, t ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) ∧ t ○ t ⊆ r [PROOFSTEP] rcases comp_mem_uniformity_sets Hrα with ⟨tα, htα, Htα⟩ [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) Hrα : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets Hrβ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets tα : Set (α × α) htα : tα ∈ 𝓤 α Htα : tα ○ tα ⊆ (fun p => (inl p.fst, inl p.snd)) ⁻¹' r ⊢ ∃ t, t ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) ∧ t ○ t ⊆ r [PROOFSTEP] rcases comp_mem_uniformity_sets Hrβ with ⟨tβ, htβ, Htβ⟩ [GOAL] case intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) Hrα : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets Hrβ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets tα : Set (α × α) htα : tα ∈ 𝓤 α Htα : tα ○ tα ⊆ (fun p => (inl p.fst, inl p.snd)) ⁻¹' r tβ : Set (β × β) htβ : tβ ∈ 𝓤 β Htβ : tβ ○ tβ ⊆ (fun p => (inr p.fst, inr p.snd)) ⁻¹' r ⊢ ∃ t, t ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) ∧ t ○ t ⊆ r [PROOFSTEP] refine' ⟨_, ⟨mem_map_iff_exists_image.2 ⟨tα, htα, subset_union_left _ _⟩, mem_map_iff_exists_image.2 ⟨tβ, htβ, subset_union_right _ _⟩⟩, _⟩ [GOAL] case intro.intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) Hrα : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets Hrβ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets tα : Set (α × α) htα : tα ∈ 𝓤 α Htα : tα ○ tα ⊆ (fun p => (inl p.fst, inl p.snd)) ⁻¹' r tβ : Set (β × β) htβ : tβ ∈ 𝓤 β Htβ : tβ ○ tβ ⊆ (fun p => (inr p.fst, inr p.snd)) ⁻¹' r ⊢ (fun p => (inl p.fst, inl p.snd)) '' tα ∪ (fun p => (inr p.fst, inr p.snd)) '' tβ ○ (fun p => (inl p.fst, inl p.snd)) '' tα ∪ (fun p => (inr p.fst, inr p.snd)) '' tβ ⊆ r [PROOFSTEP] rintro ⟨_, _⟩ ⟨z, ⟨⟨a, b⟩, hab, ⟨⟩⟩ | ⟨⟨a, b⟩, hab, ⟨⟩⟩, ⟨⟨_, c⟩, hbc, ⟨⟩⟩ | ⟨⟨_, c⟩, hbc, ⟨⟩⟩⟩ [GOAL] case intro.intro.intro.intro.mk.intro.intro.inl.intro.mk.intro.refl.inl.intro.mk.intro.refl α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) Hrα : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets Hrβ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets tα : Set (α × α) htα : tα ∈ 𝓤 α Htα : tα ○ tα ⊆ (fun p => (inl p.fst, inl p.snd)) ⁻¹' r tβ : Set (β × β) htβ : tβ ∈ 𝓤 β Htβ : tβ ○ tβ ⊆ (fun p => (inr p.fst, inr p.snd)) ⁻¹' r a b : α hab : (a, b) ∈ tα c : α hbc : (b, c) ∈ tα ⊢ (inl (a, b).fst, inl (b, c).snd) ∈ r [PROOFSTEP] have A : (a, c) ∈ tα ○ tα := ⟨b, hab, hbc⟩ [GOAL] case intro.intro.intro.intro.mk.intro.intro.inl.intro.mk.intro.refl.inl.intro.mk.intro.refl α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) Hrα : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets Hrβ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets tα : Set (α × α) htα : tα ∈ 𝓤 α Htα : tα ○ tα ⊆ (fun p => (inl p.fst, inl p.snd)) ⁻¹' r tβ : Set (β × β) htβ : tβ ∈ 𝓤 β Htβ : tβ ○ tβ ⊆ (fun p => (inr p.fst, inr p.snd)) ⁻¹' r a b : α hab : (a, b) ∈ tα c : α hbc : (b, c) ∈ tα A : (a, c) ∈ tα ○ tα ⊢ (inl (a, b).fst, inl (b, c).snd) ∈ r [PROOFSTEP] exact Htα A [GOAL] case intro.intro.intro.intro.mk.intro.intro.inr.intro.mk.intro.refl.inr.intro.mk.intro.refl α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) Hrα : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets Hrβ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets tα : Set (α × α) htα : tα ∈ 𝓤 α Htα : tα ○ tα ⊆ (fun p => (inl p.fst, inl p.snd)) ⁻¹' r tβ : Set (β × β) htβ : tβ ∈ 𝓤 β Htβ : tβ ○ tβ ⊆ (fun p => (inr p.fst, inr p.snd)) ⁻¹' r a b : β hab : (a, b) ∈ tβ c : β hbc : (b, c) ∈ tβ ⊢ (inr (a, b).fst, inr (b, c).snd) ∈ r [PROOFSTEP] have A : (a, c) ∈ tβ ○ tβ := ⟨b, hab, hbc⟩ [GOAL] case intro.intro.intro.intro.mk.intro.intro.inr.intro.mk.intro.refl.inr.intro.mk.intro.refl α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β r : Set ((α ⊕ β) × (α ⊕ β)) x✝ : r ∈ map (fun p => (inl p.fst, inl p.snd)) (𝓤 α) ⊔ map (fun p => (inr p.fst, inr p.snd)) (𝓤 β) Hrα : r ∈ (map (fun p => (inl p.fst, inl p.snd)) (𝓤 α)).sets Hrβ : r ∈ (map (fun p => (inr p.fst, inr p.snd)) (𝓤 β)).sets tα : Set (α × α) htα : tα ∈ 𝓤 α Htα : tα ○ tα ⊆ (fun p => (inl p.fst, inl p.snd)) ⁻¹' r tβ : Set (β × β) htβ : tβ ∈ 𝓤 β Htβ : tβ ○ tβ ⊆ (fun p => (inr p.fst, inr p.snd)) ⁻¹' r a b : β hab : (a, b) ∈ tβ c : β hbc : (b, c) ∈ tβ A : (a, c) ∈ tβ ○ tβ ⊢ (inr (a, b).fst, inr (b, c).snd) ∈ r [PROOFSTEP] exact Htβ A [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s x : α ⊕ β xs : x ∈ s ⊢ {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity [PROOFSTEP] cases x [GOAL] case inl α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s val✝ : α xs : inl val✝ ∈ s ⊢ {p | p.fst = inl val✝ → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity [PROOFSTEP] refine' mem_of_superset (union_mem_uniformity_sum (mem_nhds_uniformity_iff_right.1 (hs.1.mem_nhds xs)) univ_mem) (union_subset _ _) [GOAL] case inl.refine'_1 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s val✝ : α xs : inl val✝ ∈ s ⊢ (fun p => (inl p.fst, inl p.snd)) '' {p | p.fst = val✝ → p.snd ∈ inl ⁻¹' s} ⊆ {p | p.fst = inl val✝ → p.snd ∈ s} [PROOFSTEP] rintro _ ⟨⟨_, b⟩, h, ⟨⟩⟩ ⟨⟩ [GOAL] case inl.refine'_2 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s val✝ : α xs : inl val✝ ∈ s ⊢ (fun p => (inr p.fst, inr p.snd)) '' univ ⊆ {p | p.fst = inl val✝ → p.snd ∈ s} [PROOFSTEP] rintro _ ⟨⟨_, b⟩, h, ⟨⟩⟩ ⟨⟩ [GOAL] case inl.refine'_1.intro.mk.intro.refl.refl α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s fst✝ b : α xs : inl (fst✝, b).fst ∈ s h : (fst✝, b) ∈ {p | p.fst = (fst✝, b).fst → p.snd ∈ inl ⁻¹' s} ⊢ ((fun p => (inl p.fst, inl p.snd)) (fst✝, b)).snd ∈ s [PROOFSTEP] exact h rfl [GOAL] case inr α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s val✝ : β xs : inr val✝ ∈ s ⊢ {p | p.fst = inr val✝ → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity [PROOFSTEP] refine' mem_of_superset (union_mem_uniformity_sum univ_mem (mem_nhds_uniformity_iff_right.1 (hs.2.mem_nhds xs))) (union_subset _ _) [GOAL] case inr.refine'_1 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s val✝ : β xs : inr val✝ ∈ s ⊢ (fun p => (inl p.fst, inl p.snd)) '' univ ⊆ {p | p.fst = inr val✝ → p.snd ∈ s} [PROOFSTEP] rintro _ ⟨⟨a, _⟩, h, ⟨⟩⟩ ⟨⟩ [GOAL] case inr.refine'_2 α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s val✝ : β xs : inr val✝ ∈ s ⊢ (fun p => (inr p.fst, inr p.snd)) '' {p | p.fst = val✝ → p.snd ∈ inr ⁻¹' s} ⊆ {p | p.fst = inr val✝ → p.snd ∈ s} [PROOFSTEP] rintro _ ⟨⟨a, _⟩, h, ⟨⟩⟩ ⟨⟩ [GOAL] case inr.refine'_2.intro.mk.intro.refl.refl α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : IsOpen s a snd✝ : β xs : inr (a, snd✝).fst ∈ s h : (a, snd✝) ∈ {p | p.fst = (a, snd✝).fst → p.snd ∈ inr ⁻¹' s} ⊢ ((fun p => (inr p.fst, inr p.snd)) (a, snd✝)).snd ∈ s [PROOFSTEP] exact h rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity ⊢ IsOpen s [PROOFSTEP] constructor [GOAL] case left α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity ⊢ s ∈ (↑OrderDual.toDual ∘ (fun t => ↑OrderDual.toDual {s | IsOpen s}) ∘ ↑OrderDual.ofDual) (TopologicalSpace.coinduced inl UniformSpace.toTopologicalSpace) [PROOFSTEP] refine' (@isOpen_iff_mem_nhds α _ _).2 fun a ha => mem_nhds_uniformity_iff_right.2 _ [GOAL] case left α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity a : α ha : a ∈ inl ⁻¹' s ⊢ {p | p.fst = a → p.snd ∈ inl ⁻¹' s} ∈ 𝓤 α [PROOFSTEP] rcases mem_map_iff_exists_image.1 (hs _ ha).1 with ⟨t, ht, st⟩ [GOAL] case left.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity a : α ha : a ∈ inl ⁻¹' s t : Set (α × α) ht : t ∈ 𝓤 α st : (fun p => (inl p.fst, inl p.snd)) '' t ⊆ {p | p.fst = inl a → p.snd ∈ s} ⊢ {p | p.fst = a → p.snd ∈ inl ⁻¹' s} ∈ 𝓤 α [PROOFSTEP] refine' mem_of_superset ht _ [GOAL] case left.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity a : α ha : a ∈ inl ⁻¹' s t : Set (α × α) ht : t ∈ 𝓤 α st : (fun p => (inl p.fst, inl p.snd)) '' t ⊆ {p | p.fst = inl a → p.snd ∈ s} ⊢ t ⊆ {p | p.fst = a → p.snd ∈ inl ⁻¹' s} [PROOFSTEP] rintro p pt rfl [GOAL] case left.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity t : Set (α × α) ht : t ∈ 𝓤 α p : α × α pt : p ∈ t ha : p.fst ∈ inl ⁻¹' s st : (fun p => (inl p.fst, inl p.snd)) '' t ⊆ {p_1 | p_1.fst = inl p.fst → p_1.snd ∈ s} ⊢ p.snd ∈ inl ⁻¹' s [PROOFSTEP] exact st ⟨_, pt, rfl⟩ rfl [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity ⊢ s ∈ (↑OrderDual.toDual ∘ (fun t => ↑OrderDual.toDual {s | IsOpen s}) ∘ ↑OrderDual.ofDual) (TopologicalSpace.coinduced inr UniformSpace.toTopologicalSpace) [PROOFSTEP] refine' (@isOpen_iff_mem_nhds β _ _).2 fun b hb => mem_nhds_uniformity_iff_right.2 _ [GOAL] case right α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity b : β hb : b ∈ inr ⁻¹' s ⊢ {p | p.fst = b → p.snd ∈ inr ⁻¹' s} ∈ 𝓤 β [PROOFSTEP] rcases mem_map_iff_exists_image.1 (hs _ hb).2 with ⟨t, ht, st⟩ [GOAL] case right.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity b : β hb : b ∈ inr ⁻¹' s t : Set (β × β) ht : t ∈ 𝓤 β st : (fun p => (inr p.fst, inr p.snd)) '' t ⊆ {p | p.fst = inr b → p.snd ∈ s} ⊢ {p | p.fst = b → p.snd ∈ inr ⁻¹' s} ∈ 𝓤 β [PROOFSTEP] refine' mem_of_superset ht _ [GOAL] case right.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity b : β hb : b ∈ inr ⁻¹' s t : Set (β × β) ht : t ∈ 𝓤 β st : (fun p => (inr p.fst, inr p.snd)) '' t ⊆ {p | p.fst = inr b → p.snd ∈ s} ⊢ t ⊆ {p | p.fst = b → p.snd ∈ inr ⁻¹' s} [PROOFSTEP] rintro p pt rfl [GOAL] case right.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : UniformSpace β s : Set (α ⊕ β) hs : ∀ (x : α ⊕ β), x ∈ s → {p | p.fst = x → p.snd ∈ s} ∈ UniformSpace.Core.sum.uniformity t : Set (β × β) ht : t ∈ 𝓤 β p : β × β pt : p ∈ t hb : p.fst ∈ inr ⁻¹' s st : (fun p => (inr p.fst, inr p.snd)) '' t ⊆ {p_1 | p_1.fst = inr p.fst → p_1.snd ∈ s} ⊢ p.snd ∈ inr ⁻¹' s [PROOFSTEP] exact st ⟨_, pt, rfl⟩ rfl [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i ⊢ ∃ n, n ∈ 𝓤 α ∧ ∀ (x : α), x ∈ s → ∃ i, {y | (x, y) ∈ n} ⊆ c i [PROOFSTEP] let u n := {x | ∃ i, ∃ m ∈ 𝓤 α, {y | (x, y) ∈ m ○ n} ⊆ c i} [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} ⊢ ∃ n, n ∈ 𝓤 α ∧ ∀ (x : α), x ∈ s → ∃ i, {y | (x, y) ∈ n} ⊆ c i [PROOFSTEP] have hu₁ : ∀ n ∈ 𝓤 α, IsOpen (u n) := by refine' fun n _ => isOpen_uniformity.2 _ rintro x ⟨i, m, hm, h⟩ rcases comp_mem_uniformity_sets hm with ⟨m', hm', mm'⟩ apply (𝓤 α).sets_of_superset hm' rintro ⟨x, y⟩ hp rfl refine' ⟨i, m', hm', fun z hz => h (monotone_id.compRel monotone_const mm' _)⟩ dsimp [-mem_compRel] at hz ⊢ rw [compRel_assoc] exact ⟨y, hp, hz⟩ [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} ⊢ ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) [PROOFSTEP] refine' fun n _ => isOpen_uniformity.2 _ [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} n : Set (α × α) x✝ : n ∈ 𝓤 α ⊢ ∀ (x : α), x ∈ u n → {p | p.fst = x → p.snd ∈ u n} ∈ 𝓤 α [PROOFSTEP] rintro x ⟨i, m, hm, h⟩ [GOAL] case intro.intro.intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} n : Set (α × α) x✝ : n ∈ 𝓤 α x : α i : ι m : Set (α × α) hm : m ∈ 𝓤 α h : {y | (x, y) ∈ m ○ n} ⊆ c i ⊢ {p | p.fst = x → p.snd ∈ u n} ∈ 𝓤 α [PROOFSTEP] rcases comp_mem_uniformity_sets hm with ⟨m', hm', mm'⟩ [GOAL] case intro.intro.intro.intro.intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} n : Set (α × α) x✝ : n ∈ 𝓤 α x : α i : ι m : Set (α × α) hm : m ∈ 𝓤 α h : {y | (x, y) ∈ m ○ n} ⊆ c i m' : Set (α × α) hm' : m' ∈ 𝓤 α mm' : m' ○ m' ⊆ m ⊢ {p | p.fst = x → p.snd ∈ u n} ∈ 𝓤 α [PROOFSTEP] apply (𝓤 α).sets_of_superset hm' [GOAL] case intro.intro.intro.intro.intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} n : Set (α × α) x✝ : n ∈ 𝓤 α x : α i : ι m : Set (α × α) hm : m ∈ 𝓤 α h : {y | (x, y) ∈ m ○ n} ⊆ c i m' : Set (α × α) hm' : m' ∈ 𝓤 α mm' : m' ○ m' ⊆ m ⊢ m' ⊆ {p | p.fst = x → p.snd ∈ u n} [PROOFSTEP] rintro ⟨x, y⟩ hp rfl [GOAL] case intro.intro.intro.intro.intro.mk α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} n : Set (α × α) x✝ : n ∈ 𝓤 α i : ι m : Set (α × α) hm : m ∈ 𝓤 α m' : Set (α × α) hm' : m' ∈ 𝓤 α mm' : m' ○ m' ⊆ m x y : α hp : (x, y) ∈ m' h : {y_1 | ((x, y).fst, y_1) ∈ m ○ n} ⊆ c i ⊢ (x, y).snd ∈ u n [PROOFSTEP] refine' ⟨i, m', hm', fun z hz => h (monotone_id.compRel monotone_const mm' _)⟩ [GOAL] case intro.intro.intro.intro.intro.mk α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} n : Set (α × α) x✝ : n ∈ 𝓤 α i : ι m : Set (α × α) hm : m ∈ 𝓤 α m' : Set (α × α) hm' : m' ∈ 𝓤 α mm' : m' ○ m' ⊆ m x y : α hp : (x, y) ∈ m' h : {y_1 | ((x, y).fst, y_1) ∈ m ○ n} ⊆ c i z : α hz : z ∈ {y_1 | ((x, y).snd, y_1) ∈ m' ○ n} ⊢ ((x, y).fst, z) ∈ (fun x => id x ○ n) (m' ○ m') [PROOFSTEP] dsimp [-mem_compRel] at hz ⊢ [GOAL] case intro.intro.intro.intro.intro.mk α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} n : Set (α × α) x✝ : n ∈ 𝓤 α i : ι m : Set (α × α) hm : m ∈ 𝓤 α m' : Set (α × α) hm' : m' ∈ 𝓤 α mm' : m' ○ m' ⊆ m x y : α hp : (x, y) ∈ m' h : {y_1 | ((x, y).fst, y_1) ∈ m ○ n} ⊆ c i z : α hz : (y, z) ∈ m' ○ n ⊢ (x, z) ∈ m' ○ m' ○ n [PROOFSTEP] rw [compRel_assoc] [GOAL] case intro.intro.intro.intro.intro.mk α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} n : Set (α × α) x✝ : n ∈ 𝓤 α i : ι m : Set (α × α) hm : m ∈ 𝓤 α m' : Set (α × α) hm' : m' ∈ 𝓤 α mm' : m' ○ m' ⊆ m x y : α hp : (x, y) ∈ m' h : {y_1 | ((x, y).fst, y_1) ∈ m ○ n} ⊆ c i z : α hz : (y, z) ∈ m' ○ n ⊢ (x, z) ∈ m' ○ (m' ○ n) [PROOFSTEP] exact ⟨y, hp, hz⟩ [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) ⊢ ∃ n, n ∈ 𝓤 α ∧ ∀ (x : α), x ∈ s → ∃ i, {y | (x, y) ∈ n} ⊆ c i [PROOFSTEP] have hu₂ : s ⊆ ⋃ n ∈ 𝓤 α, u n := fun x hx => by rcases mem_iUnion.1 (hc₂ hx) with ⟨i, h⟩ rcases comp_mem_uniformity_sets (isOpen_uniformity.1 (hc₁ i) x h) with ⟨m', hm', mm'⟩ exact mem_biUnion hm' ⟨i, _, hm', fun y hy => mm' hy rfl⟩ [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) x : α hx : x ∈ s ⊢ x ∈ ⋃ (n : Set (α × α)) (_ : n ∈ 𝓤 α), u n [PROOFSTEP] rcases mem_iUnion.1 (hc₂ hx) with ⟨i, h⟩ [GOAL] case intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) x : α hx : x ∈ s i : ι h : x ∈ c i ⊢ x ∈ ⋃ (n : Set (α × α)) (_ : n ∈ 𝓤 α), u n [PROOFSTEP] rcases comp_mem_uniformity_sets (isOpen_uniformity.1 (hc₁ i) x h) with ⟨m', hm', mm'⟩ [GOAL] case intro.intro.intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) x : α hx : x ∈ s i : ι h : x ∈ c i m' : Set (α × α) hm' : m' ∈ 𝓤 α mm' : m' ○ m' ⊆ {p | p.fst = x → p.snd ∈ c i} ⊢ x ∈ ⋃ (n : Set (α × α)) (_ : n ∈ 𝓤 α), u n [PROOFSTEP] exact mem_biUnion hm' ⟨i, _, hm', fun y hy => mm' hy rfl⟩ [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) hu₂ : s ⊆ ⋃ (n : Set (α × α)) (_ : n ∈ 𝓤 α), u n ⊢ ∃ n, n ∈ 𝓤 α ∧ ∀ (x : α), x ∈ s → ∃ i, {y | (x, y) ∈ n} ⊆ c i [PROOFSTEP] rcases hs.elim_finite_subcover_image hu₁ hu₂ with ⟨b, bu, b_fin, b_cover⟩ [GOAL] case intro.intro.intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) hu₂ : s ⊆ ⋃ (n : Set (α × α)) (_ : n ∈ 𝓤 α), u n b : Set (Set (α × α)) bu : b ⊆ (𝓤 α).sets b_fin : Set.Finite b b_cover : s ⊆ ⋃ (i : Set (α × α)) (_ : i ∈ b), u i ⊢ ∃ n, n ∈ 𝓤 α ∧ ∀ (x : α), x ∈ s → ∃ i, {y | (x, y) ∈ n} ⊆ c i [PROOFSTEP] refine' ⟨_, (biInter_mem b_fin).2 bu, fun x hx => _⟩ [GOAL] case intro.intro.intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) hu₂ : s ⊆ ⋃ (n : Set (α × α)) (_ : n ∈ 𝓤 α), u n b : Set (Set (α × α)) bu : b ⊆ (𝓤 α).sets b_fin : Set.Finite b b_cover : s ⊆ ⋃ (i : Set (α × α)) (_ : i ∈ b), u i x : α hx : x ∈ s ⊢ ∃ i, {y | (x, y) ∈ ⋂ (i : Set (α × α)) (_ : i ∈ b), i} ⊆ c i [PROOFSTEP] rcases mem_iUnion₂.1 (b_cover hx) with ⟨n, bn, i, m, hm, h⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) hu₂ : s ⊆ ⋃ (n : Set (α × α)) (_ : n ∈ 𝓤 α), u n b : Set (Set (α × α)) bu : b ⊆ (𝓤 α).sets b_fin : Set.Finite b b_cover : s ⊆ ⋃ (i : Set (α × α)) (_ : i ∈ b), u i x : α hx : x ∈ s n : Set (α × α) bn : n ∈ b i : ι m : Set (α × α) hm : m ∈ 𝓤 α h : {y | (x, y) ∈ m ○ n} ⊆ c i ⊢ ∃ i, {y | (x, y) ∈ ⋂ (i : Set (α × α)) (_ : i ∈ b), i} ⊆ c i [PROOFSTEP] refine' ⟨i, fun y hy => h _⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι✝ : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α ι : Sort u_2 c : ι → Set α hs : IsCompact s hc₁ : ∀ (i : ι), IsOpen (c i) hc₂ : s ⊆ ⋃ (i : ι), c i u : Set (α × α) → Set α := fun n => {x | ∃ i m, m ∈ 𝓤 α ∧ {y | (x, y) ∈ m ○ n} ⊆ c i} hu₁ : ∀ (n : Set (α × α)), n ∈ 𝓤 α → IsOpen (u n) hu₂ : s ⊆ ⋃ (n : Set (α × α)) (_ : n ∈ 𝓤 α), u n b : Set (Set (α × α)) bu : b ⊆ (𝓤 α).sets b_fin : Set.Finite b b_cover : s ⊆ ⋃ (i : Set (α × α)) (_ : i ∈ b), u i x : α hx : x ∈ s n : Set (α × α) bn : n ∈ b i : ι m : Set (α × α) hm : m ∈ 𝓤 α h : {y | (x, y) ∈ m ○ n} ⊆ c i y : α hy : y ∈ {y | (x, y) ∈ ⋂ (i : Set (α × α)) (_ : i ∈ b), i} ⊢ y ∈ {y | (x, y) ∈ m ○ n} [PROOFSTEP] exact prod_mk_mem_compRel (refl_mem_uniformity hm) (biInter_subset_of_mem bn hy) [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α c : Set (Set α) hs : IsCompact s hc₁ : ∀ (t : Set α), t ∈ c → IsOpen t hc₂ : s ⊆ ⋃₀ c ⊢ ∃ n, n ∈ 𝓤 α ∧ ∀ (x : α), x ∈ s → ∃ t, t ∈ c ∧ ∀ (y : α), (x, y) ∈ n → y ∈ t [PROOFSTEP] rw [sUnion_eq_iUnion] at hc₂ [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α c : Set (Set α) hs : IsCompact s hc₁ : ∀ (t : Set α), t ∈ c → IsOpen t hc₂ : s ⊆ ⋃ (i : ↑c), ↑i ⊢ ∃ n, n ∈ 𝓤 α ∧ ∀ (x : α), x ∈ s → ∃ t, t ∈ c ∧ ∀ (y : α), (x, y) ∈ n → y ∈ t [PROOFSTEP] simpa using lebesgue_number_lemma hs (by simpa) hc₂ [GOAL] α✝ : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 α : Type u inst✝ : UniformSpace α s : Set α c : Set (Set α) hs : IsCompact s hc₁ : ∀ (t : Set α), t ∈ c → IsOpen t hc₂ : s ⊆ ⋃ (i : ↑c), ↑i ⊢ ∀ (i : ↑c), IsOpen ↑i [PROOFSTEP] simpa [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ∀ (x : α), x ∈ K → UniformSpace.ball x V ⊆ U [PROOFSTEP] let W : K → Set (α × α) := fun k => Classical.choose <| isOpen_iff_open_ball_subset.mp hU k.1 <| hKU k.2 [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ∀ (x : α), x ∈ K → UniformSpace.ball x V ⊆ U [PROOFSTEP] have hW : ∀ k, W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball k.1 (W k) ⊆ U := by intro k obtain ⟨h₁, h₂, h₃⟩ := Classical.choose_spec (isOpen_iff_open_ball_subset.mp hU k.1 (hKU k.2)) exact ⟨h₁, h₂, h₃⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) ⊢ ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U [PROOFSTEP] intro k [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) k : ↑K ⊢ W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U [PROOFSTEP] obtain ⟨h₁, h₂, h₃⟩ := Classical.choose_spec (isOpen_iff_open_ball_subset.mp hU k.1 (hKU k.2)) [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) k : ↑K h₁ : Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) ∈ 𝓤 α h₂ : IsOpen (Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U)) h₃ : UniformSpace.ball (↑k) (Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U)) ⊆ U ⊢ W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U [PROOFSTEP] exact ⟨h₁, h₂, h₃⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ∀ (x : α), x ∈ K → UniformSpace.ball x V ⊆ U [PROOFSTEP] let c : K → Set α := fun k => UniformSpace.ball k.1 (W k) [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ∀ (x : α), x ∈ K → UniformSpace.ball x V ⊆ U [PROOFSTEP] have hc₁ : ∀ k, IsOpen (c k) := fun k => UniformSpace.isOpen_ball k.1 (hW k).2.1 [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ∀ (x : α), x ∈ K → UniformSpace.ball x V ⊆ U [PROOFSTEP] have hc₂ : K ⊆ ⋃ i, c i := by intro k hk simp only [mem_iUnion, SetCoe.exists] exact ⟨k, hk, UniformSpace.mem_ball_self k (hW ⟨k, hk⟩).1⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) ⊢ K ⊆ ⋃ (i : ↑K), c i [PROOFSTEP] intro k hk [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) k : α hk : k ∈ K ⊢ k ∈ ⋃ (i : ↑K), c i [PROOFSTEP] simp only [mem_iUnion, SetCoe.exists] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) k : α hk : k ∈ K ⊢ ∃ x h, k ∈ UniformSpace.ball x (Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑{ val := x, property := (_ : x ∈ K) }) V ⊆ U)) [PROOFSTEP] exact ⟨k, hk, UniformSpace.mem_ball_self k (hW ⟨k, hk⟩).1⟩ [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) hc₂ : K ⊆ ⋃ (i : ↑K), c i ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ∀ (x : α), x ∈ K → UniformSpace.ball x V ⊆ U [PROOFSTEP] have hc₃ : ∀ k, c k ⊆ U := fun k => (hW k).2.2 [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) hc₂ : K ⊆ ⋃ (i : ↑K), c i hc₃ : ∀ (k : ↑K), c k ⊆ U ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ∀ (x : α), x ∈ K → UniformSpace.ball x V ⊆ U [PROOFSTEP] obtain ⟨V, hV, hV'⟩ := lebesgue_number_lemma hK hc₁ hc₂ [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) hc₂ : K ⊆ ⋃ (i : ↑K), c i hc₃ : ∀ (k : ↑K), c k ⊆ U V : Set (α × α) hV : V ∈ 𝓤 α hV' : ∀ (x : α), x ∈ K → ∃ i, {y | (x, y) ∈ V} ⊆ c i ⊢ ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ ∀ (x : α), x ∈ K → UniformSpace.ball x V ⊆ U [PROOFSTEP] refine' ⟨interior V, interior_mem_uniformity hV, isOpen_interior, _⟩ [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) hc₂ : K ⊆ ⋃ (i : ↑K), c i hc₃ : ∀ (k : ↑K), c k ⊆ U V : Set (α × α) hV : V ∈ 𝓤 α hV' : ∀ (x : α), x ∈ K → ∃ i, {y | (x, y) ∈ V} ⊆ c i ⊢ ∀ (x : α), x ∈ K → UniformSpace.ball x (interior V) ⊆ U [PROOFSTEP] intro k hk [GOAL] case intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) hc₂ : K ⊆ ⋃ (i : ↑K), c i hc₃ : ∀ (k : ↑K), c k ⊆ U V : Set (α × α) hV : V ∈ 𝓤 α hV' : ∀ (x : α), x ∈ K → ∃ i, {y | (x, y) ∈ V} ⊆ c i k : α hk : k ∈ K ⊢ UniformSpace.ball k (interior V) ⊆ U [PROOFSTEP] obtain ⟨k', hk'⟩ := hV' k hk [GOAL] case intro.intro.intro α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α K U : Set α hK : IsCompact K hU : IsOpen U hKU : K ⊆ U W : ↑K → Set (α × α) := fun k => Classical.choose (_ : ∃ V, V ∈ 𝓤 α ∧ IsOpen V ∧ UniformSpace.ball (↑k) V ⊆ U) hW : ∀ (k : ↑K), W k ∈ 𝓤 α ∧ IsOpen (W k) ∧ UniformSpace.ball (↑k) (W k) ⊆ U c : ↑K → Set α := fun k => UniformSpace.ball (↑k) (W k) hc₁ : ∀ (k : ↑K), IsOpen (c k) hc₂ : K ⊆ ⋃ (i : ↑K), c i hc₃ : ∀ (k : ↑K), c k ⊆ U V : Set (α × α) hV : V ∈ 𝓤 α hV' : ∀ (x : α), x ∈ K → ∃ i, {y | (x, y) ∈ V} ⊆ c i k : α hk : k ∈ K k' : ↑K hk' : {y | (k, y) ∈ V} ⊆ c k' ⊢ UniformSpace.ball k (interior V) ⊆ U [PROOFSTEP] exact ((ball_mono interior_subset k).trans hk').trans (hc₃ k') [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α f : Filter β u : β → α a : α ⊢ Tendsto u f (𝓝 a) ↔ Tendsto (fun x => (a, u x)) f (𝓤 α) [PROOFSTEP] rw [nhds_eq_comap_uniformity, tendsto_comap_iff] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α f : Filter β u : β → α a : α ⊢ Tendsto (Prod.mk a ∘ u) f (𝓤 α) ↔ Tendsto (fun x => (a, u x)) f (𝓤 α) [PROOFSTEP] rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α f : Filter β u : β → α a : α ⊢ Tendsto u f (𝓝 a) ↔ Tendsto (fun x => (u x, a)) f (𝓤 α) [PROOFSTEP] rw [nhds_eq_comap_uniformity', tendsto_comap_iff] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝ : UniformSpace α f : Filter β u : β → α a : α ⊢ Tendsto ((fun y => (y, a)) ∘ u) f (𝓤 α) ↔ Tendsto (fun x => (u x, a)) f (𝓤 α) [PROOFSTEP] rfl [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : TopologicalSpace β f : β → α b : β ⊢ ContinuousAt f b ↔ Tendsto (fun x => (f b, f x)) (𝓝 b) (𝓤 α) [PROOFSTEP] rw [ContinuousAt, tendsto_nhds_right] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : TopologicalSpace β f : β → α b : β ⊢ ContinuousAt f b ↔ Tendsto (fun x => (f x, f b)) (𝓝 b) (𝓤 α) [PROOFSTEP] rw [ContinuousAt, tendsto_nhds_left] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : TopologicalSpace β f : β → α b : β s : Set β ⊢ ContinuousWithinAt f s b ↔ Tendsto (fun x => (f b, f x)) (𝓝[s] b) (𝓤 α) [PROOFSTEP] rw [ContinuousWithinAt, tendsto_nhds_right] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : TopologicalSpace β f : β → α b : β s : Set β ⊢ ContinuousWithinAt f s b ↔ Tendsto (fun x => (f x, f b)) (𝓝[s] b) (𝓤 α) [PROOFSTEP] rw [ContinuousWithinAt, tendsto_nhds_left] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : TopologicalSpace β f : β → α s : Set β ⊢ ContinuousOn f s ↔ ∀ (b : β), b ∈ s → Tendsto (fun x => (f b, f x)) (𝓝[s] b) (𝓤 α) [PROOFSTEP] simp [ContinuousOn, continuousWithinAt_iff'_right] [GOAL] α : Type ua β : Type ub γ : Type uc δ : Type ud ι : Sort u_1 inst✝¹ : UniformSpace α inst✝ : TopologicalSpace β f : β → α s : Set β ⊢ ContinuousOn f s ↔ ∀ (b : β), b ∈ s → Tendsto (fun x => (f x, f b)) (𝓝[s] b) (𝓤 α) [PROOFSTEP] simp [ContinuousOn, continuousWithinAt_iff'_left]
{"mathlib_filename": "Mathlib.Topology.UniformSpace.Basic", "llama_tokens": 77304}
[GOAL] R : Type u_1 S : Type u_2 inst✝³ : Semiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R p✝ : R[X] inst✝ : Semiring S p : S[X] f : S →+* R ⊢ Continuous fun x => eval₂ f x p [PROOFSTEP] simp only [eval₂_eq_sum, Finsupp.sum] [GOAL] R : Type u_1 S : Type u_2 inst✝³ : Semiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R p✝ : R[X] inst✝ : Semiring S p : S[X] f : S →+* R ⊢ Continuous fun x => sum p fun e a => ↑f a * x ^ e [PROOFSTEP] exact continuous_finset_sum _ fun c _ => continuous_const.mul (continuous_pow _) [GOAL] R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv p : R[X] hd : 0 < degree p hf : ↑f (leadingCoeff p) ≠ 0 l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop ⊢ Tendsto (fun x => abv (eval₂ f (z x) p)) l atTop [PROOFSTEP] revert hf [GOAL] R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv p : R[X] hd : 0 < degree p l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop ⊢ ↑f (leadingCoeff p) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p)) l atTop [PROOFSTEP] refine' degree_pos_induction_on p hd _ _ _ [GOAL] case refine'_1 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv p : R[X] hd : 0 < degree p l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop ⊢ ∀ {a : R}, a ≠ 0 → ↑f (leadingCoeff (↑C a * X)) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) (↑C a * X))) l atTop [PROOFSTEP] clear hd p [GOAL] case refine'_2 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv p : R[X] hd : 0 < degree p l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop ⊢ ∀ {p : R[X]}, 0 < degree p → (↑f (leadingCoeff p) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p)) l atTop) → ↑f (leadingCoeff (p * X)) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) (p * X))) l atTop [PROOFSTEP] clear hd p [GOAL] case refine'_3 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv p : R[X] hd : 0 < degree p l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop ⊢ ∀ {p : R[X]} {a : R}, 0 < degree p → (↑f (leadingCoeff p) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p)) l atTop) → ↑f (leadingCoeff (p + ↑C a)) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) (p + ↑C a))) l atTop [PROOFSTEP] clear hd p [GOAL] case refine'_1 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop ⊢ ∀ {a : R}, a ≠ 0 → ↑f (leadingCoeff (↑C a * X)) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) (↑C a * X))) l atTop [PROOFSTEP] rintro _ - hc [GOAL] case refine'_1 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop a✝ : R hc : ↑f (leadingCoeff (↑C a✝ * X)) ≠ 0 ⊢ Tendsto (fun x => abv (eval₂ f (z x) (↑C a✝ * X))) l atTop [PROOFSTEP] rw [leadingCoeff_mul_X, leadingCoeff_C] at hc [GOAL] case refine'_1 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop a✝ : R hc : ↑f a✝ ≠ 0 ⊢ Tendsto (fun x => abv (eval₂ f (z x) (↑C a✝ * X))) l atTop [PROOFSTEP] simpa [abv_mul abv] using hz.const_mul_atTop ((abv_pos abv).2 hc) [GOAL] case refine'_2 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop ⊢ ∀ {p : R[X]}, 0 < degree p → (↑f (leadingCoeff p) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p)) l atTop) → ↑f (leadingCoeff (p * X)) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) (p * X))) l atTop [PROOFSTEP] intro _ _ ihp hf [GOAL] case refine'_2 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop p✝ : R[X] a✝ : 0 < degree p✝ ihp : ↑f (leadingCoeff p✝) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p✝)) l atTop hf : ↑f (leadingCoeff (p✝ * X)) ≠ 0 ⊢ Tendsto (fun x => abv (eval₂ f (z x) (p✝ * X))) l atTop [PROOFSTEP] rw [leadingCoeff_mul_X] at hf [GOAL] case refine'_2 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop p✝ : R[X] a✝ : 0 < degree p✝ ihp : ↑f (leadingCoeff p✝) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p✝)) l atTop hf : ↑f (leadingCoeff p✝) ≠ 0 ⊢ Tendsto (fun x => abv (eval₂ f (z x) (p✝ * X))) l atTop [PROOFSTEP] simpa [abv_mul abv] using (ihp hf).atTop_mul_atTop hz [GOAL] case refine'_3 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop ⊢ ∀ {p : R[X]} {a : R}, 0 < degree p → (↑f (leadingCoeff p) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p)) l atTop) → ↑f (leadingCoeff (p + ↑C a)) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) (p + ↑C a))) l atTop [PROOFSTEP] intro _ a hd ihp hf [GOAL] case refine'_3 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop p✝ : R[X] a : R hd : 0 < degree p✝ ihp : ↑f (leadingCoeff p✝) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p✝)) l atTop hf : ↑f (leadingCoeff (p✝ + ↑C a)) ≠ 0 ⊢ Tendsto (fun x => abv (eval₂ f (z x) (p✝ + ↑C a))) l atTop [PROOFSTEP] rw [add_comm, leadingCoeff_add_of_degree_lt (degree_C_le.trans_lt hd)] at hf [GOAL] case refine'_3 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop p✝ : R[X] a : R hd : 0 < degree p✝ ihp : ↑f (leadingCoeff p✝) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p✝)) l atTop hf : ↑f (leadingCoeff p✝) ≠ 0 ⊢ Tendsto (fun x => abv (eval₂ f (z x) (p✝ + ↑C a))) l atTop [PROOFSTEP] refine' tendsto_atTop_of_add_const_right (abv (-f a)) _ [GOAL] case refine'_3 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop p✝ : R[X] a : R hd : 0 < degree p✝ ihp : ↑f (leadingCoeff p✝) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p✝)) l atTop hf : ↑f (leadingCoeff p✝) ≠ 0 ⊢ Tendsto (fun x => abv (eval₂ f (z x) (p✝ + ↑C a)) + abv (-↑f a)) l atTop [PROOFSTEP] refine' tendsto_atTop_mono (fun _ => abv_add abv _ _) _ [GOAL] case refine'_3 R : Type u_1 S : Type u_2 k : Type u_3 α : Type u_4 inst✝³ : Semiring R inst✝² : Ring S inst✝¹ : LinearOrderedField k f : R →+* S abv : S → k inst✝ : IsAbsoluteValue abv l : Filter α z : α → S hz : Tendsto (abv ∘ z) l atTop p✝ : R[X] a : R hd : 0 < degree p✝ ihp : ↑f (leadingCoeff p✝) ≠ 0 → Tendsto (fun x => abv (eval₂ f (z x) p✝)) l atTop hf : ↑f (leadingCoeff p✝) ≠ 0 ⊢ Tendsto (fun x => abv (eval₂ f (z x) (p✝ + ↑C a) + -↑f a)) l atTop [PROOFSTEP] simpa using ihp hf [GOAL] R : Type u_1 k : Type u_2 α : Type u_3 inst✝² : Ring R inst✝¹ : LinearOrderedField k abv : R → k inst✝ : IsAbsoluteValue abv p : R[X] h : 0 < degree p l : Filter α z : α → R hz : Tendsto (abv ∘ z) l atTop ⊢ Tendsto (fun x => abv (eval (z x) p)) l atTop [PROOFSTEP] apply tendsto_abv_eval₂_atTop _ _ _ h _ hz [GOAL] R : Type u_1 k : Type u_2 α : Type u_3 inst✝² : Ring R inst✝¹ : LinearOrderedField k abv : R → k inst✝ : IsAbsoluteValue abv p : R[X] h : 0 < degree p l : Filter α z : α → R hz : Tendsto (abv ∘ z) l atTop ⊢ ↑(RingHom.id R) (leadingCoeff p) ≠ 0 [PROOFSTEP] exact (mt leadingCoeff_eq_zero.1 (ne_zero_of_degree_gt h)) [GOAL] α : Type u_1 R : Type u_2 inst✝² : NormedRing R inst✝¹ : IsAbsoluteValue norm inst✝ : ProperSpace R p : R[X] hp0 : ¬0 < degree p ⊢ ∀ (y : R), ‖eval (coeff p 0) p‖ ≤ ‖eval y p‖ [PROOFSTEP] rw [eq_C_of_degree_le_zero (le_of_not_gt hp0)] [GOAL] α : Type u_1 R : Type u_2 inst✝² : NormedRing R inst✝¹ : IsAbsoluteValue norm inst✝ : ProperSpace R p : R[X] hp0 : ¬0 < degree p ⊢ ∀ (y : R), ‖eval (coeff (↑C (coeff p 0)) 0) (↑C (coeff p 0))‖ ≤ ‖eval y (↑C (coeff p 0))‖ [PROOFSTEP] simp [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ hB : B < 0 h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B ⊢ natDegree p = 0 [PROOFSTEP] contrapose! hB [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : natDegree p ≠ 0 ⊢ 0 ≤ B [PROOFSTEP] rw [← h1.natDegree_map f, natDegree_eq_card_roots' h2] at hB [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : ↑card (roots (map f p)) ≠ 0 ⊢ 0 ≤ B [PROOFSTEP] obtain ⟨z, hz⟩ := card_pos_iff_exists_mem.mp (zero_lt_iff.mpr hB) [GOAL] case intro α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : ↑card (roots (map f p)) ≠ 0 z : K hz : z ∈ roots (map f p) ⊢ 0 ≤ B [PROOFSTEP] exact le_trans (norm_nonneg _) (h3 z hz) [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B ⊢ ‖coeff (map f p) i‖ ≤ B ^ (natDegree p - i) * ↑(Nat.choose (natDegree p) i) [PROOFSTEP] obtain hB | hB := lt_or_le B 0 [GOAL] case inl α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : B < 0 ⊢ ‖coeff (map f p) i‖ ≤ B ^ (natDegree p - i) * ↑(Nat.choose (natDegree p) i) [PROOFSTEP] rw [eq_one_of_roots_le hB h1 h2 h3, Polynomial.map_one, natDegree_one, zero_tsub, pow_zero, one_mul, coeff_one] [GOAL] case inl α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : B < 0 ⊢ ‖if 0 = i then 1 else 0‖ ≤ ↑(Nat.choose 0 i) [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : B < 0 h✝ : 0 = i ⊢ ‖1‖ ≤ ↑(Nat.choose 0 i) [PROOFSTEP] norm_num [h] [GOAL] case neg α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : B < 0 h✝ : ¬0 = i ⊢ ‖0‖ ≤ ↑(Nat.choose 0 i) [PROOFSTEP] norm_num [h] [GOAL] case pos α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : B < 0 h✝ : 0 = i ⊢ 1 ≤ Nat.choose 0 i [PROOFSTEP] simp [‹0 = i›] [GOAL] case inr α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B ⊢ ‖coeff (map f p) i‖ ≤ B ^ (natDegree p - i) * ↑(Nat.choose (natDegree p) i) [PROOFSTEP] rw [← h1.natDegree_map f] [GOAL] case inr α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B ⊢ ‖coeff (map f p) i‖ ≤ B ^ (natDegree (map f p) - i) * ↑(Nat.choose (natDegree (map f p)) i) [PROOFSTEP] obtain hi | hi := lt_or_le (map f p).natDegree i [GOAL] case inr.inl α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : natDegree (map f p) < i ⊢ ‖coeff (map f p) i‖ ≤ B ^ (natDegree (map f p) - i) * ↑(Nat.choose (natDegree (map f p)) i) [PROOFSTEP] rw [coeff_eq_zero_of_natDegree_lt hi, norm_zero] [GOAL] case inr.inl α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : natDegree (map f p) < i ⊢ 0 ≤ B ^ (natDegree (map f p) - i) * ↑(Nat.choose (natDegree (map f p)) i) [PROOFSTEP] positivity [GOAL] case inr.inr α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : i ≤ natDegree (map f p) ⊢ ‖coeff (map f p) i‖ ≤ B ^ (natDegree (map f p) - i) * ↑(Nat.choose (natDegree (map f p)) i) [PROOFSTEP] rw [coeff_eq_esymm_roots_of_splits ((splits_id_iff_splits f).2 h2) hi, (h1.map _).leadingCoeff, one_mul, norm_mul, norm_pow, norm_neg, norm_one, one_pow, one_mul] [GOAL] case inr.inr α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : i ≤ natDegree (map f p) ⊢ ‖esymm (roots (map f p)) (natDegree (map f p) - i)‖ ≤ B ^ (natDegree (map f p) - i) * ↑(Nat.choose (natDegree (map f p)) i) [PROOFSTEP] apply ((norm_multiset_sum_le _).trans <| sum_le_card_nsmul _ _ fun r hr => _).trans [GOAL] case inr.inr α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : i ≤ natDegree (map f p) ⊢ ↑card (Multiset.map (fun x => ‖x‖) (Multiset.map prod (powersetLen (natDegree (map f p) - i) (roots (map f p))))) • ?m.209879 ≤ B ^ (natDegree (map f p) - i) * ↑(Nat.choose (natDegree (map f p)) i) [PROOFSTEP] rw [Multiset.map_map, card_map, card_powersetLen, ← natDegree_eq_card_roots' h2, Nat.choose_symm hi, mul_comm, nsmul_eq_mul] [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : i ≤ natDegree (map f p) ⊢ ∀ (r : ℝ), r ∈ Multiset.map (fun x => ‖x‖) (Multiset.map prod (powersetLen (natDegree (map f p) - i) (roots (map f p)))) → r ≤ B ^ (natDegree (map f p) - i) [PROOFSTEP] intro r hr [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : i ≤ natDegree (map f p) r : ℝ hr : r ∈ Multiset.map (fun x => ‖x‖) (Multiset.map prod (powersetLen (natDegree (map f p) - i) (roots (map f p)))) ⊢ r ≤ B ^ (natDegree (map f p) - i) [PROOFSTEP] simp_rw [Multiset.mem_map] at hr [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : i ≤ natDegree (map f p) r : ℝ hr : ∃ a, (∃ a_1, a_1 ∈ powersetLen (natDegree (map f p) - i) (roots (map f p)) ∧ prod a_1 = a) ∧ ‖a‖ = r ⊢ r ≤ B ^ (natDegree (map f p) - i) [PROOFSTEP] obtain ⟨_, ⟨s, hs, rfl⟩, rfl⟩ := hr [GOAL] case intro.intro.intro.intro α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : i ≤ natDegree (map f p) s : Multiset K hs : s ∈ powersetLen (natDegree (map f p) - i) (roots (map f p)) ⊢ ‖prod s‖ ≤ B ^ (natDegree (map f p) - i) [PROOFSTEP] rw [mem_powersetLen] at hs [GOAL] case intro.intro.intro.intro α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K B : ℝ i : ℕ h1 : Monic p h2 : Splits f p h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B hB : 0 ≤ B hi : i ≤ natDegree (map f p) s : Multiset K hs : s ≤ roots (map f p) ∧ ↑card s = natDegree (map f p) - i ⊢ ‖prod s‖ ≤ B ^ (natDegree (map f p) - i) [PROOFSTEP] lift B to ℝ≥0 using hB [GOAL] case intro.intro.intro.intro.intro α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K i : ℕ h1 : Monic p h2 : Splits f p hi : i ≤ natDegree (map f p) s : Multiset K hs : s ≤ roots (map f p) ∧ ↑card s = natDegree (map f p) - i B : ℝ≥0 h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ ↑B ⊢ ‖prod s‖ ≤ ↑B ^ (natDegree (map f p) - i) [PROOFSTEP] rw [← coe_nnnorm, ← NNReal.coe_pow, NNReal.coe_le_coe, ← nnnormHom_apply, ← MonoidHom.coe_coe, MonoidHom.map_multiset_prod] [GOAL] case intro.intro.intro.intro.intro α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K i : ℕ h1 : Monic p h2 : Splits f p hi : i ≤ natDegree (map f p) s : Multiset K hs : s ≤ roots (map f p) ∧ ↑card s = natDegree (map f p) - i B : ℝ≥0 h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ ↑B ⊢ prod (Multiset.map (↑↑nnnormHom) s) ≤ B ^ (natDegree (map f p) - i) [PROOFSTEP] refine' (prod_le_pow_card _ B fun x hx => _).trans_eq (by rw [card_map, hs.2]) [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K i : ℕ h1 : Monic p h2 : Splits f p hi : i ≤ natDegree (map f p) s : Multiset K hs : s ≤ roots (map f p) ∧ ↑card s = natDegree (map f p) - i B : ℝ≥0 h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ ↑B ⊢ B ^ ↑card (Multiset.map (↑↑nnnormHom) s) = B ^ (natDegree (map f p) - i) [PROOFSTEP] rw [card_map, hs.2] [GOAL] case intro.intro.intro.intro.intro α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K i : ℕ h1 : Monic p h2 : Splits f p hi : i ≤ natDegree (map f p) s : Multiset K hs : s ≤ roots (map f p) ∧ ↑card s = natDegree (map f p) - i B : ℝ≥0 h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ ↑B x : ℝ≥0 hx : x ∈ Multiset.map (↑↑nnnormHom) s ⊢ x ≤ B [PROOFSTEP] obtain ⟨z, hz, rfl⟩ := Multiset.mem_map.1 hx [GOAL] case intro.intro.intro.intro.intro.intro.intro α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K p : F[X] f : F →+* K i : ℕ h1 : Monic p h2 : Splits f p hi : i ≤ natDegree (map f p) s : Multiset K hs : s ≤ roots (map f p) ∧ ↑card s = natDegree (map f p) - i B : ℝ≥0 h3 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ ↑B z : K hz : z ∈ s hx : ↑↑nnnormHom z ∈ Multiset.map (↑↑nnnormHom) s ⊢ ↑↑nnnormHom z ≤ B [PROOFSTEP] exact h3 z (mem_of_le hs.1 hz) [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ ⊢ ‖coeff (map f p) i‖ ≤ max B 1 ^ d * ↑(Nat.choose d (d / 2)) [PROOFSTEP] obtain hB | hB := le_or_lt 0 B [GOAL] case inl α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ ‖coeff (map f p) i‖ ≤ max B 1 ^ d * ↑(Nat.choose d (d / 2)) [PROOFSTEP] apply (coeff_le_of_roots_le i h1 h2 h4).trans [GOAL] case inl α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ B ^ (natDegree p - i) * ↑(Nat.choose (natDegree p) i) ≤ max B 1 ^ d * ↑(Nat.choose d (d / 2)) [PROOFSTEP] calc _ ≤ max B 1 ^ (p.natDegree - i) * p.natDegree.choose i := by gcongr; apply le_max_left _ ≤ max B 1 ^ d * p.natDegree.choose i := by gcongr; apply le_max_right; exact le_trans (Nat.sub_le _ _) h3 _ ≤ max B 1 ^ d * d.choose (d / 2) := by gcongr; exact (i.choose_mono h3).trans (i.choose_le_middle d) [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ B ^ (natDegree p - i) * ↑(Nat.choose (natDegree p) i) ≤ max B 1 ^ (natDegree p - i) * ↑(Nat.choose (natDegree p) i) [PROOFSTEP] gcongr [GOAL] case h.hab α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ B ≤ max B 1 [PROOFSTEP] apply le_max_left [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ max B 1 ^ (natDegree p - i) * ↑(Nat.choose (natDegree p) i) ≤ max B 1 ^ d * ↑(Nat.choose (natDegree p) i) [PROOFSTEP] gcongr [GOAL] case h.ha α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ 1 ≤ max B 1 case h.h α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ natDegree p - i ≤ d [PROOFSTEP] apply le_max_right [GOAL] case h.h α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ natDegree p - i ≤ d [PROOFSTEP] exact le_trans (Nat.sub_le _ _) h3 [GOAL] α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ max B 1 ^ d * ↑(Nat.choose (natDegree p) i) ≤ max B 1 ^ d * ↑(Nat.choose d (d / 2)) [PROOFSTEP] gcongr [GOAL] case h.h α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : 0 ≤ B ⊢ Nat.choose (natDegree p) i ≤ Nat.choose d (d / 2) [PROOFSTEP] exact (i.choose_mono h3).trans (i.choose_le_middle d) [GOAL] case inr α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : B < 0 ⊢ ‖coeff (map f p) i‖ ≤ max B 1 ^ d * ↑(Nat.choose d (d / 2)) [PROOFSTEP] rw [eq_one_of_roots_le hB h1 h2 h4, Polynomial.map_one, coeff_one] [GOAL] case inr α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : B < 0 ⊢ ‖if 0 = i then 1 else 0‖ ≤ max B 1 ^ d * ↑(Nat.choose d (d / 2)) [PROOFSTEP] refine' _root_.trans _ (one_le_mul_of_one_le_of_one_le (one_le_pow_of_one_le (le_max_right B 1) d) _) [GOAL] case inr.refine'_1 α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : B < 0 ⊢ ‖if 0 = i then 1 else 0‖ ≤ 1 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : B < 0 h✝ : 0 = i ⊢ ‖1‖ ≤ 1 [PROOFSTEP] norm_num [GOAL] case neg α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : B < 0 h✝ : ¬0 = i ⊢ ‖0‖ ≤ 1 [PROOFSTEP] norm_num [GOAL] case inr.refine'_2 α : Type u_1 R : Type u_2 inst✝³ : NormedRing R inst✝² : IsAbsoluteValue norm F : Type u_3 K : Type u_4 inst✝¹ : CommRing F inst✝ : NormedField K B : ℝ d : ℕ f : F →+* K p : F[X] h1 : Monic p h2 : Splits f p h3 : natDegree p ≤ d h4 : ∀ (z : K), z ∈ roots (map f p) → ‖z‖ ≤ B i : ℕ hB : B < 0 ⊢ 1 ≤ ↑(Nat.choose d (d / 2)) [PROOFSTEP] exact_mod_cast Nat.succ_le_iff.mpr (Nat.choose_pos (d.div_le_self 2))
{"mathlib_filename": "Mathlib.Topology.Algebra.Polynomial", "llama_tokens": 15579}